Nothing Special   »   [go: up one dir, main page]

JP4127126B2 - Magnesium alloy plate manufacturing method - Google Patents

Magnesium alloy plate manufacturing method Download PDF

Info

Publication number
JP4127126B2
JP4127126B2 JP2003164653A JP2003164653A JP4127126B2 JP 4127126 B2 JP4127126 B2 JP 4127126B2 JP 2003164653 A JP2003164653 A JP 2003164653A JP 2003164653 A JP2003164653 A JP 2003164653A JP 4127126 B2 JP4127126 B2 JP 4127126B2
Authority
JP
Japan
Prior art keywords
rolling
magnesium alloy
temperature
pass
tmg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164653A
Other languages
Japanese (ja)
Other versions
JP2005002378A (en
Inventor
善久 米満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003164653A priority Critical patent/JP4127126B2/en
Publication of JP2005002378A publication Critical patent/JP2005002378A/en
Application granted granted Critical
Publication of JP4127126B2 publication Critical patent/JP4127126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形加工性に優れたマグネシウム合金板を製造する方法に関する。特に、耐エッジ割れ性と成形性に優れたマグネシウム合金板を製造する方法に関する。
【0002】
【従来の技術】
マグネシウム合金板の成形加工は一般的に200〜300℃の温間にて行われ、成形性を向上させるために10μm以下の細粒化が必要とされる。細粒化のためには、再結晶温度以上での圧延において1パス当たり20%以上の大圧下をかけるか、もしくは冷間圧延において大きな歪みを生じさせた後に熱処理することが考えられる。
【0003】
しかし、高温での大圧下圧延の際には、エッジ割れが発生しやすい。また、冷間圧延の場合には、1パス当たりの圧下率には上限があるため、大きな歪みを与えるには圧延のパス回数を多くせざるを得ず、コストアップの要因となる。
【0004】
したがって、大圧下圧延であっても、耐エッジ割れ性に優れかつ細粒化を達成できる圧延法の開発が望まれている。
【0005】
特許文献1には、プレス成形用マグネシウム合金として、Alを1.5〜4.5%含有するMg−Al系合金板を180〜260℃の圧延温度で、かつ1パスあたりの圧下率を10〜30%の範囲内で複数パスの圧延を行い、総圧下率を40〜60%とすることで、結晶粒度を10μm以下にし、プレス成形性を向上させる技術が開示されている。
【0006】
しかし、この従来技術では、180〜260℃の圧延温度であることより、被圧延材の急激な温度降下によるエッジ部の割れは避けられない。したがって、実用的な1パスあたりの圧下率は15%以下に制限されるので、所定の厚みにするためには複数パスの圧延を必要とするため、圧延効率が低下するという問題がある。
【0007】
【特許文献1】
特開2001−200349号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記の現状に鑑みてなされたものであって、その目的は耐エッジ割れ性と成形性に優れたマグネシウム合金板を効率的に製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の要旨は、次の(1)及び(2)に示すマグネシウム合金板の製造方法にあり、以下、それぞれ、本発明(1)及び本発明(2)という。なお、本発明(1)及び(4)を併せて、本発明ということがある。
【0010】
(1)マグネシウム合金材を複数回圧延してマグネシウム合金板を製造する方法であって、圧延第1回目パスの圧延条件が下記(1)式を満足するとともに、第2回目パス以降の圧延条件が下記の(2)式及び(3)式を満足しかつ圧延1パス当たりの圧下率が45%以下であることを特徴とするマグネシウム合金板の製造方法。
【0011】
(2)上記(1)の方法で圧延して得られたマグネシウム合金板を、240℃〜320℃の温度範囲で熱処理することを特徴とするマグネシウム合金板の製造方法。
1≦9.10×10-2Tmg+5.89×10-2Troll+9.50・・・・・(1)式
250℃≦Tmg≦350℃ ・・・・・・・・・・・・・・・・(2)式
80℃≦Troll≦230℃ ・・・・・・・・・・・・・・・(3)式
ここで、R1:圧延第1回目パスの圧下率(%)
Tmg:マグネシウム合金材の温度(℃)
Troll:圧延ロールの温度(℃)
なお、本発明において用いるマグネシウム合金は、合金成分の種類にはとらわれない。合金成分としては、Al、Zn、Mn等が挙げられ、マグネシウム合金としては、例えば、JISで規定されているMP1が挙げられる。更に、上記の合金に希土類元素を添加したものでもよい。希土類元素としては、Ce、Nd、Y等が用いられる。
【0012】
本発明者は、前述の目的を達成するために、マグネシウム合金板の細粒化および効率的な圧延のための技術について、種々検討した。
【0013】
その結果、細粒化と圧延効率の両方を満足するためには大圧下による高歪み付与を必要とすることと、その大圧下の際の問題点として、エッジ割れがあることの知見を得るとともに、その解決方法をも見いだした。
【0014】
エッジ割れは、被圧延材の急激な温度低下が原因である。したがって、エッジ割れの防止法としては、圧延ロールを加熱し、被圧延材の温度低下を防止することが有効である。圧延ロールの加熱手段としては、圧延ロール中に発熱体を埋め込むのがよい。
【0015】
【発明の実施の態様】
本発明(1)及び(2)の要件毎に、以下に、詳述する。
【0016】
(a)圧延第1回目パスの圧下率R1について
本発明(1)及び(2)にかかる圧延第1回目パスの圧下率R1の上限値は、マグネシウム合金材及び圧延ロールの温度、そして、組織の回復挙動と再結晶挙動によって変化すると考えられるが、圧延第1回目パスのときには残留歪みが極めて少ないために、組織の回復挙動と再結晶挙動が圧下率の上限値に与える影響は小さい。そこで、マグネシウム合金材温度Tmg及び圧延ロール温度Trollを種々変化させ、圧延第1回目パスの圧下率R1の許容上限値(%)を求めた。これから、回帰計算によって、TmgとTrollの一次関係式を求め、(1)式を導き出した。
【0017】
1≦9.10×10-2Tmg+5.89×10-2Troll+9.50・・・・・(1)式
ここで、R1:圧延第1回目パスの圧下率(%)
Tmg:マグネシウム合金材の温度(℃)
Troll:圧延ロールの温度(℃)
圧延第1回目パスの圧下率R1が(1)式を満足しないと、エッジ割れが生じる。
【0018】
なお、マグネシウム合金材温度Tmgに特に制限はないが、80〜400℃が好ましく、150〜400℃がより好ましい。さらに好ましいのは、250〜350℃である。
【0019】
また、圧延ロール温度Trollに、特に制限はないが、300℃以下が好ましく、250℃以下がより好ましい。最も好ましいのは、80〜230℃である。
【0020】
なお、本発明(2)においては、残留歪みを取り去るために熱処理を行うが、その後に再度、圧延してもよい。熱処理後に圧延するときの熱処理後圧延第1回目パスの圧下率としては、上記(1)式を満足することが好ましい。
【0021】
(b)マグネシウム合金材の温度Tmgについて
本発明(1)及び(2)にかかる圧延第2回目パス以降の圧延では、圧延第1回目パス以降の圧延による残留歪みが存在するために、マグネシウム合金材の温度Tmgを制限する必要がある。
【0022】
マグネシウム合金材温度Tmgが250℃未満に下がると、エッジ割れの発生頻度が増加するだけでなく、組織の回復温度及び再結晶温度を下回るために、歪みの蓄積が進行し、板厚方向と45°の角度で剪断線が発生し、歪みエネルギーが剪断線近傍に集中し、その部分のみが細粒化するために、粒径が不均一となり、絞り性が低下する。
【0023】
一方、マグネシウム合金材温度Tmgが350℃を超えると、変形抵抗が低下する。そうすると、張力が付与されるコイル圧延にて板厚を1mm未満にする場合には、くびれが発生し、破断に至る。したがって、マグネシウム合金材温度は250℃〜350℃とすることが必要である。好ましいのは、280〜350℃である。
(c)圧延ロール温度Trollについて
本発明(1)及び(2)にかかる圧延第2回目パス以降の圧延では、圧延第1回目パス以降の圧延による残留歪みが存在するために、圧延ロール温度Trollを制限する必要がある。
【0024】
圧延ロール温度が80℃未満に下がると、エッジ割れの発生頻度が増加するだけでなく、マグネシウム合金材への歪みが不均一となるために、粒度分布が不均一となり、絞り性が低下する。この現象は、圧延第1回目パスの圧延では生じることはなく、複数回圧延によって歪みが蓄積された状態ではじめて発生する現象である。
【0025】
一方、圧延ロール温度が230℃を超えると、圧延ロールの酸化、潤滑油の蒸発による焼き付きにより、マグネシウム合金板の表面不良が発生する。したがって、圧延ロール温度は80℃〜230℃であることが必要である。好ましいのは、140〜160℃である。
【0026】
(d)圧延第2回目パス以降の1パス当たりの圧下率について
本発明(1)及び(2)にかかる圧延第2回目パス以降の1パス当たり圧下率が45%を超えると、エッジ割れが発生して、複数パスの圧延において歩留まりが低下する。したがって、1パスあたりの圧下率は45%以下であることが必要である。圧下率の好ましい上限値は35%である。圧下率の下限は特に制限はないが、1パス当たりの圧下率が15%未満であると粒径分布不良が発生するとともに圧延効率が低下するので、15%以上とするのが好ましい。より好ましいのは、20%以上である。
【0027】
(e)熱処理温度
本発明(2)にかかるマグネシウム合金板の製造方法によれば、熱処理によって細粒化されるので、絞り性がさらに改善される。したがって、特に優れた絞り性が求められるときには、熱処理することが好ましい。
【0028】
熱処理は、加熱ロールに接触させたり、電気抵抗式加熱炉やガス焚き加熱炉中を通板させることによって行うことができる。
【0029】
熱処理温度が230℃未満の場合、完全再結晶せず、歪みが残留し、絞り性が低下する。その後、さらに、圧延を行うとエッジ割れおよび表面割れが発生する場合がある。一方、熱処理温度が320℃を超えるとせっかく細粒化されたマグネシウム合金板が粒成長を始めて、粒が粗大化する場合がある。
【0030】
したがって、エッジ割れおよび表面割れの発生を防止し、また粒の粗大化を防止するためには、熱処理温度を230℃〜320℃にするのが好ましい。さらに好ましいのは、240〜260℃である。
【0031】
【実施例】
本実施例では、被圧延材として、ASTM規格のAZ31B(Al:3.05%、Zn:0.90%、Mn:0.47%、Mg:残部)のマグネシウム合金材を用いた。寸法は厚さが1.2mm、幅が130mmであった。
【0032】
このマグネシウム合金材について、圧延あるいはさらに熱処理を行い、厚さが0.41〜0.52mm、幅が130mmのマグネシウム合金板を得た。
【0033】
ここで、圧延は、マグネシウム合金材をアンコイラーから連続的に巻き戻し、加熱装置により20〜400℃の温度範囲にて加熱し、圧延速度を4m/minに設定して圧延を行い、コイラーにて巻き取った。圧延ロールは20〜250℃の範囲の間で種々の温度に設定した。そして、さらに、熱処理を行うときは、圧延後、熱処理装置により200〜400℃の温度範囲にて熱処理を行って、コイラーにて巻き取った。
【0034】
まず、特定の圧延ロール温度とマグネシウム合金材温度においてエッジ割れ又は圧延後のマグネシウム合金板の表面不良が発生しない、圧延第1回目パスの圧下率R1の許容上限値を見いだすために、圧延ロール温度とマグネシウム合金材温度を種々の温度に変化させて、それぞれの温度において種々の圧下率で圧延を1パスを行い、エッジ割れ又はマグネシウム合金表面不良が発生したか否かを観察した。
【0035】
この結果を示すものが表1である。この結果から、特定の圧延ロール温度Trollとマグネシウム合金材温度Tmgにおいて、エッジ割れ又はマグネシウム合金板の表面不良の発生が認められる圧下率R1の許容上限値が判明した。これから、回帰計算によって、TmgとTrollの一次関係式である(1)式が得られた。
【0036】
なお、エッジ割れの発生及びマグネシウム合金板の表面不良の発生の判断基準は、次の通りである。
【0037】
エッジ割れについては、目視で発生の有無を確認した。表中の○はエッジ割れ発生無しを、そして、×はエッジ割れ発生有りを意味する。
【0038】
また、表面不良については、目視で押し込み疵の発生の有無を確認した。表中の○は押し込み発生無しを、そして、×は押し込み発生有りを意味する。
【0039】
そして、総合評価については、エッジ割れと表面不良のいずれも発生しなかったときに○と評価し、エッジ割れと表面不良のいずれかが発生したときを×と評価した。
【0040】
【表1】

Figure 0004127126
【0041】
次に、同じマグネシウム合金材に、上記と同様な圧延条件で圧延した。ここでは、圧延ロール温度とマグネシウム合金板温度を種々の温度に変化させて、それぞれの温度において種々の圧下率で数パスの圧延を繰り返し、厚さが0.41〜0.52mm、幅が130mmのマグネシウム合金板を得た。そして、エッジ割れ又はマグネシウム合金表面不良が発生したか否かを観察した。なお、エッジ割れの発生及びマグネシウム合金板の表面不良の発生の判断基準は、上記の判断基準と同じである。
【0042】
続いて、熱処理を行い、マグネシウム合金板の平均結晶粒径を観察するとともに、温間成形性の指標として限界絞り比を測定した。ここで、限界絞り比は、次の試験条件による温間プレス加工により評価した。なお、限界絞り比として、2.8以上の数値が得られるとき、実用に耐え得ると評価できる。
【0043】
金型設定温度:250℃、パンチ設定温度:水冷、パンチ直径:28.8mm(先端R:Rp=2mm)、ダイ穴径:30.0mm(肩R:Rd=2mm)、クリアランス:0.6mm、成形速度:30mm/s。
【0044】
そして、総合評価については、エッジ割れと表面不良のいずれも発生せず、かつ限界絞り比が2.8以上の数値のときに○と評価し、エッジ割れと表面不良のいずれかが発生するか限界絞り値が2.8未満の数値のときを×と評価した。
【0045】
これらをまとめて表2と表3に示した。
【0046】
【表2】
Figure 0004127126
【0047】
【表3】
Figure 0004127126
【0048】
【発明の効果】
本発明によれば、大圧下により高歪み圧延が可能となるために、板の耐エッジ割れ性に優れるとともに成形性に優れたマグネシウム合金板を効率よく製造することができる。また、さらに熱処理することによって絞り性に優れたマグネシウム合金板を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a magnesium alloy plate having excellent formability. In particular, the present invention relates to a method for producing a magnesium alloy plate excellent in edge crack resistance and formability.
[0002]
[Prior art]
The forming process of the magnesium alloy plate is generally performed at a temperature of 200 to 300 ° C., and in order to improve the formability, a fine grain of 10 μm or less is required. In order to refine the grain size, it is conceivable to apply a large pressure of 20% or more per pass in rolling at a recrystallization temperature or higher, or heat treatment after generating a large strain in cold rolling.
[0003]
However, edge cracking is likely to occur during rolling under high pressure at a high temperature. Further, in the case of cold rolling, there is an upper limit on the rolling reduction per pass. Therefore, in order to give a large strain, the number of rolling passes must be increased, which causes a cost increase.
[0004]
Therefore, there is a demand for development of a rolling method that is excellent in edge crack resistance and can achieve fine graining even in rolling under large rolling.
[0005]
In Patent Document 1, as a magnesium alloy for press molding, an Mg—Al based alloy plate containing 1.5 to 4.5% of Al at a rolling temperature of 180 to 260 ° C. and a rolling reduction per pass of 10 is used. A technique is disclosed in which rolling is performed in a plurality of passes within a range of ˜30% and the total rolling reduction is set to 40% to 60%, thereby making the crystal grain size 10 μm or less and improving the press formability.
[0006]
However, in this prior art, since it is a rolling temperature of 180-260 degreeC, the crack of an edge part by the rapid temperature fall of a to-be-rolled material is inevitable. Therefore, since the practical reduction ratio per pass is limited to 15% or less, rolling of a plurality of passes is required to obtain a predetermined thickness, and there is a problem that rolling efficiency is lowered.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-200349
[Problems to be solved by the invention]
This invention is made | formed in view of said present condition, The objective is to provide the method of manufacturing efficiently the magnesium alloy plate excellent in edge crack resistance and a moldability.
[0009]
[Means for Solving the Problems]
The gist of the present invention resides in the following methods (1) and (2) for producing a magnesium alloy plate, which are hereinafter referred to as the present invention (1) and the present invention (2), respectively. In addition, this invention (1) and (4) may be collectively called this invention.
[0010]
(1) A method for producing a magnesium alloy sheet by rolling a magnesium alloy material a plurality of times, wherein the rolling conditions in the first rolling pass satisfy the following expression (1), and the rolling conditions after the second pass. Satisfies the following formulas (2) and (3), and the rolling reduction per one pass of rolling is 45% or less.
[0011]
(2) A method for producing a magnesium alloy plate, comprising heat-treating the magnesium alloy plate obtained by rolling by the method of (1) in a temperature range of 240 ° C to 320 ° C.
R 1 ≦ 9.10 × 10 −2 Tmg + 5.89 × 10 −2 Troll + 9.50 (1) Formula 250 ℃ ≦ Tmg ≦ 350 ℃ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・(2) Formula 80 ° C. ≦ Troll ≦ 230 ° C. (3) Formula where R 1 is the rolling reduction of the first pass of rolling (%).
Tmg: Magnesium alloy material temperature (° C)
Troll: Roll temperature (° C)
The magnesium alloy used in the present invention is not limited by the type of alloy components. Examples of the alloy component include Al, Zn, and Mn. Examples of the magnesium alloy include MP1 defined by JIS. Further, a rare earth element added to the above alloy may be used. Ce, Nd, Y or the like is used as the rare earth element.
[0012]
In order to achieve the above-mentioned object, the present inventor has made various studies on techniques for reducing the size of the magnesium alloy sheet and efficiently rolling it.
[0013]
As a result, in order to satisfy both grain refinement and rolling efficiency, it is necessary to apply high strain by large reduction, and as a problem at the time of large reduction, we obtain knowledge that there are edge cracks I also found a solution.
[0014]
Edge cracking is caused by a rapid temperature drop of the material to be rolled. Therefore, as a method for preventing edge cracking, it is effective to heat the rolling roll and prevent the temperature reduction of the material to be rolled. As a heating means for the rolling roll, a heating element is preferably embedded in the rolling roll.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Each requirement of the present invention (1) and (2) will be described in detail below.
[0016]
(A) Regarding the rolling reduction R 1 of the first rolling pass, the upper limit of the rolling reduction R 1 of the first rolling pass according to the present invention (1) and (2) is the temperature of the magnesium alloy material and the rolling roll, and It is thought that it changes depending on the recovery behavior and recrystallization behavior of the structure, but since the residual strain is very small during the first rolling pass, the influence of the recovery behavior and recrystallization behavior of the structure on the upper limit of the rolling reduction is small. . Therefore, the magnesium alloy material temperature Tmg and rolling roll temperature Troll changed variously were determined allowable upper limit of the rolling reduction R 1 of the rolling the first time pass (%). From this, a linear relational expression of Tmg and Troll was obtained by regression calculation, and equation (1) was derived.
[0017]
R 1 ≦ 9.10 × 10 −2 Tmg + 5.89 × 10 −2 Troll + 9.50 Equation (1) where R 1 : Rolling reduction ratio in the first rolling pass (%)
Tmg: Magnesium alloy material temperature (° C)
Troll: Roll temperature (° C)
If the rolling reduction R 1 of the first rolling pass does not satisfy the formula (1), edge cracking occurs.
[0018]
In addition, although there is no restriction | limiting in particular in magnesium alloy material temperature Tmg, 80-400 degreeC is preferable and 150-400 degreeC is more preferable. More preferably, it is 250-350 degreeC.
[0019]
Moreover, although there is no restriction | limiting in particular in rolling roll temperature Troll, 300 degrees C or less is preferable and 250 degrees C or less is more preferable. Most preferred is 80-230 ° C.
[0020]
In the present invention (2), heat treatment is performed in order to remove the residual strain, but rolling may be performed again thereafter. The rolling reduction after the first heat treatment when rolling after the heat treatment preferably satisfies the above formula (1).
[0021]
(B) Regarding the temperature Tmg of the magnesium alloy material In the rolling after the second rolling pass according to the present invention (1) and (2), there is residual strain due to rolling after the first rolling pass. It is necessary to limit the temperature Tmg of the material.
[0022]
When the magnesium alloy material temperature Tmg falls below 250 ° C., not only the occurrence frequency of edge cracks increases, but also the strain accumulation progresses because it falls below the recovery temperature and recrystallization temperature of the structure. A shear line is generated at an angle of °, strain energy is concentrated in the vicinity of the shear line, and only that portion is finely divided, so that the particle size is non-uniform and the drawability is reduced.
[0023]
On the other hand, when the magnesium alloy material temperature Tmg exceeds 350 ° C., the deformation resistance decreases. Then, when the plate thickness is made less than 1 mm by coil rolling to which tension is applied, constriction occurs and breaks. Therefore, the magnesium alloy material temperature needs to be 250 ° C to 350 ° C. Preferred is 280 to 350 ° C.
(C) About the rolling roll temperature Troll In the rolling after the second rolling pass according to the present invention (1) and (2), there is residual strain due to rolling after the first rolling pass, so the rolling roll temperature Troll. Need to be restricted.
[0024]
When the rolling roll temperature falls below 80 ° C., not only the occurrence frequency of edge cracks increases, but also the strain to the magnesium alloy material becomes non-uniform, resulting in non-uniform particle size distribution and reduced drawability. This phenomenon does not occur in the rolling in the first pass of rolling, but occurs only in a state where strain is accumulated by rolling a plurality of times.
[0025]
On the other hand, when the rolling roll temperature exceeds 230 ° C., surface defects of the magnesium alloy plate occur due to oxidation of the rolling roll and seizure due to evaporation of the lubricating oil. Accordingly, the rolling roll temperature needs to be 80 ° C to 230 ° C. Preferred is 140 to 160 ° C.
[0026]
(D) About the rolling reduction rate per pass after the second rolling pass When the rolling reduction rate per pass after the rolling second pass according to the present invention (1) and (2) exceeds 45%, edge cracking occurs. Occurring and yield decreases in rolling of multiple passes. Accordingly, the rolling reduction per pass needs to be 45% or less. A preferable upper limit of the rolling reduction is 35%. The lower limit of the rolling reduction is not particularly limited, but if the rolling reduction per pass is less than 15%, a particle size distribution defect occurs and rolling efficiency is lowered. More preferably, it is 20% or more.
[0027]
(E) Heat treatment temperature According to the method for producing a magnesium alloy sheet according to the present invention (2), the fineness is reduced by the heat treatment, so that the drawability is further improved. Accordingly, when particularly excellent drawability is required, heat treatment is preferable.
[0028]
Heat processing can be performed by making it contact with a heating roll, or letting it pass in an electrical resistance heating furnace or a gas-fired heating furnace.
[0029]
When the heat treatment temperature is less than 230 ° C., complete recrystallization does not occur, strain remains, and drawability deteriorates. After that, further rolling may cause edge cracks and surface cracks. On the other hand, when the heat treatment temperature exceeds 320 ° C., the finely divided magnesium alloy plate may start grain growth and the grains may become coarse.
[0030]
Therefore, in order to prevent the occurrence of edge cracks and surface cracks, and to prevent coarsening of the grains, it is preferable to set the heat treatment temperature to 230 ° C. to 320 ° C. More preferably, it is 240-260 degreeC.
[0031]
【Example】
In this example, an ASTM standard AZ31B (Al: 3.05%, Zn: 0.90%, Mn: 0.47%, Mg: balance) was used as the material to be rolled. The dimensions were 1.2 mm thickness and 130 mm width.
[0032]
This magnesium alloy material was rolled or further heat treated to obtain a magnesium alloy plate having a thickness of 0.41 to 0.52 mm and a width of 130 mm.
[0033]
Here, the rolling is performed by continuously unwinding the magnesium alloy material from the uncoiler, heating the magnesium alloy material in a temperature range of 20 to 400 ° C. with a heating device, setting the rolling speed to 4 m / min, and using the coiler. Winded up. The rolling rolls were set at various temperatures in the range of 20 to 250 ° C. And when performing heat processing, after rolling, it heat-processed in the temperature range of 200-400 degreeC with the heat processing apparatus, and wound up with the coiler.
[0034]
First, in order to find an allowable upper limit value of the rolling reduction R 1 in the first rolling pass, which does not cause edge cracking or surface failure of the magnesium alloy sheet after rolling at a specific rolling roll temperature and magnesium alloy material temperature, The temperature and the magnesium alloy material temperature were changed to various temperatures, and one pass of rolling was performed at various temperatures at various rolling reductions, and it was observed whether edge cracks or magnesium alloy surface defects occurred.
[0035]
Table 1 shows the results. The results, in particular the rolling roll temperature Troll and magnesium alloy material temperature Tmg, the allowable upper limit of the rolling reduction R 1 occurrence of surface defects of the edge crack or a magnesium alloy sheet is observed has been found. From this, equation (1) which is a linear relational expression of Tmg and Troll was obtained by regression calculation.
[0036]
The criteria for determining the occurrence of edge cracks and the surface defects of the magnesium alloy plate are as follows.
[0037]
About edge cracking, the presence or absence of generation | occurrence | production was confirmed visually. In the table, ○ means no edge cracking and x means edge cracking.
[0038]
As for surface defects, the presence or absence of indentation flaws was confirmed visually. In the table, ○ means no occurrence of indentation, and X means occurrence of indentation.
[0039]
And about comprehensive evaluation, when neither an edge crack nor surface defect generate | occur | produced, it evaluated as (circle), and when either edge crack and surface defect generate | occur | produced, it evaluated as x.
[0040]
[Table 1]
Figure 0004127126
[0041]
Next, it rolled on the same magnesium alloy material on the rolling conditions similar to the above. Here, the rolling roll temperature and the magnesium alloy plate temperature are changed to various temperatures, and rolling of several passes is repeated at various temperatures at various rolling reductions. The thickness is 0.41 to 0.52 mm and the width is 130 mm. A magnesium alloy plate was obtained. And it was observed whether edge cracks or magnesium alloy surface defects occurred. Note that the criteria for determining the occurrence of edge cracks and the occurrence of surface defects on the magnesium alloy plate are the same as those described above.
[0042]
Subsequently, heat treatment was performed, the average crystal grain size of the magnesium alloy plate was observed, and the limit drawing ratio was measured as an index of warm formability. Here, the limit drawing ratio was evaluated by warm pressing under the following test conditions. In addition, when a numerical value of 2.8 or more is obtained as the limit drawing ratio, it can be evaluated that it can be practically used.
[0043]
Mold setting temperature: 250 ° C., punch setting temperature: water cooling, punch diameter: 28.8 mm (tip R: Rp = 2 mm), die hole diameter: 30.0 mm (shoulder R: Rd = 2 mm), clearance: 0.6 mm Molding speed: 30 mm / s.
[0044]
And for comprehensive evaluation, when neither edge cracking nor surface defect occurs, and when the limit drawing ratio is a numerical value of 2.8 or more, it is evaluated as ◯, and either edge cracking or surface defect occurs? When the limit aperture value was a numerical value less than 2.8, it was evaluated as x.
[0045]
These are summarized in Tables 2 and 3.
[0046]
[Table 2]
Figure 0004127126
[0047]
[Table 3]
Figure 0004127126
[0048]
【The invention's effect】
According to the present invention, high strain rolling is possible under large pressure, so that a magnesium alloy plate having excellent edge crack resistance and excellent formability can be efficiently produced. Further, a magnesium alloy plate excellent in drawability can be produced by further heat treatment.

Claims (2)

マグネシウム合金材を複数回圧延してマグネシウム合金板を製造する方法であって、圧延第1回目パスの圧延条件が下記(1)式を満足するとともに、第2回目パス以降の圧延条件が下記の(2)式及び(3)式を満足し、かつ圧延1パス当たりの圧下率が45%以下であることを特徴とするマグネシウム合金板の製造方法。
1≦9.10×10-2Tmg+5.89×10-2Troll+9.50・・・・・(1)式
250℃≦Tmg≦350℃ ・・・・・・・・・・・・・・・・(2)式
80℃≦Troll≦230℃ ・・・・・・・・・・・・・・・(3)式
ここで、R1:圧延第1回目パスの圧下率(%)
Tmg:マグネシウム合金材の温度(℃)
Troll:圧延ロールの温度(℃)
A method of manufacturing a magnesium alloy sheet by rolling a magnesium alloy material a plurality of times, wherein the rolling conditions in the first rolling pass satisfy the following expression (1), and the rolling conditions after the second pass are as follows: A method for producing a magnesium alloy sheet, characterized by satisfying the formulas (2) and (3) and a rolling reduction per rolling of 45% or less.
R 1 ≦ 9.10 × 10 −2 Tmg + 5.89 × 10 −2 Troll + 9.50 (1) Formula 250 ℃ ≦ Tmg ≦ 350 ℃ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・(2) Formula 80 ° C. ≦ Troll ≦ 230 ° C. (3) Formula where R 1 is the rolling reduction of the first pass of rolling (%).
Tmg: Magnesium alloy material temperature (° C)
Troll: Roll temperature (° C)
圧延後に、230℃〜320℃の温度範囲で熱処理することを特徴とする、請求項1に記載のマグネシウム合金板の製造方法。The method for producing a magnesium alloy sheet according to claim 1, wherein heat treatment is performed in a temperature range of 230 ° C to 320 ° C after rolling.
JP2003164653A 2003-06-10 2003-06-10 Magnesium alloy plate manufacturing method Expired - Fee Related JP4127126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164653A JP4127126B2 (en) 2003-06-10 2003-06-10 Magnesium alloy plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164653A JP4127126B2 (en) 2003-06-10 2003-06-10 Magnesium alloy plate manufacturing method

Publications (2)

Publication Number Publication Date
JP2005002378A JP2005002378A (en) 2005-01-06
JP4127126B2 true JP4127126B2 (en) 2008-07-30

Family

ID=34091366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164653A Expired - Fee Related JP4127126B2 (en) 2003-06-10 2003-06-10 Magnesium alloy plate manufacturing method

Country Status (1)

Country Link
JP (1) JP4127126B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239748A (en) * 2005-03-04 2006-09-14 Sumitomo Metal Ind Ltd Method for producing magnesium alloy
JP5218923B2 (en) * 2005-03-28 2013-06-26 住友電気工業株式会社 Magnesium alloy plate
JP4730601B2 (en) * 2005-03-28 2011-07-20 住友電気工業株式会社 Magnesium alloy plate manufacturing method
KR101412245B1 (en) 2006-09-08 2014-06-25 스미토모덴키고교가부시키가이샤 Magnesium alloy member and method of manufacturing the same
JP2008161879A (en) * 2006-12-27 2008-07-17 Mitsubishi Alum Co Ltd Method for producing magnesium alloy rolled sheet
KR101799615B1 (en) * 2010-11-16 2017-11-20 스미토모덴키고교가부시키가이샤 Magnesium alloy sheet and method for producing same
CN110216145B (en) * 2019-07-10 2020-12-15 太原科技大学 Magnesium alloy plate fine-grain chemical edge cracking rolling method
CN110216146B (en) * 2019-07-13 2020-12-15 太原科技大学 Low-cost magnesium alloy plate edge crack control rolling method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200349A (en) * 2000-01-18 2001-07-24 Nisshin Manufacturing Kk METHOD OF HOT FINISH ROLLING FOR Mg-Al ALLOY
JP3521863B2 (en) * 2000-10-24 2004-04-26 住友金属工業株式会社 Manufacturing method of magnesium alloy sheet
JP3659208B2 (en) * 2001-09-28 2005-06-15 住友金属工業株式会社 Manufacturing method and manufacturing apparatus for Mg or Mg alloy strip
JP3558628B2 (en) * 2002-06-05 2004-08-25 住友電工スチールワイヤー株式会社 Magnesium alloy plate and method for producing the same
JP3821074B2 (en) * 2002-09-19 2006-09-13 住友金属工業株式会社 Magnesium alloy plate and manufacturing method thereof
JP2004217951A (en) * 2003-01-09 2004-08-05 Sumitomo Denko Steel Wire Kk Magnesium based alloy wire, and production method therefor

Also Published As

Publication number Publication date
JP2005002378A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
TWI385257B (en) Fabrication method of magnesium alloy plate and the magnesium alloy plate
JP3558628B2 (en) Magnesium alloy plate and method for producing the same
JP5035806B2 (en) Manufacturing method of primary cold-rolled shadow mask steel strip
KR101354948B1 (en) Titanium material for hot rolling and manufacturing method therefof
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
US12012648B2 (en) Aluminum alloy foil
JP4127126B2 (en) Magnesium alloy plate manufacturing method
KR102001755B1 (en) METHOD FOR MANUFACTURING ROLLED CRANE PLATE AND METHOD FOR MANUFACTURING PURITY
JP6620522B2 (en) Hot rolled steel strip for non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
WO2015098799A1 (en) Steel plate for hot forming and manufacturing method of hot press formed steel member
JP5093029B2 (en) Cold rolled steel sheet and method for producing the same
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
CN1207142A (en) Steel sheet for double wound pipe and method of producing the pipe
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet
JPS63100134A (en) Manufacture of cold rolled steel sheet for extra deep drawing of thick product
JP2011127169A (en) Method for producing alloy sheet material having excellent flatness
JP2008138236A (en) Cold-rolled steel sheet superior in flatness after having been stamped and manufacturing method therefor
JP4305207B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP4415914B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP3913088B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent deep drawability
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure
RU2779121C1 (en) Method for production of electrical anisotropic steel
JP3951564B2 (en) Hot rolled titanium plate for surface member of electrolytic deposition drum and method for producing the same
JP5060253B2 (en) Aluminum rolled plate and manufacturing method thereof
JP3755368B2 (en) High carbon steel plate with excellent stretch flangeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees