Nothing Special   »   [go: up one dir, main page]

JP6473307B2 - Manufacturing method of conductor for electric wire - Google Patents

Manufacturing method of conductor for electric wire Download PDF

Info

Publication number
JP6473307B2
JP6473307B2 JP2014194765A JP2014194765A JP6473307B2 JP 6473307 B2 JP6473307 B2 JP 6473307B2 JP 2014194765 A JP2014194765 A JP 2014194765A JP 2014194765 A JP2014194765 A JP 2014194765A JP 6473307 B2 JP6473307 B2 JP 6473307B2
Authority
JP
Japan
Prior art keywords
metal
fiber
conductor
plating
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014194765A
Other languages
Japanese (ja)
Other versions
JP2016066509A (en
Inventor
敦史 望月
敦史 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2014194765A priority Critical patent/JP6473307B2/en
Publication of JP2016066509A publication Critical patent/JP2016066509A/en
Application granted granted Critical
Publication of JP6473307B2 publication Critical patent/JP6473307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ropes Or Cables (AREA)
  • Chemically Coating (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Description

本発明は、自動車やロボット等に使用される電線用の導体に関する。   The present invention relates to a conductor for electric wires used in automobiles, robots and the like.

先ず、自動車やロボット等に使用される電線には、電力供給用と信号線がある。このうち信号線としては、銅線を複数本束ねた導体の外周に絶縁体を被覆させたものが一般的に使用されている。そして、信号線の導体としては、耐屈曲性に優れたものが必要とされ、柔軟性を持った線径の細い軟銅線がよく使用されている。   First, electric wires used for automobiles, robots, and the like include a power supply signal line and a signal line. Of these, a signal line is generally used in which a conductor obtained by bundling a plurality of copper wires is covered with an insulator. As the conductor of the signal line, a conductor with excellent bending resistance is required, and a soft copper wire having a flexible wire diameter is often used.

しかし、自動車やロボット等に使用される電子機器の可動部では、屈曲や捩りが加わる部位があり、そのような部位で前記信号線が使用されると、金属疲労を起こして断線し易い問題があった。
また、自動車やロボット等に前記信号線を取り付ける際、引張強度が弱いため、作業し難い問題もあった。
However, in a movable part of an electronic device used for an automobile, a robot, or the like, there is a part where bending or twisting is applied, and if the signal line is used in such a part, there is a problem that metal fatigue is likely to cause disconnection. there were.
In addition, when the signal line is attached to an automobile or a robot, there is a problem that it is difficult to work because the tensile strength is weak.

一方で、特許文献1記載のようなアラミド繊維等の高強度繊維基材上にめっき処理を施した金属被覆繊維が公開されており、このような金属被覆繊維を信号線等の電線用導体として使用することが検討された。   On the other hand, a metal-coated fiber obtained by performing plating on a high-strength fiber substrate such as an aramid fiber as described in Patent Document 1 is disclosed, and such a metal-coated fiber is used as a conductor for electric wires such as signal lines Considered to use.

特開2010−059532号公報JP 2010-059532 A

ところが、特許文献1記載のような金属被覆繊維のみを電線用の導体として使用すると、耐屈曲性に優れるものの、信号線に必要な電気抵抗を得難く、例えば繊維上に設ける金属めっき膜の厚みを厚膜化する、或いは束ねる金属めっき繊維の本数を増加する必要があった。そして、信号線に必要な電気抵抗を得るために、金属めっき膜の厚みを2μm以上にする必要があり、そのように厚膜化すると金属めっき膜が割れ易くなり、耐屈曲性が低下する問題が起きた。或いは、束ねる金属めっき繊維の本数を増加させると、導体の線径が太くなり、信号線等の電線を取り付ける際の作業性が低下する問題も起きた。   However, when only a metal-coated fiber as described in Patent Document 1 is used as a conductor for an electric wire, although it is excellent in bending resistance, it is difficult to obtain an electric resistance necessary for a signal line. For example, the thickness of a metal plating film provided on the fiber It was necessary to increase the number of metal plating fibers to be thickened or bundled. And, in order to obtain the electric resistance necessary for the signal line, it is necessary to make the thickness of the metal plating film 2 μm or more. If the film thickness is increased in this way, the metal plating film is liable to break and the bending resistance is lowered. Happened. Alternatively, when the number of metal plating fibers to be bundled is increased, the wire diameter of the conductor is increased, and there is a problem that workability when attaching electric wires such as signal wires is lowered.

また、繊維上に金属めっき膜を設ける際、特許文献1記載のように繊維基材と金属めっき膜との密着性を向上させるために、繊維基材上にプラズマ処理してから金属めっき膜を設ける方法があるが、この方法では繊維基材自体の引張強度を低下させ、結果、信号線等の電線を取り付ける際の作業性が低下する問題があった。   Moreover, when providing a metal plating film on a fiber, in order to improve the adhesiveness of a fiber base material and a metal plating film as described in Patent Document 1, the metal plating film is applied after plasma treatment on the fiber base material. Although there is a method of providing, this method has a problem that the tensile strength of the fiber base material itself is lowered, and as a result, workability when attaching electric wires such as signal wires is lowered.

また、通常、繊維上に金属めっき膜を設ける際、繊維基材を酸やアルカリで処理し、繊維基材の表面に微細な凹凸を形成させ、その凹凸に金属めっき膜を食い込ませ、繊維基材と金属めっき膜との密着性を向上させているものであるが、こちらも繊維基材自体の引張強度を低下させ、結果、信号線等の電線を取り付ける際の作業性が低下する問題があった。   Usually, when a metal plating film is provided on a fiber, the fiber base is treated with an acid or alkali to form fine irregularities on the surface of the fiber base, and the metal plating film is bitten into the irregularities. This improves the adhesion between the metal and the metal plating film, but this also reduces the tensile strength of the fiber base material itself, resulting in a problem of reduced workability when attaching electric wires such as signal wires. there were.

そこで、本発明は、例えば信号線等の電線用導体として必要な電気抵抗を有すると共に、耐屈曲性に優れ、かつ、引張強度に優れる電線用導体を提供することを目的とする。   Accordingly, an object of the present invention is to provide an electric wire conductor that has an electric resistance necessary as an electric wire conductor such as a signal line, is excellent in bending resistance, and is excellent in tensile strength.

本発明の電線用導体は、下記(A)または(B)の電線用導体であり、(A)少なくとも1本の金属線と、複数の金属被覆繊維とを撚り合わせてなる電線用導体、(B)少なくとも1本の金属被覆繊維外側に、金属線を螺旋状に巻き付けた電線用導体、更に、前記金属被覆繊維が、繊維基材上にめっき下地層を設け、該めっき下地層上に無電解めっき法により金属めっき膜を設けたものであり、前記めっき下地層が、繊維基材上で、(i)複素環を有する化合物と(ii)酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩とを接触させることにより、繊維基材上に、酸化状態となった複素環を有する化合物が繊維基材表面で重合した高分子化合物と、還元されて高分子化合物の表面に吸着された触媒として作用する金属とからなり、前記複素環を有する化合物が、ピロールモノマ-であり、前記酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩が、塩化パラジウムであることを特徴とする。 The electric wire conductor of the present invention is an electric wire conductor of the following (A) or (B), (A) an electric wire conductor formed by twisting at least one metal wire and a plurality of metal-coated fibers, B) An electric wire conductor in which a metal wire is spirally wound on the outside of at least one metal-coated fiber, and further, the metal-coated fiber is provided with a plating base layer on a fiber base material, and there is no coating on the plating base layer. A metal plating film is provided by an electrolytic plating method, and the plating base layer functions as a compound having (i) a heterocyclic ring and (ii) an oxidant on a fiber base material, and a catalytic ability of electroless plating. By contacting with a metal salt having an acid, a compound having a heterocyclic ring in an oxidized state on the fiber substrate is polymerized on the surface of the fiber substrate and reduced and adsorbed on the surface of the polymer compound. Ri Do and a metal which acts as a catalyst, wherein Compounds having a heterocycle is Pirorumonoma - and metal salts having catalytic ability of functional and non-electrolytic plating as the oxidizing agent, wherein the palladium chloride der Rukoto.

本発明の電線用導体は、例えば信号線等の電線用導体として必要な電気抵抗を有すると共に、耐屈曲性に優れ、かつ、引張強度に優れるものである。   The electric wire conductor of the present invention has electrical resistance necessary for electric wire conductors such as signal lines, for example, has excellent bending resistance and excellent tensile strength.

(A)少なくとも1本の金属線と、複数の金属被覆繊維とを撚り合わせてなる電線用導体の断面状態を説明する図。(A) The figure explaining the cross-sectional state of the conductor for electric wires formed by twisting together at least one metal wire and a plurality of metal-coated fibers. (B)少なくとも1本の金属被覆繊維外側に、金属線を螺旋状に巻き付けた電線用導体を説明する図。(B) The figure explaining the conductor for electric wires which wound the metal wire helically on the outer side of at least 1 metal-coated fiber.

本発明について詳細に説明する。
本発明は、下記(A)または(B)の電線用導体であり、(A)少なくとも1本の金属線と、複数の金属被覆繊維とを撚り合わせてなる電線用導体、(B)少なくとも1本の金属被覆繊維外側に、金属線を螺旋状に巻き付けた電線用導体、更に、前記金属被覆繊維が、繊維基材上にめっき下地層を設け、該めっき下地層上に無電解めっき法により金属めっき膜を設けたものであり、前記めっき下地層が、繊維基材上で、(i)複素環を有する化合物と(ii)酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩とを接触させることにより、繊維基材上に、酸化状態となった複素環を有する化合物が繊維基材表面で重合した高分子化合物と、還元されて高分子化合物の表面に吸着された触媒として作用する金属とからなり、前記複素環を有する化合物が、ピロールモノマ-であり、前記酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩が、塩化パラジウムであることを特徴とする。
The present invention will be described in detail.
The present invention is the following (A) or (B) electric wire conductor, (A) an electric wire conductor formed by twisting at least one metal wire and a plurality of metal-coated fibers, (B) at least one A conductor for electric wire in which a metal wire is spirally wound on the outer side of the metal-coated fiber, and further, the metal-coated fiber is provided with a plating base layer on a fiber substrate, and the electroplating method is applied on the plating base layer A metal salt provided with a metal plating film, wherein the plating base layer is (i) a compound having a heterocyclic ring, and (ii) a metal salt that functions as an oxidizing agent and has a catalytic ability for electroless plating. As a catalyst in which a compound having a heterocyclic ring in an oxidized state is polymerized on the surface of the fiber base material and a catalyst that is reduced and adsorbed on the surface of the polymer compound. Ri Do and a metal acting, having a said heterocyclic Compound, Pirorumonoma - and metal salts having catalytic ability of functional and non-electrolytic plating as the oxidizing agent, wherein the palladium chloride der Rukoto.

(電線用導体)
本発明の電線用導体は、(A)少なくとも1本の金属線と、複数の金属被覆繊維とを撚り合わせてなる電線用導体、または(B)少なくとも1本の金属被覆繊維外側に、金属線を螺旋状に巻き付けた電線用導体である。
(Wire conductor)
The conductor for electric wires of the present invention includes (A) a conductor for electric wires formed by twisting at least one metal wire and a plurality of metal-coated fibers, or (B) a metal wire on the outside of at least one metal-coated fiber. Is a conductor for electric wires wound in a spiral.

先ず、前記(A)少なくとも1本の金属線と、複数の金属被覆繊維とを撚り合わせてなる電線用導体とは、例えば1本の金属線と、複数の金属被覆繊維とを撚り合わせたものでもよいし、或いは複数の金属線と、複数の金属被覆繊維とを撚り合わせたものでもよい。
また、電線用導体の断面において、図1(a)に示すように金属線を中心にして、その外側に複数の金属被覆繊維が位置するように配置して撚り合わせた電線用導体でもよいし、図1(b)に示すように金属被覆繊維を中心にして、その外側に複数の金属被覆繊維と共に金属線を配置して撚り合わせた電線用導体でもよいし、図示しないが金属被覆繊維を中心にして、その外側に複数の金属被覆繊維と共に、複数の金属線を配置して撚り合わせた電線用導体でもよい。
First, (A) the conductor for electric wires formed by twisting at least one metal wire and a plurality of metal-coated fibers is, for example, a twist of one metal wire and a plurality of metal-coated fibers. Alternatively, a plurality of metal wires and a plurality of metal-coated fibers may be twisted together.
Moreover, in the cross section of the electric wire conductor, as shown in FIG. 1 (a), the electric wire conductor may be twisted by arranging and twisting so that a plurality of metal-coated fibers are positioned outside the metal wire. As shown in FIG. 1 (b), a conductor for an electric wire in which a metal wire is arranged and twisted together with a plurality of metal-coated fibers around the metal-coated fiber as shown in FIG. A conductor for electric wires in which a plurality of metal wires are arranged and twisted together with a plurality of metal-coated fibers at the center may be used.

続いて、前記(B)少なくとも1本の金属被覆繊維外側に、金属線を螺旋状に巻き付けた電線用導体とは、図2に示すように例えば1本の金属被覆繊維外側に、金属線を螺旋状に巻き付けたものでもよいし、或いは図示しないが複数の金属被覆繊維外側に、金属線を螺旋状に巻き付けたものでよい。
また、ここでいう「金属線を螺旋状に巻き付ける(横巻)」とは、例えば図2に示すように、電線用導体の中心に位置する金属被覆繊維に対して隙間なく螺旋状に巻き付けられたものでもよいし、或いは図示しないが、電線用導体の中心に位置する金属被覆繊維に対して隙間を設けながら螺旋状に巻き付けられたものでもよい。
Subsequently, (B) the conductor for electric wires in which a metal wire is spirally wound around the outside of at least one metal-coated fiber is, for example, a metal wire on the outside of one metal-coated fiber as shown in FIG. It may be spirally wound, or may be one in which a metal wire is spirally wound around a plurality of metal-coated fibers (not shown).
In addition, as used herein, “winding a metal wire in a spiral (horizontal winding)” means, for example, as shown in FIG. 2, a metal-coated fiber located at the center of a wire conductor is spirally wound without a gap. Although not shown, it may be wound spirally while providing a gap with respect to the metal-coated fiber located at the center of the conductor for electric wire.

(金属線)
本発明の金属線としては、金属からなる線状のものや、金属からなる箔上のものが使用できる。そして、金属線としては、径が0.01〜0.5mmの細い線状のものが柔軟性の理由から好ましく使用できる。
また、金属としては、比抵抗が1×10−4Ω・cm以下が望ましく、より好ましくは1×10−5Ω・cm以下のものがよく、例えば銅(0.2×10−5Ω・cm)、アルミニウム(0.3×10−5Ω・cm)などが挙げられる。
(Metal wire)
As the metal wire of the present invention, a linear wire made of metal or a metal foil can be used. And as a metal wire, a thin linear thing with a diameter of 0.01-0.5 mm can be preferably used from the reason of a softness | flexibility.
The metal preferably has a specific resistance of 1 × 10 −4 Ω · cm or less, more preferably 1 × 10 −5 Ω · cm or less, such as copper (0.2 × 10 −5 Ω · cm). cm), aluminum (0.3 × 10 −5 Ω · cm), and the like.

また、金属線としては、比較的安価で電気抵抗が低く細線化も容易である銅線が好ましく、アルミニウム線は軽量であり、銅線に続いて好ましい。そして、銅線は軟銅線または錫銅合金線が一般的であるが、強力を高めた強力銅合金(例えば、無酸素銅に鉄、燐およびインジウム等を添加したもの)、錫、金、銀または白金などでメッキして酸化を防止したもの、電気信号の伝送特性を向上させるために金その他の元素で表面処理したものなどを用いることもできる。   The metal wire is preferably a copper wire that is relatively inexpensive, has low electrical resistance, and can be easily thinned. Copper wire is generally soft copper wire or tin-copper alloy wire, but strong copper alloy with enhanced strength (for example, oxygen-free copper added with iron, phosphorus, indium, etc.), tin, gold, silver Alternatively, a material that is plated with platinum to prevent oxidation, or a material that is surface-treated with gold or another element in order to improve electric signal transmission characteristics can be used.

(金属被覆繊維)
本発明の金属被覆繊維は、繊維基材上にめっき下地層を設け、該めっき下地層上に無電解めっき法により金属めっき膜を設けたものである。
そして、前記めっき下地層は、繊維基材上で、(i)複素環を有する化合物と(ii)酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩とを接触させることにより、繊維基材上に、酸化状態となった複素環を有する化合物が繊維基材表面で重合した高分子化合物と、還元されて高分子化合物の表面に吸着された触媒として作用する金属とからなる。
(Metal-coated fiber)
The metal-coated fiber of the present invention is obtained by providing a plating base layer on a fiber base material and providing a metal plating film on the plating base layer by an electroless plating method.
And the said plating base layer is a fiber base material by contacting (ii) the compound which has a heterocyclic ring, and (ii) the metal salt which functions as an oxidizing agent, and has the catalyst ability of electroless plating. It consists of a polymer compound in which a compound having a heterocyclic ring in an oxidized state is polymerized on the surface of the fiber substrate, and a metal acting as a catalyst that is reduced and adsorbed on the surface of the polymer compound.

(繊維基材)
本発明に使用する繊維基材としては、有機繊維であればよく、好ましくは高強度の有機繊維がよい。そして、高強度の有機繊維としては、特に限定されないが、例えばアラミド繊維、芳香族ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維などが挙げられる。
(Fiber base)
The fiber substrate used in the present invention may be an organic fiber, and preferably a high-strength organic fiber. The high-strength organic fiber is not particularly limited, and examples thereof include an aramid fiber, an aromatic polyester fiber, and a polyparaphenylene benzobisoxazole fiber.

また、繊維基材としては、モノフィラメント(単糸)でもよいし、マルチフィラメントであってもよいが、好ましくは、マルチフィラメントである。そして、ここでいう「マルチフィラメント」とは、モノフィラメント(単糸)を数本から数千本合わせて1本の糸としたものである。   The fiber substrate may be a monofilament (single yarn) or a multifilament, but is preferably a multifilament. The “multifilament” referred to here is a single yarn composed of several to several thousand monofilaments (single yarn).

また、前記マルチフィラメントは、撚糸加工を行ってもよい。撚糸加工を行う際には、下記式1の撚糸係数k=4200以下がよく、好ましくは500〜4200のものが好ましい。(式1)k=T×√D (T=撚糸回数(T/m)、D=総繊度(dtex))
このように「撚糸係数k」とは、T=撚糸回数に、√D=総繊度を掛け算した値である。
そして、撚糸係数kが500未満であると、例えばアルカリ溶液への浸漬により強度低下が生じ易く、撚糸係数kが4200を超えると、繊維基材の内部まで後述するめっき下地層や無電解めっき処理液が浸透しなくなるため、結果、信号線等の電線用の導体として必要な電気抵抗値を得難くなり、更には、繊維基材と金属めっき膜との密着性も低下し易い。
また、ここでいう「D=総繊度(dtex)」とは、糸の太さを表すものである。糸の断面は真円ではなく様々な形が考えられることから、長さと重さの比でその太さを表現する。フィラメント糸の場合は『デシテックス(dtex)』が用いられる。なお、デシテックスは10,000mあたりのグラム数である。
また、ここでいう「T=撚糸回数(T/m)」とは、1mあたりの撚り回数である。
Further, the multifilament may be subjected to twisting processing. When performing the twisting process, the twisting coefficient k of the following formula 1 is preferably 4200 or less, and preferably 500 to 4200. (Expression 1) k = T × √D (T = number of twisted yarns (T / m), D = total fineness (dtex))
Thus, “twisted yarn coefficient k” is a value obtained by multiplying T = twisted yarn count by √D = total fineness.
And when the twisting coefficient k is less than 500, for example, the strength is likely to decrease due to immersion in an alkaline solution, and when the twisting coefficient k exceeds 4200, the plating base layer and electroless plating treatment described later up to the inside of the fiber base material. Since the liquid does not permeate, as a result, it is difficult to obtain an electric resistance value necessary as a conductor for an electric wire such as a signal line, and the adhesion between the fiber base material and the metal plating film is likely to be lowered.
Further, “D = total fineness (dtex)” here represents the thickness of the yarn. Since the cross-section of the thread is not a perfect circle, but can have various shapes, the thickness is expressed by the ratio of length to weight. In the case of a filament yarn, “decitex (dtex)” is used. Decitex is the number of grams per 10,000 m.
Further, “T = twisted yarn number (T / m)” here is the number of twists per 1 m.

(めっき下地層)
本発明のめっき下地層は、繊維基材上で、(i)複素環を有する化合物と(ii)酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩とを接触させることにより、繊維基材上に、酸化状態となった複素環を有する化合物が繊維基材表面で重合した高分子化合物と、還元されて高分子化合物の表面に吸着された触媒として作用する金属とからなる。
そして、(i)複素環を有する化合物と(ii)酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩とを接触させる方法としては、以下の(a)乃至(c)のいずれかを採用することができる。
(a)前記繊維基材を、(i)複素環を有する化合物と(ii)酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩とを含む水溶液に浸漬し、そして引き上げる工程を含む方法、
(b)前記繊維基材を、(i)複素環を有する化合物を含む水溶液に浸漬し、そして引き上げた材料を、(ii)金属塩を含む水溶液に浸漬する工程を含む方法、
(c)前記繊維基材を、(ii)金属塩を含む水溶液に浸漬し、そして引き上げた材料を、(i)複素環を有する化合物を含む蒸気に接触する工程を含む方法 前記各方法は、当業者に既知である手段を利用して行うことができる。
(Plating underlayer)
The plating underlayer of the present invention is obtained by bringing a fiber base material into contact with (i) a compound having a heterocyclic ring and (ii) a metal salt that functions as an oxidizing agent and has an electroless plating catalytic ability. It consists of a polymer compound in which a compound having a heterocyclic ring in an oxidized state is polymerized on the surface of the fiber substrate, and a metal acting as a catalyst that is reduced and adsorbed on the surface of the polymer compound.
As a method of contacting (i) a compound having a heterocyclic ring with (ii) a metal salt that functions as an oxidizing agent and has a catalytic ability for electroless plating, any of the following (a) to (c) Can be adopted.
(A) a step of immersing and pulling up the fiber substrate in an aqueous solution containing (i) a compound having a heterocyclic ring and (ii) a metal salt that functions as an oxidizing agent and has a catalytic ability for electroless plating. Method,
(B) a method comprising the steps of: (i) immersing the fibrous base material in an aqueous solution containing a compound having a heterocyclic ring; and (ii) immersing the pulled material in an aqueous solution containing a metal salt;
(C) A method comprising the steps of: (ii) immersing the fibrous base material in an aqueous solution containing a metal salt, and contacting the pulled material with (i) a vapor containing a compound having a heterocyclic ring. This can be done using means known to those skilled in the art.

前記(a)の方法において、(i)複素環を有する化合物及び(ii)金属塩を含む水溶液を調製する場合、(i)複素環を有する化合物と(ii)金属塩(=複素環を有する化合物/金属塩)の濃度比は0.1〜80であり、好ましくは0.1〜40である。
濃度比が0.1未満であると複素環を有する化合物の酸化状態及び重合化が不十分となり、また金属塩についても還元状態が不十分となるため、無電解めっきの触媒として作用することが困難となる。一方、濃度比が80より大きいと、金属塩が材料上に均一に付着することができないため、その後のめっき処理よりにおいて、金属めっき膜も均一に形成しない虞があるからである。
また、材料を、(i)複素環を有する化合物及び(ii)金属塩を含む水溶液に浸漬させる工程の処理温度は、10℃〜130℃であり、処理時間は、0.1分〜120分、好ましくは20分〜60分である。
In the method (a), when preparing an aqueous solution containing (i) a compound having a heterocyclic ring and (ii) a metal salt, (i) a compound having a heterocyclic ring and (ii) a metal salt (= having a heterocyclic ring) The compound / metal salt concentration ratio is 0.1 to 80, preferably 0.1 to 40.
When the concentration ratio is less than 0.1, the oxidation state and polymerization of the compound having a heterocyclic ring are insufficient, and the reduction state of the metal salt is also insufficient, so that it can act as a catalyst for electroless plating. It becomes difficult. On the other hand, if the concentration ratio is greater than 80, the metal salt cannot be uniformly deposited on the material, so that the metal plating film may not be formed uniformly in the subsequent plating process.
Further, the treatment temperature of the step of immersing the material in an aqueous solution containing (i) a compound having a heterocyclic ring and (ii) a metal salt is 10 ° C. to 130 ° C., and the treatment time is 0.1 minute to 120 minutes. Preferably, it is 20 minutes to 60 minutes.

前記(b)の方法において、(i)複素環を有する化合物を含む水溶液の濃度は、5×10-4〜0.9Mであり、好ましくは0.01〜0.5Mである。
また、材料を、(i)複素環を有する化合物を含む水溶液に浸漬させる工程の処理温度は、10℃〜130℃であり、処理時間は、0.1分〜50分、好ましくは1分〜40分である。
In the method (b), the concentration of the aqueous solution containing the compound (i) having a heterocyclic ring is 5 × 10 −4 to 0.9M, preferably 0.01 to 0.5M.
In addition, the treatment temperature of the step of immersing the material in an aqueous solution containing a compound having a heterocyclic ring (i) is 10 ° C. to 130 ° C., and the treatment time is 0.1 minute to 50 minutes, preferably 1 minute to 40 minutes.

前記(b)及び(c)の方法において、好ましい、(ii)金属塩を含む水溶液としては、0.02%塩化パラジウム−0.01%塩酸水溶液(pH3)である。
また、材料を、(ii)金属塩を含む水溶液に浸漬させる工程における処理温度は、10℃〜130℃であり、処理時間は、0.1分〜50分、好ましくは1分〜40分である。
In the methods (b) and (c), a preferable aqueous solution containing (ii) a metal salt is 0.02% palladium chloride-0.01% hydrochloric acid aqueous solution (pH 3).
Moreover, the process temperature in the process of immersing a material in the aqueous solution containing (ii) metal salt is 10 degreeC-130 degreeC, and process time is 0.1 minute-50 minutes, Preferably it is 1 minute-40 minutes. is there.

前記(c)の方法において、(i)複素環を有する化合物を含む蒸気としては、上記の複素環を有する化合物を含む水溶液を気化させた蒸気でもよいが、好ましくは複素環を有する化合物そのものを気化させた蒸気である。
また、(i)複素環を有する化合物を含む蒸気に接触させる工程における処理温度は、10℃〜130℃であり、処理時間は、0.1分〜40分、好ましくは1分〜30分であり、処理圧力は、常圧若しくは減圧状態であってもよい。
In the method (c), the vapor containing the compound having a heterocyclic ring (i) may be a vapor obtained by vaporizing an aqueous solution containing the compound having a heterocyclic ring, but preferably the compound itself having a heterocyclic ring is used. Vaporized vapor.
In addition, (i) the treatment temperature in the step of contacting with the vapor containing the compound having a heterocyclic ring is 10 ° C. to 130 ° C., and the treatment time is 0.1 minute to 40 minutes, preferably 1 minute to 30 minutes. Yes, the processing pressure may be normal pressure or reduced pressure.

また、前記めっき下地層を形成する前に繊維基材の表面を親水化処理してもよい。該基材表面に親水化処理を施すことで、該基材表面から発生した官能基と、複素環を有する化合物とが水素結合し、密着性を高めることができる。更に、めっき下地層を形成しやすくなり、無電解めっき法による金属めっき膜の析出性と密着性が良好になる。
繊維基材表面を親水化処理する方法としては、任意の適切な方法が採用され、乾式処理や湿式処理が挙げられる。そして、乾式処理としては、例えば、コロナ放電処理、グロー放電処理などの放電処理;オゾン処理;UVオゾン処理;紫外線処理及び電子線処理などの電離活性線処理などが挙げられる。湿式処理としては、例えば、水、アセトンなどの溶媒を用いた超音波処理;アルカリ処理;アンカーコート処理などが挙げられる。これらの処理は、単独で行ってもよいし、2つ以上を組み合せて行ってもよい。
Moreover, you may hydrophilize the surface of a fiber base material before forming the said plating base layer. By subjecting the surface of the base material to hydrophilic treatment, the functional group generated from the surface of the base material and the compound having a heterocyclic ring can be hydrogen-bonded to improve adhesion. Furthermore, it becomes easy to form a plating base layer, and the deposition and adhesion of the metal plating film by the electroless plating method are improved.
Arbitrary appropriate methods are employ | adopted as a method of hydrophilizing the fiber base-material surface, and a dry process and a wet process are mentioned. Examples of the dry treatment include discharge treatment such as corona discharge treatment and glow discharge treatment; ozone treatment; UV ozone treatment; ionizing active ray treatment such as ultraviolet treatment and electron beam treatment. Examples of the wet treatment include ultrasonic treatment using a solvent such as water and acetone; alkali treatment; anchor coat treatment. These processes may be performed independently or in combination of two or more.

(複素環を有する化合物)
本発明の複素環を有する化合物としては、例えば、ピロール、N−メチルピロール、N−エチルピロール、N−フェニルピロール、N−ナフチルピロール、N−メチル−3−メチルピロール、N−メチル−3−エチルピロール、N−フェニル−3−メチルピロール、N−フェニル−3−エチルピロール、3−メチルピロール、3−エチルピロール、3−n−ブチルピロール、3−メトキシピロール、3−エトキシピロール、3−n−プロポキシピロール、3−n−ブトキシピロール、3−フェニルピロール、3−トルイルピロール、3−ナフチルピロール、3−フェノキシピロール、3−メチルフェノキシピロール、3−アミノピロール、3−ジメチルアミノピロール、3−ジエチルアミノピロール、3−ジフェニルアミノピロール、3−メチルフェニルアミノピロール及び3−フェニルナフチルアミノピロール等のピロール誘導体;チオフェン、3−メチルチオフェン、3−n−ブチルチオフェン、3−n−ペンチルチオフェン、3−n−ヘキシルチオフェン、3−n−ヘプチルチオフェン、3−n−オクチルチオフェン、3−n−ノニルチオフェン、3−n−デシルチオフェン、3−n−ウンデシルチオフェン、3−n−ドデシルチオフェン、3−メトキシチオフェン、3−ナフトキシチオフェン及び3,4−エチレンジオキシチオフェン等のチオフェン誘導体等が挙げられ、好ましくはピロール、チオフェン及び3,4−エチレンジオキシチオフェン等が挙げられ、より好ましくはピロールが挙げられる。
(Compound having a heterocyclic ring)
Examples of the compound having a heterocyclic ring of the present invention include pyrrole, N-methylpyrrole, N-ethylpyrrole, N-phenylpyrrole, N-naphthylpyrrole, N-methyl-3-methylpyrrole, N-methyl-3- Ethyl pyrrole, N-phenyl-3-methyl pyrrole, N-phenyl-3-ethyl pyrrole, 3-methyl pyrrole, 3-ethyl pyrrole, 3-n-butyl pyrrole, 3-methoxy pyrrole, 3-ethoxy pyrrole, 3- n-propoxypyrrole, 3-n-butoxypyrrole, 3-phenylpyrrole, 3-toluylpyrrole, 3-naphthylpyrrole, 3-phenoxypyrrole, 3-methylphenoxypyrrole, 3-aminopyrrole, 3-dimethylaminopyrrole, 3 -Diethylaminopyrrole, 3-diphenylaminopyrrole, 3-methyl Pyrrole derivatives such as ruphenylaminopyrrole and 3-phenylnaphthylaminopyrrole; thiophene, 3-methylthiophene, 3-n-butylthiophene, 3-n-pentylthiophene, 3-n-hexylthiophene, 3-n-heptylthiophene , 3-n-octylthiophene, 3-n-nonylthiophene, 3-n-decylthiophene, 3-n-undecylthiophene, 3-n-dodecylthiophene, 3-methoxythiophene, 3-naphthoxythiophene and 3, Examples include thiophene derivatives such as 4-ethylenedioxythiophene, preferably pyrrole, thiophene, and 3,4-ethylenedioxythiophene, and more preferably pyrrole.

また、複素環を有する化合物を高分子化する際の処理温度は、本発明に使用される複素環を有する化合物の種類によって適宜選択されるが、好ましくは10℃〜130℃である。   In addition, the treatment temperature for polymerizing a compound having a heterocyclic ring is appropriately selected depending on the type of the compound having a heterocyclic ring used in the present invention, but is preferably 10 ° C to 130 ° C.

(酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩)
本発明の酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩としては、例えば、硝酸銀、酢酸銀、硫酸銀、過塩素酸銀等、フッ化銀、亜硝酸銀、塩化銀、臭化銀、プロピオン酸銀、酒石酸銀、メチルエチル酢酸銀、トリメチル酢酸銀、炭酸銀、シュウ酸銀、雷酸銀の銀塩;硝酸銅、硫酸銅、塩化銅、塩素酸銅、過塩素酸銅、臭化銅、酢酸銅、炭酸銅、シュウ酸銅等の銅塩;硝酸ニッケル、硫酸ニッケル、塩化ニッケル、臭化ニッケル、酢酸ニッケル、炭酸ニッケル、シュウ酸ニッケル等のニッケル塩;硫酸パラジウム、硝酸パラジウム、酢酸パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム等のパラジウム塩などが挙げられる。この中でも、ハロゲン化物が好ましく、特に塩化パラジウムが好ましい。
(Metal salt that functions as an oxidant and has electroless plating catalytic ability)
Examples of the metal salt that functions as an oxidizing agent of the present invention and has a catalytic ability for electroless plating include, for example, silver nitrate, silver acetate, silver sulfate, silver perchlorate, silver fluoride, silver nitrite, silver chloride, bromide. Silver, silver propionate, silver tartrate, silver methyl ethyl acetate, silver trimethyl acetate, silver carbonate, silver oxalate, silver thrombate; copper nitrate, copper sulfate, copper chloride, copper chlorate, copper perchlorate, Copper salts such as copper bromide, copper acetate, copper carbonate, copper oxalate; nickel salts such as nickel nitrate, nickel sulfate, nickel chloride, nickel bromide, nickel acetate, nickel carbonate, nickel oxalate; palladium sulfate, palladium nitrate And palladium salts such as palladium acetate, palladium chloride, palladium bromide and palladium iodide. Among these, halides are preferable, and palladium chloride is particularly preferable.

(金属めっき膜)
本発明の金属めっき膜は、前記めっき下地層上に無電解めっき法を用いて形成する。具体的には、繊維基材上に、めっき下地層を上記(a)乃至(c)の方法で形成し、続いて無電解めっき液に浸され、これにより無電解めっき法による金属めっき膜が形成される。
無電解めっき液としては、通常、無電解めっきに使用されるめっき液であれば、特に限定されない。すなわち、無電解めっきに使用できる金属としては、例えば、銅、金、銀、ニッケル、及びクロム等、全て適用することができるが、銅が好ましい。無電解めっき浴の具体例としては、具体的には、ATSアドカッパーIW浴(奥野製薬工業(株)製)等が挙げられる。
無電解めっきの処理温度は、20℃〜50℃、好ましくは30℃〜40℃であり、処理時間は10分〜40分、好ましくは15分〜30分である。
(Metal plating film)
The metal plating film of the present invention is formed on the plating base layer using an electroless plating method. Specifically, a plating base layer is formed on the fiber substrate by the above methods (a) to (c), and subsequently immersed in an electroless plating solution, whereby a metal plating film by an electroless plating method is formed. It is formed.
The electroless plating solution is not particularly limited as long as it is a plating solution usually used for electroless plating. That is, as a metal that can be used for electroless plating, for example, copper, gold, silver, nickel, chromium, and the like can be applied, but copper is preferable. Specific examples of the electroless plating bath include ATS add-copper IW bath (Okuno Pharmaceutical Co., Ltd.) and the like.
The treatment temperature for electroless plating is 20 ° C. to 50 ° C., preferably 30 ° C. to 40 ° C., and the treatment time is 10 minutes to 40 minutes, preferably 15 minutes to 30 minutes.

また、無電解めっき法により形成された金属めっき膜の厚みは、0.3〜3μmとすることが好ましい。この金属めっき膜の厚みが3μmを超えると、柔軟性が低下し、耐屈曲性が低下する場合があり、厚みが0.3μm未満であると、例えば電線の中心線や信号線として必要な電気抵抗が得られ難い。   Moreover, it is preferable that the thickness of the metal plating film formed by the electroless plating method is 0.3 to 3 μm. If the thickness of the metal plating film exceeds 3 μm, the flexibility may decrease and the bending resistance may decrease. If the thickness is less than 0.3 μm, for example, the electrical power necessary for the center line or signal line of the wire Resistance is difficult to obtain.

また、無電解めっき法により形成された金属めっき膜上に、溶融錫めっきや電気めっきを行ってもよい。特に、耐熱性の高い繊維基材を使用した場合、溶融錫めっきが有効である。   Alternatively, hot tin plating or electroplating may be performed on a metal plating film formed by an electroless plating method. In particular, when a fiber base material having high heat resistance is used, hot-dip tin plating is effective.

また、繊維基材上にめっき下地層を設け、該めっき下地層上に無電解めっき法により金属めっき膜を設けて金属被覆繊維を形成した後、撚糸加工を追加で行ってもよい。   Moreover, after providing a plating base layer on a fiber base material and providing a metal plating film on the plating base layer by an electroless plating method to form a metal-coated fiber, twisting may be additionally performed.

[実施例1]
<繊維基材上へ、めっき下地層を形成する工程>
ピロールモノマー6.5mM、塩化パラジウム水溶液0.25mM、及び塩酸10mMをイオン交換水に加えて、混合液を得た。そして、この混合液中に、マルチフィラメント(東レ・デュポン(株)製のKevlar、アラミド繊維、総繊度=110dtex、撚糸回数=100T/m)からなる繊維基材を80℃で30分間浸漬し、その後、イオン交換水で洗浄し、乾燥させてめっき下地層を形成したマルチフィラメントからなる繊維基材を得た。
[Example 1]
<Process for forming a plating underlayer on a fiber substrate>
A pyrrole monomer 6.5 mM, palladium chloride aqueous solution 0.25 mM, and hydrochloric acid 10 mM were added to ion-exchange water, and the liquid mixture was obtained. And, in this mixed solution, a fiber substrate made of multifilament (Kevlar, Toray DuPont Co., Ltd., aramid fiber, total fineness = 110 dtex, number of twists = 100 T / m) is immersed at 80 ° C. for 30 minutes, Then, the fiber base material which consists of a multifilament which wash | cleaned with ion-exchange water and was made to dry and formed the plating base layer was obtained.

<めっき下地層上へ、無電解めっき法により金属めっき膜を形成する工程>
次に、前記めっき下地層を形成したマルチフィラメントからなる繊維基材を、めっき液 (メルテックス(株)製のメルプレートCU5100P)に50℃で10分間浸漬し、前記めっき下地層上に銅膜からなる金属めっき膜を形成した金属被覆繊維を得た。
なお、得られた金属被覆繊維の抵抗値は20,000Ω/kmであり、引張強度(JIS L1013準拠)は、金属めっき膜を形成する前の原糸に対して90%の引張強度であり、大幅な強度低下は見られなかった。
<Process for forming a metal plating film on the plating underlayer by electroless plating>
Next, the fiber base material composed of multifilaments on which the plating base layer is formed is immersed in a plating solution (Melplate CU5100P manufactured by Meltex Co., Ltd.) at 50 ° C. for 10 minutes, and a copper film is formed on the plating base layer. A metal-coated fiber having a metal plating film formed of was obtained.
The resistance value of the obtained metal-coated fiber is 20,000 Ω / km, and the tensile strength (according to JIS L1013) is 90% of the tensile strength with respect to the raw yarn before forming the metal plating film, There was no significant reduction in strength.

<金属線と、複数の金属被覆繊維とを撚り合わせて電線用導体を形成する工程>
次に、直径0.2mmの軟銅線からなる金属線(1本)と、前記金属被覆繊維(6本)とを撚り合わせて電線用導体を得た。
<Process of twisting a metal wire and a plurality of metal-coated fibers to form a conductor for electric wire>
Next, the metal wire (one piece) which consists of an annealed copper wire with a diameter of 0.2 mm, and the said metal-coated fiber (six pieces) were twisted together, and the conductor for electric wires was obtained.

[実施例2]
実施例1と同様の操作を行い、金属被覆繊維を得た。
次に、前記金属被覆繊維(7本)を撚り合わせた金属被覆繊維撚線の外側に、直径0.2mmの軟銅線からなる金属線(1本)を螺旋状に巻き付けて(以下、「横巻」とも言う)電線用導体を得た。
[Example 2]
The same operation as in Example 1 was performed to obtain a metal-coated fiber.
Next, a metal wire (one wire) made of annealed copper wire having a diameter of 0.2 mm is spirally wound around the metal-coated fiber stranded wire obtained by twisting the metal-coated fibers (7 wires) (hereinafter referred to as “horizontal”). A conductor for electric wires was obtained.

[実施例3]
繊維基材として、マルチフィラメント(東レ・デュポン(株)製のKevlar、アラミド繊維、総繊度=800dtex、撚糸回数=30T/m)からなる繊維基材を用いた以外は、実施例1と同様の操作を行い、金属被覆繊維を得た。なお、得られた金属被覆繊維の抵抗値は3400Ω/kmであった。
次に、前記金属被覆繊維(1本)の外側に、直径0.2mmの軟銅線からなる金属線(1本)を螺旋状に巻き付けて電線用導体を得た。
[Example 3]
As the fiber base material, the same as in Example 1 except that a fiber base material made of multifilament (Kevlar manufactured by Toray DuPont Co., Ltd., aramid fiber, total fineness = 800 dtex, number of twists = 30 T / m) was used. The operation was performed to obtain a metal-coated fiber. In addition, the resistance value of the obtained metal-coated fiber was 3400 Ω / km.
Next, a metal wire (one piece) made of an annealed copper wire having a diameter of 0.2 mm was spirally wound around the outside of the metal-coated fiber (one piece) to obtain a conductor for electric wires.

[比較例1]
<繊維基材を酸で処理して該基材表面に微細な凹凸を形成させた後、無電解めっき法により金属めっき膜を形成する工程>
1)前処理工程
マルチフィラメント(東レ・デュポン(株)製のKevlar、アラミド繊維、総繊度=110dtex、撚糸回数=100T/m)からなる繊維基材を、塩基性繊維クリーニングの表面活性剤溶液に25℃で3分間浸漬し、イオン交換水で洗浄した。
次に、90%硫酸溶液に30℃で30秒間浸漬し、イオン交換水で洗浄した。
2)触媒付与工程
続いて、前処理を行った繊維基材を、Sn−Pd系コロイドを含む35%塩酸水溶液に30℃で3分間浸漬し、イオン交換水で洗浄した。
3)活性化工程
続いて、触媒付与を行った繊維基材を、98%硫酸溶液100mL/Lに40℃で3分間浸漬し、イオン交換水で洗浄した。
4)無電解めっき工程
続いて、活性化工程を行った繊維基材を、めっき液 (メルテックス(株)製のメルプレートCU5100P)に50℃で10分間浸漬し、銅膜からなる金属めっき膜を形成した金属被覆繊維を得た。
なお、得られた金属被覆繊維の抵抗値は30,000Ω/kmであり、引張強度(JIS L1013準拠)は、金属めっき膜を形成する前の原糸に対して40%の引張強度であり、大幅な強度低下が見られた。
[Comparative Example 1]
<Process for forming metal plating film by electroless plating after treating fiber substrate with acid to form fine irregularities on the surface of the substrate>
1) Pre-treatment step A fiber substrate made of multifilament (Kevlar, aramid fiber, total fineness = 110 dtex, number of twists = 100 T / m, manufactured by Toray DuPont Co., Ltd.) is used as a surfactant solution for basic fiber cleaning. It was immersed for 3 minutes at 25 ° C. and washed with ion exchange water.
Next, it was immersed in a 90% sulfuric acid solution at 30 ° C. for 30 seconds and washed with ion-exchanged water.
2) Catalyst application step Subsequently, the pretreated fiber substrate was immersed in a 35% hydrochloric acid aqueous solution containing Sn-Pd colloid for 3 minutes at 30 ° C and washed with ion-exchanged water.
3) Activation step Subsequently, the fiber base material to which the catalyst was applied was immersed in a 98% sulfuric acid solution 100 mL / L at 40 ° C. for 3 minutes and washed with ion-exchanged water.
4) Electroless plating step Subsequently, the fiber substrate subjected to the activation step is immersed in a plating solution (Melplate CU5100P manufactured by Meltex Co., Ltd.) at 50 ° C. for 10 minutes to form a metal plating film made of a copper film. Thus, a metal-coated fiber formed was obtained.
The resistance value of the obtained metal-coated fiber is 30,000 Ω / km, and the tensile strength (according to JIS L1013) is 40% of the tensile strength before forming the metal plating film, A significant decrease in strength was observed.

<金属線と、複数の金属被覆繊維とを撚り合わせて電線用導体を形成する工程>
次に、直径0.2mmの軟銅線からなる金属線(1本)と、前記金属被覆繊維(6本)とを撚り合わせて電線用導体を得た。
<Process of twisting a metal wire and a plurality of metal-coated fibers to form a conductor for electric wire>
Next, the metal wire (one piece) which consists of an annealed copper wire with a diameter of 0.2 mm, and the said metal-coated fiber (six pieces) were twisted together, and the conductor for electric wires was obtained.

[比較例2]
直径0.2mmの軟銅線からなる金属線(7本)のみを撚り合わせて電線用導体を得た。
[Comparative Example 2]
Only metal wires (7 wires) made of annealed copper wires having a diameter of 0.2 mm were twisted to obtain a conductor for electric wires.

[比較例3]
実施例1と同様の操作を行い、金属被覆繊維を得た。
次に、前記金属被覆繊維(7本)のみを撚り合わせて電線用導体を得た。
[Comparative Example 3]
The same operation as in Example 1 was performed to obtain a metal-coated fiber.
Next, only the metal-coated fibers (7 pieces) were twisted to obtain a conductor for electric wires.

試験例1
上記で製造した実施例1〜3、並びに比較例1〜3の電線用導体において、各種の評価試験を行い、その結果を表1に纏めた。尚、評価方法は以下の通りである。
Test example 1
Various evaluation tests were performed on the electric wire conductors of Examples 1 to 3 and Comparative Examples 1 to 3 manufactured above, and the results are summarized in Table 1. The evaluation method is as follows.

(引張強度)
JIS L1013(化学繊維フィラメント系試験方法)に準拠して、各電線用導体の引張試験を実施した。
(Tensile strength)
In accordance with JIS L1013 (chemical fiber filament system test method), a tensile test of each electric wire conductor was performed.

(屈曲前の抵抗値)
実施例1〜3、並びに比較例1〜3の各電線用導体に、押出機にて厚み0.2mmの塩化ビニル系樹脂を被覆し、電線を作製した。
続いて、デジタルテスター(CUSTOM(株)製のCDM−2000D)を用いて、各電線用導体の1mあたりの抵抗を2端子間で測定した。なお、前記端子を接触させる電線部分は、塩化ビニル系樹脂を取り除いた導体とした。
(Resistance value before bending)
The electric wire conductors of Examples 1 to 3 and Comparative Examples 1 to 3 were covered with a vinyl chloride resin having a thickness of 0.2 mm using an extruder to produce electric wires.
Subsequently, the resistance per meter of each electric wire conductor was measured between two terminals using a digital tester (CDM-2000D manufactured by CUSTOM Co., Ltd.). In addition, the electric wire part which contacts the said terminal was made into the conductor which removed the vinyl chloride resin.

(屈曲後の抵抗値)
上記(屈曲前の抵抗値)を測定する際に作製した各電線を、曲げ半径2.5mm、荷重500gの条件下で、左右90度に10,000回屈曲させた後、上記(屈曲前の抵抗値)の測定方法と同様に抵抗値を測定した。
なお、屈曲後の抵抗値が1000Ω/km以下が信号線等の電線として好ましい値である。
(Resistance value after bending)
Each wire produced when measuring the above (resistance value before bending) was bent 10,000 times at 90 degrees left and right under the conditions of a bending radius of 2.5 mm and a load of 500 g. The resistance value was measured in the same manner as the measurement method of (resistance value).
A resistance value after bending of 1000 Ω / km or less is a preferable value for electric wires such as signal lines.

Figure 0006473307
※1:『製法A』とは、繊維基材上にめっき下地層を設け、該めっき下地層上に無電解めっき法により金属めっき膜を形成した製法
※2:『製法B』とは、繊維基材を酸で処理して該基材表面に微細な凹凸を形成させた後、無電解めっき法により金属めっき膜を形成した製法
※3:『撚線』とは、金属線および/または金属被覆繊維を撚り合わせ加工して電線用導体を形成したもの
※4:『横巻』とは、金属被覆繊維外側に、金属線を螺旋状に巻き付け加工して電線用導体を形成したもの
Figure 0006473307
* 1: “Manufacturing method A” is a manufacturing method in which a plating base layer is provided on a fiber substrate and a metal plating film is formed on the plating base layer by an electroless plating method. * 2: “Manufacturing method B” is a fiber. A method in which a substrate is treated with an acid to form fine irregularities on the surface of the substrate, and then a metal plating film is formed by an electroless plating method. * 3: “Twisted wire” means metal wire and / or metal A wire conductor formed by twisting coated fibers * 4: “Horizontal winding” is a wire conductor formed by spirally winding a metal wire on the outside of a metal-coated fiber.

本発明の電線用導体は、信号線等の電線用導体として使用できる。   The electric wire conductor of the present invention can be used as an electric wire conductor such as a signal line.

1 金属線
2 金属被覆繊維
1 Metal wire 2 Metal-coated fiber

Claims (1)

下記(A)または(B)の電線用導体において、
(A)少なくとも1本の金属線と、複数の金属被覆繊維とを撚り合わせてなる電線用導体、
(B)少なくとも1本の金属被覆繊維外側に、金属線を螺旋状に巻き付けた電線用導体、
更に、前記金属被覆繊維が、繊維基材上にめっき下地層を設け、該めっき下地層上に無電解めっき法により金属めっき膜を設けたものであり、
前記めっき下地層が、繊維基材上で、(i)複素環を有する化合物と(ii)酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩とを接触させることにより、繊維基材上に、酸化状態となった複素環を有する化合物が繊維基材表面で重合した高分子化合物と、還元されて高分子化合物の表面に吸着された触媒として作用する金属とからなり、
前記複素環を有する化合物が、ピロールモノマ-であり、
前記酸化剤として機能し且つ無電解めっきの触媒能力を有する金属塩が、塩化パラジウムであることを特徴とする電線用導体の製造方法
In the following wire conductor (A) or (B):
(A) a conductor for electric wires formed by twisting at least one metal wire and a plurality of metal-coated fibers;
(B) a conductor for electric wires in which a metal wire is spirally wound around at least one metal-coated fiber;
Further, the metal-coated fiber is provided with a plating base layer on a fiber substrate, and a metal plating film is provided on the plating base layer by an electroless plating method,
When the plating base layer is brought into contact with (i) a compound having a heterocyclic ring and (ii) a metal salt that functions as an oxidizing agent and has a catalytic ability for electroless plating on the fiber substrate, the fiber substrate above, Ri Do and a metal which acts as a high molecular compound a compound having a heterocyclic ring has become oxidized state are polymerized with the fiber base material surface, adsorbed is reduced on the surface of the polymer compound catalyst,
The compound having a heterocyclic ring is a pyrrole monomer;
The metal salts having catalytic ability of functional and electroless plating as an oxidizing agent, the manufacturing method of the wire conductor, wherein palladium der chloride Rukoto.
JP2014194765A 2014-09-25 2014-09-25 Manufacturing method of conductor for electric wire Active JP6473307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194765A JP6473307B2 (en) 2014-09-25 2014-09-25 Manufacturing method of conductor for electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194765A JP6473307B2 (en) 2014-09-25 2014-09-25 Manufacturing method of conductor for electric wire

Publications (2)

Publication Number Publication Date
JP2016066509A JP2016066509A (en) 2016-04-28
JP6473307B2 true JP6473307B2 (en) 2019-02-20

Family

ID=55805743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194765A Active JP6473307B2 (en) 2014-09-25 2014-09-25 Manufacturing method of conductor for electric wire

Country Status (1)

Country Link
JP (1) JP6473307B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508200B2 (en) * 2019-04-24 2024-07-01 古河電気工業株式会社 Carbon nanotube wire, carbon nanotube wire connection structure, and method for producing carbon nanotube wire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354966B2 (en) * 2008-06-13 2013-11-27 旭化成せんい株式会社 Telescopic wire
JP5941317B2 (en) * 2012-03-29 2016-06-29 アキレス株式会社 Metal coated fiber
JP6114521B2 (en) * 2012-09-14 2017-04-12 アキレス株式会社 Metal coated fiber
JP5993279B2 (en) * 2012-10-26 2016-09-14 帝人株式会社 Electric wire cord and cable using the same

Also Published As

Publication number Publication date
JP2016066509A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6114521B2 (en) Metal coated fiber
US20180187077A1 (en) Electrically conductive metal-coated fibers, continuous process for preparation thereof, and use thereof
US4634805A (en) Conductive cable or fabric
JP6683548B2 (en) Wire harness for wheel installation
JPH08504241A (en) Electrolessly plated aramid surface and method for making the surface
JP6220113B2 (en) Manufacturing method of shield sleeve
JP5941317B2 (en) Metal coated fiber
JP6473307B2 (en) Manufacturing method of conductor for electric wire
JP4942539B2 (en) coaxial cable
JP6502104B2 (en) Elastic wire
JP2016212960A (en) Polymer fiber conductive wire and manufacturing method thereof
JP5993279B2 (en) Electric wire cord and cable using the same
JP2013026077A (en) Covered wire and manufacturing method therefor
JP2018200820A (en) Fiber conductor, fiber electric wire and method for manufacturing the same
KR20180109587A (en) Superior conductive carbon fabric having excellent electromagnetic wave shielding property using electroless copper-nickel plating and manufacturing method thereof
KR20210000574A (en) Method of manufacturing carbon fiber heating wire and carbon fiber heating wire manufactured thereby
JP2008004275A (en) Two-core parallel coaxial cable
JP2019183178A (en) Plating fiber and electric wire
JP2007335124A (en) Coaxial cable and its manufacturing method
JP6805424B2 (en) Method of manufacturing conductive yarn
JP2014086390A (en) Insulated wire
JP6746842B2 (en) Method for producing cycloolefin yarn with metal coating
CN111142203B (en) Method for improving flexibility of optical cable
JP5993278B2 (en) Electric wire cord
KR20100119703A (en) Plating type electric cable, planar element using it, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190125

R150 Certificate of patent or registration of utility model

Ref document number: 6473307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150