Nothing Special   »   [go: up one dir, main page]

JP6588050B2 - シリカ系複合微粒子を含む研磨用砥粒分散液 - Google Patents

シリカ系複合微粒子を含む研磨用砥粒分散液 Download PDF

Info

Publication number
JP6588050B2
JP6588050B2 JP2017083206A JP2017083206A JP6588050B2 JP 6588050 B2 JP6588050 B2 JP 6588050B2 JP 2017083206 A JP2017083206 A JP 2017083206A JP 2017083206 A JP2017083206 A JP 2017083206A JP 6588050 B2 JP6588050 B2 JP 6588050B2
Authority
JP
Japan
Prior art keywords
silica
particles
polishing
fine particles
composite fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017083206A
Other languages
English (en)
Other versions
JP2017200999A (ja
Inventor
祐二 俵迫
祐二 俵迫
小松 通郎
通郎 小松
幸博 岩崎
幸博 岩崎
中山 和洋
和洋 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Publication of JP2017200999A publication Critical patent/JP2017200999A/ja
Application granted granted Critical
Publication of JP6588050B2 publication Critical patent/JP6588050B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、半導体デバイス製造に使用される研磨剤として好適なシリカ系複合微粒子分散液に関し、特に基板上に形成された被研磨膜を、化学機械的研磨(ケミカルメカニカルポリッシング、CMP)で平坦化するための研磨用砥粒分散液、特にはシリカ系複合微粒子を含む研磨用砥粒分散液に関する。
半導体基板、配線基板などの半導体デバイスなどは、高密度化・微細化することで高性能化を実現している。この半導体の製造工程においては、いわゆるケミカルメカニカルポリッシング(CMP)が適用されており、具体的にはシャロートレンチ素子分離、層間絶縁膜の平坦化、コンタクトプラグやCuダマシン配線の形成などに必須の技術となっている。
一般にCMP用研磨剤は、砥粒とケミカル成分とからなり、ケミカル成分は対象被膜を酸化や腐食などさせることにより研磨を促進させる役割を担う。一方で砥粒は機械的作用により研磨する役割を持ち、コロイダルシリカやヒュームドシリカ、セリア粒子が砥粒として使われる。特にセリア粒子は酸化ケイ素膜に対して特異的に高い研磨速度を示すことから、シャロートレンチ素子分離工程での研磨に適用されている。
シャロートレンチ素子分離工程では、酸化ケイ素膜の研磨だけではなく、窒化ケイ素膜の研磨も行われる。素子分離を容易にするためには、酸化ケイ素膜の研磨速度が高く、窒化ケイ素膜の研磨速度が低い事が望ましく、この研磨速度比(選択比)も重要である。
従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
例えば、特許文献1には、硝酸第一セリウムの水溶液と塩基とを、pHが5〜10となる量比で攪拌混合し、続いて70〜100℃に急速加熱し、その温度で熟成することを特徴とする酸化セリウム単結晶からなる酸化セリウム超微粒子(平均粒子径10〜80nm)の製造方法が記載されており、更にこの製造方法によれば、粒子径の均一性が高く、かつ粒子形状の均一性も高い酸化セリウム超微粒子を提供できると記載されている。
また、非特許文献1は、特許文献1に記載の酸化セリウム超微粒子の製造方法と類似した製造工程を含むセリアコートシリカの製造方法を開示している。このセリアコートシリカの製造方法は、特許文献1に記載の製造方法に含まれるような焼成―分散の工程を有さないものである。
さらに、特許文献2には、非晶質のシリカ粒子Aの表面に、ジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。また、好ましい態様として、非晶質のシリカ粒子Aの表面に、アルミニウム等の元素を含む非晶質の酸化物層であって、非晶質のシリカ層とは異なる非晶質の酸化物層Cを有し、さらに、その上にジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。そして、このようなシリカ系複合粒子は、非晶質のシリカ粒子Aの表面に、結晶質の酸化物層Bを有するために、研磨速度を向上させることができ、かつ、シリカ粒子に前処理をすることにより、焼成時に粒子同士の焼結が抑制され研磨スラリー中での分散性を向上させることができ、さらに、酸化セリウムを含まない、あるいは酸化セリウムの使用量を大幅に低減することができるので、安価であって研磨性能の高い研磨材を提供することができると記載されている。また、シリカ系粒子Aと酸化物層Bの間にさらに非晶質の酸化物層Cを有するものは、粒子の焼結抑制効果と研磨速度を向上させる効果に特に優れると記載されている。
特許第2746861号公報 特開2013−119131号公報
Seung−Ho Lee, Zhenyu Lu, S.V.Babu and Egon Matijevic、"Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria"、Journal of Materials Research、Volume 17、Issue 10、2002、pp2744−2749
しかしながら、特許文献1に記載の酸化セリウム超微粒子について、本発明者が実際に製造して検討したところ、研磨速度が低く、さらに、研磨基材の表面に欠陥(面精度の悪化、スクラッチ増加、研磨基材表面への研磨材の残留)を生じやすいことが判明した。
これは、焼成工程を含むセリア粒子の製造方法(焼成によりセリア粒子の結晶化度が高まる)に比べて、特許文献1に記載の酸化セリウム超微粒子の製法は、焼成工程を含まず、液相(硝酸第一セリウムを含む水溶液)から酸化セリウム粒子を結晶化させるだけなので、生成する酸化セリウム粒子の結晶化度が相対的に低く、また、焼成処理を経ないため酸化セリウムが母粒子と固着せず、酸化セリウムが脱落し、研磨基材の表面に残留することが主要因であると、本発明者は推定している。
また、非特許文献1に記載のセリアコートシリカは焼成していないためセリアの結晶化度が低く、そのため、現実の研磨速度は低いと考えられ、また、セリアが脱落し、研磨基材の表面への粒子の残留も懸念される。
さらに、特許文献2に記載の酸化物層Cを有する態様のシリカ系複合粒子を用いて研磨すると、アルミニウム等の不純物が半導体デバイスの表面に残留し、半導体デバイスへ悪影響を及ぼすこともあることを、本発明者は見出した。
本発明は上記のような課題を解決することを目的とする。すなわち、本発明は、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、基板上の砥粒残が少ない、基板Ra値の良化等)を達成でき、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子を含む研磨用砥粒分散液を提供することを目的とする。
本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(4)である。
(1)非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、さらにその子粒子の表面の一部にシリカ被膜を有している、下記[1]から[3]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、イオン強度が0.007以上である研磨用砥粒分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの結晶子径が10〜25nmであること。
(2)イオン強度調整剤として硝酸アンモニウムおよび酢酸アンモニウムからなる群から選ばれる1種または2種を含むことを特徴とする、上記(1)に記載の研磨用砥粒分散液。
(3)シリカ膜が形成された半導体基板の平坦化のために用いることを特徴とする上記(1)又は(2)に記載の研磨用砥粒分散液。
(4)pHが3〜8である、上記(3)に記載の研磨用砥粒分散液。
本発明によれば、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、被研磨基板の表面粗さ(Ra)が低いこと等)を達成でき、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子を含む研磨用砥粒分散液を提供することができる。
本発明の研磨用砥粒分散液は、半導体デバイス表面の平坦化に有効であり、特にはシリカ絶縁膜が形成された基板の研磨に好適である。
図1(a)は実施例1において得られたSEM像であり、図1(b)及び(c)は実施例1において得られたTEM像である。 実施例1において得られたX線回折パターンである。
本発明について説明する。
本発明は、非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、さらにその子粒子の表面の一部にシリカ被膜を有している、下記[1]から[3]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、イオン強度が0.007以上である研磨用砥粒分散液である。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの結晶子径が10〜25nmであること。
このような研磨用砥粒分散液を、以下では「本発明の研磨用砥粒分散液」ともいう。
また、本発明の研磨用砥粒分散液が含むシリカ系複合微粒子を、以下では「本発明の複合微粒子」ともいう。
本発明の複合微粒子について説明する。
<母粒子>
本発明の複合微粒子において、母粒子は非晶質シリカを主成分とする。
本発明における母粒子に含まれるシリカが非晶質であることは、例えば、次の方法で確認することができる。母粒子(シリカ微粒子)を含む分散液(本発明の研磨用砥粒分散液)を乾燥させた後、乳鉢を用いて粉砕し、例えば、従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、Cristobaliteのような結晶性シリカのピークは現れない。このことから、母粒子(シリカ微粒子)に含まれるシリカは非晶質であることを確認できる。
また「主成分」とは、含有率が90質量%以上であることを意味する。すなわち、母粒子において、非晶質シリカの含有率は90質量%以上である。この含有率は95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99.5質量%以上であることがより好ましい。
以下に示す本発明の説明において「主成分」の文言は、このような意味で用いるものとする。
母粒子は非晶質シリカを主成分とし、その他のもの、例えば、結晶性シリカや不純物元素を含んでもよい。
例えば、前記母粒子(シリカ微粒子)において、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素(以下、「特定不純物群1」と称する場合がある)の含有率が、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましく、5ppm以下であることがさらに好ましく、1ppm以下であることがよりいっそう好ましい。また、前記母粒子(シリカ微粒子)におけるU、Th、Cl、SO4及びFの各元素(以下、「特定不純物群2」と称する場合がある)の含有率は、それぞれ5ppm以下であることが好ましい。
一般に水硝子を原料として調製したシリカ微粒子は、原料水硝子に由来する前記特定不純物群1と前記特定不純物群2を合計で数千ppm程度含有する。
このようなシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、イオン交換処理を行って前記特定不純物群1と前記特定不純物群2の含有率を下げることは可能であるが、その場合でも前記特定不純物群1と前記特定不純物群2が合計で数ppmから数百ppm残留する。そのため水硝子を原料としたシリカ粒子を用いる場合は、酸処理等で不純物低減させることも行われている。
これに対し、アルコキシシランを原料として合成したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、通常、前記特定不純物群1及び前記特定不純物群2における各元素と各陰イオンの含有率は、それぞれ20ppm以下である。
なお、本発明において、母粒子(シリカ微粒子)におけるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、SO4及びFの各々の含有率は、それぞれ次の方法を用いて測定して求めた値とする。
・Na及びK:原子吸光分光分析
・Ag、Al、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びTh:ICP(誘導結合プラズマ発光分光分析)
・Cl:電位差滴定法
・SO4及びF:イオンクロマトグラフ
後述のとおり本発明におけるシリカ系複合微粒子の平均粒子径は50〜350nmの範囲にあるので、その母粒子の平均粒子径は必然的に350nmより小さい値となる。なお、本願において母粒子の平均粒子径は、後述する本発明の製造方法が含む工程1で使用するシリカ微粒子分散液に含まれるシリカ微粒子の平均粒子径と同じとする。この母粒子の平均粒子径が30〜330nmの範囲であるシリカ系複合微粒子が好適に使用される。
母粒子の平均粒子径が上記のような範囲にあると、本発明の研磨用砥粒分散液を研磨剤として用いた場合にスクラッチが少なくなる。母粒子の平均粒子径が30nmよりも小さいと研磨レートが不足する傾向がある。平均粒子径が330nmよりも大きいと、かえって研磨レートが低下する傾向がある。また、基板の面精度が悪化する傾向がある。
本発明における母粒子(シリカ微粒子)の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。シリカ微粒子を水等に分散させ、シリカ微粒子分散液を得た後、このシリカ微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
なお、測定装置は各工程の目的や想定される粒子径や粒度分布に応じて使い分けられる。具体的には約100nm以下で粒度の揃った原料の単分散シリカ微粒子はPAR−IIIを用い、100nm以上とサイズが大きな単分散の原料シリカ微粒子はLA−950で測定し、解砕によりミクロンメーターからナノメーターまで粒子径が幅広く変化する解砕工程では、公知の動的光散乱法による粒子径測定装置や公知のレーザー回折散乱法による測定装置(好ましくはマイクロトラックUPAやLA−950)を用いることが好ましい。
母粒子(シリカ微粒子)の形状は特に限定されず、例えば、球状、俵状、四面体状(三角錐型)、六面体状、八面体状、板状、不定形の他に表面に疣状突起を有するものや、金平糖状のものであってもよく、また、多孔質状のものであってもよいが、球状のものが好ましい。球状とは、単一粒子の母粒子の短径/長径比が0.8以下の粒子個数比が10%以下のものである。母粒子は、短径/長径比が0.8以下の粒子個数比が5%以下のものであることがより好ましく、0%のものであることがさらに好ましい。
短径/長径比は、後述する本発明の複合微粒子の短径/長径比の測定方法(画像解析法)と同様の方法で測定する。
<子粒子>
本発明の複合微粒子は、上記のような母粒子の表面上に子粒子を有する。ここで、シリカ被膜が全体を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。このような態様であっても、母粒子の表面上に子粒子が存在する態様であり、本発明の技術的範囲に含まれる。
本発明の複合微粒子において、子粒子は結晶性セリアを主成分とする。
前記子粒子が結晶性セリアであることは、例えば、本発明の研磨用砥粒分散液を、乾燥させたのち乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によって得たX線回折パターンにおいて、セリアの結晶相のみが検出されることから確認できる。なお、セリアの結晶相としては、Cerianite等が挙げられる。
子粒子は結晶性セリア(結晶性Ce酸化物)を主成分とし、その他のもの、例えばセリウム以外の元素を含んでもよい。
ただし、上記のように、本発明の複合微粒子をX線回折に供するとセリアの結晶相のみが検出される。すなわち、セリア以外の結晶相を含んでいたとしても、その含有率は少ないため、X線回折による検出範囲外となる。
なお、「主成分」の定義は前述の通りである。
子粒子について、本発明の複合微粒子をX線回折に供して測定される、結晶性セリアの結晶子径は10〜25nmであり、11〜23nmであることが好ましく、12〜20nmであることがより好ましい。
結晶性セリアの結晶子径は、X線回折パターンの最大ピークの半値全幅から求められる。そして、例えば(111)面の平均結晶子径は10〜25nm(半値全幅は0.86〜0.34°)であり、11〜23nm(半値全幅は0.78〜0.37°)であることがこのましく、12〜20nm(半値全幅は0.79〜0.43°)であることがより好ましい。なお、多くの場合は(111)面のピークの強度が最大になるが、またその結晶面は(111)面(2θ=28度近傍)に限定されず、他の結晶面、例えば(100)面のピークの強度が最大であってもよい。その場合も同様に算出でき、その場合の平均結晶子径の大きさは、上記の(111)面の平均結晶子径と同じであってよい。
子粒子の平均結晶子径の測定方法を、(111)面(2θ=28度近傍)の場合を例として以下に示す。
初めに、本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、下記のScherrerの式により、結晶子径を求めることができる。
D=Kλ/βcosθ
D:結晶子径(オングストローム)
K:Scherrer定数(ここでは、K=0.94)
λ:X線波長(1.7889オングストローム、Cuランプ)
β:半価幅(rad)
θ:反射角
子粒子の大きさは、母粒子より小さく、平均粒子径11〜26nmであることが好ましく、12〜23nmであることがより好ましい。子粒子の大きさは、透過型電子顕微鏡を用いて30万倍に拡大した写真投影図(例えば後述する図1(C))において、任意の50個の子粒子について平均粒子径を測定し、これらを単純平均して得た値を意味する。
<シリカ被膜>
本発明の複合微粒子は、前記母粒子の表面上に前記子粒子を有し、さらにその子粒子の表面にシリカ被膜を有している。ここで、前記母粒子の表面に前記子粒子が結合しており、さらにそれらを覆うシリカ被膜を有していてもよい。すなわち、前記母粒子の表面に前記子粒子が結合してなる複合粒子の一部をシリカ被膜が覆っていてもよい。よって、本発明の複合微粒子の最表面にはシリカ被膜が存在している。
本発明の複合微粒子について透過型電子顕微鏡を用いて観察して得られる像(TEM像)では、母粒子の表面に子粒子の像が濃く現れるが、その子粒子の外側、すなわち、本発明の複合微粒子の表面側には、相対的に薄い像として、シリカ被膜が現れる。また、子粒子(セリア微粒子)が母粒子(シリカ微粒子)と結合している態様であってよく、シリカ被膜が一部を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。
また、本発明の複合微粒子をEDS分析に供し、元素分布を得ると、粒子の表面側にCe濃度が高い部分が現れるが、さらにその外側にSi濃度が高い部分が現れる。
また、上記のように透過型電子顕微鏡によって特定した前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定を行って当該部分のSi原子数%及びCe原子数%を求めると、Si原子数%が非常に高いことを確認することができる。具体的には、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上となる。
このようなシリカ被膜は、子粒子(セリア結晶粒子)と母粒子(シリカ微粒子)の結合(力)を助長すると考えられる。よって、例えば、本発明の研磨用砥粒分散液を得る工程で、焼成して得られたシリカ系複合微粒子について湿式による解砕を行うことで、シリカ系複合微粒子分散液が得られるが、シリカ被膜により、子粒子(セリア結晶粒子)が母粒子(シリカ微粒子)から外れる事を防ぐ効果があるものと考えられる。この場合、局部的な子粒子の脱落は問題なく、また、子粒子の表面の全てがシリカ被膜で覆われていない。子粒子が解砕工程で母粒子から外れない程度の強固さがあれば良い。
このような構造により、本発明の研磨用砥粒分散液を研磨剤として用いた場合、研磨速度が高く、面精度やスクラッチの悪化が少ないと考えられる。また、結晶化しているため粒子表面の−OH基が少なく、研磨基板表面の−OH基との相互作用が少ないため研磨基板表面への付着が少ないと考えられる。
また、本発明の複合微粒子では子粒子の表面の一部はシリカ層によって被覆されているので、本発明の複合微粒子の最表面(最外殻)にはシリカのOH基が存在することになる。このため研磨剤として利用した場合に、本発明の複合微粒子は研磨基板表面の−OH基による電荷で反発しあい、その結果、研磨基板表面への付着が少なくなると考えられる。
また遊離セリアは正の電荷をもつため基板へ付着しやすい。本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、子粒子のセリア粒子が研磨時に脱落しても、その表面はシリカで覆われているため負の電荷を有しており、基板への付着を低減化する効果もある。
また、セリアはシリカや研磨基板、研磨パッドとは電位が異なり、pHはアルカリ性から中性付近でマイナスのゼータ電位が減少して行き、弱酸性領域では逆のプラスの電位を持つ。そのため電位の大きさの違いや極性の違いなどで研磨基材や研磨パッドに付着し、研磨基材や研磨パッドに残り易い。一方、本発明のシリカ系複合微粒子は、子粒子であるセリアがシリカ被膜でその一部が覆われているため、pHがアルカリ性から酸性までマイナスの電位を維持するため、研磨基材や研磨パッドへの砥粒残りが起きにくい。
シリカ被膜の厚さは、TEM像やSEM像から母粒子上のセリアの子粒子のシリカ被膜による被覆具合で概ね求められる。つまり、上記のように、TEM像では、母粒子の表面に粒子径が約20nm前後の子粒子の像が濃く現れ、その子粒子の外側に相対的に薄い像としてシリカ被膜が現れるので、子粒子の大きさと対比する事で、シリカ被膜の厚さを概ね求めることができる。この厚さは、SEM像から子粒子が凹凸としてハッキリ確認できて、TEM像からシリカ系複合微粒子の輪郭に凹凸が見られるのならば、シリカ被膜の厚さは20nmをはるかに下回る事が考えられる。一方、SEM像から子粒子の凹凸がはっきりせずに、TEM像からもシリカ系複合微粒子の輪郭に凹凸が見られないなら、シリカ被膜の厚さは約20nm前後であると考えられる。
なお、上記のように、最外層(母粒子側の反対)のシリカ被膜は、子粒子(セリア微粒子)の全体を完全に覆っていない。すなわち、本発明の複合微粒子の最表面にはシリカ被膜が存在しているが、シリカ被膜が存在していない部分がある。また、シリカ系複合微粒子の母粒子が露出する部分が存在しても構わない。
<本発明の複合微粒子>
本発明の複合微粒子は、上記のように、母粒子の表面に、上記のような子粒子を有している。
本発明の複合微粒子において、シリカとセリアとの質量比は100:11〜316であり、100:30〜230であることが好ましく、100:30〜150であることがより好ましく、100:60〜120であることがさらに好ましい。シリカとセリアとの質量比は、概ね、母粒子と子粒子との質量比と同程度と考えられる。母粒子に対する子粒子の量が少なすぎると、母粒子同士が結合し、粗大粒子が発生する場合がある。この場合に本発明の研磨用砥粒分散液を含む研磨剤(研磨用砥粒分散液)は、研磨基材の表面に欠陥(スクラッチの増加などの面精度の低下)を発生させる可能性がある。また、シリカに対するセリアの量が多すぎても、コスト的に高価になるばかりでなく、資源リスクが増大する。さらに、粒子同士の融着が進む。その結果、基板表面の粗度が上昇(表面粗さRaの悪化)したり、スクラッチが増加する、更に遊離したセリアが基板に残留する、研磨装置の廃液配管等への付着といったトラブルを起こす原因ともなりやすい。
なお、前記質量比を算定する場合の対象となるシリカとは、次の(I)〜(III)の全てを含むものである。
(I)母粒子を構成するシリカ成分
(II)母粒子に子粒子(セリア成分)が結合してなる複合微粒子を、覆ってなるシリカ被膜に含まれるシリカ成分
(III)セリア子粒子中に固溶しているシリカ成分
本発明の複合微粒子におけるシリカ(SiO2)とセリア(CeO2)の含有率(質量%)は、まず本発明の複合微粒子の分散液(本発明の研磨用砥粒分散液)の固形分濃度を、1000℃灼熱減量を行って秤量により求める。
次に、所定量の本発明の複合微粒子に含まれるセリウム(Ce)の含有率(質量%)をICPプラズマ発光分析により求め、CeO2質量%に換算する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出することができる。
なお、本発明の製造方法においては、シリカとセリアの質量比は、本発明の研磨用砥粒分散液を調製する際に投入したシリカ源物質とセリア源物質との使用量から算定することもできる。これは、セリアやシリカが溶解し除去されるプロセスとなっていない場合に適用でき、そのような場合はセリアやシリカの使用量と分析値が良い一致を示す。
本発明の複合微粒子はシリカ微粒子(母粒子)の表面に粒子状の結晶性セリア(子粒子)が焼結等して結合したものであってよい。この場合、本発明の複合微粒子は、凹凸の表面形状を有している。
すなわち、母粒子と子粒子との少なくとも一方(好ましくは双方)が、それらの接点において、焼結結合し、強固に結合していてもよい。ただし、シリカ被膜に覆われた子粒子が、そのシリカ被膜を介して母粒子と結合している場合もある。
本発明の複合微粒子の粒度分布は、「粒子連結型」であっても「単分散型」であっても良いが、基板との接触面積を高く保つことができ、研磨速度が速いことから、粒子連結型が望ましい。粒子連結型とは、2以上の複合微粒子同士が各々一部において結合しているもので、連結は3以下が好ましい。母粒子同士は少なくとも一方(好ましくは双方)がそれらの接点において溶着し、あるいはセリアが介在することで固化した履歴を備えることで、強固に結合しているものと考えられる。ここで、母粒子同士が結合した後に、その表面にセリウム含有シリカ層が形成された場合の他、母粒子の表面にセリウム含有シリカ層が形成された後、他のものに結合した場合であっても、粒子連結型とする。
連結型であると基板との接触面積を多くとることができるため、研磨エネルギーを効率良く基板へ伝えることができる。そのため、研磨速度が高い。また、粒子当たりの研磨圧力が単粒子よりも低くなるためスクラッチも少ない。
本発明の複合微粒子において、画像解析法で測定された短径/長径比が0.80以下(好ましくは0.67以下)である粒子の個数割合は45%以上であることが好ましい。
ここで、画像解析法で測定された短径/長径比が0.80以下である粒子は、原則的に粒子結合型のものと考えられる。
本発明の複合微粒子の形状は、格別に制限されるものではなく、粒子連結型粒子であっても、単粒子(非連結粒子)であってもよく、通常は両者の混合物である。
ここで、該複合微粒子を含む複合微粒子分散液を研磨用途に使用する場合であって、被研磨基板に対する研磨レート向上を重視する場合は、該複合微粒子の画像解析法で測定された短径/長径比が0.80未満(好ましくは0.67以下)である粒子の個数割合は45%以上(より好ましくは51%以上)であることが好ましい。
また、同じく被研磨基板上の表面粗さが低い水準にあることを重視する場合は、該複合微粒子の画像解析法で測定された短径/長径比が0.80以上(好ましくは0.9以上)である粒子の個数割合は40%以上であることが好ましく、51%以上がより好ましい。
なお、前記粒子連結型粒子とは、粒子間に再分散できない程度の化学結合が生じて粒子が連結してなるもの(凝結粒子)を意味する。また、単粒子とは、複数粒子が連結したものではなく、粒子のモルホロジーに関係なく凝集していないものを意味する。
前記の被研磨基板に対する研磨レート向上を重視する場合における、本発明の複合微粒子分散液としては、次の態様1を挙げることができる。
[態様1]本発明の複合微粒子が、更に、画像解析法で測定された短径/長径比が0.8未満である粒子の個数割合が45%以上であることを特徴とする、本発明の分散液。
また、前記被研磨基板上の表面粗さが低い水準にあることを重視する場合における、本発明の複合微粒子分散液としては、次の態様2を挙げることができる。
[態様2]本発明の複合微粒子が、更に、画像解析法で測定された短径/長径比が0.8以上である粒子の個数割合が40%以上であることを特徴とする、本発明の分散液。
画像解析法による短径/長径比の測定方法を説明する。透過型電子顕微鏡により、本発明の複合微粒子を倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。これより、短径/長径比(DS/DL)を求める。そして、写真投影図で観察される任意の50個の粒子において、短径/長径比が0.80以下である粒子の個数割合(%)を求める。
本発明の複合微粒子は前述の粒子連結型であることがより好ましいが、その他の形状のもの、例えば球状粒子を含んでいてもよい。
本発明の複合微粒子は、比表面積が4〜100m2/gであることが好ましく、20〜70m2/gであることがより好ましい。
ここで、比表面積(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
本発明の複合微粒子の平均粒子径は50〜350nmであることが好ましく、170〜260nmであることがより好ましい。本発明の複合微粒子の平均粒子径が50〜350nmの範囲にある場合、研磨材として適用した際に研磨速度が高くなり好ましい。
本発明の複合微粒子の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。本発明の複合微粒子を水に分散させ、この複合微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
本発明の複合微粒子において、前記特定不純物群1の各元素の含有率は、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましく、5ppm以下であることがさらに好ましく、1ppm以下であることがよりいっそう好ましい。また、本発明の複合微粒子における前記特定不純物群2の各元素の含有率は、それぞれ5ppm以下であることが好ましい。本発明の複合微粒子における特定不純物群1及び前記特定不純物群2それぞれの元素の含有率を低減させる方法については、母粒子(シリカ微粒子)について述べた方法が適用できる。
なお、本発明の複合微粒子における前記特定不純物群1と前記特定不純物群2の各々の元素の含有率は、ICP(誘導結合プラズマ発光分光分析装置)を用いて測定して求める値とする。
<本発明の研磨用砥粒分散液>
本発明の研磨用砥粒分散液について説明する。
本発明の研磨用砥粒分散液は、上記のような本発明の複合微粒子が分散溶媒に分散しているものである。
本発明の研磨用砥粒分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用砥粒分散液は、研磨性能を制御するための添加剤として、研磨促進剤、界面活性剤、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を添加することで研磨スラリーとして好適に用いられる。
本発明の研磨用砥粒分散液は、SiO2絶縁膜が形成された半導体基板の平坦化用の研磨用砥粒分散液として好適に使用することができる。ここで本発明の研磨用砥粒分散液を用いてシリカ膜が形成された半導体基板を平坦化する場合、本発明の研磨用砥粒分散液のpHを3〜8とすることが好ましい。
本発明の研磨用砥粒分散液は半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のキズ(スクラッチ)が少ない、基板への砥粒の残留が少ないなどの効果に優れている。
本発明の研磨用砥粒分散液は、本発明の複合微粒子を含み、そのイオン強度が0.007以上のものである。本発明の研磨用砥粒分散液は、イオン強度の条件を満たす限り、本発明の複合微粒子以外の成分を含んでも構わない。その様な例としては、後記したイオン強度調整用の添加剤、研磨促進剤、界面活性剤、親水性化合物、複素環化合物、pH調整剤、pH緩衝剤などの各種添加剤を挙げることができる。
研磨用砥粒分散液のイオン強度が0.007以上である場合、研磨速度の改善が見られる。このイオン強度の上限は0.1であってよく、0.04であることが好ましい。
本発明の研磨用砥粒分散液のイオン強度は、下式から算出される値を意味するものとする。
ここで式中のJはイオン強度を表す。Ciは各イオンのモル濃度を表し、Ziは各イオンの価数を表す。なお、各イオンのモル濃度は、各物質の研磨用砥粒分散液のpHにおいて解離する物質のイオン濃度であるため、各物質の酸解離定数pKaあるいは塩基解離定数pKbを用いて算出する。研磨用砥粒分散液にA-とB+とに解離する塩を添加する場合は、酸AH、塩基BOHとに分け、A-とH+、及びB+とOH-各々のイオン濃度を算出する。またpH調整などで使用する酸についても同様でAHをA-とH+と分けて計算し、上記計算式にあてはめて算出する。
本発明の研磨用砥粒分散液はイオン強度調整剤を含むことが好ましい。イオン強度調整剤は、本発明の研磨用砥粒分散液のイオン強度を0.007以上とするために添加されてもよい。
本発明の研磨用砥粒分散液はイオン強度調整剤として硝酸アンモニウムおよび酢酸アンモニウムからなる群から選ばれる1種または2種を含むことが好ましい。
本発明の研磨用砥粒分散液におけるイオン強度調整剤の含有率は特に限定されないが、例えば200〜2000ppmとすることが好ましく、300〜1500ppmとすることがより好ましい。
また、本発明の研磨用砥粒分散液を備える分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。
本発明の研磨用砥粒分散液は、カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が―110.0〜―15.0となる流動電位曲線が得られるものであることが好ましい。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
ここで、カチオンコロイド滴定は、固形分濃度を1質量%に調整した本発明の研磨用砥粒分散液80gにカチオンコロイド滴定液を添加することで行う。カチオンコロイド滴定液として、0.001Nポリ塩化ジアリルジメチルアンモニウム溶液を用いる。その他の測定条件は文献やメーカー推奨の常法にのっとって好適な方法で行われる。
このカチオンコロイド滴定によって得られる流動電位曲線とは、カチオン滴定液の添加量(ml)をX軸、本発明の研磨用砥粒分散液の流動電位(mV)をY軸に取ったグラフである。
また、クニックとは、カチオンコロイド滴定によって得られる流動電位曲線において急激に流動電位が変化する点(変曲点)である。具体的には、流動電位曲線の変曲点であり、この点(変曲点)をクニックとする。そしてこの点(変曲点)における流動電位をC(mV)とし、この点(変曲点)におけるカチオンコロイド滴定液の添加量をV(ml)とする。
流動電位曲線の開始点とは、滴定前の本発明の研磨用砥粒分散液における流動電位である。具体的には流動電位曲線における、カチオンコロイド滴定液の添加量が0である点を開始点とする。この点における流動電位をI(mV)とする。
上記のΔPCD/Vの値が−110.0〜−15.0であると、本発明の研磨用砥粒分散液を研磨剤として用いた場合、研磨剤の研磨速度がより向上する。このΔPCD/Vは、本発明の複合微粒子表面におけるシリカ被膜の被覆具合及び/又は複合微粒子の表面における子粒子の露出具合あるいは脱離しやすいシリカの存在を反映していると考えられる。ΔPCD/Vの値が上記範囲内であると、湿式による解砕時において子粒子は脱離する事が少なく、研磨速度も高いと本発明者は推定している。逆にΔPCD/Vの値が−110.0よりもその絶対値が大きい場合は、複合微粒子表面がシリカ被膜で全面覆われているため解砕工程にて子粒子脱落は起き難いが研磨時にシリカが脱離しがたく研磨速度が低下する。一方、−15.0よりもその絶対値が小さい場合は脱落が起きやすいと考えられる。上記範囲内であると、研磨時において子粒子表面が適度に露出して子粒子の脱落が少なく、研磨速度がより向上すると本発明者は推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。
本発明の研磨用砥粒分散液は、そのpH値を3〜8の範囲とした場合に、カチオンコロイド滴定を始める前、すなわち、滴定量がゼロである場合の流動電位がマイナスの電位となるものであることが好ましい。これは、この流動電位がマイナスの電位を維持する場合、同じくマイナスの表面電位を示す研磨基材への砥粒(シリカ系複合微粒子)の残留が生じ難いからである。
<研磨促進剤>
本発明の研磨用砥粒分散液には、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、酢酸等の有機酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩、アミン塩及びこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。
本発明の研磨用砥粒分散液が研磨促進剤を含有する場合、その含有量としては、0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。
<界面活性剤及び/又は親水性化合物>
本発明の研磨用砥粒分散液の分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤又は親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。
陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。
非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキル及びアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。
界面活性剤としては陰イオン界面活性剤もしくは非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩及びカリウム塩が好ましい。
さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステル及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。
なお、適用する被研磨基材がガラス基板等である場合は、何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属又はハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。
本発明の研磨用砥粒分散液が界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用砥粒分散液の1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。
界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用砥粒分散液の1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。
界面活性剤又は親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。
<複素環化合物>
本発明の研磨用砥粒分散液を適用する被研磨基材に金属が含まれる場合、金属に不動態層又は溶解抑制層を形成させることで被研磨基材の侵食を抑制するために、本発明の研磨用砥粒分散液へ複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
本発明の研磨用砥粒分散液に複素環化合物を配合する場合の含有量については、0.001〜1.0質量%であることが好ましく、0.001〜0.7質量%であることがより好ましく、0.002〜0.4質量%であることがさらに好ましい。
<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸又は塩基を添加して研磨用組成物のpHを調節することができる。
本発明の研磨用砥粒分散液をpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。
本発明の研磨用砥粒分散液をpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類の様な、塩酸、硝酸などの鉱酸が使用される。
<pH緩衝剤>
本発明の研磨用砥粒分散液のpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩及びホウ酸塩又は有機酸などを使用することができる。
本発明の研磨用砥粒分散液に含まれる固形分濃度は0.1〜30質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ないので、不経済となり得る。
<本発明の製造方法>
本発明の研磨用砥粒分散液の製造方法は特に限定されないが、次に説明する本発明の製造方法によって製造することが好ましい。
本発明の製造方法は、下記の工程1〜工程3を含むことを特徴とする研磨用砥粒分散液の製造方法である。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の処理をして焼成体解砕分散液を得る工程。
媒を加えて、pH8.6〜10.8の範囲にて、湿式で解砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去し、(好ましくはイオン強度調整剤を加えて)研磨用砥粒分散液を得る工程。
このような本発明の製造方法によって、本発明の研磨用砥粒分散液を製造することができる。
本発明の製造方法について説明する。
本発明の製造方法は以下に説明する工程1〜工程3を備える。
<本発明の製造方法>
<工程1>
工程1ではシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用意する。
本発明の製造方法により、半導体デバイスなどの研磨に適用するシリカ系複合微粒子分散液(研磨用砥粒分散液)を調製しようとする場合は、シリカ微粒子分散液として、アルコキシシランの加水分解により製造したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用いることが好ましい。なお、従来公知のシリカ微粒子分散液(水硝子を原料として調製したシリカ微粒子分散液等)を原料とする場合は、シリカ微粒子分散液を酸処理し、更に脱イオン処理して使用することが好ましい。この場合、シリカ微粒子に含まれるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、SO4及びFの含有率が少なくなり、具体的には、100ppm以下となり得るからである。
なお、具体的には、工程1で使用する原料であるシリカ微粒子分散液中のシリカ微粒子として、次の(a)と(b)の条件を満たすものが好適に使用される。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、SO4及びFの含有率が、それぞれ5ppm以下。
工程1では、上記のようなシリカ微粒子が溶媒に分散したシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る。
前記シリカ微粒子分散液における分散媒は水を含むことが好ましく、水系のシリカ微粒子分散液(水ゾル)を使用することが好ましい。
前記シリカ微粒子分散液における固形分濃度は、SiO2換算基準で1〜40質量%であることが好ましい。この固形分濃度が低すぎると、製造工程でのシリカ濃度が低くなり生産性が悪くなり得る。
また、陽イオン交換樹脂又は陰イオン交換樹脂、あるいは鉱酸、有機酸等で不純物を抽出し、限外ろ過膜などを用いて、必要に応じて、シリカ微粒子分散液の脱イオン処理を行うことができる。脱イオン処理により不純物イオンなどを除去したシリカ微粒子分散液は表面にケイ素を含む水酸化物を形成させやすいのでより好ましい。なお、脱イオン処理はこれらに限定されるものではない。
工程1では、上記のようなシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加する。
セリウムの金属塩は限定されるものではないが、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。具体的には、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。なかでも、硝酸第一セリウムや塩化第一セリウムが好ましい。中和と同時に過飽和となった溶液から、結晶性セリウム酸化物が生成し、それらは速やかにシリカ微粒子に凝集沈着機構で付着するので結合性酸化物形成の効率が高く好ましい。しかしこれら金属塩に含まれる硫酸イオン、塩化物イオン、硝酸イオンなどは、腐食性を示す。そのため調合後に後工程で洗浄し5ppm以下に除去する必要がある。一方、炭酸塩は炭酸ガスとして調合中に放出され、またアルコキシドは分解してアルコールとなるため、好ましい。
シリカ微粒子分散液に対するセリウムの金属塩の添加量は、得られる本発明の複合微粒子におけるシリカとセリアとの質量比が、前述のように、100:11〜316の範囲となる量とする。
シリカ微粒子分散液にセリウムの金属塩を添加した後、撹拌する際の温度は5〜98℃であることが好ましく、10〜95℃であることがより好ましい。この温度が低すぎるとシリカの溶解度が著しく低下するため、セリアの結晶化が制御されなくなり、粗大なセリアの結晶性酸化物が生成して、シリカ微粒子(母粒子)への付着が起こり難くなる事が考えられる。
逆に、この温度が高すぎるとシリカの溶解度が著しく増し、結晶性のセリア酸化物の生成が抑制される事が考えられる。更に、反応器壁面にスケールなどが生じやすくなり好ましくない。
また、撹拌する際の時間は0.5〜24時間であることが好ましく、0.5〜18時間であることがより好ましい。この時間が短すぎると結晶性の酸化セリウムが十分に形成できないため好ましくない。逆に、この時間が長すぎても結晶性の酸化セリウムの形成はそれ以上反応が進まず不経済となる。なお、前記セリウム金属塩の添加後に、所望により5〜98℃で熟成しても構わない。熟成により、セリウム化合物が母粒子に沈着する反応をより促進させることができる。
また、シリカ微粒子分散液にセリウムの金属塩を添加し、撹拌する際のシリカ微粒子分散液のpH範囲は7.0〜9.0とするが、7.6〜8.6とすることが好ましい。この際、アルカリ等を添加しpH調整を行うことが好ましい。このようなアルカリの例としては、公知のアルカリを使用することができる。具体的には、アンモニア水溶液、水酸化アルカリ、アルカリ土類金属、アミン類の水溶液などが挙げられるが、これらに限定されるものではない。
このような工程1によって、本発明の複合微粒子の前駆体である粒子(前駆体粒子)を含む分散液(前駆体粒子分散液)が得られる。
工程1で得られた前駆体粒子分散液を、工程2に供する前に、純水やイオン交換水などを用いて、さらに希釈あるいは濃縮して、次の工程2に供してもよい。
なお、前駆体粒子分散液における固形分濃度は1〜27質量%であることが好ましい。
また、所望により、前駆体粒子分散液を、陽イオン交換樹脂、陰イオン交換樹脂、限外ろ過膜、イオン交換膜、遠心分離などを用いて脱イオン処理してもよい。
工程1は、より好適には、シリカ微粒子分散液の温度範囲を5〜52℃とし、pH範囲を7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子分散液を調製し、更に該前駆体粒子分散液を温度5〜52℃で熟成することにより行われる。工程1をこのような条件で行った場合、セリウムの金属塩あるいは水酸化セリウムがシリカと液相で反応し、セリウムシリケート化合物が生成し、セリアの結晶成長が阻害される。また同時にセリア微結晶も生成し、母粒子上にセリウムシリケート化合物及びセリアの微結晶が形成される。
<工程2>
工程2では、前駆体粒子分散液を乾燥させた後、400〜1,200℃で焼成する。
乾燥する方法は特に限定されない。従来公知の乾燥機を用いて乾燥させることができる。具体的には、箱型乾燥機、バンド乾燥機、スプレードライアー等を使用することができる。
なお、好適には、さらに乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることが推奨される。乾燥前の前駆体粒子分散液のpHを6.0〜7.0とした場合、強固な凝集体が生成することを抑制できるからである。
乾燥後、焼成する温度は400〜1200℃であるが、800〜1100℃であることが好ましく、1000〜1090℃であることがより好ましい。このような温度範囲において焼成すると、母粒子上のセリウムシリケート化合物からセリウムが拡散してセリアの結晶化が十分に進行し、その結果セリア粒子はシリカ層で被覆される。また、セリア微粒子の表面に存在するシリカ被膜が、適度に厚膜化し、母粒子と子粒子とが強固に結合する。この温度が高すぎると、セリアの結晶が異常成長したり、セリア粒子上のシリカ被膜が厚くなり母粒子との結合が進むが、セリアの子粒子を厚く覆う事も予想され、母粒子を構成する非晶質シリカが結晶化したり、粒子同士の融着が進む可能性もある。
工程2では、焼成して得られた焼成体に次の処理をして焼成体解砕分散液を得る。
媒を加えて、pH8.6〜10.8(好ましくは9.0〜10.6)の範囲にて、湿式で解砕処理する
湿式の解砕装置としても従来公知の装置を使用することができるが、例えば、バスケットミル等のバッチ式ビーズミル、横型・縦型・アニュラー型の連続式のビーズミル、サンドグラインダーミル、ボールミル等、ロータ・ステータ式ホモジナイザー、超音波分散式ホモジナイザー、分散液中の微粒子同士をぶつける衝撃粉砕機等の湿式媒体攪拌式ミル(湿式解砕機)が挙げられる。湿式媒体攪拌ミルに用いるビーズとしては、例えば、ガラス、アルミナ、ジルコニア、スチール、フリント石等を原料としたビーズを挙げることができる。
媒としては、水及び/又は有機溶媒が使用される。例えば、純水、超純水、イオン交換水のような水を用いることが好ましい。また、得られる焼成体解砕分散液の固形分濃度は、格別に制限されるものではないが、例えば、0.3〜50質量%の範囲にあることが好ましい
なお、前記湿式による解砕を行う場合は、溶媒のpHを8.6〜10.8(好ましくは9.0〜10.6)に維持しながら湿式による解砕を行う。pHをこの範囲に維持すると、カチオンコロイド滴定を行った場合に、前記式(1)で表される、流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−110.0〜−15.0となる流動電位曲線が得られる本発明の研磨用砥粒分散液を、最終的により容易に得ることができる。
すなわち、前述の好ましい態様に該当する本発明の研磨用砥粒分散液が得られる程度に、解砕を行うことが好ましい。前述のように、好ましい態様に該当する本発明の研磨用砥粒分散液を研磨剤に用いた場合、研磨速度がより向上するからである。これについて本発明者は、本発明の複合微粒子表面におけるシリカ被膜が適度に薄くなること、及び/又は複合微粒子表面の一部に子粒子が適度に露出することで、研磨速度がより向上し、且つセリアの子粒子の脱落を制御できると推定している。また、シリカ被膜が薄いか剥げた状態であるため、子粒子が研磨時にある程度脱離しやすくなると推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。
<工程3>
工程3では、工程2において得られた前記焼成体解砕分散液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去し、研磨用砥粒分散液を得る。ここで沈降成分を除去した後、イオン強度調整剤を加えてイオン強度が0.007以上の研磨用砥粒分散液を得ることが好ましい。
具体的には、前記焼成体解砕分散液について、遠心分離処理による凝集塊や異常成長粒子などの粗大粒子の除去を行う。遠心分離処理における相対遠心加速度は300G以上とする。遠心分離処理後、沈降成分を除去し、シリカ系複合微粒子分散液(研磨用砥粒分散液)を得ることができる。相対遠心加速度の上限は格別に制限されるものではないが、実用上は10,000G以下で使用される。
ここで相対遠心加速度とは、地球の重力加速度を1Gとして、その比で表したものである。
工程3では、上記の条件を満たす遠心分離処理を備えることが必要である。遠心加速度が上記の条件に満たない場合は、研磨用砥粒分散液中に粗大粒子が残存するため、研磨用砥粒分散液を用いた研磨材などの研磨用途に使用した際に、スクラッチが発生する原因となる。
本発明では、上記の製造方法によって得られる研磨用砥粒分散液を、更に乾燥させて、シリカ系複合微粒子を得ることができる。乾燥方法は特に限定されず、例えば、従来公知の乾燥機を用いて乾燥させることができる。
このような本発明の製造方法によって、本発明の研磨用砥粒分散液を得ることができる。
また、シリカ微粒子分散液にセリウムの金属塩を添加した際に、調合液の還元電位が正の値をとることが望ましい。酸化還元電位が負となった場合、セリウム化合物がシリカ粒子表面に沈着せずに板状・棒状などのセリウム単独粒子が生成するからである。酸化還元電位を正に保つ方法として過酸化水素などの酸化剤を添加したり、エアーを吹き込む方法が挙げられるが、これらに限定されるものではない。
以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。
<実験1>
初めに、実施例及び比較例における各測定方法及び試験方法の詳細について説明する。各実施例及び比較例について、以下の各測定結果及び試験結果を第1表に記す。
[成分の分析]
[シリカ微粒子(母粒子)]
後述するシリカ微粒子分散液のSiO2重量について、珪酸ナトリウムを原料としたシリカ微粒子の場合は1000℃灼熱減量を行って秤量により求めた。またアルコキシシランを原料としたシリカ微粒子の場合は、シリカ微粒子分散液を150℃で1時間乾燥させた後に秤量して求めた。
[シリカ系複合微粒子]
各元素の含有率は、以下の方法によって測定するものとする。
初めに、シリカ系複合微粒子分散液からなる試料約1g(固形分20質量%)を白金皿に採取する。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。この溶液でNa、Kは原子吸光分光分析装置(例えば日立製作所社製、Z−2310)で測定する。次に、100mlにおさめた溶液から分液10mlを20mlメスフラスコに採取する操作を5回繰り返し、分液10mlを5個得る。そして、これを用いて、Al、Ag、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びThについてICPプラズマ発光分析装置(例えばSII製、SPS5520)にて標準添加法で測定を行う。ここで、同様の方法でブランクも測定して、ブランク分を差し引いて調整し、各元素における測定値とする。
以下、特に断りがない限り、本発明におけるNa、Al、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの成分の含有率(含有量)は、このような方法で測定して得た値を意味するものとする。
各陰イオンの含有率は、以下の方法によって測定するものとする。
<Cl>
シリカ系複合微粒子分散液からなる試料20g(固形分20質量%)にアセトンを加え100mlに調整し、この溶液に、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行う。
別途ブランク測定として、アセトン100mlに酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で滴定を行った場合の滴定量を求めておき、試料を用いた場合の滴定量から差し引き、試料の滴定量とした。
<SO4、F>
シリカ系複合微粒子分散液からなる試料5g(固形分20質量%)を水で希釈して100mlにおさめ、遠心分離機(日立製 HIMAC CT06E)にて4000rpmで20分遠心分離して、沈降成分を除去して得た液をイオンクロマトグラフ(DIONEX製 ICS−1100)にて分析した。
<SiO2、CeO2
シリカ系複合微粒子におけるシリカとセリアの含有率を求める場合、まずシリカ系複合微粒子の分散液の固形分濃度を、1000℃灼熱減量を行って秤量により求める。次にCeについて、Al〜Th等と同様にICPプラズマ発光分析装置(例えば、SII製、SPS5520)を用いて標準添加法で測定を行い、得られたCe含有率からCeO2質量%を算出する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出する。
なお、シリカ微粒子(母粒子)における各元素又は各陰イオンの含有率は、上記シリカ系複合微粒子の分析方法において、試料をシリカ系複合微粒子分散液に代えて、シリカ微粒子分散液を用いることにより行った。
[X線回折法、結晶子径の測定]
前述の方法に則り、実施例及び比較例で得られたシリカ系複合微粒子分散液を従来公知の乾燥機を用いて乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、結晶型を特定した。
また、本実施例及び比較例では得られたX線回折パターンにおける2θ=28度近傍の(111)面(2θ=28度近傍)のピークが最大強度となったため、このピークの半価幅を測定し、Scherrerの式により、結晶子径を求めた。
<平均粒子径>
実施例及び比較例で得られたシリカ微粒子分散液及びシリカ系複合微粒子分散液について、これに含まれる粒子の平均粒子径を前述の方法で測定した。具体的にはシリカ母粒子は大塚電子社製PAR−III及びHORIBA社製LA950を用い、シリカ系複合微粒子については日機装株式会社製マイクロトラックUPA装置を用いた。
[研磨試験方法]
<SiO2膜の研磨>
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含む砥粒分散液(研磨用砥粒分散液)を調整した。ここで研磨用砥粒分散液の固形分濃度は0.6質量%でイオン強度調整のための添加剤を加え、硝酸でpHを5.0に調整した。
次に、被研磨基板として、熱酸化法により作製したSiO2絶縁膜(厚み1μm)基板を準備した。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「IC-1000/SUBA400同心円タイプ」)を使用し、基板荷重0.5MPa、テーブル回転速度90rpmで研磨用砥粒分散液を50ml/分の速度で1分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
<実施例1>
《シリカ微粒子分散液(シリカ微粒子の平均粒子径60nm)》の調製
エタノール12,090gと正珪酸エチル6,363.9gとを混合し、混合液a1とした。
次に、超純水6,120gと29%アンモニア水444.9gとを混合し、混合液b1とした。
次に、超純水192.9gとエタノール444.9gとを混合して敷き水とした。
そして、敷き水を撹拌しながら75℃に調整し、ここへ、混合液a1及び混合液b1を、各々10時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を75℃のまま3時間保持して熟成させた後、固形分濃度を調整し、SiO2固形分濃度19質量%、動的光散乱法(大塚電子社製PAR−III)により測定された平均粒子径60nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を9,646.3g得た。
《シリカ微粒子分散液(シリカ微粒子の平均粒子径:108nm)》の調製
メタノール2,733.3gと正珪酸エチル1,822.2gとを混合し、混合液a2とした。
次に、超純水1,860.7gと29%アンモニア水40.6gとを混合し、混合液b2とした。
次に、超純水59gとメタノール1,208.9gとを混合して敷き水として、前工程で得た平均粒子径60nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液922.1gを加えた。
そして、シリカ微粒子分散液を含んだ敷き水を撹拌しながら65℃に調整し、ここへ、混合液a2及び混合液b2を、各々18時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を65℃のまま3時間保持して熟成させた後、固形分濃度(SiO2固形分濃度)を19質量%に濃縮し、3,600gの高純度シリカ微粒子分散液を得た。
この高純度シリカ微粒子分散液に含まれる粒子は、動的光散乱法(大塚電子社製PAR−III)により測定した平均粒子径が108nmであった。また、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、SO4及びFの含有率は何れも1ppm以下であった。
次に、この高純度シリカ微粒子分散液1,053gに陽イオン交換樹脂(三菱化学社製SK−1BH)114gを徐々に添加し、30分間攪拌し樹脂を分離した。この時のpHは5.1であった。
得られたシリカ微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%のA液6,000gを得た。
次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB液を得た。
次に、A液(6,000g)を50℃まで昇温して、撹拌しながら、ここへB液(8,453g、SiO2の100質量部に対して、CeO2が117.4質量部に相当)を18時間かけて添加した。この間、液温を50℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.85維持するようにした。なおB液の添加中及び熟成中は調合液にエアーを吹き込みながら調合を行い、酸化還元電位は正の値を保った。
そして、B液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が7質量%、pHが9.1(25℃にて)、電導度が67μs/cm(25℃にて)であった。
次に得られた前駆体粒子分散液に5質量%酢酸水溶液を加えてpHを6.5に調整して、100℃の乾燥機中で16時間乾燥させた後、1090℃のマッフル炉を用いて2時間焼成を行い、粉体を得た。
焼成後に得られた粉体310gと、イオン交換水430gとを、1Lの柄付きビーカーに入れ、そこへ3%アンモニア水溶液を加え、撹拌しながら超音波浴槽中で10分間超音波を照射し、pH10(温度は25℃)の懸濁液を得た。
次に、事前に設備洗浄と水運転を行った粉砕機(アシザワファインテック株式会社製、LMZ06)にφ0.25mmの石英ビーズ595gを投入し、さらに上記の懸濁液を粉砕機のチャージタンクに充填した(充填率85%)。なお、粉砕機の粉砕室及び配管中に残留したイオン交換水を考慮すると、粉砕時の濃度は25質量%である。そして、粉砕機におけるディスクの周速を12m/sec、パス回数を25回、及び1パス当たりの滞留時間を0.43分間とする条件で湿式解砕を行った。また、解砕時の懸濁液のpHを10に維持するように、パス毎に3%アンモニア水溶液を添加した。このようにして、固形分濃度22質量%のシリカ系複合微粒子分散液を得た。
次いで得られた微粒子分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度675Gで1分間遠心分離処理し、沈降成分を除去し、シリカ系複合微粒子分散液を得た。得られたシリカ系微粒子分散液の粒子径は日機装社製マイクロトラックUPAで225nmであった。
得られたシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子についてX線回折法によって測定したところ、Cerianiteの回折パターンが見られた。
次に、研磨用砥粒分散液としてシリカ系複合微粒子分散液を用いて研磨試験を行った。実施例1ではイオン強度調整剤として硝酸アンモニウムを研磨用砥粒分散液に対して1000ppm添加し、pH調整剤として硝酸を用いて砥粒分散液のpHを5.0に調整して研磨を行った。イオン強度調整剤として添加した硝酸アンモニウム量、pH調整に使用した硝酸量から算出されたイオン強度は0.026であった。また結果を第1表に示す。
なお、シリカ微粒子(母粒子)の性状と不純物の含有率、シリカ系複合微粒子に含まれるシリカ系複合微粒子におけるシリカ含有率とセリア含有率(及びシリカ100質量部に対するセリアの質量部)、シリカ系複合微粒子調製時の焼成温度、シリカ系複合微粒子の結晶子径、結晶型、子粒子の平均粒子径、シリカ系複合微粒子の比表面積、シリカ系複合微粒子に含まれる不純物の含有率、シリカ系複合微粒子の平均粒子径、研磨性能(研磨速度)の測定結果を第1表に示す。以降の実施例、比較例も同様である。
また、実施例1で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子についてSEM,TEMを用いて観察した。SEM像とTEM像(100,000倍)を図1(a)、(b)に示す。
また、子粒子の粒子径を測定した透過電顕像(300,000倍)を図1(c)に示す。
さらに、実施例1で得られたシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子のX線回折パターンを図2に示す。
図2のX線回折パターンでは、かなりシャープなCerianiteの結晶であり、TEMやSEM像からセリア結晶粒子がシリカ表面と強く焼結しているように見える。
また、図1からは、シリカ系複合微粒子の最表面に、薄いシリカ被膜が覆うように存在している様子が観察された。
<実施例2>
実施例2では硝酸アンモニウムの添加量を500ppmとし、硝酸でpHを5.0に調整して研磨を行った。得られた研磨用砥粒分散液のイオン強度を算出すると0.013であった。
結果を第1表に示す。
<実施例3>
実施例3ではイオン強度調整剤として酢酸アンモニウムを使用し、酢酸アンモニウムの添加量を1000ppmとし、硝酸を用いてpHを5.0に調整して研磨を行った。得られた研磨用砥粒分散液のイオン強度を算出すると0.023であった。
結果を第1表に示す。
<実施例4>
実施例4では、イオン強度調整剤として酢酸アンモニウムを500ppm添加し、硝酸でpHを5.0に調整し、研磨を行った。研磨用砥粒分散液のイオン強度は0.012であった。
結果を第1表に示す。
<比較例1>
比較例1では硝酸アンモニウム、酢酸アンモニウムは添加せずに硝酸でpHを5.0に調整し研磨を行った。研磨用砥粒分散液のイオン強度は0.001であった。
結果を第1表に示す。
<比較例2>
比較例2では硝酸アンモニウムの添加量を100ppmとし、硝酸でpHを5.0に調整して研磨を行った。得られた研磨用砥粒分散液のイオン強度を算出すると0.003であった。
結果を第1表に示す。
<比較例3>
比較例3ではイオン強度調整剤として酢酸アンモニウムを使用し、酢酸アンモニウムの添加量を100ppmとし、硝酸を用いてpHを5.0に調整して研磨を行った。得られた研磨用砥粒分散液のイオン強度を算出すると0.003であった。
結果を第1表に示す。
第1表より、イオン強度が0.007以上である実施例1〜4の研磨用砥粒分散液にて熱酸化膜を研磨した場合、研磨速度が早いことがわかった。
本発明の複合微粒子は、不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。

Claims (4)

  1. 非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、さらにその子粒子の表面の一部にシリカ被膜を有している、下記[1]から[3]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、イオン強度が0.007以上である研磨用砥粒分散液。
    [1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
    [2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
    [3]前記シリカ系複合微粒子は、X線回折に供して測定される、前記結晶性セリアの結晶子径が10〜25nmであること。
  2. イオン強度調整剤として硝酸アンモニウムおよび酢酸アンモニウムからなる群から選ばれる1種または2種を含むことを特徴とする、請求項1に記載の研磨用砥粒分散液。
  3. シリカ膜が形成された半導体基板の平坦化のために用いることを特徴とする請求項1又は2に記載の研磨用砥粒分散液。
  4. pHが3〜8である、請求項3に記載の研磨用砥粒分散液。
JP2017083206A 2016-04-22 2017-04-19 シリカ系複合微粒子を含む研磨用砥粒分散液 Active JP6588050B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016086613 2016-04-22
JP2016086613 2016-04-22

Publications (2)

Publication Number Publication Date
JP2017200999A JP2017200999A (ja) 2017-11-09
JP6588050B2 true JP6588050B2 (ja) 2019-10-09

Family

ID=60264805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083206A Active JP6588050B2 (ja) 2016-04-22 2017-04-19 シリカ系複合微粒子を含む研磨用砥粒分散液

Country Status (1)

Country Link
JP (1) JP6588050B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509855A (ja) * 1999-09-15 2003-03-11 ロデール ホールディングス インコーポレイテッド 化学機械研磨中に不溶性ケイ酸塩を形成するためのスラリー
US20030118824A1 (en) * 2001-12-20 2003-06-26 Tokarz Bozena Stanislawa Coated silica particles and method for production thereof
KR100574225B1 (ko) * 2003-10-10 2006-04-26 요업기술원 실리카에 세리아/실리카가 코팅된 화학적 기계적 연마용연마재 및 그 제조방법
JP2008227098A (ja) * 2007-03-12 2008-09-25 Fujifilm Corp 金属用研磨液
JP2009078936A (ja) * 2007-09-26 2009-04-16 Jgc Catalysts & Chemicals Ltd 金平糖状複合シリカゾルの製造方法
JP5444625B2 (ja) * 2008-03-05 2014-03-19 日立化成株式会社 Cmp研磨液、基板の研磨方法及び電子部品
KR101760529B1 (ko) * 2009-06-05 2017-07-21 바스프 에스이 화학 기계적 평탄화(CMP)를 위한 CeO2 나노입자 코팅된 라스베리형 금속 산화물 나노구조체
JP5881394B2 (ja) * 2011-12-06 2016-03-09 日揮触媒化成株式会社 シリカ系複合粒子およびその製造方法
JP6362385B2 (ja) * 2014-04-04 2018-07-25 株式会社フジミインコーポレーテッド 基板の製造方法および研磨用組成物
JP6352060B2 (ja) * 2014-06-06 2018-07-04 花王株式会社 酸化珪素膜研磨用研磨液組成物

Also Published As

Publication number Publication date
JP2017200999A (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6948423B2 (ja) シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー
US10920120B2 (en) Ceria composite particle dispersion, method for producing same, and polishing abrasive grain dispersion comprising ceria composite particle dispersion
WO2017183452A1 (ja) シリカ系複合微粒子分散液及びその製造方法
JP6829007B2 (ja) シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー
JP6603142B2 (ja) シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー
JP2019081672A (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
WO2018221357A1 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP7037918B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP6710100B2 (ja) シリカ系複合微粒子分散液の製造方法
JP6703437B2 (ja) シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリー
JP2019127405A (ja) セリア系複合中空微粒子分散液、その製造方法及びセリア系複合中空微粒子分散液を含む研磨用砥粒分散液
JP6616794B2 (ja) シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用砥粒分散液
JP7117225B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP6648064B2 (ja) シリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用砥粒分散液
JP6588050B2 (ja) シリカ系複合微粒子を含む研磨用砥粒分散液
JP6616795B2 (ja) シリカ系複合微粒子を含む研磨用砥粒分散液
JP2020050571A (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP7549528B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP7583627B2 (ja) 粒子連結型セリア系複合微粒子分散液、その製造方法および粒子連結型セリア系複合微粒子分散液を含む研磨用砥粒分散液
JP7215977B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP2019172533A (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6588050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250