Nothing Special   »   [go: up one dir, main page]

JP6517613B2 - ガスセンサ - Google Patents

ガスセンサ Download PDF

Info

Publication number
JP6517613B2
JP6517613B2 JP2015143600A JP2015143600A JP6517613B2 JP 6517613 B2 JP6517613 B2 JP 6517613B2 JP 2015143600 A JP2015143600 A JP 2015143600A JP 2015143600 A JP2015143600 A JP 2015143600A JP 6517613 B2 JP6517613 B2 JP 6517613B2
Authority
JP
Japan
Prior art keywords
electrode
gas
layer
porous layer
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015143600A
Other languages
English (en)
Other versions
JP2016080684A (ja
Inventor
哲哉 伊藤
哲哉 伊藤
寺本 諭司
諭司 寺本
和久 藤林
和久 藤林
暢雄 古田
暢雄 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to DE102015219559.7A priority Critical patent/DE102015219559A1/de
Publication of JP2016080684A publication Critical patent/JP2016080684A/ja
Application granted granted Critical
Publication of JP6517613B2 publication Critical patent/JP6517613B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

本発明は、例えば燃焼器や内燃機関等の燃焼ガスや排気ガス中に含まれる特定ガスのガス濃度を検出するのに好適に用いられるガスセンサに関する。
従来から、内燃機関の排気ガス中の特定成分(酸素、NO等)の濃度を検出するガスセンサが用いられている(特許文献1、2)。例えば特許文献1記載のガスセンサの場合、図13に示すようにガスセンサは自身の内部にセンサ素子1000を有し、センサ素子1000は2つのセル1300、1400を有している。
このうち、セル1400は固体電解質層1090の両面に形成された電極1080、1100を有し、電極1100は多孔質層1130を介して外部との間で排気ガス中の酸素の汲み出し又は汲み入れを行うポンピングセルとなっている。一方、セル1300は、測定室1070に面して測定室1070内の排気ガス中の酸素濃度に応じた出力電圧(起電力)を出力する酸素濃度検出セルとなっている。そして、この出力電圧が一定となるようにポンピングセル1400に電圧(Vp電圧)を印加してポンプ電流Ipを流し、該ポンプ電流Ipに応じた排気ガス中の酸素濃度を検出するようになっている。
特開2012−173146号公報 特許第4966266号公報
ところで、図14に示すように、測定室1070内の排気ガス中の空燃比(A/F)がリッチからリーンに変化した場合、λセンサである酸素濃度検出セル1300の出力電圧は急激に変化し、それに応じてポンピングセル1400に印加されるVp電圧も急激に変化する。すると、ポンピングセル1400から出力されるポンプ電流Ipにオーバーシュート現象(リップル(Ripple)現象)と称される余分な脈動電流Riが重畳され、酸素濃度の検出値が不正確になるという問題がある。
この原因は、図15に示すように、ポンピングセル1400の固体電解質層1090と電極1100との間にコンデンサ回路が形成され、コンデンサの電極間の電圧(Vp電圧)が時間的に変化すると、それに比例してコンデンサの電極間の電荷が時間的に変化して電流が流れ出すためと考えられる。つまり、このコンデンサ回路におけるコンデンサの容量Cと、コンデンサの電荷の変化ΔQと、コンデンサの電極間のVp電圧の変化ΔVpとは、次式(1)の関係にある。
ΔQ=C×ΔVp (1)
ΔQ=Riであるから、
Ri=C×ΔVp (2)
となる。式(2)より、Vp電圧の時間変化であるΔVpを小さくするほど、脈動電流(オーバーシュート電流)Riを低減することになる。
一方、図16に示すように、排気ガス中の空燃比(A/F)がストイキ点を跨がないときには、酸素濃度検出セル1300の出力電圧、ひいてはVp電圧は急激に変化しないので、ポンプ電流Ipに脈動電流Riは重畳されない。
そして、ΔVpを小さくする方策として、ポンピングセル1400の起電力変化を妨げる、つまり(1)多孔質層1130の通気抵抗を大きくする、(2)電極1100での電極反応を遅くする、ことが考えられる。
このうち(1)については、多孔質層1130を緻密にしたり、その大きさを小さくする方策が挙げられる。しかしながら、多孔質層1130は一般に絶縁体粒子を焼成して製造されるため、気孔の分布や厚みを一定にすることには限界がある。このため、多孔質層1130を緻密にしたり、小さくしても、気孔率や大きさが局所的にばらつき、安定した効果が得られ難いと共に、多孔質層1130の製造が困難になるという問題がある。
又、(2)については、電極1100を緻密にしたり、その厚みを厚くする方策が挙げられる。しかしながら、電極1100の厚みを厚くすると、電極材料である貴金属(Pt等)の使用量が増えて電極のコストアップに繋がる。又、電極1100を緻密にすると、電極1100と固体電解質層1090と気相との3相界面が減少して電極抵抗(センサ素子の内部抵抗)が上昇し、ひいてはセンサ素子の動作電圧が上昇し、後述するブラックニングの発生や、電気回路上の制約が生じるという問題がある。さらに、リッチ雰囲気においては、電極1100は酸素源(排気ガス中のH2O,CO2等)から測定室1070へ酸素をポンピングするが、電極1100を緻密にしたり厚くすると、電極1100へ到達するガスが減少してリッチ側の測定範囲が狭くなるという問題がある。
一方、本発明者は(1)について、多孔質層1130の気孔率や大きさを従来と同等としつつも、多孔質層1130の一部に重なることで、外部から多孔質層1130を介して電極1100に到達する酸素源(排気ガス)の量を減少させる方策を検討した。この場合、上記した(1)、(2)の問題を抑制することができる。
しかしながら、多孔質層1130に重なる位置によっては、ブラックニングと称される固体電解質層1090の特性劣化が生じることが判明した。ブラックニングは、固体電解質層1090を介して電極反応が生じている状態で、固体電解質層1090に酸素不足が生じて固体電解質層1090中の金属酸化物が還元される現象である。ブラックニングが生じると、固体電解質層1090の特性(イオン伝導性)が劣化し、ポンピング性能が低下する。
例えば図17に示すように、多孔質層1130と電極1100との間に、多孔質層1130の外周側に接するように重なる通気抵抗層1200を設けた場合、通気抵抗層1200と重なる固体電解質層1090の部位Brでブラックニングが生じるおそれがある。つまり、部位Brでは、通気抵抗層1200によって多孔質層1130からの酸素源(排気ガスG)の供給が妨げられるにも関わらず、固体電解質層1090を挟む電極1100、1080によって固体電解質層1090から強制的に酸素イオンを移動させる電極反応が生じ、固体電解質層1090に酸素不足が生じる。
そこで、本発明は、被測定ガスの雰囲気の変化に伴ってセルの起電力が急激に変化してガスの検出精度が低下することを抑制すると共に、固体電解質層の特性劣化を抑制したガスセンサの提供を目的とする。
上記課題を解決するため、本発明のガスセンサは、測定室と、板状の固体電解質層、並びに前記固体電解質層の表面に配置され、前記測定室に面する第1電極及び前記測定室に面しない第2電極を有し、前記測定室内のガス中の酸素の汲み出し又は汲み入れを行うポンピングセルと、前記第2電極の表面に積層され、前記第2電極と外部との間で前記ガスが出入可能な多孔質層と、を備えたセンサ素子を有するガスセンサであって、積層方向から見たときに、前記第2電極の外周縁が前記多孔質層の外周縁より内側に位置し、前記多孔質層の表面又は内部に、前記第2電極と離間しつつ、前記積層方向から見たときに前記第2電極と前記多孔質層との重なり領域の一部に重なる通気抵抗体を有する。
このガスセンサによれば、外部から多孔質層を介して電極に到達するガス中の酸素源の時間当たりの量は、通気抵抗体が通気抵抗になって減少し、電極上のガス交換速度が遅くなる。これにより、酸素ポンピングを行うセルでの電圧の時間変化が小さくなり、ポンプ電流に重畳される脈動電流(オーバーシュート電流)を低減してガスの検出精度の低下を抑制できる。又、多孔質層自身を緻密にしたり、その大きさを小さくして通気抵抗を実現した場合に比べ、安定して通気抵抗を高くすることができる共に、多孔質層の製造が困難になることも回避される。同様に、電極自身を緻密にしたり、その厚みを厚くする必要がないので、電極のコストアップを抑制すると共に、電極抵抗(センサ素子の内部抵抗)の上昇によるブラックニングの発生を抑制し、リッチ側の測定範囲が狭くなることをも抑制できる。
さらに、通気抵抗体を、絶縁体ペーストを印刷塗布して形成した場合には、印刷による寸法精度が高いので、通気抵抗体の寸法精度も高くなり、上記した効果を安定して発揮することができる。
又、本発明のガスセンサは、測定室と、板状の固体電解質層、並びに前記固体電解質層の表面に配置され、前記測定室に面する第1電極及び前記測定室に面しない第2電極を有し、前記測定室内のガス中の酸素の汲み出し又は汲み入れを行うポンピングセルと、前記第2電極の表面に積層され、前記第2電極と外部との間で前記ガスが出入可能な多孔質層と、を備えたセンサ素子を有するガスセンサであって、積層方向から見たときに、前記第2電極の外周縁が前記多孔質層の外周縁より内側に位置し、前記多孔質層の表面又は内部に、前記第2電極と離間しつつ、前記積層方向から見たときに前記第2電極と前記多孔質層との重なり領域の一部に重なる通気抵抗体を有し、前記セル及び前記多孔質層を有し、かつ前記通気抵抗体を有しないセンサ素子を備えたガスセンサを基準ガスセンサとし、該基準ガスセンサの出力安定時のIp値を100%とし、かつそのオーバーシュート電流の最大値を(100+X)%で表したとき、前記ガスセンサのオーバーシュート電流の最大値が(100+X/2)%以下であるガスセンサである。但し、前記オーバーシュート電流は、ガス中の空燃比がリッチからリーンに変化した場合に、前記測定室に導入される前記ガス中の酸素の汲み出し又は汲み入れを行う前記ポンピングセルら出力され脈動電流の最大値である。
このガスセンサによれば、外部から多孔質層を介して電極に到達するガス中の酸素源の時間当たりの量は、通気抵抗体が通気抵抗になって減少し、電極上のガス交換速度が遅くなる。これにより、酸素ポンピングを行うセルでの電圧の時間変化が小さくなり、ポンプ電流に重畳される脈動電流(オーバーシュート電流)を低減してガスの検出精度の低下を抑制できる。又、多孔質層自身を緻密にしたり、その大きさを小さくして通気抵抗を実現した場合に比べ、安定して通気抵抗を高くすることができる共に、多孔質層の製造が困難になることも回避される。同様に、電極自身を緻密にしたり、その厚みを厚くする必要がないので、電極のコストアップを抑制すると共に、電極抵抗(センサ素子の内部抵抗)の上昇によるブラックニングの発生を抑制し、リッチ側の測定範囲が狭くなることをも抑制できる。
さらに、通気抵抗体を、絶縁体ペーストを印刷塗布して形成した場合には、印刷による寸法精度が高いので、通気抵抗体の寸法精度も高くなり、上記した効果を安定して発揮することができる。
前記通気抵抗体はガス不透過性であってもよい。
このガスセンサによれば、通気抵抗体が確実に外部から多孔質層を介して電極に到達するガス中の酸素源の時間当たりの量を減少させる通気抵抗として機能する。
前記積層方向から見たときに、前記通気抵抗体は前記重なり領域の25.0〜97.5%の面積に重なるようにしてもよい。
このガスセンサによれば、通気抵抗体の通気抵抗としての上記効果を発揮するとともに、重なり領域に重なり過ぎて通気抵抗が大きくなり過ぎ、電極抵抗(センサ素子の内部抵抗)が上昇してブラックニングが発生したり、ポンプ電流がほとんど流れなくなる不具合を解消できる。
前記センサ素子はさらに、前記測定室内の前記被測定ガス中の酸素濃度に応じた出力電圧を出力する酸素濃度検出セルを備えた酸素センサ素子であって、前記出力電圧が一定となるように前記ポンピングセルにポンプ電流を流し、該ポンプ電流に応じた前記被測定ガス中の酸素濃度を検出する酸素センサ素子であってもよい。
このガスセンサによれば、酸素センサ素子に本発明を適用できる。
前記センサ素子はさらに、酸素濃度が調整された前記被測定ガス中のNO濃度に応じたポンプ電流が流れる第2ポンピングセルを備えたNOセンサ素子であってもよい。
このガスセンサによれば、NOセンサ素子に本発明を適用できる。


前記電極は、Pt及びAuを合計で50質量%以上含有してもよい。
このガスセンサによれば、電極上でのガス反応を緩やかにし、ほぼλ=1におけるポンプ電流のオーバーシュート又は逆シュートを低減し、検出精度を向上させることができる。
なお、電極がPt及びAuを含有する形態としては、Pt−Au合金、PtとAuの混合体(PtとAuの粒子を含むペーストを焼成し、合金とならないもの)、Ptの表面にAuめっきした層構造、PtにAuを含浸させたもの、が例示される。又、電極がAuを0.1〜10質量%含有すると好ましい。Ptの表面にAuめっきした層構造の場合、Auめっきが極めて薄く、Auの含有量が0.1質量%でも機能するからである。又、PtにAuを含浸させる方法としては、Pt基体にAuの塩(例えば、HAuCl)を含浸させた後に焼成し、塩を熱分解させてAuを残存させる方法が挙げられる。
この発明によれば、被測定ガスの雰囲気の変化に伴ってセルの起電力が急激に変化してガスの検出精度が低下することを抑制すると共に、固体電解質層の特性劣化を抑制したガスセンサが得られる。
本発明の実施形態に係るガスセンサ(酸素センサ)の長手方向に沿う断面図である。 センサ素子の模式分解斜視図である。 センサ素子の先端側の部分拡大断面図である。 センサ素子の軸線方向に直交する断面図である。 第4電極と多孔質層との位置関係を示す積層方向から見た平面図である。 図5のA−A線に沿う断面図である。 通気抵抗層が第4電極と離間することによる作用を示す模式図である。 通気抵抗層が第4電極と接していることによる作用を示す模式図である。 通気抵抗層の変形例を示す軸線方向に直交する断面図である。 通気抵抗層の別の変形例を示す軸線方向に直交する断面図である。 NOセンサ素子の長手方向に沿う断面図である。 重なり率を75%とし、ガス中の空燃比(A/F)をリッチからリーンに変化させたときの、酸素ポンプセルのポンプ電流Ipの時間変化を示す図である。 従来のガスセンサにおけるセンサ素子の軸線方向に直交する断面図である。 ガス中の空燃比(A/F)をリッチからリーンに変化させたときの、酸素ポンピングセルのポンプ電流Ipの時間変化を示す図である。 酸素ポンピングセルの等価回路を示す図である。 排気ガス中の空燃比(A/F)ががストイキ点を跨がないときの、酸素ポンピングセルのポンプ電流Ipの時間変化を示す図である。 酸素ポンピングセルの多孔質層と電極との間に通気抵抗層を設けた場合のブラックニングの発生を示す断面図である。
以下、本発明の実施形態について説明する。
図1は本発明の実施形態に係るガスセンサ(酸素センサ)1の長手方向(軸線L方向)に沿う断面図、図2はセンサ素子100の模式分解斜視図、図3はセンサ素子100の軸線L方向の断面図、図4はセンサ素子100の軸線L方向に直交する断面図である。
図1に示すように、ガスセンサ1は、センサ素子100、センサ素子100等を内部に保持する主体金具(ハウジング)30、主体金具30の先端部に装着されるプロテクタ24等を有している。センサ素子100は軸線L方向に延びるように配置されている。
センサ素子100は、ヒータ部200と検出素子部300とを備える。
ヒータ部200は、図2に示すように、アルミナを主体とする第1基体101及び第2基体103と、第1基体101と第2基体103とに挟まれ、白金を主体とする発熱体102を有している。発熱体102は、先端側に位置する発熱部102aと、発熱部102aから第1基体101の長手方向に沿って延びる一対のヒータリード部102bとを有している。そして、ヒータリード部102bの端末は、第1基体101に設けられるヒータ側スルーホール101aに形成された導体を介してヒータ側パッド120と電気的に接続している。第1基体101及び第2基体103を積層したものが絶縁セラミック体にあたる。
検出素子部300は、酸素濃度検出セル130と酸素ポンプセル140との2つのセルを備える。酸素濃度検出セル130は、第1固体電解質層105と、その第1固体電解質105の両面に形成された第1電極104及び第2電極106とから形成されている。第1電極104は、第1電極部104aと、第1電極部104aから第1固体電解質層105の長手方向に沿って延びる第1リード部104bとから形成されている。第2電極106は、第2電極部106aと、第2電極部106aから第1固体電解質層105の長手方向に沿って延びる第2リード部106bとから形成されている。
そして、第1リード部104bの端末は、第1固体電解質層105に設けられる第1スルーホール105a、後述する絶縁層107に設けられる第2スルーホール107a、第2固体電解質層109に設けられる第4スルーホール109a及び絶縁保護層111に設けられる第6スルーホール111aのそれぞれに形成される導体を介して検出素子側パッド121と電気的に接続する。一方、第2リード部106bの端末は、後述する絶縁層107に設けられる第3スルーホール107b、第2固体電解質層109に設けられる第5スルーホール109b及び絶縁保護層111に設けられる第7スルーホール111bのそれぞれに形成される導体を介して検出素子側パッド121と電気的に接続する。
一方、酸素ポンプセル140は、第2固体電解質層109と、その第2固体電解質層109の両面に形成された第3電極108、第4電極110とから形成されている。第3電極108は、第3電極部108aと、この第3電極部108aから第2固体電解質層109の長手方向に沿って延びる第3リード部108bとから形成されている。第4電極110は、第4電極部110aと、この第4電極部110aから第2固体電解質層109の長手方向に沿って延びる第4リード部110bとから形成されている。
そして、第3リード部108bの端末は、第2固体電解質層109に設けられる第5スルーホール109b及び絶縁保護層111に設けられる第7スルーホール111bのそれぞれに形成される導体を介して検出素子側パッド121と電気的に接続する。一方、第4リード部110bの端末は、後述する絶縁保護層111に設けられる第8スルーホール111cに形成される導体を介して検出素子側パッド121と電気的に接続する。なお、第2リード部106bと第3リード部108bは同電位となっている。
これら第1固体電解質層105、第2固体電解質層109は、ジルコニア(ZrO)に安定化剤としてイットリア(Y)又はカルシア(CaO)を添加してなる部分安定化ジルコニア焼結体から構成されている。
発熱体102、第1電極104、第2電極106、第3電極108、第4電極110、ヒータ側パッド120及び検出素子側パッド121は、白金族元素で形成することができる。これらを形成する好適な白金族元素としては、Pt、Rh、Pd等を挙げることができ、これらはその一種を単独で使用することもできるし、又二種以上を併用することもできる。
もっとも、発熱体102、第1電極104、第2電極106、第3電極108、第4電極110、ヒータ側パッド120及び検出素子側パッド121は、耐熱性及び耐酸化性を考慮するとPtを主体にして形成することがより一層好ましい。さらに、発熱体102、第1電極104、第2電極106、第3電極108、第4電極110、ヒータ側パッド120及び検出素子側パッド121は、主体となる白金族元素の他にセラミック成分を含有することが好ましい。このセラミック成分は、固着という観点から、積層される側の主体となる材料(例えば、第1固体電解質層105、第2固体電解質層109の主体となる成分)と同様の成分であることが好ましい。
そして、上記酸素ポンプセル140と酸素濃度検出セル130との間に、絶縁層107が形成されている。絶縁層107は、絶縁部114と拡散律速部115とからなる。この絶縁層107の絶縁部114には、第2電極部106a及び第3電極部108aに対応する位置に中空のガス検出室107cが形成されている。このガス検出室107cは、絶縁層107の幅方向で外部と連通しており、該連通部分には、外部とガス検出室107cとの間のガス拡散を所定の律速条件下で実現する拡散律速部115が配置されている。
絶縁部114は、絶縁性を有するセラミック焼結体であれば特に限定されなく、例えば、アルミナやムライト等の酸化物系セラミックを挙げることができる。
拡散律速部115は、アルミナからなる多孔質体である。この拡散律速部115によって検出ガスがガス検出室(測定室)107cへ流入する際の律速が行われる。
また、第2固体電解質層109の表面には、第4電極110を挟み込むようにして、絶縁保護層111が積層されている。この絶縁保護層111の先端側には、第4電極部110aを取り囲むように略矩形の貫通孔112aが設けられ、貫通孔112aには多孔質層113aが埋設されている。多孔質層113aは第4電極部110aを覆い、第4電極部110aを被毒から防御すると共に、外部に露出して第4電極部110aと外部との間で多孔質層113aを介してガスが出入可能になっている。
さらに、多孔質層113aの外部に向く表面には、多孔質層113aの外周側を覆いつつ、多孔質層113aの中央部が開口する矩形環状で絶縁性の通気抵抗層150が積層されている。
なお、本実施の形態のセンサ素子100は、酸素濃度検出セル130の電極間に生じるVs電圧(起電力)が所定の値(例えば、450mV)となるように、酸素ポンプセル140の電極間に流れる電流(Ip電流)の方向及び大きさが調整され、酸素ポンプセル140に流れるIp電流に応じた被測定ガス中の酸素濃度をリニアに検出する酸素センサ素子に相当する。
又、図3に示すように、センサ素子100の先端側の全周を覆う多孔質保護層20が設けられている。
酸素ポンプセル140が特許請求の範囲の「ポンピングセル」に相当する。又、第4電極110(正確には第4電極部110a)、第2固体電解質層109、通気抵抗層150が、それぞれ特許請求の範囲の「電極」、「固体電解質層」、「通気抵抗体」に相当する。
絶縁保護層111は、例えば絶縁性を有するセラミック焼結体を用いることができ、アルミナやムライト等の酸化物系セラミックを例示することができる。
多孔質層113aとしては、アルミナ等やムライト等のセラミックからなる多孔質体を例示することができる。多孔質層113aは、例えば上記セラミックとカーボン粒子の混合ペーストを焼成する際に、カーボンを焼失させて製造することができる。なお、後述する図3〜図5に示すように、本実施形態では、第4電極110(第4電極部110a)の外周縁が多孔質層113aの外周縁より内側に位置している。この場合、第2固体電解質層109の表面に形成する第4電極110の外形を貫通孔112aの外形よりも小さくすることで、貫通孔112aに多孔質層113aとなるペーストを埋設した際、貫通孔112aと第4電極110との間の第2固体電解質層109の表面にも多孔質層113aが形成されるようになる。
通気抵抗層150は、アルミナやムライト等の酸化物系セラミックのペーストを塗布(印刷)して形成することができる。特に、通気抵抗層150を多孔質層113aと同一組成とすると、多孔質層113aとの接着性が向上するので好ましい。
通気抵抗層150は、多孔質層113aよりもガスの通気抵抗が大きいものであればよい。又、通気抵抗層150は、第4電極110及び第2固体電解質層109と接しない限り、必ずしも絶縁性を有していなくてもよい。絶縁性を有しない通気抵抗層150としては、金属、第2固体電解質層109と同様な部分安定化ジルコニアを用いることができる。但し、通気抵抗層150が第4電極110又は第2固体電解質層109と接する場合は、絶縁性を有している必要がある。
又、通気抵抗層150の通気抵抗は、ポンプ電流に重畳される脈動電流(オーバーシュート電流)を低減する効果を発揮するように適宜調整すればよい。
図1に戻り、主体金具30は、SUS430製のものであり、ガスセンサを排気管に取り付けるための雄ねじ部31と、取り付け時に取り付け工具をあてがう六角部32とを有している。また、主体金具30には、径方向内側に向かって突出する金具側段部33が設けられており、この金具側段部33はセンサ素子100を保持するための金属ホルダ34を支持している。そしてこの金属ホルダ34の内側にはセラミックホルダ35、滑石36が先端側から順に配置されている。この滑石36は金属ホルダ34内に配置される第1滑石37と金属ホルダ34の後端に渡って配置される第2滑石38とからなる。金属ホルダ34内で第1滑石37が圧縮充填されることによって、センサ素子100は金属ホルダ34に対して固定される。また、主体金具30内で第2滑石38が圧縮充填されることによって、センサ素子100の外面と主体金具30の内面との間のシール性が確保される。そして第2滑石38の後端側には、アルミナ製のスリーブ39が配置されている。このスリーブ39は多段の円筒状に形成されており、軸線に沿うように軸孔39aが設けられ、内部にセンサ素子100を挿通している。そして、主体金具30の後端側の加締め部30aが内側に折り曲げられており、ステンレス製のリング部材40を介してスリーブ39が主体金具30の先端側に押圧されている。
また、主体金具30の先端側外周には、主体金具30の先端から突出するセンサ素子100の先端部を覆うと共に、複数のガス取り入れ孔24aを有する金属製のプロテクタ24が溶接によって取り付けられている。このプロテクタ24は、二重構造をなしており、外側には一様な外径を有する有底円筒状の外側プロテクタ41、内側には後端部42aの外径が先端部42bの外径よりも大きく形成された有底円筒状の内側プロテクタ42が配置されている。
一方、主体金具30の後端側には、SUS430製の外筒25の先端側が挿入されている。この外筒25は先端側の拡径した先端部25aを主体金具30にレーザ溶接等により固定している。外筒25の後端側内部には、セパレータ50が配置され、セパレータ50と外筒25の隙間に保持部材51が介在している。この保持部材51は、後述するセパレータ50の突出部50aに係合し、外筒25を加締めることにより外筒25とセパレータ50とにより固定されている。
また、セパレータ50には、検出素子部300やヒータ部200用のリード線11〜15を挿入するための通孔50bが先端側から後端側にかけて貫設されている(なお、リード線14、15については図示せず)。通孔50b内には、リード線11〜15と、検出素子部300の検出素子側パッド121及びヒータ部200のヒータ側パッド120とを接続する接続端子16が収容されている。各リード線11〜15は、外部において、図示しないコネクタに接続されるようになっている。このコネクタを介してECU等の外部機器と各リード線11〜15とは電気信号の入出力が行われることになる。また、各リード線11〜15は詳細に図示しないが、導線を樹脂からなる絶縁皮膜にて披覆した構造を有している。
さらに、セパレータ50の後端側には、外筒25の後端側の開口部25bを閉塞するための略円柱状のゴムキャップ52が配置されている。このゴムキャップ52は、外筒25の後端内に装着された状態で、外筒25の外周を径方向内側に向かって加締めることにより、外筒25に固着されている。ゴムキャップ52にも、リード線11〜15をそれぞれ挿入するための通孔52aが先端側から後端側にかけて貫設されている。
図3、図4に示すように、通気抵抗層150は多孔質層113aの表面に形成されて第4電極110と離間しつつ、多孔質層113aの外周部を覆っている。そこで、以下、図5〜図8を参照し、通気抵抗層150について詳細に説明する。
なお、図3、図4に示すように、多孔質保護層20は、センサ素子100の先端面を含み、軸線L方向に沿って後端側に延びるように形成され、かつセンサ素子100(積層体)の表裏面及び両側面の4面を完全に囲んで形成されている。
次に、通気抵抗層150について説明する。
図5は第4電極110と多孔質層113aとの位置関係を示す積層方向から見た平面図、図6は図5のA−A線に沿う断面図、図8は第4電極110が多孔質層113aの内側に位置した場合の積層方向から見た平面図、図7は通気抵抗層150が第4電極110と離間することによる作用を示す模式図、図8は通気抵抗層150が第4電極110と接していることによる作用を示す模式図、である。
図5に示すように、本実施形態では、第4電極110(第4電極部110a)の外周縁が多孔質層113aの外周縁より内側に位置している。
ここで、第4電極110は、第4電極部110aと第4リード部110bとから形成されており、このうち第4電極部110aが電極反応に寄与する電極として作用する。従って、第4電極110の「外周縁」とは、電極反応に寄与する第4電極部110aの外周縁を表し、かつ第4リード部110bを除外するよう、以下のように規定する。すなわち、第4電極110の「外周縁」とは、積層方向から見たときに、第4電極110のうち、第4リード部110bに接する部分を除く外周縁をいう。又、「第4電極110のうち第4リード部110bに接する部分」とは、第4リード部110bにつながる第4電極部110aの辺(本例では2つの辺)を通る接線M1、M2で第4電極110を切ったとき、接線M1、M2で表される第4リード部110bと第4電極部110aの境界線をいう。
従って、図5の例では、第4電極110の「外周縁」とは、(1)第4リード部110bとつながらない部位における第4電極部110aの実際の外周縁と、(2)接線M1、M2で表される第4リード部110bと第4電極部110aの境界線と、からなる。又、例えば接線M1、M2の交点が多孔質層113aの外周縁より外側に位置する場合、この交点は「第4電極110のうち第4リード部110bに接する部分」であるから、第4電極110の「外周縁」には該当しない。従って、この場合も、当該交点と境界線を除外した第4電極110の外周縁が多孔質層113aの外周縁より内側に位置する限り、「第4電極110(第4電極部110a)の外周縁が多孔質層113aの外周縁より内側に位置している」ことになる。
又、第4電極部110aと多孔質層113aとの重なり領域Sは、第4電極110の外周縁で囲まれる領域(図5のクロスハッチング部分)である。
次に、通気抵抗層150による作用について説明する。
図6に示すように、通気抵抗層150は第4電極110と離間しつつ、多孔質層113aの外周を覆い、通気抵抗層150の中央の開口Opから多孔質層113aが露出している。このため、外部から多孔質層113a(開口Op)を介して第4電極110に到達する酸素源(排気ガス)の時間当たりの量は、通気抵抗層150が通気抵抗になって減少し、第4電極110上のガス交換速度が遅くなる。これにより、酸素ポンプセル140でのVp電圧の時間変化(ΔVp)が小さくなり、脈動電流(オーバーシュート電流)Riを低減してガスの検出精度の低下を抑制できる。又、多孔質層113a自身を緻密にしたり、その大きさを小さくする必要がないので、安定して通気抵抗を高くすることができる共に、多孔質層の製造が困難になることも回避される。同様に、第4電極110自身を緻密にしたり、その厚みを厚くする必要がないので、電極のコストアップを抑制すると共に、電極抵抗(センサ素子の内部抵抗)の上昇によるブラックニングの発生を抑制し、リッチ側の測定範囲が狭くなることをも抑制できる。
さらに、通気抵抗層150を、絶縁体ペーストを印刷塗布して形成した場合には、印刷による寸法精度が高いので、通気抵抗層150の寸法精度も高くなり、上記した効果を安定して発揮することができる。
なお、図5に示すように、積層方向から見たときに、第4電極110(第4電極部110a)の外周縁が多孔質層113aの外周縁より外側にはみ出さず、内側に位置するので、多孔質層113aのうち第4電極110より外側の部位Tを通気抵抗層150が覆っても、第4電極110に到達する酸素源(排気ガス)の通気抵抗として機能しない。つまり、通気抵抗層150は、多孔質層113a内で実際に電極として機能する部位となる、第4電極部110aと多孔質層113aとの重なり領域Sの一部を覆う必要がある。
又、通気抵抗層150による重なり領域Sの重なり率は、式1から求めることができる。
式1:重なり率(%)=[{(重なり領域Sの面積)−(開口Opの面積)}/(重なり領域Sの面積)]×100で求めることができる。なお、各面積は、図5のように積層方向に投影した場合の面積とする。ここで、開口Opの面積は、重なり領域Sのうち、通気抵抗層150と重ならない面積、つまり通気抵抗層150によって積層方向に閉塞されない部位の面積に相当する。
重なり率が25.0〜97.5%であることが好ましい。
重なり率が25.0%未満であると、上記した通気抵抗層150の通気抵抗としての効果が減少し、脈動電流Riを低減することが困難になる場合がある。重なり率が97.5%を超えると、通気抵抗としての効果が大きくなり過ぎ、電極抵抗(センサ素子の内部抵抗)が上昇してブラックニングが発生したり、Ip電流がほとんど流れなくなることがある。
次に、通気抵抗層150を第4電極110から離間させることによる作用について説明する。
図7に示すように、通気抵抗層150が第4電極110から離間していると、通気抵抗層150が第4電極110を覆っている部位においても、通気抵抗層150と第4電極110との間隙から酸素源(排気ガス)が第4電極110及びその下側の第2固体電解質層109に供給されるので、ブラックニングの発生を抑制できる。
一方、図8に示すように、通気抵抗層150が第4電極110に接していると、通気抵抗層150が第4電極110を覆っている部位では、酸素源(排気ガス)が第4電極110及びその下側の第2固体電解質層109に供給されず、ブラックニングが発生するおそれがある。特に、上述のように重なり率が25.0%以上になると、通気抵抗層150が第4電極110を覆っている部位に隣接する第2固体電解質層109から、通気抵抗層150と重なる第2固体電解質層109の部位Brへの酸素源(排気ガス)の供給が追い付かず、図6とは異なりブラックニングが発生する可能性が高くなる。
本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
例えば、上記実施形態では通気抵抗層150の中央に開口Opを形成し、この開口Op部分では重なり領域Sを閉塞しないように構成したが、通気抵抗層150の形状、配置位置、個数等はこれに限定されない。つまり、図9に示すように、重なり領域Sの中央部に対応する多孔質層113aの表面に通気抵抗層152を設け、通気抵抗層152の周囲に多孔質層113aを露出させてもよい。
又、図10に示すように、重なり領域Sの複数の位置に対応して、複数の通気抵抗層153、154を設けてもよい。なお、図10の例では、多孔質層113aの内部に複数の通気抵抗層153、154が埋設され、通気抵抗層153、154の隙間は重なり領域Sに重ならないように構成されている。通気抵抗層153、154の埋設位置が積層方向に異なっていてもよい。
又、上記実施形態では、第2固体電解質層109の表面には、第4電極110を挟み込むようにして、貫通孔112aを有する絶縁保護層111が積層され、貫通孔112aに多孔質層113aが埋設されていたが、絶縁保護層111を設けずに、多孔質層113aを直接第4電極110上に積層してもよい。
又、本発明は、固体電解質層の表面に配置された電極を有するセルと、電極の表面に配置されて電極と外部との間でガスが出入可能な多孔質層とを備えたセンサ素子を有するあらゆるガスセンサに適用可能であり、本実施の形態の酸素センサ(酸素センサ素子)に適用することができるが、これらの用途に限られず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。例えば、被測定ガス中のNOx濃度を検出するNOxセンサ(NOxセンサ素子)や、HC濃度を検出するHCセンサ(HCセンサ素子)等に本発明を適用してもよい。
図11は、センサ素子であるNOセンサ素子100Bを長手方向に沿って切断した断面図である。
NOセンサ素子100Bは概ね長尺の板状体をなし、固体電解質層2c、6c、4cをこの順に積層して構成されている。又、固体電解質層2c、6cの間には絶縁層63が介装され、固体電解質層6c、4cの間には絶縁層65が介装されるとともに、固体電解質層2cの外側(絶縁層63とは反対側)には絶縁保護層61が積層され、固体電解質層4cの外側(絶縁層65とは反対側)には絶縁層18、19がこの順で積層されている。
ここで、後述する第1ポンピングセル2の第1対向電極2bが多孔質層79を介して外部に露出するので特許請求の範囲の「電極」に対応する。
さらに、絶縁層68、69の間にはNOセンサ素子の長手方向に沿って延び、NOセンサを活性温度に昇温するヒータ20が埋設されている。
絶縁層63は平面視コの字状に切り抜かれ、コの字の開口が図11の左を向くように配置される。これにより、絶縁層63の切り抜き部分が空隙となり、固体電解質層6cの表面(図11の上面)、固体電解質層2cの裏面(図11の下面)、及び絶縁層63の側面によって内部空間が形成される。又、外部からの被測定ガスの導入口である上記開口(図11の固体電解質層2c、6cの左端)には、拡散抵抗を有する拡散律速部70が設けられている。一方、上記内部空間における右端から中央よりの所定位置に当該内部空間を図11の紙面方向に区画する拡散律速部71が配置され、拡散律速部70、71の間の内部空間が第1測定室S1となる。
第1測定室S1に面した固体電解質層2cの裏面には、平面視ほぼ矩形状の第1内側電極2aが配置され、固体電解質層2cの表面には第1内側電極2aと対向する位置に第1対向電極2bが配置されている。そして、第1内側電極2a、第1対向電極2b、固体電解質層2cとによって第1ポンピングセル2が構成されている。なお、絶縁保護層61は、固体電解質層2cに接する第1対向電極2bが内部に配置されるように平面視ほぼ矩形状に切り抜かれた貫通孔61aを備え、貫通孔61aの内部に多孔質層79が充填されている。
さらに、多孔質層79の表面には、第1対向電極2bと多孔質層79との重なり領域の一部に重なる絶縁性の通気抵抗層156が設けられている。
なお、NOセンサ素子100Bにおいても、第1対向電極2bの外周縁が多孔質層79の外周縁より内側に位置する。そして、通気抵抗層156は多孔質層79及び第1対向電極2bの外周部を覆うように形成され、通気抵抗層156の中央部が略矩形上に開口する。なお、第1対向電極2bは、絶縁保護層30bと同一の層として、絶縁保護層30bに切り抜かれた貫通孔の内部に配置されている。
一方、第1測定室S1に面した固体電解質層6cの表面には、拡散律速部71よりやや左側で、かつ第1内側電極2aの右端より右側の位置に、平面視ほぼ矩形状で第1内側電極2aより小さい検知電極6aが配置されている。又、固体電解質層6cの裏面には検知電極6aと対向する位置に検知電極とほぼ同寸の基準電極6bが配置されている。そして、検知電極6a、基準電極6b、固体電解質層6cと、によって酸素濃度検知セル6が構成されている。なお、基準電極6bは、絶縁層65の平面視ほぼ矩形状の切り抜き部を介して固体電解質層6cに接し、基準電極6bの裏面(切り抜き部)には多孔質体又は絶縁体からなる充填層75が充填され、充填層75内に所定分圧の酸素を充填できるようになっている。
なお、酸素濃度検知セル6に予め微弱な電流Icpを流すことにより、酸素を基準電極6b側の充填層75に充填する。
固体電解質層6c、絶縁層65は拡散律速部71よりも右側で平面視矩形状に切り抜かれ、これらの切り抜き部は上記内部空間の右端に重なるように位置している。これにより、上記内部空間の右端から下方に延びる空隙が形成され、この空隙と、上記内部空間のうち拡散律速部71より右側の部分とによってNO測定室S2が規定される。
そして、外部から拡散律速部70を介して導入された被測定ガスは、第1測定室S1を図11の左から右へ流れた後、拡散律速部71を介してNO測定室S2へ流れるようになっている。
NO測定室S2に面した固体電解質層4cの表面には、平面視ほぼ矩形状の第2内側電極4aが配置されている。又、充填層75に面した固体電解質層4cの表面には、第2内側電極の外側電極となる第2外側電極4bが配置されている。そして、第2内側電極4a、第2外側電極4b、固体電解質層4cと、によって第2ポンピングセル4が構成されている。
各絶縁保護層61〜69、多孔質層79、固体電解質層2c、4c、6c、各電極2a〜6b、及びヒータ20としては、それぞれ上記センサ素子100と同様な材料を用いることができる。
特に、被測定ガスに接触する第1内側電極2a及び検知電極6aとしては、測定ガス中のNO成分に対する還元能力が低い(又は還元能力のない)材料を用いることが好ましく、例えばLa3 CuO4 等のペロブスカイト構造を有する化合物、Au等の触媒活性の低い金属とセラミックスのサーメット、又はAu等の触媒活性の低い金属とPt族金属とセラミックスとのサーメットを用いることが好ましい。更に、電極材料としてAuとPt族金属の合金を用いる場合、Au含有量を合金全体の0.03〜35vol%にすることが好ましい。また、第2内側電極4aとしては、RhとZrO2からなる多孔質サーメットを例示できる。
拡散律速部は、被測定ガスが流入する際の律速が行われるものであればよく、スリットの他、多孔質体等を用いることができ、アルミナ等からなる多孔質体を例示することができる。拡散律速部は、センサ内と外気(又は拡散律速部で区画される空間同士)の直接接触を遮断しつつガスをセンサ内に出入させ、センサ内の電極周囲の酸素濃度を安定化する。
以上のようにしてNOセンサ(素子)が構成され、例えば以下のように動作する。まず、ヒータが作動し、センサを活性化温度まで加熱する。被測定ガス(排ガス)は拡散律速部70を通って第1測定室S1に流入し、第1ポンピングセル2は、第1測定室S1内の排ガス中の過剰な酸素を第1内側電極2aから第1対向電極2cへ向かって汲み出す。
酸素が汲み出されたガスは第1測定室S1の下流に流れ、酸素濃度検知セル6(電極6a)に到達する。従って、酸素濃度検知セル6の両端電圧Vsをモニタすることにより、第1測定室S1内の酸素濃度を検出することができる。そして、Vsが所定電圧となるように第1ポンピングセル2の電極間電圧(端子間電圧)Vp1を制御することにより、第1測定室S1内の酸素濃度をNOが分解しない程度に管理する。
酸素濃度が管理された排ガス(NOガス)は、拡散律速部71を通ってNO測定室S2内の第2ポンピングセル4(第2内側電極4a)に向かって流れる。従って、第2ポンピングセル4にNOガスが酸素とNガスに分解する程度の電圧を印加することにより、NOガスの分解により生じた酸素をNO測定室S2から汲み出すことができる。この際、第2ポンピングセル4に流れる第2ポンプ電流Ip2とNOxガス濃度の間には比例関係があるため、Ip2を検出することにより被測定ガス中のNOx濃度を検出することができる。
なお、第2ポンピングセル4で汲み出された酸素は、第2対向電極4cから充填層75に充填される。又、第2内側電極4aとして多孔質ロジウム等の触媒機能を有する電極を用いると、NOガスの分解を促進することができる。
NOセンサ素子100Bにおいても、通気抵抗層156が通気抵抗になって第1対向電極2b上のガス交換速度が遅くなる。これにより、Vp電圧の時間変化(ΔVp)が小さくなり、脈動電流(オーバーシュート電流)Riを低減してガスの検出精度の低下を抑制できる。
図1〜図5に示すセンサ素子(酸素センサ素子)100を有するガスセンサ1を製造した。第4電極部110aと多孔質層113aとの重なり領域Sの大きさを一定とし、通気抵抗層150の開口Opの大きさを種々に変えて重なり率が0〜99.0%の間のガスセンサを複数製造した。通気抵抗層150は、アルミナペーストを絶縁保護層111及び多孔質層113aの多孔質層113aの外周部に塗布(印刷)した後、センサ素子100と同時に焼成して形成した。
なお、重なり率(%)=[{(重なり領域Sの面積)−(開口Opの面積)}/(重なり領域Sの面積)]×100で表される。
以上のようにして得られたガスセンサを用い、脈動電流(オーバーシュート電流)Riの抑制効果、及び酸素ポンプセル140の限界電流を測定した。
脈動電流(オーバーシュート電流)Riの抑制効果は、各ガスセンサを排気量2000ccの並列4気筒エンジンに繋がれた排気管に取り付け、センサ制御を行った後、3000rpmのエンジン回転数で排気ガスのλ(空燃比)を0.95から1.05に切り替えたとき、酸素ポンプセル140のポンプ電流Ipに、図14に示した脈動電流Riが発生したか否かを評価した。具体的には、通気抵抗層150を設けない従来品からなる基準ガスセンサ(表1の重なり率0.0%のガスセンサ)における出力安定時のIp値を100%としたとき、オーバーシュート電流Riの最大値を上記Ip値を基準として(100+X)%で表す。一方、各実施例のガスセンサでのオーバーシュート電流Riの最大値が上記Ip値を基準として(100+X/2)%以下となれば評価○とした。例えば、基準ガスセンサのRiの最大値が110%である場合、実施例のガスセンサでのRiの最大値が105%以下であれば、評価が○である。
限界電流は、モデルガスの空燃比(A/F)をA/F=10の極リッチ雰囲気とし、Vsを450mVに制御できれば評価○とした。
得られた結果を表1に示す。
Figure 0006517613
表1から明らかなように、重なり率を25.0〜97.5%とすると、脈動電流Riが低減されたとともに、十分なIp電流が得られ、ガスセンサの動作に支障がなかった。
重なり率が25.0%未満であると、脈動電流Riを低減することが困難になった。重なり率が97.5%を超えると、電極抵抗(センサ素子の内部抵抗)が上昇してIp電流が小さくなり、ガスセンサの動作に支障が生じて不適であった。
なお、図12は、重なり率を75%とし、ガス中の空燃比(A/F)をリッチからリーンに変化させたときの、酸素ポンプセル140のポンプ電流Ipの時間変化を示す。脈動電流Riが抑制されたことがわかる。
1 ガスセンサ
100、100B センサ素子
109、2c 固体電解質層
110、2b 電極
113a、79 多孔質層
130、4 セル(酸素濃度検出セル、第2ポンピングセル)
140、2 セル(ポンピングセル、第1ポンピングセル)
150、152、153、154、156 通気抵抗体(通気抵抗層)
S 電極と多孔質層との重なり領域
107c、S1 測定室

Claims (7)

  1. 測定室と、
    板状の固体電解質層、並びに前記固体電解質層の表面に配置され、前記測定室に面する第1電極及び前記測定室に面しない第2電極を有し、前記測定室内のガス中の酸素の汲み出し又は汲み入れを行うポンピングセルと、
    前記第2電極の表面に積層され、前記第2電極と外部との間で前記ガスが出入可能な多孔質層と、
    を備えたセンサ素子を有するガスセンサであって、
    積層方向から見たときに、前記第2電極の外周縁が前記多孔質層の外周縁より内側に位置し、
    前記多孔質層の表面又は内部に、前記第2電極と離間しつつ、前記積層方向から見たときに前記第2電極と前記多孔質層との重なり領域の一部に重なる通気抵抗体を有するガスセンサ。
  2. 測定室と、
    板状の固体電解質層、並びに前記固体電解質層の表面に配置され、前記測定室に面する第1電極及び前記測定室に面しない第2電極を有し、前記測定室内のガス中の酸素の汲み出し又は汲み入れを行うポンピングセルと、
    前記第2電極の表面に積層され、前記第2電極と外部との間で前記ガスが出入可能な多孔質層と、
    を備えたセンサ素子を有するガスセンサであって、
    積層方向から見たときに、前記第2電極の外周縁が前記多孔質層の外周縁より内側に位置し、
    前記多孔質層の表面又は内部に、前記第2電極と離間しつつ、前記積層方向から見たときに前記第2電極と前記多孔質層との重なり領域の一部に重なる通気抵抗体を有し、
    前記セル及び前記多孔質層を有し、かつ前記通気抵抗体を有しないセンサ素子を備えたガスセンサを基準ガスセンサとし、該基準ガスセンサの出力安定時のIp値を100%とし、かつそのオーバーシュート電流の最大値を(100+X)%で表したとき、前記ガスセンサのオーバーシュート電流の最大値が(100+X/2)%以下であるガスセンサ。
    但し、前記オーバーシュート電流は、ガス中の空燃比がリッチからリーンに変化した場合に、前記測定室に導入される前記ガス中の酸素の汲み出し又は汲み入れを行う前記ポンピングセルら出力され脈動電流の最大値である。
  3. 前記通気抵抗体はガス不透過性である請求項1又は2記載のガスセンサ。
  4. 前記積層方向から見たときに、前記通気抵抗体は前記重なり領域の25.0〜97.5%の面積に重なる請求項1〜3のいずれか一項に記載のガスセンサ。
  5. 前記センサ素子は
    さらに、前記測定室内の前記被測定ガス中の酸素濃度に応じた出力電圧を出力する酸素濃度検出セルを備えた酸素センサ素子であって、
    前記出力電圧が一定となるように前記ポンピングセルにポンプ電流を流し、該ポンプ電流に応じた前記被測定ガス中の酸素濃度を検出する酸素センサ素子である、請求項1〜4のいずれか一項に記載のガスセンサ。
  6. 前記センサ素子は
    さらに、酸素濃度が調整された前記被測定ガス中のNO濃度に応じたポンプ電流が流れる第2ポンピングセルを備えたNOセンサ素子である、請求項1〜4のいずれか一項に記載のガスセンサ。
  7. 前記電極は、Pt及びAuを合計で50質量%以上含有する請求項1〜6のいずれか一項に記載のガスセンサ。
JP2015143600A 2014-10-21 2015-07-21 ガスセンサ Active JP6517613B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102015219559.7A DE102015219559A1 (de) 2014-10-21 2015-10-09 Gassensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014214601 2014-10-21
JP2014214601 2014-10-21

Publications (2)

Publication Number Publication Date
JP2016080684A JP2016080684A (ja) 2016-05-16
JP6517613B2 true JP6517613B2 (ja) 2019-05-22

Family

ID=55956147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143600A Active JP6517613B2 (ja) 2014-10-21 2015-07-21 ガスセンサ

Country Status (1)

Country Link
JP (1) JP6517613B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964532B2 (ja) 2018-02-14 2021-11-10 日本特殊陶業株式会社 ガスセンサ素子、及びそれを備えたガスセンサ
DE102019104186A1 (de) 2018-02-22 2019-08-22 Ngk Spark Plug Co., Ltd. Gassensorelement, Gassensor und Verfahren zur Herstellung eines Gassensorelements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645572A (en) * 1985-02-23 1987-02-24 Ngk Insulators, Ltd. Method of determining concentration of a component in gases and electrochemical device suitable for practicing the method
JPS61243355A (ja) * 1985-04-19 1986-10-29 Ngk Insulators Ltd 電気化学的装置
JP4885804B2 (ja) * 2007-02-21 2012-02-29 日本特殊陶業株式会社 ガスセンサの異常診断方法、およびガスセンサ制御装置
JP5033042B2 (ja) * 2008-04-14 2012-09-26 日本特殊陶業株式会社 NOxセンサ
JP4966266B2 (ja) * 2008-07-22 2012-07-04 日本特殊陶業株式会社 ガスセンサ
JP2011220709A (ja) * 2010-04-05 2011-11-04 Ngk Spark Plug Co Ltd ガスセンサ

Also Published As

Publication number Publication date
JP2016080684A (ja) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6047103B2 (ja) ガスセンサ用電極及びガスセンサ
US4264425A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
JP3855483B2 (ja) 積層型空燃比センサ素子
US20180094564A1 (en) Gas sensor, catalyst diagnosis system, and catalyst diagnostic method
JP4897912B2 (ja) ガスセンサ
US10113988B2 (en) Gas sensor
JP4966266B2 (ja) ガスセンサ
JP4817083B2 (ja) ガスセンサ
JP6859227B2 (ja) ガスセンサ
JP6517613B2 (ja) ガスセンサ
JP4931074B2 (ja) ガスセンサ及びNOxセンサ
JP6622643B2 (ja) ガスセンサ素子及びガスセンサ
JP2020159881A (ja) ガスセンサ及びセンサ素子
JP2013117428A (ja) ガスセンサ及びガスセンサの製造方法
JP2020020737A (ja) ガスセンサ
JP2020030122A (ja) ガスセンサ素子
JP6438851B2 (ja) ガスセンサ素子及びガスセンサ
WO2020195080A1 (ja) ガスセンサ
KR20160054706A (ko) 질소 산화물 센서
CN111796015B (zh) NOx传感器元件和NOx传感器
JP2019045473A (ja) ガスセンサ素子及びガスセンサ
JP2019138836A (ja) ガスセンサ素子、及びそれを備えたガスセンサ
JP6917349B2 (ja) ガスセンサ素子
JP2024092097A (ja) センサ素子及びガスセンサ
JP3395957B2 (ja) 一酸化炭素検出センサ及びそれを用いた一酸化炭素検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190418

R150 Certificate of patent or registration of utility model

Ref document number: 6517613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250