JP6431314B2 - Method for producing aluminum alloy foil - Google Patents
Method for producing aluminum alloy foil Download PDFInfo
- Publication number
- JP6431314B2 JP6431314B2 JP2014165031A JP2014165031A JP6431314B2 JP 6431314 B2 JP6431314 B2 JP 6431314B2 JP 2014165031 A JP2014165031 A JP 2014165031A JP 2014165031 A JP2014165031 A JP 2014165031A JP 6431314 B2 JP6431314 B2 JP 6431314B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- heat treatment
- rolling
- foil
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 51
- 239000011888 foil Substances 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 71
- 239000000956 alloy Substances 0.000 claims description 39
- 238000005096 rolling process Methods 0.000 claims description 38
- 238000005097 cold rolling Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 2
- 238000000137 annealing Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 21
- 229910045601 alloy Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000000265 homogenisation Methods 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 238000005482 strain hardening Methods 0.000 description 5
- 229910018084 Al-Fe Inorganic materials 0.000 description 3
- 229910018192 Al—Fe Inorganic materials 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- IJJWOSAXNHWBPR-HUBLWGQQSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-(6-hydrazinyl-6-oxohexyl)pentanamide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCCCC(=O)NN)SC[C@@H]21 IJJWOSAXNHWBPR-HUBLWGQQSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
Description
この発明は、アルミニウム合金箔の製造方法に関する。 The present invention relates to a method for producing an aluminum alloy foil.
リチウムイオン二次電池等の電池用の包材に用いられるアルミニウム合金箔は、プレス成型等により大きな変形が加えられる。そのため、従来から伸びが大きい材料が求められており、かつ近年では電池包材分野を初めとして箔の薄肉化が進んでいる。 An aluminum alloy foil used for a packaging material for a battery such as a lithium ion secondary battery is greatly deformed by press molding or the like. For this reason, a material having a large elongation has been demanded in the past, and in recent years, thinning of the foil has been progressing in the battery packaging field.
従来、高強度かつ厚みの薄い電池集電体用箔について、製造工程中に適切な条件と厚みで低温熱処理を行うことで、箔の強度を低下させずに圧延性を改善する技術が提案されている。
例えば、引用文献1では、箔圧延途中で40〜65℃で24〜72時間熱処理を行い、熱処理後ただちに7μmの仕上げ圧延を行うことで、シワや割れの発生を抑制する技術が提案されている。また、引用文献2では、Al−Fe系合金材料に関して、冷間圧延の仕上がり温度を100〜180℃に保つことで圧延性を改善する技術が提案されている。
Conventionally, a technique has been proposed for improving the rollability without reducing the strength of the foil by performing low-temperature heat treatment under appropriate conditions and thickness during the manufacturing process for a foil for a battery current collector with high strength and thin thickness. ing.
For example, the cited document 1 proposes a technique for suppressing generation of wrinkles and cracks by performing heat treatment for 24 to 72 hours at 40 to 65 ° C. during foil rolling, and performing 7 μm finish rolling immediately after the heat treatment. . Further, in the cited document 2, a technique for improving the rollability by maintaining the finish temperature of the cold rolling at 100 to 180 ° C. is proposed for the Al—Fe based alloy material.
また、引用文献3では、Al−Fe系合金材料に関して、Si,Cu,Mnを十分に析出させ高導電性を保つことで薄箔のピンホールを抑制し、さらに、箔地で150〜320℃の中間焼鈍を施すことで、よりSiを析出させ圧延性を向上させる技術が提案されている。また、引用文献4では、硬質電極箔の製造に際し、箔圧延後に、箔の歪みを解消するため45〜120℃で1時間以上保持し、圧延後に箔の歪みをとりフラットにすることで活物質塗工時に塗工ムラを抑制する技術が提案されている。 In Cited Document 3, with respect to the Al—Fe-based alloy material, Si, Cu, and Mn are sufficiently precipitated to maintain high conductivity, thereby suppressing thin foil pinholes. The technique which precipitates Si and improves rolling property by performing intermediate annealing of this is proposed. In Cited Document 4, when producing a hard electrode foil, after foil rolling, the foil is held at 45 to 120 ° C. for 1 hour or longer in order to eliminate the distortion of the foil. Techniques for suppressing coating unevenness during coating have been proposed.
ところで、近年、電池メーカーでは箔コイルを巻出し、箔表面に活物質を塗工、乾燥、圧着の工程を経て電極を作製している。この電極(正極・負極)はセパレータを介して巻回され、電池ケース内に納められる。この際に箔の強度と伸びが低い場合は、電極製造時、または電極巻回の際の破断リスクが増す。集電体箔の厚さは約15μm以下と非常に薄いため、先述の破断を回避できるような、高強度箔は圧延性が非常に悪く、生産性が低い。特に強度190MPa以上の高強度で且つ厚さ15μm以下になると、目標とする厚みや形状(シェープ)を得ることは極めて困難である。 By the way, in recent years, battery manufacturers unwind a foil coil and apply an active material to the surface of the foil, then dry and press-fit electrodes. This electrode (positive electrode / negative electrode) is wound through a separator and stored in a battery case. At this time, if the strength and elongation of the foil are low, the risk of breakage during the production of the electrode or during the winding of the electrode increases. Since the thickness of the current collector foil is as thin as about 15 μm or less, a high-strength foil that can avoid the above-described breakage has very poor rolling properties and low productivity. In particular, when the strength is 190 MPa or more and the thickness is 15 μm or less, it is extremely difficult to obtain a target thickness and shape (shape).
このような問題に対し、引用文献1、3に記載された技術では、圧延途中で熱処理を行うことで圧延性を向上させているものの、高強度を得るには至っていない。また、引用文献2に記載された技術では、仕上がり温度の調整によって圧延性を改善するものではあるが、改善効果は十分ではない。引用文献4に記載された技術では、圧延後に加熱処理を行うことで、強度を低下させることなく、箔の歪みを改善できるものの、圧延性を効果的に改善するものではない。
つまり、引用文献1〜4に開示された技術では、高強度と圧延性を同時に満たすことは困難である。
In order to solve such a problem, the techniques described in the cited documents 1 and 3 improve the rollability by performing a heat treatment in the middle of rolling, but have not yet achieved high strength. Moreover, although the technique described in the cited document 2 improves rolling properties by adjusting the finishing temperature, the improvement effect is not sufficient. In the technique described in the cited document 4, the heat treatment after rolling can improve the distortion of the foil without reducing the strength, but does not effectively improve the rollability.
That is, with the techniques disclosed in the cited documents 1 to 4, it is difficult to satisfy high strength and rollability at the same time.
本発明は、上記事情に基づいてなされたものであり、製造工程中に適切な条件での低温熱処理を行うことで、高強度を維持しつつ圧延性を改善するアルミニウム合金箔の製造方法を提供することを目的とする。 The present invention has been made based on the above circumstances, and provides a method for producing an aluminum alloy foil that improves rolling properties while maintaining high strength by performing low-temperature heat treatment under appropriate conditions during the production process. The purpose is to do.
ここで、アルミニウム合金箔は圧延率が高く、例えば図1に示すように加工硬化曲線を描く。薄箔における高圧下率領域では材料中に極めて高い密度で転位が導入されており、加工での転位導入と相互作用による硬化と、転位同士の合体消滅や材料表面から抜けることでの軟化が平行し、強度の上昇が極めて鈍くなる。この平衡状態の領域の圧延に際して、例え強度がそれほど高くなくとも厚み不良や割れ、シワ等が発生しやすいことが知見で得られている。この圧延性の低下は強度上昇の停滞が要因ではなく、単純に箔の強度(硬さ)による影響だと考えていたが、低温熱処理を行うことでBのような曲線となり、強度の停滞が生じる前に圧延が終了する場合、圧延時の不良が大きく改善するという結果が得られている。つまり、低温熱処理により材料の転位が再配列し、転位密度が低下することで、高圧下率領域においても加工硬化が停滞しない。従来から行われている中間焼鈍のように、300℃を超えるような再結晶温度以上の高温熱処理でもBのような曲線を描けるが、強度の低下と箔の結晶粒粗大化による伸びの低下が生じ、強度と伸びを両立させた材料を得ることは困難である。
なお、低温熱処理のメリットをまとめると、(1)最終冷延率を十分確保することで強度の低下は殆どない、(2)再結晶を生じないため最終製品の結晶粒サイズが粗大にならず伸びの低下を生じない、(3)圧延性が改善する、といえる。よって、低温熱処理を行うことによって強度を維持しつつ圧延性が改善することがわかり、本発明を完成するに至った。
Here, the aluminum alloy foil has a high rolling rate and, for example, draws a work hardening curve as shown in FIG. Dislocations are introduced into the material at a very high density in the high-pressure ratio region of thin foils, and dislocations introduced during processing and hardening due to interaction are parallel to softening due to coalescence annihilation between dislocations and removal from the material surface. However, the increase in strength becomes extremely slow. It has been found from knowledge that, when rolling in this equilibrium region, defective thickness, cracks, wrinkles, etc. are likely to occur even if the strength is not so high. We thought that this decrease in rollability was not caused by a stagnation in strength, but was simply caused by the strength (hardness) of the foil. When rolling is completed before it occurs, the result is that defects during rolling are greatly improved. That is, the dislocation density of the material is rearranged by the low-temperature heat treatment, and the dislocation density is lowered, so that work hardening does not stagnate even in the high pressure lower rate region. Like conventional intermediate annealing, a curve like B can be drawn even at high temperature heat treatment above the recrystallization temperature exceeding 300 ° C. However, the decrease in strength and the decrease in elongation due to the coarsening of the crystal grains of the foil It is difficult to obtain a material having both strength and elongation.
The advantages of low-temperature heat treatment are summarized as follows: (1) There is almost no decrease in strength by ensuring a sufficient final cold rolling rate. (2) Since recrystallization does not occur, the crystal grain size of the final product does not become coarse. It can be said that the elongation does not decrease and (3) the rolling property is improved. Therefore, it was found that the rollability was improved while maintaining the strength by performing the low temperature heat treatment, and the present invention was completed.
すなわち、本発明のアルミニウム合金箔の製造方法のうち、第1の本発明は、引張強さ190MPa以上、伸び2.5%以上、最終厚み6〜15μmのアルミニウム合金箔を製造する方法において、JIS A1000番系、JIS A3000番系、JIS A8000番系のいずれか一つの組成を有するアルミニウム合金材料を最終冷延率96%以上で前記最終厚みに圧延する冷間圧延工程と、前記冷間圧延工程途中に、前記アルミニウム合金材料を100〜250℃×2時間以上で加熱する熱処理工程とを行い、前記熱処理工程で、前記熱処理工程直前における前記アルミニウム合金材料の0.2%耐力に対し、前記0.2%耐力を4.0〜9.0%低下させることを特徴とする。 That is, in the manufacturing method of an aluminum alloy foil of the present invention, a first aspect of the present invention, the tensile strength of 190MPa or more, elongation of 2.5% or more, a process for producing an aluminum alloy foil having the final thickness 6~15Myuemu, JIS A cold rolling step of rolling an aluminum alloy material having any one composition of A1000 series, JIS A3000 series, and JIS A8000 series to the final thickness at a final cold rolling rate of 96% or more, and the cold rolling process In the middle, a heat treatment step of heating the aluminum alloy material at 100 to 250 ° C. for 2 hours or more is performed, and in the heat treatment step, the 0% of the aluminum alloy material is 0.2% proof stress immediately before the heat treatment step. .2% proof stress is reduced by 4.0 to 9.0%.
第2の本発明のアルミニウム合金箔の製造方法は、前記第1の本発明において、前記熱処理工程後の圧延率が99.6%以下であることを特徴とする。 The method for producing an aluminum alloy foil according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention , a rolling rate after the heat treatment step is 99.6% or less .
第3の本発明のアルミニウム合金箔の製造方法は、前記第1または第2の本発明において、前記熱処理工程において前記アルミニウム合金材料がコイル巻きされており、前記熱処理工程における加熱温度は、前記コイル巻きされた前記アルミニウム合金材料の最内周部の温度に基づくことを特徴とする。 The method for producing an aluminum alloy foil according to a third aspect of the present invention is the method according to the first or second aspect , wherein the aluminum alloy material is coiled in the heat treatment step, and the heating temperature in the heat treatment step is the coil temperature. It is based on the temperature of the innermost peripheral part of the said aluminum alloy material wound.
以下に、本発明で規定する製造条件等について説明する。 Below, the manufacturing conditions etc. which are prescribed | regulated by this invention are demonstrated.
本発明のアルミニウム合金材料は、特定のものに限定されるものではないが、JIS A1000番系、JIS A3000番系、JIS A8000番系のいずれか一つを好適なものとして挙げることができる。 The aluminum alloy material of the present invention is not limited to a specific one, but any one of JIS A1000 series, JIS A3000 series, and JIS A8000 series can be mentioned as a suitable one.
冷間圧延工程
冷間圧延工程では、アルミニウム合金材料を最終冷延率96%以上で最終厚みに圧延する。
一般的に電極集電体用の箔は高い冷間加工率で製品化されている。合金によって異なるが圧延時の加工硬化の停滞は少なくとも冷延率が96%以上の高圧下率領域で表れてくる。本発明による圧延性改善は、そのような高圧下率領域で高強度の薄箔を作製する場合に適応意義が大きいと考えられる。なお、ここで示す最終冷延率とは低温熱処理から最終厚みまでの圧下率ではなく、中間焼鈍を行わない場合は熱延後、最終厚みに至る冷間圧延全般の圧延率を示し、中間焼鈍を行う場合は、中間焼鈍後から最終厚みまでの圧延率を示す。
Cold rolling step In the cold rolling step, the aluminum alloy material is rolled to a final thickness at a final cold rolling rate of 96% or more.
In general, foils for electrode current collectors are commercialized at a high cold working rate. Although it differs depending on the alloy, the stagnation of work hardening during rolling appears at least in the high-pressure ratio region where the cold rolling rate is 96% or more. The rollability improvement according to the present invention is considered to have great significance in the case of producing a high-strength thin foil in such a high pressure reduction rate region. The final cold rolling rate shown here is not the rolling reduction rate from the low-temperature heat treatment to the final thickness. If intermediate annealing is not performed, it indicates the rolling rate of cold rolling in general and reaches the final thickness after hot rolling. When performing, the rolling rate from after intermediate annealing to final thickness is shown.
低温熱処理
冷間圧延工程の途中でアルミニウム合金材料を100〜250℃×2時間以上で加熱する。
この加熱によって熱処理工程直前におけるアルミニウム合金材料の0.2%耐力に対し、0.2%耐力を4.0〜9.0%低下させる。
合金や均質化処理等の熱処理の違いで、最適な熱処理条件は異なるため、温度と時間で最適な熱処理条件を規定することは出来ない。
なお、熱処理温度は、コイル状のアルミニウム合金材料を加熱する場合、昇温が最も遅れる、コイル巻きされたアルミニウム合金材料の最内周部の温度に基づくのが望ましい。これによりアルミニウム合金材料全般に対し、所望の効果が確実に得られる。
Low-temperature heat treatment The aluminum alloy material is heated at 100 to 250 ° C. for 2 hours or more during the cold rolling process.
This heating reduces the 0.2% proof stress by 4.0-9.0% against the 0.2% proof strength of the aluminum alloy material immediately before the heat treatment step.
The optimum heat treatment conditions are different depending on the heat treatment such as alloy or homogenization treatment, so the optimum heat treatment conditions cannot be defined by temperature and time.
It is desirable that the heat treatment temperature be based on the temperature of the innermost peripheral portion of the coiled aluminum alloy material, in which the temperature rise is most delayed when the coiled aluminum alloy material is heated. As a result, the desired effect can be reliably obtained for all aluminum alloy materials.
熱処理時の0.2%耐力の低下が4.0%未満の場合、高圧下率領域での加工硬化の停滞が十分に緩和できず圧延性向上の効果が低くなる。一方0.2%耐力の低下が9.0%超の領域の熱処理では、合金によっては目標強度に達しない。加えて9.0%を超えて0.2%耐力が変化するような高温熱処理の場合は、温度と熱処理時間の僅かな振れで材料の機械的性質が大きく変化するため、コイルの内外周での物性バラつきが生じる危険性が高くなる。 When the decrease in 0.2% proof stress during heat treatment is less than 4.0%, the stagnation of work hardening in the high pressure under-rate region cannot be sufficiently relaxed, and the effect of improving the rollability becomes low. On the other hand, in the heat treatment in the region where the 0.2% yield strength drop is over 9.0%, the target strength is not reached depending on the alloy. In addition, in the case of high-temperature heat treatment in which the proof stress changes by more than 9.0% and 0.2%, the mechanical properties of the material change greatly due to slight fluctuations in temperature and heat treatment time. There is a high risk of variations in physical properties.
熱処理時間は、2時間未満であると材料の回復が十分に進まず、コイル長手で物性のバラつきが生じる危険がある。よって、最低保持時間を2時間とする。さらに、温度範囲を守れば処理時間に上限はないが、長時間行っても圧延性改善の効果は特に向上しない。生産性を考慮すると上限は20時間が望ましい。なお、各材料ごとに最適な熱処理条件を得るには、予め材料の焼鈍軟化曲線を測定することが望ましい。 If the heat treatment time is less than 2 hours, the recovery of the material does not proceed sufficiently and there is a risk that the physical properties of the coil may vary. Therefore, the minimum holding time is 2 hours. Furthermore, if the temperature range is maintained, there is no upper limit on the processing time, but the effect of improving the rolling property is not particularly improved even if it is performed for a long time. In consideration of productivity, the upper limit is preferably 20 hours. In order to obtain optimum heat treatment conditions for each material, it is desirable to measure the annealing softening curve of the material in advance.
低温熱処理は製造の下工程、つまり板厚が最終厚みに対し圧延率99.6%以下の板厚で負荷するのが望ましい。上工程の板厚が厚いときに負荷しても十分効果はあるが、特にJIS A 3003合金のような高強度箔の場合は、下工程で負荷することで圧延性の改善がより高まる。圧延率の下限については特に指定はないが、製造においては1パス当たりの圧延率をある程度確保する必要がある為、実際は20%程度が下限になる。しかし8000系合金の内、特に8021や8079のようなAl−Fe系合金の場合は、低温熱処理後の圧延において加工軟化が発生し強度が低下、または十分に向上しない場合がある。その為最終厚みに対し圧延率30%以上確保することが望ましい。 It is desirable that the low temperature heat treatment is applied at a lower stage of the manufacture, that is, with a plate thickness of 99.6% or less of the final thickness. Even if it is loaded when the plate thickness of the upper process is thick, there is a sufficient effect, but particularly in the case of a high-strength foil such as JIS A 3003 alloy, the rolling property is further improved by loading in the lower process. The lower limit of the rolling rate is not particularly specified. However, in manufacturing, it is necessary to secure a certain rolling rate per pass, so in practice, the lower limit is about 20%. However, among the 8000 series alloys, particularly in the case of Al-Fe series alloys such as 8021 and 8079, work softening may occur in the rolling after the low-temperature heat treatment, and the strength may be lowered or not sufficiently improved. Therefore, it is desirable to secure a rolling rate of 30% or more with respect to the final thickness.
引張強度190MPa以上、伸び2.5%以上
電極集電体であるアルミニウム合金箔の強度が190MPa、伸びが2.5%を下回ると、箔をコイルから巻き出し、表面に活物質を塗工、プレス、乾燥する電極製造工程の途中で箔が破断してしまう危険性がある。さらに引張強度190MPa未満であれば圧延時に問題が生じることは少なく、本発明の適応意義が小さい。
When tensile strength is 190 MPa or more and elongation is 2.5% or more, when the strength of the aluminum alloy foil as the electrode current collector is 190 MPa and elongation is less than 2.5%, the foil is unwound from the coil, and an active material is applied to the surface. There is a risk that the foil may break during the electrode manufacturing process for pressing and drying. Furthermore, if the tensile strength is less than 190 MPa, there are few problems during rolling, and the significance of application of the present invention is small.
厚み6〜15μm
電極集電体を仮定した場合、厚み6μ未満では強度が不足する。15μmを超えると電池内部の体積に占める正極集電体の割合が増加し、電池容量が低下する。さらに15μmを超える場合、圧延性に問題を生じることは少なく、本発明の適応意義は薄い。
Thickness 6-15μm
Assuming an electrode current collector, the strength is insufficient when the thickness is less than 6 μm. If it exceeds 15 μm, the ratio of the positive electrode current collector to the volume inside the battery increases, and the battery capacity decreases. Further, when it exceeds 15 μm, there is little problem in rolling properties, and the significance of application of the present invention is small.
以上説明したように、本発明によれば、高強度と圧延性を同時に満たすアルミニウム合金箔を得ることができる。 As described above, according to the present invention, an aluminum alloy foil that simultaneously satisfies high strength and rollability can be obtained.
以下に、本発明の一実施形態を説明する。
アルミニウム合金箔の材料となるアルミニウム合金は、JIS A1000系合金、JIS A3000系合金およびJIS A8000系合金のうちのいずれかの合金を好適に用いることができる。
アルミニウム合金の鋳塊に対しては、例えば、温度450〜600℃、保持時間3〜7時間の条件で均質化処理を実施することができる。
Hereinafter, an embodiment of the present invention will be described.
As the aluminum alloy used as the material of the aluminum alloy foil, any one of JIS A1000 alloy, JIS A3000 alloy, and JIS A8000 alloy can be preferably used.
For an ingot of aluminum alloy, for example, a homogenization treatment can be performed under conditions of a temperature of 450 to 600 ° C. and a holding time of 3 to 7 hours.
均質化処理後または均質化処理未実施のアルミニウム合金の鋳塊に対し熱間圧延を実施してアルミニウム合金圧延材を得る。
熱間圧延されたアルミニウム合金材料に対し、最終厚み6〜15μmのアルミニウム合金箔を得る冷間圧延を実施する。
なお、上記冷間圧延の途中には、アルミニウム合金材料に対して、中間焼鈍を実施することができる。中間焼鈍の方式はコイルを炉に投入し一定時間保持するバッチ焼鈍(Bach Annealing、BACH)と、連続焼鈍ライン(Continuous Annealing Line、CAL)により材料を急加熱・急冷する焼鈍との2種類の方式が知られている。中間焼鈍の条件は、例えばバッチ焼鈍では300〜400℃で3〜10時間、CAL焼鈍では、昇温速度:50〜250℃/秒、加熱温度:400〜520℃、保持時間:なしまたは5秒以下、冷却速度:50〜200℃/秒とする。中間焼鈍は、2回以上行うことも可能である。
中間焼鈍を行わない場合は熱延後、冷間圧延で最終厚みにするまでの冷延率、中間焼鈍を行う場合は中間焼鈍後から最終厚みに至るまでの冷延率を、最終冷延率として96%以上とする。
最終厚みと最終冷延率とから熱間圧延における仕上げ厚さを定める。
A rolled aluminum alloy material is obtained by performing hot rolling on an ingot of the aluminum alloy that has been subjected to the homogenization treatment or has not been subjected to the homogenization treatment.
Cold rolling is performed on the hot-rolled aluminum alloy material to obtain an aluminum alloy foil having a final thickness of 6 to 15 μm.
In the middle of the cold rolling, intermediate annealing can be performed on the aluminum alloy material. There are two types of intermediate annealing methods: batch annealing (Bach Annealing, BACH) in which coils are placed in a furnace and held for a certain period of time, and annealing in which materials are rapidly heated and rapidly cooled by a continuous annealing line (Continuous Annealing Line, CAL). It has been known. The conditions of the intermediate annealing are, for example, 3 to 10 hours at 300 to 400 ° C. for batch annealing, and a heating rate: 50 to 250 ° C./second, heating temperature: 400 to 520 ° C., holding time: none or 5 seconds for CAL annealing. Hereinafter, the cooling rate is 50 to 200 ° C./second. The intermediate annealing can be performed twice or more.
If intermediate annealing is not performed, after hot rolling, the cold rolling rate until the final thickness is obtained by cold rolling, and if intermediate annealing is performed, the cold rolling rate from the intermediate annealing to the final thickness is determined as the final cold rolling rate. 96% or more.
The final thickness in hot rolling is determined from the final thickness and the final cold rolling rate.
冷間圧延途中には、アルミニウム合金材料に対し、100〜250℃で2時間以上保持する低温熱処理を行う。低温熱処理は、アルミニウム合金材料をコイル状にしてバッチ式の炉で行うことができる。なお、コイルを炉内に投入し、コイルの最外周部と最内周部のうち、少なくとも最内周部に熱電対などの温度測定器をセットし、加熱中に最も温度の上昇が遅れる最内周部の温度に基づいて低温熱処理を行うのが望ましい。 During the cold rolling, the aluminum alloy material is subjected to low temperature heat treatment at 100 to 250 ° C. for 2 hours or more. The low-temperature heat treatment can be performed in a batch furnace with an aluminum alloy material coiled. In addition, the coil is put into the furnace, and a temperature measuring instrument such as a thermocouple is set at least on the innermost circumference of the outermost and innermost circumferences of the coil, so that the temperature rise is most delayed during heating. It is desirable to perform low temperature heat treatment based on the temperature of the inner periphery.
なお、低温熱処理は、冷間圧延途中であれば、実施時期は特に限定されるものではないが、アルミニウム合金材料について最終厚みに対し圧延率99.6%以内の板厚で、低温熱処理を実施するのが望ましい。
低温熱処理によって、低温熱処理直前におけるアルミニウム合金材料の0.2%耐力に対し、前記0.2%耐力を4.0〜9.0%低下させることができる。
得られたアルミニウム合金箔は、引張強さ190MPa以上、伸び2.5%以上を有している。
The low-temperature heat treatment is not particularly limited as long as it is in the middle of cold rolling, but the low-temperature heat treatment is carried out with a sheet thickness within 99.6% of the final thickness of the aluminum alloy material. It is desirable to do.
By the low-temperature heat treatment, the 0.2% yield strength can be reduced by 4.0 to 9.0% with respect to the 0.2% yield strength of the aluminum alloy material immediately before the low-temperature heat treatment.
The obtained aluminum alloy foil has a tensile strength of 190 MPa or more and an elongation of 2.5% or more.
表1に示すアルミニウム合金(残部がAlと不可避不純物)を、温度560℃、保持時間6時間の均質化処理を実施した。その後、熱間圧延にて、7mmのアルミニウム合金熱延板を製造し、アルミニウム合金熱延板を冷間圧延後、1085合金は中間焼鈍を実施せず、3003合金は0.7mm、8021合金は2.5mmでそれぞれ後述する条件で中間焼鈍を実施した。板厚が表2に示す値に到達したとき、低温熱処理を行い、アルミニウム合金箔を作製した。 The aluminum alloy shown in Table 1 (the balance being Al and inevitable impurities) was subjected to a homogenization treatment at a temperature of 560 ° C. and a holding time of 6 hours. Then, by hot rolling, a 7 mm aluminum alloy hot-rolled sheet was produced, and after cold rolling the aluminum alloy hot-rolled sheet, 1085 alloy was not subjected to intermediate annealing, 3003 alloy was 0.7 mm, and 8021 alloy was Intermediate annealing was performed at 2.5 mm under the conditions described later. When the plate thickness reached the value shown in Table 2, low temperature heat treatment was performed to produce an aluminum alloy foil.
なお、中間焼鈍については、すべて連続焼鈍ライン(CAL)において、昇温速度:120℃/秒、加熱温度:500℃、保持時間:0秒、冷却速度:100℃/秒の条件で実施した。 The intermediate annealing was all carried out in a continuous annealing line (CAL) under the conditions of a heating rate: 120 ° C./second, a heating temperature: 500 ° C., a holding time: 0 seconds, and a cooling rate: 100 ° C./second.
100〜250℃×2時間以上の低温熱処理は、比較例No.8、9、11、14を除き、実施例No.1〜7、比較例No.10、12、13に対して行った。また、比較例9は、80度×4時間の熱処理を行い、比較例No.14には、280℃×3時間の熱処理を行った。実施例No.1〜7の低温熱処理では、熱処理の前後で材料の0.2%耐力が4.1〜7.6%低下した。比較例9、10、12〜14では、それぞれ熱処理の前後で材料の0.2%耐力が2.4%、12.1%、2.2%、4.2%、27.8%低下した。 The low-temperature heat treatment at 100 to 250 ° C. for 2 hours or more is conducted according to Comparative Example No. Except for 8, 9, 11, and 14, Example No. 1-7, Comparative Example No. This was performed for 10, 12, and 13. In Comparative Example 9, have line heat treatment of 80 ° × 4 hours, Comparative Example No. No. 14 was heat-treated at 280 ° C. for 3 hours . Example No. In the low-temperature heat treatment of 1 to 7, the 0.2% proof stress of the material decreased by 4.1 to 7.6% before and after the heat treatment. In Comparative Examples 9, 10, and 12-14, the 0.2% yield strength of the material decreased by 2.4%, 12.1%, 2.2%, 4.2%, and 27.8% before and after the heat treatment, respectively. .
最終製品を幅1200mm幅で最終厚さ12μmのアルミニウム合金箔の供試材とした。
実施例No.1〜7、比較例No.8〜14の供試材に対し、引張試験を実施して伸びの評価を行った。引張試験は、JIS Z2241に準拠し、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所製)で引張り速度2mm/sにて試験を行った。
の条件で行った。
低温熱処理の熱処理の前後で、0.2%耐力値を測定し、熱処理の前後の0.2%耐力値の低下率を算出し、表2に示した。
The final product was used as a specimen of an aluminum alloy foil having a width of 1200 mm and a final thickness of 12 μm.
Example No. 1-7, Comparative Example No. Tensile tests were performed on 8 to 14 specimens to evaluate elongation. The tensile test was based on JIS Z2241 and a JIS No. 5 test piece was taken from the sample and tested with a universal tensile tester (manufactured by Shimadzu Corporation) at a pulling speed of 2 mm / s.
It went on condition of.
The 0.2% proof stress value was measured before and after the low-temperature heat treatment, and the decrease rate of the 0.2% proof stress value before and after the heat treatment was calculated.
圧延性の評価は、供試材を得る際に、最終圧延パスにて厚み不良、破断、シェープ不良、巻きずれ、穴開き等の有無を評価した。いずれも発生しない場合は○とした。
破断の評価は、最終パスで破断することなく圧延できたものを○、1コイル(約10000m)につき3回以下の破断が生じた場合は△、3回を超える破断もしくは硬過ぎる等の理由で圧延継続が難しいと判断されたものについては×とした。○が好ましいが、△以上(約10000mの最終パスで破断が3回以内)であれば製造上は問題ない。
For the evaluation of the rollability, the presence or absence of thickness failure, breakage, shape failure, winding slip, hole opening, etc. was evaluated in the final rolling pass when obtaining the test material. When none occurred, it was marked as “Good”.
The evaluation of the breakage was that the roll could be rolled without breaking in the final pass. ○ If breakage of 3 times or less per coil (about 10000 m) occurred △ For more than 3 breaks or too hard Those that were judged to be difficult to continue rolling were marked as x. ○ is preferable, but if it is Δ or more (with a final pass of about 10000 m within 3 breaks), there is no problem in production.
表2から明らかなように、熱処理の前後で材料の0.2%耐力が4.0〜9.0%低下するように低温熱処理を行った実施例No.1〜7は、比較例No.8〜14と比較して、引張強度190MPa以上の高強度で伸びが2.5%以上であった。
また、低温熱処理の前後で材料の0.2%耐力が2.4%低下した比較例No.9は、最終圧延工程途中でシェープ不良が生じた。低温熱処理を行わなかった比較例No.8、11は、最終圧延工程途中で破断や穴あきが生じた。低温熱処理の前後で材料の0.2%耐力が12.1%低下した比較例No.10は、最終圧延後の引張強度が190MPa以下、伸びも2.5%以下となった。低温熱処理の前後で材料の0.2%耐力が2.2%低下した比較例No.12は、最終圧延工程途中で巻きずれが生じた。
よって、熱処理の前後で材料の0.2%耐力が4.0〜9.0%低下するように低温熱処理を行った供試材において破断を生じることなく、高強度と圧延性を同時に満たすアルミニウム合金箔が得られた。
なお、本実施例では最終製品厚み12μmの場合のみ示したが、最終厚みは本願で規定する6〜15μmの範囲で任意に選択することができ、その範囲において最終厚みが異なる場合においても、上述のような低温熱処理により同様の強度特性、圧延性に対する効果を得ることができる。
As is apparent from Table 2, Example No. 1 was subjected to low-temperature heat treatment so that the 0.2% proof stress of the material was reduced by 4.0 to 9.0% before and after the heat treatment. 1-7 are comparative example No.1. Compared with 8-14, the tensile strength was 190 MPa or more and the elongation was 2.5% or more.
Comparative Example No. in which the 0.2% proof stress of the material decreased by 2.4% before and after the low-temperature heat treatment. In No. 9, shape failure occurred during the final rolling process. Comparative example No. which did not perform low-temperature heat treatment Nos. 8 and 11 were broken or perforated during the final rolling process. Comparative Example No. in which the 0.2% yield strength of the material decreased by 12.1% before and after the low-temperature heat treatment. No. 10 had a tensile strength after final rolling of 190 MPa or less and an elongation of 2.5% or less. Comparative Example No. in which the 0.2% proof stress of the material decreased by 2.2% before and after the low temperature heat treatment. No. 12, winding slippage occurred during the final rolling process.
Therefore, aluminum that satisfies both high strength and rollability at the same time without causing breakage in the test material subjected to low-temperature heat treatment so that the 0.2% proof stress of the material is reduced by 4.0 to 9.0% before and after heat treatment. An alloy foil was obtained.
In the present embodiment, only the final product thickness of 12 μm is shown. However, the final thickness can be arbitrarily selected within the range of 6 to 15 μm as defined in the present application, and the above-mentioned case is different even when the final thickness is different in the range. The same effect on strength characteristics and rollability can be obtained by low-temperature heat treatment.
Claims (3)
JIS A1000番系、JIS A3000番系、JIS A8000番系のいずれか一つの組成を有するアルミニウム合金材料を最終冷延率96%以上で前記最終厚みに圧延する冷間圧延工程と、前記冷間圧延工程途中に、前記アルミニウム合金材料を100〜250℃×2時間以上で加熱する熱処理工程とを行い、前記熱処理工程で、前記熱処理工程直前における前記アルミニウム合金材料の0.2%耐力に対し、前記0.2%耐力を4.0〜9.0%低下させることを特徴とするアルミニウム合金箔の製造方法。 In a method for producing an aluminum alloy foil having a tensile strength of 190 MPa or more, an elongation of 2.5% or more, and a final thickness of 6 to 15 μm,
A cold rolling step of rolling an aluminum alloy material having any one composition of JIS A1000 series, JIS A3000 series, JIS A8000 series to the final thickness at a final cold rolling rate of 96% or more, and the cold rolling In the middle of the process, a heat treatment step of heating the aluminum alloy material at 100 to 250 ° C. for 2 hours or more is performed. In the heat treatment step, the 0.2% proof stress of the aluminum alloy material immediately before the heat treatment step is A method for producing an aluminum alloy foil, wherein the 0.2% proof stress is reduced by 4.0 to 9.0%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014165031A JP6431314B2 (en) | 2014-08-13 | 2014-08-13 | Method for producing aluminum alloy foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014165031A JP6431314B2 (en) | 2014-08-13 | 2014-08-13 | Method for producing aluminum alloy foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016041831A JP2016041831A (en) | 2016-03-31 |
JP6431314B2 true JP6431314B2 (en) | 2018-11-28 |
Family
ID=55591722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014165031A Expired - Fee Related JP6431314B2 (en) | 2014-08-13 | 2014-08-13 | Method for producing aluminum alloy foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6431314B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106319292B (en) * | 2016-08-19 | 2017-12-26 | 河南明泰铝业股份有限公司 | A kind of cosmetics minute surface aluminium lid aluminium sheet, the production method of aluminium strip |
JP7312760B2 (en) * | 2017-11-21 | 2023-07-21 | スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Battery electrode foil for the production of lithium-ion accumulators |
KR102453951B1 (en) * | 2017-11-21 | 2022-10-11 | 스페이라 게엠베하 | Battery electrode foil for manufacturing high strength lithium ion storage battery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63161148A (en) * | 1986-12-23 | 1988-07-04 | Sumitomo Light Metal Ind Ltd | Manufacture of aluminum foil excellent in strength and workability |
JPH0441645A (en) * | 1990-06-07 | 1992-02-12 | Furukawa Alum Co Ltd | Aluminum foil excellent in foil rollability and its manufacture |
JPH0693396A (en) * | 1992-09-14 | 1994-04-05 | Furukawa Alum Co Ltd | Production of aluminum foil excellent in strength and foil rollability |
JP2003077770A (en) * | 2001-09-05 | 2003-03-14 | Mitsubishi Alum Co Ltd | Method for manufacturing aluminium foil for electrolytic capacitor |
JP4889935B2 (en) * | 2003-10-09 | 2012-03-07 | 昭和電工株式会社 | Aluminum hard foil electrode material and lithium ion secondary battery using the same |
JP5639398B2 (en) * | 2010-07-16 | 2014-12-10 | 株式会社神戸製鋼所 | Aluminum hard foil for battery current collector |
JP5959423B2 (en) * | 2012-12-03 | 2016-08-02 | 株式会社Uacj | Aluminum alloy foil |
-
2014
- 2014-08-13 JP JP2014165031A patent/JP6431314B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016041831A (en) | 2016-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111601904B (en) | Electrode foil for producing battery of lithium ion accumulator | |
JP5217197B2 (en) | Cold-rolled steel sheet with excellent earring properties and method for producing the same | |
RU2599942C2 (en) | Method of making sheet of textured electrical steel | |
WO2019214243A1 (en) | 1100 alloy aluminum foil for lithium battery and manufacturing method therefor | |
JP5994981B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2010255026A (en) | Manufacturing method of α + β type titanium alloy thin plate and manufacturing method of α + β type titanium alloy thin plate coil | |
TWI541363B (en) | Cap steel plate and method for manufacturing the same | |
JP2014040659A (en) | Manufacturing method of aluminum alloy foil for lithium ion secondary battery positive electrode collector, aluminum alloy foil for lithium ion secondary battery positive electrode collector, and lithium ion secondary battery | |
JP6431314B2 (en) | Method for producing aluminum alloy foil | |
JP2013256700A (en) | Aluminum alloy foil | |
JP6356084B2 (en) | Method for producing cold rolled rolled plate and method for producing pure titanium plate | |
JP6496490B2 (en) | Aluminum alloy soft foil and manufacturing method thereof | |
JP2017186630A (en) | Aluminum alloy foil for battery power collection body and manufacturing method therefor | |
JP6580332B2 (en) | Aluminum alloy foil, current collector for battery electrode, and method for producing aluminum alloy foil | |
JP6041110B2 (en) | Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics | |
JP3907095B2 (en) | Method for producing aluminum alloy foil | |
KR100935797B1 (en) | Reduction of Adsorption between Strips in Cold Rolled Steel Sheet Manufacturing Process Including Box Annealing Heat Treatment Process | |
JP4127126B2 (en) | Magnesium alloy plate manufacturing method | |
JP6070616B2 (en) | Manufacturing method of hot-rolled steel sheet | |
JP5874771B2 (en) | Steel plate for cans excellent in workability and rough skin resistance and method for producing the same | |
JP2011127169A (en) | Method for producing alloy sheet material having excellent flatness | |
JP2018066051A (en) | Aluminum alloy foil for battery collector and method for producing the same | |
CN112048688A (en) | Strong-plasticity magnesium alloy and preparation method thereof | |
JP2007162082A (en) | Method for producing cold-rolled steel sheet having excellent strain aging-resistant property and less intra-plane anisotropy | |
JP2017008364A (en) | Aluminum alloy foil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6431314 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |