Nothing Special   »   [go: up one dir, main page]

JP2016212960A - Polymer fiber conductive wire and manufacturing method thereof - Google Patents

Polymer fiber conductive wire and manufacturing method thereof Download PDF

Info

Publication number
JP2016212960A
JP2016212960A JP2015092465A JP2015092465A JP2016212960A JP 2016212960 A JP2016212960 A JP 2016212960A JP 2015092465 A JP2015092465 A JP 2015092465A JP 2015092465 A JP2015092465 A JP 2015092465A JP 2016212960 A JP2016212960 A JP 2016212960A
Authority
JP
Japan
Prior art keywords
polymer fiber
plating film
copper plating
conductive wire
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015092465A
Other languages
Japanese (ja)
Inventor
英樹 原
Hideki Hara
英樹 原
勝英 大島
Katsuhide Oshima
勝英 大島
巌 松下
Iwao Matsushita
巌 松下
田中 秀和
Hidekazu Tanaka
秀和 田中
章文 堀江
Akifumi Horie
章文 堀江
崇也 鈴木
Takaya Suzuki
崇也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surtec Kariya Co Ltd
Original Assignee
Surtec Kariya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surtec Kariya Co Ltd filed Critical Surtec Kariya Co Ltd
Priority to JP2015092465A priority Critical patent/JP2016212960A/en
Publication of JP2016212960A publication Critical patent/JP2016212960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Ropes Or Cables (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer fiber conductive wire with high utility that has excellent bending resistance and shows stable characteristics for a long term even if used in a bent state.SOLUTION: A polymer fiber conductive wire 1 comprises a high strength polymer fiber 2 comprising a bulk material of many filaments 21 with a tensile strength of 250 kg/mmor more and a metal plating film 3 formed on the surface of the high strength polymer fiber 2. The diameter of each of the filaments 21 is 20 μm or less, and the average film thickness of the metal plating film 3 composed of an electroless copper plating film 31 and an electrolytic copper plating film 32 covering each surface of the filaments 21 is 3 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、信号線用のポリマー繊維導電線およびその製造方法に関する。   The present invention relates to a polymer fiber conductive line for a signal line and a manufacturing method thereof.

従来の金属線に代わる電線材料として、合成高分子からなる繊維表面に銅めっきを施したポリマー繊維導電線が提案されている。一例として、特許文献1には、高強度繊維に金属めっき処理を行って得た素線を、複数本撚り合わせて導体部とし、絶縁性の被覆部で覆った電線が開示されている。   As an electric wire material replacing a conventional metal wire, a polymer fiber conductive wire in which a copper surface is plated on a fiber surface made of a synthetic polymer has been proposed. As an example, Patent Document 1 discloses an electric wire in which a plurality of strands obtained by performing metal plating on high-strength fibers are twisted to form a conductor portion and covered with an insulating covering portion.

また、特許文献2には、高強度連続長繊維を含む複合電線の製造方法として、複数の高強度連続長繊維を、離間させつつその位置を保持するステップと、高強度連続長繊維に導電材料からなるめっきを施すステップと、高強度連続長繊維を束ねて連続的に回収するステップを含み、めっきした高強度連続長繊維を撚り合わせた繊維束を形成する方法が開示されている。   Further, in Patent Document 2, as a method of manufacturing a composite electric wire including high-strength continuous long fibers, a step of maintaining a position of a plurality of high-strength continuous long fibers while being separated, and a conductive material for the high-strength continuous long fibers And a method of forming a fiber bundle in which the plated high-strength continuous long fibers are twisted together, and a step of collecting the continuous high-strength fibers and continuously collecting them.

特開2012−104404号公報JP 2012-104404 A 特開2012−129092号公報JP 2012-129092 A

ポリマー繊維導電線は、体積当たりの重量が金属線に比べて軽いことから、自動車用機器をはじめ、介護用ロボット・作業支援用のロボットスーツ等、小型軽量化が要求される各種分野への利用が期待される。   Polymer fiber conductive wire is lighter than metal wire, so it can be used in various fields where miniaturization and weight reduction are required, such as automobile equipment, nursing robots and robot suits for work support. There is expected.

しかしながら、ポリマー繊維を構成する多数のフィラメント表面の全体に、均一な金属めっき皮膜を形成することは容易でない。特に、ロボットのアームのような可動部を有する機器では、可動部が繰り返し動作することにより、屈曲部の金属めっき皮膜が劣化するおそれがある。このような用途において、実用上十分な耐久性を有するポリマー繊維導電線は、未だ得られていない。   However, it is not easy to form a uniform metal plating film on the entire surface of many filaments constituting the polymer fiber. In particular, in a device having a movable part such as an arm of a robot, the metal plating film on the bent part may be deteriorated by the repeated movement of the movable part. In such an application, a polymer fiber conductive wire having practically sufficient durability has not yet been obtained.

本発明は、かかる背景に鑑みてなされたものであり、耐屈曲性に優れ、長期に渡って安定した特性を維持できる、実用性の高いポリマー繊維導電線を提供しようとするものである。   The present invention has been made in view of such a background, and an object of the present invention is to provide a highly practical polymer fiber conductive wire that has excellent bending resistance and can maintain stable characteristics over a long period of time.

本発明の一態様は、高強度ポリマー繊維と、該高強度ポリマー繊維の表面に形成された金属めっき皮膜からなるポリマー繊維導電線であって、
上記高強度ポリマー繊維は、引張強度が250kg/mm以上の合成ポリマー繊維からなる多数のフィラメントの集合体であり、上記金属めっき皮膜が、各フィラメントの表面を覆って形成された無電解銅めっき膜および電気銅めっき膜からなるとともに、上記フィラメントの直径が20μm以下かつ上記金属めっき皮膜の平均膜厚が3μm以下であることを特徴とする。
One aspect of the present invention is a polymer fiber conductive wire comprising a high-strength polymer fiber and a metal plating film formed on the surface of the high-strength polymer fiber,
The high-strength polymer fiber is an aggregate of a large number of filaments composed of synthetic polymer fibers having a tensile strength of 250 kg / mm 2 or more, and the electroless copper plating is formed by covering the surface of each filament with the metal plating film. It consists of a film | membrane and an electrolytic copper plating film | membrane, The diameter of the said filament is 20 micrometers or less, The average film thickness of the said metal plating film is 3 micrometers or less, It is characterized by the above-mentioned.

本発明の他の態様は、引張強度が250kg/mm以上の合成ポリマー繊維からなる多数のフィラメントの集合体である高強度ポリマー繊維と、該高強度ポリマー繊維の表面に形成された無電解銅めっき膜および電気銅めっき膜からなる金属めっき皮膜を有するポリマー繊維導電線の製造方法であって、
上記多数のフィラメントの集合体を、湯洗した後、カチオン系界面活性剤を含む溶液で処理する前処理工程と、
上記多数のフィラメントの集合体を、触媒付与液、活性化液および無電解銅めっき液の順に浸漬処理して、前処理した各フィラメントの表面を無電解銅めっき膜で被覆する無電解銅めっき工程と、
上記多数のフィラメントの集合体に、電気銅めっき液中で電気めっきを施して、上記無電解銅めっき膜上に電気銅めっき膜を形成する電気銅めっき工程と、
を備えることを特徴とする。
Another aspect of the present invention is a high-strength polymer fiber that is an aggregate of a large number of filaments composed of synthetic polymer fibers having a tensile strength of 250 kg / mm 2 or more, and electroless copper formed on the surface of the high-strength polymer fiber A method for producing a polymer fiber conductive wire having a metal plating film comprising a plating film and an electrolytic copper plating film,
A pre-treatment step of treating the aggregate of a large number of filaments with a solution containing a cationic surfactant after washing with hot water;
An electroless copper plating process in which the aggregate of the filaments is immersed in the order of a catalyst application solution, an activation solution, and an electroless copper plating solution, and the surface of each pretreated filament is covered with an electroless copper plating film. When,
An electrolytic copper plating step of performing electroplating in an electrolytic copper plating solution on the assembly of the numerous filaments to form an electrolytic copper plating film on the electroless copper plating film;
It is characterized by providing.

本発明のポリマー繊維導電線は、高強度の合成ポリマー繊維を用い、20μm以下の極細の各フィラメントの表面を3.0μm以下の極薄の金属めっき皮膜で覆った集合体とすることで、導電線の初期特性を確保しつつ、耐屈曲性を高めることができる。   The polymer fiber conductive wire of the present invention uses a high-strength synthetic polymer fiber, and is an aggregate in which the surface of each ultrafine filament of 20 μm or less is covered with an extremely thin metal plating film of 3.0 μm or less. Flexibility can be improved while ensuring initial characteristics of the wire.

したがって、長期使用による抵抗値の増大が抑制され、屈曲部や可動部を有する各種機器用の信号線にも好適に使用されて、実用上十分な耐久性を実現する。   Therefore, an increase in resistance value due to long-term use is suppressed, and it is suitably used for signal lines for various devices having a bent portion and a movable portion, thereby realizing practically sufficient durability.

このようなポリマー繊維導電線の製造方法として、金属めっき皮膜の形成に先立って、湯洗とカチオン系界面活性剤による前処理を行うと、各フィラメントの表面全体に無電解銅めっき膜を形成し、続く工程において電気銅めっき膜を均等に形成することができる。   As a method for producing such a polymer fiber conductive wire, prior to the formation of the metal plating film, pretreatment with hot water and a cationic surfactant forms an electroless copper plating film on the entire surface of each filament. In the subsequent process, the electrolytic copper plating film can be formed uniformly.

よって、本発明によれば、ポリマー繊維導電線の金属めっき皮膜の耐屈曲性を改善し、屈曲部や繰り返し屈曲動作する可動部に使用可能な実用性の高い信号線材料が得られる。   Therefore, according to the present invention, it is possible to improve the bending resistance of the metal plating film of the polymer fiber conductive wire and to obtain a highly practical signal line material that can be used for a bent portion or a movable portion that repeatedly bends.

実施形態1におけるポリマー繊維導電線の全体構造とその径方向および長手方向断面を示す擬略図。The pseudo-schematic diagram which shows the whole structure of the polymer fiber conductive wire in Embodiment 1, and its radial direction and longitudinal direction cross section. 実施形態1におけるポリマー繊維導電線の製造工程図。The manufacturing process figure of the polymer fiber conductive wire in Embodiment 1. FIG. 実施例における屈曲耐久試験方法を説明するための模式図Schematic diagram for explaining the bending durability test method in the examples 比較例1(試料1)の屈曲回数と抵抗値の関係を示す図。The figure which shows the relationship between the frequency | count of bending and resistance value of the comparative example 1 (sample 1). 試験例1(試料2)の屈曲回数と抵抗値の関係を示す図。The figure which shows the relationship between the frequency | count of bending of Test Example 1 (sample 2), and resistance value. 試験例1(試料3)の屈曲回数と抵抗値の関係を示す図。The figure which shows the relationship between the frequency | count of bending of Example 1 (sample 3), and resistance value. 試験例1(試料5)の屈曲回数と抵抗値の関係を示す図。The figure which shows the relationship between the frequency | count of bending of Example 1 (sample 5), and resistance value. 試験例1(試料6)の屈曲回数と抵抗値の関係を示す図。The figure which shows the relationship between the frequency | count of bending of Example 1 (sample 6), and resistance value. 試験例1(試料7)の屈曲回数と抵抗値の関係を示す図。The figure which shows the relationship between the frequency | count of bending of Example 1 (sample 7), and resistance value. 試験例1(試料5)のポリマー繊維導電線の切断面を示す走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph which shows the cut surface of the polymer fiber conductive wire of Test Example 1 (sample 5). 試験例2(試料9)の屈曲回数と抵抗値の関係を示す図。The figure which shows the relationship between the frequency | count of bending of Example 2 (sample 9), and resistance value. 比較例2(試料10)のポリマー繊維導電線のめっき状態を観察するための繊維形状写真。The fiber shape photograph for observing the plating state of the polymer fiber conductive wire of Comparative Example 2 (Sample 10).

(実施形態1)
図1は、本形態のポリマー繊維導電線1の概略構造を示しており、高強度ポリマー繊維2は、多数のフィラメント21の集合体からなる。合成ポリマーの単繊維である各フィラメント21は、その外周表面の全面が金属めっき皮膜3で被覆されており、これら被覆繊維を束状に多数集合させてポリマー繊維導電線1とする。金属めっき皮膜3は、フィラメント21側から、無電解銅めっき膜31と電気銅めっき膜32の2層構造となっている。
(Embodiment 1)
FIG. 1 shows a schematic structure of the polymer fiber conductive wire 1 of this embodiment, and the high-strength polymer fiber 2 is composed of an assembly of a large number of filaments 21. Each filament 21, which is a single fiber of synthetic polymer, is covered with the metal plating film 3 on the entire outer peripheral surface, and a large number of these coated fibers are gathered in a bundle to form a polymer fiber conductive wire 1. The metal plating film 3 has a two-layer structure of an electroless copper plating film 31 and an electrolytic copper plating film 32 from the filament 21 side.

高強度ポリマー繊維2を構成する繊維は、引張強度が250kg/mm以上の合成ポリマー繊維であり、好適には、引張強度が300kg/mm以上であることが好ましい。このような合成ポリマー繊維としては、例えば、ポリアリレート繊維、パラ系アラミド繊維等が挙げられる。ポリアリレート繊維およびパラ系アラミド繊維は、高強度・高弾性率の繊維であり、金属に対し低比重であることから、ポリマー繊維導電線1の軽量化と耐久性の向上に寄与する。合成ポリマー繊維からなる各フィラメント21は、微細径、特に直径20μm以下とし、ポリマー繊維導電線1の断面積に対する繊維表面積を大きくして、金属めっき皮膜3の膜厚を小さくしても、必要な抵抗値特性が確保できるようにする。 The fiber constituting the high-strength polymer fiber 2 is a synthetic polymer fiber having a tensile strength of 250 kg / mm 2 or more, and preferably has a tensile strength of 300 kg / mm 2 or more. Examples of such synthetic polymer fibers include polyarylate fibers and para-aramid fibers. The polyarylate fiber and the para-aramid fiber are fibers having high strength and high elastic modulus and low specific gravity with respect to the metal, and thus contribute to weight reduction and durability improvement of the polymer fiber conductive wire 1. Each filament 21 made of a synthetic polymer fiber has a fine diameter, particularly a diameter of 20 μm or less, and is necessary even if the fiber surface area with respect to the cross-sectional area of the polymer fiber conductive wire 1 is increased and the film thickness of the metal plating film 3 is reduced. Ensure resistance value characteristics.

金属めっき皮膜3は、無電解銅めっき膜31と電気銅めっき膜32を合わせた平均膜厚が3.0μm以下、好適には、1.0〜2.0μmの範囲となるように、めっき条件等を調整する。平均膜厚が3.0μmを超えると、初期抵抗値は低くなるが繰り返し屈曲動作による抵抗値変化が大きくなり、耐屈曲性が低下する。平均膜厚が薄いほど耐屈曲性が向上する傾向にあり、2.0μm以下で顕著となるが、1.0μmを下回ると初期抵抗値が上昇し、均一なめっき膜の形成が容易でないので、好ましくない。   The plating conditions of the metal plating film 3 are such that the average film thickness of the electroless copper plating film 31 and the electrolytic copper plating film 32 is 3.0 μm or less, preferably 1.0 to 2.0 μm. Adjust etc. When the average film thickness exceeds 3.0 μm, the initial resistance value decreases, but the resistance value change due to repeated bending operations increases, and the bending resistance decreases. As the average film thickness is thinner, the bending resistance tends to be improved and becomes noticeable at 2.0 μm or less. However, if the average film thickness is less than 1.0 μm, the initial resistance value increases, and it is not easy to form a uniform plating film. It is not preferable.

その理由は、必ずしも明らかではないが、極細のフィラメントは断面形状が均一ではないことから、一定膜厚のめっき膜を密着性よく形成することは容易でなく、めっき膜厚が大きくなると、屈曲時に内側と外側に加わる応力差の影響が大きくなるおそれがある。平均膜厚が3.0μmを超えると、柔軟性が低下し、ばらつきも大きくなって、屈曲時に荷重が一部に集中しやすくなると推測される。   The reason for this is not necessarily clear, but since the cross-sectional shape of ultrafine filaments is not uniform, it is not easy to form a plating film with a constant film thickness with good adhesion. There is a possibility that the influence of the stress difference applied to the inside and the outside becomes large. When the average film thickness exceeds 3.0 μm, the flexibility decreases and the variation increases, and it is assumed that the load tends to concentrate on a part during bending.

ポリマー繊維導電線1は、多数のフィラメント21が繊維長手方向に整列する繊維束として、例えば信号線用電線の心線に使用される。具体的には、必要な抵抗値特性に応じて、通常数百本程度のフィラメント21を集合させ、適宜撚りを与えて、直径数mm程度のポリマー繊維導電線1としたものを心線とする。その外周全面をさらに絶縁性樹脂で被覆して信号線用電線とすればよい。   The polymer fiber conductive wire 1 is used as a fiber bundle in which a large number of filaments 21 are aligned in the fiber longitudinal direction, for example, as a core wire of a signal line electric wire. Specifically, depending on the required resistance characteristic, normally several hundreds of filaments 21 are gathered together and appropriately twisted to form a polymer fiber conductive wire 1 having a diameter of about several millimeters as a core wire. . The entire outer periphery may be further covered with an insulating resin to form a signal line electric wire.

図2は、ポリマー繊維導電線1の製造工程の一例を示しており、前処理工程と、無電解銅めっき工程と、電気銅めっき工程と、後処理工程とを備える。後処理工程は、省略することもできる。   FIG. 2 shows an example of a manufacturing process of the polymer fiber conductive wire 1 and includes a pretreatment process, an electroless copper plating process, an electrolytic copper plating process, and a post-treatment process. The post-processing step can be omitted.

(前処理工程)
前処理工程は、高強度ポリマー繊維2となる繊維束を湯洗する処理と、カチオン系界面活性剤の溶液に浸漬する処理を含む。予め湯洗処理を行うことで、繊維を柔らかくして開繊を容易にし、多数のフィラメント21がほぐれた状態で、続くカチオン系界面活性剤処理を行うことができる。湯洗温度は、通常、40〜80℃の範囲で適宜選択することができる。
(Pretreatment process)
The pretreatment process includes a treatment of washing the fiber bundle to be the high-strength polymer fiber 2 with hot water and a treatment of immersing in a solution of a cationic surfactant. By performing the hot water washing treatment in advance, the fiber can be softened and opened easily, and the subsequent cationic surfactant treatment can be carried out in a state where many filaments 21 are loosened. The hot water temperature can be appropriately selected in the range of 40 to 80 ° C.

カチオン系界面活性剤は、特に制限されず、例えば、第四級アンモニウム塩等、公知のものが使用される。カチオン系界面活性剤を含む溶液は、湯洗温度と同等の温度に加温され、適度にpH調整されて使用される。   The cationic surfactant is not particularly limited, and known ones such as a quaternary ammonium salt are used. A solution containing a cationic surfactant is heated to a temperature equivalent to the hot water washing temperature and adjusted to an appropriate pH.

カチオン系界面活性剤で処理することの効果は、必ずしも明らかではないが、湯洗したフィラメント表面に吸着したカチオン系界面活性剤により、繊維表面の柔軟性、平滑性等が向上する。そのため、後工程において、多数のフィラメント21間に触媒溶液が侵入しやすくなり、繊維表面に均等に触媒付与されて、無電解銅めっきが良好に進行し、未着部分が生じるのを防止すると推測される。   The effect of the treatment with the cationic surfactant is not always clear, but the cationic surfactant adsorbed on the hot-washed filament surface improves the flexibility and smoothness of the fiber surface. Therefore, in the subsequent process, the catalyst solution is likely to enter between a large number of filaments 21, and the catalyst is evenly applied to the fiber surface, so that electroless copper plating proceeds well and prevents unattached portions from occurring. Is done.

(無電解銅めっき工程)
無電解銅めっき工程において、前処理したポリマー繊維導電線1は、触媒付与液、活性化液および無電解銅めっき液の順に浸漬処理される。触媒付与液は、Pd等の貴金属化合物を含む水溶液であり、各フィラメント21の表面に吸着担持された貴金属イオンは、次亜リン酸塩等の活性化液に浸漬されることで活性化(還元)される。その後、公知の無電解銅めっき液に浸漬することで、活性化された触媒により各フィラメント21の表面に銅が析出し、無電解銅めっき膜31が形成される。
(Electroless copper plating process)
In the electroless copper plating step, the pretreated polymer fiber conductive wire 1 is dipped in the order of the catalyst application liquid, the activation liquid, and the electroless copper plating liquid. The catalyst-providing liquid is an aqueous solution containing a noble metal compound such as Pd, and the noble metal ions adsorbed and supported on the surface of each filament 21 are activated (reduced) by being immersed in an activation liquid such as hypophosphite. ) Then, by immersing in a known electroless copper plating solution, copper is deposited on the surface of each filament 21 by the activated catalyst, and the electroless copper plating film 31 is formed.

(電気銅めっき工程)
電気銅めっき工程において、ポリマー繊維導電線1を硫酸等の活性化液に浸漬して、表面を活性化処理し、さらに、公知の電気銅めっき液中にて通電する電気めっきを行う。これにより、無電解銅めっき工程で析出した銅を核として、電気銅めっき膜32が形成され、高強度ポリマー繊維2の各フィラメント21がそれぞれ金属めっき皮膜3で覆われたポリマー繊維導電線1が得られる。活性化液による処理は、無電解銅めっき工程後に引き続いて電気銅めっき工程を実施し、繊維表面と空気の接触時間が短い場合には、省略することもできる。
(Electro copper plating process)
In the electrolytic copper plating step, the polymer fiber conductive wire 1 is immersed in an activation liquid such as sulfuric acid, the surface is activated, and further, electroplating is performed in a known electrolytic copper plating liquid. As a result, the copper electroplating film 32 is formed using the copper deposited in the electroless copper plating step as a core, and the polymer fiber conductive wire 1 in which each filament 21 of the high-strength polymer fiber 2 is covered with the metal plating film 3 is formed. can get. The treatment with the activation liquid can be omitted when the electrolytic copper plating process is subsequently performed after the electroless copper plating process and the contact time between the fiber surface and the air is short.

(後処理工程)
好適には、得られたポリマー繊維導電線1を、さらに加熱処理することで、耐屈曲性をより高めることができる。加熱温度は、高強度ポリマー繊維2の強度低下を抑制するために、使用する合成ポリマー繊維に応じて適宜設定される。例えば、ポリアリレート繊維であればその軟化点(320℃)より低い温度とする。好適には、加熱処理時の表面酸化による抵抗値の上昇を抑制可能な温度、例えば250℃以下とするのがよい。
(Post-processing process)
Preferably, the obtained polymer fiber conductive wire 1 can be further heat-treated to further improve the bending resistance. The heating temperature is appropriately set according to the synthetic polymer fiber used in order to suppress the strength reduction of the high-strength polymer fiber 2. For example, in the case of polyarylate fiber, the temperature is lower than its softening point (320 ° C.). Preferably, the temperature may be a temperature at which an increase in resistance due to surface oxidation during heat treatment can be suppressed, for example, 250 ° C. or less.

後処理工程は、大気中で加熱することで実施されるが、還元性雰囲気中で行うこともできる。還元性雰囲気、例えば、水素または窒素ガス雰囲気中で加熱することで、後処理による金属めっき皮膜3の表面酸化を防止できる。   The post-treatment step is performed by heating in the air, but can also be performed in a reducing atmosphere. By heating in a reducing atmosphere, for example, in a hydrogen or nitrogen gas atmosphere, surface oxidation of the metal plating film 3 due to post-treatment can be prevented.

図2の製造工程に従って、高強度ポリマー繊維2の表面に金属めっき皮膜3を形成し、得られたポリマー繊維導電線1に、屈曲耐久試験を行って、その特性の評価を行った。   According to the production process of FIG. 2, a metal plating film 3 was formed on the surface of the high-strength polymer fiber 2, and the resulting polymer fiber conductive wire 1 was subjected to a bending durability test to evaluate its characteristics.

(試験例1)
図2の製造工程に従って、高強度ポリマー繊維2のフィラメント21の表面を金属めっき皮膜3で覆ったポリマー繊維導電線1を製造した。高強度ポリマー繊維2として、市販のポリアリレート繊維(株式会社クラレ製 ベクトラン(登録商標);引張強度330kg/mm、フィラメント直径16〜17μm、1670dtex、600〜601本)を用い、各工程は、表2、3に示す処理条件で行った。
(Test Example 1)
According to the manufacturing process of FIG. 2, the polymer fiber conductive wire 1 in which the surface of the filament 21 of the high-strength polymer fiber 2 was covered with the metal plating film 3 was manufactured. As the high-strength polymer fiber 2, a commercially available polyarylate fiber (Vectran (registered trademark) manufactured by Kuraray Co., Ltd .; tensile strength 330 kg / mm 2 , filament diameter 16 to 17 μm, 1670 dtex, 600 to 601) is used. The processing conditions shown in Tables 2 and 3 were performed.

まず、前処理工程として、高強度ポリマー繊維2を60℃で10分間湯洗した後、カチオン系界面活性剤(日華化学株式会社製 ネオフィックスR−800)の溶液(濃度40g/L、pH11、60℃)に、5分間浸漬処理した。   First, as a pretreatment step, the high-strength polymer fiber 2 is washed with hot water at 60 ° C. for 10 minutes, and then a solution of a cationic surfactant (Neofix R-800 manufactured by Nikka Chemical Co., Ltd.) (concentration 40 g / L, pH 11). , 60 ° C.) for 5 minutes.

次いで、無電解銅めっき工程として、Pdイオンを含む触媒付与液(奥野製薬工業株式会社製 OPC−50インデューサーA;濃度50ml/L、OPC−50インデューサーC;濃度50ml/L、pH12、40℃)を調整し、前処理した高強度ポリマー繊維2を、5分間浸漬した後、次亜塩酸ナトリウム溶液(濃度50g/L、60℃)に、5分間浸漬して活性化処理した。その後、無電解銅めっき液(奥野製薬工業株式会社製 OPCカッパー−AF−M;濃度150ml/L、OPCカッパー−AF−1;濃度100ml/L、OPCカッパー−AF−2;濃度40ml/L、pH9.5、50℃)中に、10分間浸漬し、無電解銅めっき膜31を形成した。   Next, as an electroless copper plating step, a catalyst-providing solution containing Pd ions (OPC-50 Inducer A manufactured by Okuno Pharmaceutical Co., Ltd .; concentration 50 ml / L, OPC-50 inducer C; concentration 50 ml / L, pH 12, 40) C.) and the pretreated high-strength polymer fiber 2 was immersed for 5 minutes and then immersed in a sodium hypochlorite solution (concentration 50 g / L, 60 ° C.) for 5 minutes for activation treatment. Then, electroless copper plating solution (Okuno Pharmaceutical Co., Ltd. OPC Copper-AF-M; Concentration 150 ml / L, OPC Copper-AF-1; Concentration 100 ml / L, OPC Copper-AF-2; Concentration 40 ml / L, pH 9.5, 50 ° C.) for 10 minutes to form an electroless copper plating film 31.

さらに、電気銅めっき工程として、硫酸溶液(濃度3%、常温)に、5分間浸漬して活性化処理した後、25℃の電解銅めっき液(硫酸銅70g/L、硫酸200g/L、塩素イオン50mg/L、奥野製薬工業株式会社製 トップルチナメークアップ5ml/L、トップルチナLS−A2.5ml/L、トップルチナLS−B1.0ml/L)中に投入して10分間通電、電気銅めっき膜32を形成した。   Furthermore, as an electrolytic copper plating process, after activating by immersing in a sulfuric acid solution (concentration 3%, room temperature) for 5 minutes, an electrolytic copper plating solution (copper sulfate 70 g / L, sulfuric acid 200 g / L, chlorine, 25 ° C.) Ion 50mg / L, manufactured by Okuno Pharmaceutical Co., Ltd. Top Lucina Makeup 5ml / L, Top Lucina LS-A 2.5ml / L, Top Lucina LS-B 1.0ml / L) 32 was formed.

電気銅めっき工程の通電量を調整することにより、金属めっき皮膜3の平均膜厚を、1.6μm(試料2、5)、3.0μm(試料3、6)、6.0μm(試料4、7)と変更したポリマー繊維導電線1を得た。ここで、平均膜厚は、金属めっき皮膜3の形成前後の重量と、高強度ポリマー繊維2の表面積から算出される数値とする。このうち、試料2〜4には、撚り線加工を施しており(50回/m)、試料5〜7は撚り線加工無しとした。   The average film thickness of the metal plating film 3 is adjusted to 1.6 μm (Samples 2 and 5), 3.0 μm (Samples 3 and 6), 6.0 μm (Sample 4 and The polymer fiber conductive wire 1 changed to 7) was obtained. Here, the average film thickness is a numerical value calculated from the weight before and after the formation of the metal plating film 3 and the surface area of the high-strength polymer fiber 2. Among them, samples 2 to 4 were subjected to stranded wire processing (50 times / m), and samples 5 to 7 were not subjected to stranded wire processing.

これら試料2〜7をそれぞれ複数用意し(n=3〜4)、MIT型耐折度試験機を用いた屈曲耐久試験を行った。図3に示すように、50cm長さの試料Sを吊り下げて上端を固定し、下端を回転板100に設けたチャック部101で両側から把持して、回転板100を所定角度で回転往復動作させ、所定の荷重を加えた状態で試料Sを左右に折り曲げる動作を繰り返した。試験条件は、以下の通りとした。
荷重:250g
折り曲げ角度:90°
折り曲げ回数:90回/分
チャック幅:1.0mm
各試料2〜7について、試験中の抵抗値変化を測定し、銅線の電気抵抗が1Ω/50cmを超えるまでの屈曲回数で評価した。結果を、初期抵抗値(Ω/50cm)とともに表1に示す。また、試料2、3、5、6、7の抵抗値変化を、図5〜9に示した。
A plurality of these samples 2 to 7 were prepared (n = 3 to 4), and a bending durability test using an MIT type bending resistance tester was performed. As shown in FIG. 3, a sample S having a length of 50 cm is suspended to fix the upper end, and the lower end is gripped from both sides by a chuck portion 101 provided on the rotating plate 100, and the rotating plate 100 is rotated and reciprocated at a predetermined angle. The operation of bending the sample S left and right with a predetermined load applied was repeated. The test conditions were as follows.
Load: 250g
Bending angle: 90 °
Bending frequency: 90 times / min. Chuck width: 1.0 mm
About each sample 2-7, the resistance value change during a test was measured and it evaluated by the frequency | count of bending until the electrical resistance of a copper wire exceeded 1 ohm / 50cm. The results are shown in Table 1 together with the initial resistance value (Ω / 50 cm). Moreover, the resistance value change of sample 2, 3, 5, 6, 7 was shown to FIGS.

(比較例1)
比較のため、従来の電線材料である銅線(直径400μm×7本)について、試験例1と同様にして、MIT型耐折度試験機を用いた屈曲耐久試験を行った(試料1)。結果を、初期抵抗値(Ω/50cm)とともに表1に示す。
(Comparative Example 1)
For comparison, a bending endurance test using a MIT-type folding resistance tester was performed on a copper wire (diameter 400 μm × 7), which is a conventional electric wire material, in the same manner as in Test Example 1 (Sample 1). The results are shown in Table 1 together with the initial resistance value (Ω / 50 cm).

(評価)
表1に明らかなように、試料1(n=3)の屈曲回数は260〜458といずれも500回以下で抵抗値が1Ω/50cmを超えた。また、試料1の7本の銅線全てが断線した。図4に示すように、いずれも断線する直前までは、ほぼ初期抵抗値と同等であり、その後、抵抗値が急上昇して断線に至っている。
(Evaluation)
As is clear from Table 1, the number of bendings of sample 1 (n = 3) was 260 to 458, both of which were 500 times or less and the resistance value exceeded 1 Ω / 50 cm. Moreover, all the seven copper wires of Sample 1 were disconnected. As shown in FIG. 4, all of them are almost equal to the initial resistance value until just before the disconnection, and then the resistance value rapidly rises to the disconnection.

従来の銅線を用いた試料1に対し、ポリマー繊維導電線1を用いた試料2〜7では、抵抗値が1Ωを超えるまでの屈曲回数がいずれも5000回以上と、試料1の10倍以上の耐久性を示した。また、平均膜厚6.0μmの試料4(4−1〜4−4;撚り有)の屈曲回数5799〜8370に対し、平均膜厚3.0μmの試料3(3−1〜3−4;撚り有)は、屈曲回数8278〜11164、1.6μmの試料2(2−1〜2−3;撚り有)は、屈曲回数11939〜16669と、金属めっき皮膜3の平均膜厚が薄くなるほど、屈曲回数が増加している。   In the samples 2 to 7 using the polymer fiber conductive wire 1 in comparison with the conventional sample 1 using the copper wire, the number of bendings until the resistance value exceeds 1Ω is 5000 times or more and 10 times or more that of the sample 1. Showed durability. Sample 3 (3-1 to 3-4; average film thickness of 3.0 μm) is compared to the number of flexing cycles 5799 to 8370 of sample 4 (4-1 to 4-4; twisted) having an average film thickness of 6.0 μm. Twisted) is the number of flexing times 8278 to 11164, 1.6 μm of sample 2 (2-1 to 2-3; with twisting), the number of flexing times 11939 to 16669, and the average film thickness of the metal plating film 3 is reduced, The number of bends has increased.

この傾向は、撚り無しの試料5〜7でも同様であり、平均膜厚1.6μmの試料5(5−1〜5−3)は、屈曲回数26318〜115419、平均膜厚3.0μmの試料6(6−1〜6−3)は、屈曲回数11318〜15796、6.0μmの試料7(7−1〜7−3)は、屈曲回数5573〜5995と、特に、金属めっき皮膜3の平均膜厚が3.0μm以下であると、屈曲回数が10000回前後ないしそれ以上となり、耐屈曲性が大幅に向上する。   This tendency is the same for the untwisted samples 5 to 7, and the sample 5 (5-1 to 5-3) having an average film thickness of 1.6 μm is a sample having the number of bendings 26318 to 115419 and an average film thickness of 3.0 μm. 6 (6-1 to 6-3) is the number of bendings 11318 to 15796, and the sample 7 (7-1 to 7-3) of 6.0 μm is the number of bendings 5573 to 5995, in particular, the average of the metal plating film 3 When the film thickness is 3.0 μm or less, the number of bendings is about 10,000 or more and the bending resistance is greatly improved.

また、平均膜厚3.0μm以下では(図5〜8参照)、平均膜厚6.0μmの試料7(図9参照)において、抵抗値が急増する屈曲回数5000前後となっても、初期抵抗値からの抵抗変化やばらつきが小さく、良好な抵抗値特性が得られる。なお、平均膜厚3.0μm以下において、撚り無の試料5、6の方がやや屈曲回数が多くなる傾向が見られ、撚り有の試料2、3では撚りによる応力の影響で屈曲回数が低下したものと推察される。   In addition, when the average film thickness is 3.0 μm or less (see FIGS. 5 to 8), in the sample 7 (see FIG. 9) having an average film thickness of 6.0 μm, the initial resistance is increased even when the resistance value increases rapidly around 5000. Resistance change and variation from the value are small, and good resistance value characteristics can be obtained. In addition, when the average film thickness is 3.0 μm or less, the samples 5 and 6 without twisting tend to have a slightly larger number of bendings, and the samples 2 and 3 with twisting have a lower number of bendings due to the stress of twisting. It is presumed that

図10は、試料5(平均膜厚1.6μm)のポリマー繊維導電線1を樹脂に埋設して作成したサンプルの切断面(SEM像)であり、高強度ポリマー繊維2の各フィラメント21外周全体を覆って、金属めっき皮膜3が均一に形成されていることがわかる。   FIG. 10 is a cut surface (SEM image) of the sample prepared by embedding the polymer fiber conductive wire 1 of the sample 5 (average film thickness 1.6 μm) in the resin, and the entire outer periphery of each filament 21 of the high-strength polymer fiber 2. It can be seen that the metal plating film 3 is uniformly formed.

(試験例2)
次に、試料2、3と同様にして、高強度ポリマー繊維2に金属めっき皮膜3を形成した後に、後処理工程として、加熱処理(200℃、3時間)を行い、ポリマー繊維導電線1を得た(試料8、9)。複数の試料8、9(n=3〜5)について、それぞれ同様の屈曲耐久試験による評価を行い、結果を表4に示した。また、試料9の抵抗値変化を、図11に示した。
(Test Example 2)
Next, after forming the metal plating film 3 on the high-strength polymer fiber 2 in the same manner as in the samples 2 and 3, heat treatment (200 ° C., 3 hours) is performed as a post-processing step, and the polymer fiber conductive wire 1 is formed. Obtained (samples 8 and 9). A plurality of samples 8 and 9 (n = 3 to 5) were evaluated by the same bending durability test, and the results are shown in Table 4. Moreover, the resistance value change of the sample 9 is shown in FIG.

(評価)
表4、図11に明らかなように、熱処理工程を付加することで、試料8(8−1〜8−3;平均膜厚1.6μm)の屈曲回数は12920〜35680、試料9(9−1〜9−5;平均膜厚3.0μm)の屈曲回数は14259〜34098と、熱処理しない試料2、3よりも増加しており、耐屈曲性が向上している。
(Evaluation)
As is apparent from Table 4 and FIG. 11, by adding a heat treatment step, the number of bendings of Sample 8 (8-1 to 8-3; average film thickness 1.6 μm) is 12920 to 35680, and Sample 9 (9− 1-9-5; average film thickness of 3.0 μm) is 14259 to 34098, which is greater than the samples 2 and 3 that are not heat-treated, and the bending resistance is improved.

なお、屈曲耐久試験において、試料2〜9のポリマー繊維導電線1の抵抗値の測定を続けたところ、いずれも1Ω/50cmを超えた後、徐々に増加を続けるものの、比較例1の銅線のように断線することはなかった。   In addition, in the bending endurance test, when the resistance values of the polymer fiber conductive wires 1 of Samples 2 to 9 were continuously measured, all of them exceeded 1 Ω / 50 cm and then gradually increased, but the copper wire of Comparative Example 1 There was no disconnection.

(比較例2)
さらに、前処理工程の効果を確認するため、カチオン系界面活性剤による処理を実施しない以外は、試料5と同様にして、高強度ポリマー繊維2に金属めっき皮膜3を形成したポリマー繊維導電線1を得た(試料10)。図12のように、試料10の表面を観察したところ、部分的に金属めっき皮膜3が形成されていない部位(白抜き)があり、カチオン系界面活性剤を使用しない場合、無電解銅めっき時に未着部分が生じ、電気銅めっきが良好になされないことが判明した。
(Comparative Example 2)
Furthermore, in order to confirm the effect of the pretreatment step, the polymer fiber conductive wire 1 in which the metal plating film 3 is formed on the high-strength polymer fiber 2 in the same manner as the sample 5 except that the treatment with the cationic surfactant is not performed. (Sample 10) was obtained. As shown in FIG. 12, when the surface of the sample 10 was observed, there was a portion where the metal plating film 3 was not partially formed (outlined), and when a cationic surfactant was not used, It was found that an unattached part was produced and the electro copper plating was not performed well.

以上により、本発明によるポリマー繊維導電線1は、微細な合成ポリマー繊維フィラメント21の表面に、均質な薄膜の金属めっき皮膜3が形成されることにより、高い強度と耐屈曲性を備え、従来の電線材料にない耐久性を実現する。合成ポリマー繊維としては、実施例で使用したポリアリレート繊維や、パラ系アラミド繊維(例えば、東レ・デュポン株式会社製 ケブラー(登録商標)等)の他、同等の物性を有する繊維であれば、いずれも好適に用いることができる。   As described above, the polymer fiber conductive wire 1 according to the present invention has high strength and bending resistance by forming the metal plating film 3 of a uniform thin film on the surface of the fine synthetic polymer fiber filament 21. Realizes durability not found in wire materials. As the synthetic polymer fiber, in addition to the polyarylate fiber used in the examples and the para-aramid fiber (for example, Kevlar (registered trademark) manufactured by Toray DuPont Co., Ltd.), any fiber can be used. Can also be suitably used.

1 ポリマー繊維導電線
2 高強度ポリマー繊維
21 フィラメント
3 金属めっき皮膜
31 無電解銅めっき膜
32 電気銅めっき膜
DESCRIPTION OF SYMBOLS 1 Polymer fiber conductive wire 2 High-strength polymer fiber 21 Filament 3 Metal plating film 31 Electroless copper plating film 32 Electro copper plating film

Claims (6)

高強度ポリマー繊維と、該高強度ポリマー繊維の表面に形成された金属めっき皮膜からなるポリマー繊維導電線であって、
上記高強度ポリマー繊維は、引張強度が250kg/mm以上の合成ポリマー繊維からなる多数のフィラメントの集合体であり、上記金属めっき皮膜が、各フィラメントの表面を覆って形成された無電解銅めっき膜および電気銅めっき膜からなるとともに、上記フィラメントの直径が20μm以下かつ上記金属めっき皮膜の平均膜厚が3μm以下であることを特徴とするポリマー繊維導電線。
A high-strength polymer fiber, and a polymer fiber conductive wire comprising a metal plating film formed on the surface of the high-strength polymer fiber,
The high-strength polymer fiber is an aggregate of a large number of filaments composed of synthetic polymer fibers having a tensile strength of 250 kg / mm 2 or more, and the electroless copper plating is formed by covering the surface of each filament with the metal plating film. A polymer fiber conductive wire comprising a film and an electrolytic copper plating film, wherein the filament has a diameter of 20 μm or less and the metal plating film has an average film thickness of 3 μm or less.
上記高強度ポリマー繊維は、ポリアリレート繊維からなる請求項1に記載のポリマー繊維導電線。   The polymer fiber conductive wire according to claim 1, wherein the high-strength polymer fiber is made of polyarylate fiber. 上記金属めっき皮膜は、無電解銅めっき膜上に電気銅めっき膜を形成したものを、加熱処理してなる請求項1または2に記載のポリマー繊維導電線。   The polymer fiber conductive wire according to claim 1 or 2, wherein the metal plating film is obtained by heat-treating an electroless copper plating film on an electroless copper plating film. 上記高強度ポリマー繊維は、カチオン系界面活性剤で前処理されている請求項1ないし3のいずれか1項に記載のポリマー繊維導電線。   The polymer fiber conductive wire according to any one of claims 1 to 3, wherein the high-strength polymer fiber is pretreated with a cationic surfactant. 引張強度が250kg/mm以上の合成ポリマー繊維からなる多数のフィラメントの集合体である高強度ポリマー繊維と、該高強度ポリマー繊維の表面に形成された無電解銅めっき膜および電気銅めっき膜からなる金属めっき皮膜を有するポリマー繊維導電線の製造方法であって、
上記多数のフィラメントの集合体を、湯洗した後、カチオン系界面活性剤を含む溶液で処理する前処理工程と、
上記多数のフィラメントの集合体を、触媒付与液、活性化液および無電解銅めっき液の順に浸漬処理して、前処理した各フィラメントの表面を無電解銅めっき膜で被覆する無電解銅めっき工程と、
上記多数のフィラメントの集合体に、電気銅めっき液中で電気めっきを施して、上記無電解銅めっき膜上に電気銅めっき膜を形成する電気銅めっき工程と、
を備えることを特徴とするポリマー繊維導電線の製造方法。
From a high-strength polymer fiber that is an aggregate of a large number of filaments composed of synthetic polymer fibers having a tensile strength of 250 kg / mm 2 or more, and an electroless copper plating film and an electrolytic copper plating film formed on the surface of the high-strength polymer fiber A method for producing a polymer fiber conductive wire having a metal plating film comprising:
A pre-treatment step of treating the aggregate of a large number of filaments with a solution containing a cationic surfactant after washing with hot water;
An electroless copper plating process in which the aggregate of the filaments is immersed in the order of a catalyst application solution, an activation solution, and an electroless copper plating solution, and the surface of each pretreated filament is covered with an electroless copper plating film. When,
An electrolytic copper plating step of performing electroplating in an electrolytic copper plating solution on the assembly of the numerous filaments to form an electrolytic copper plating film on the electroless copper plating film;
A method for producing a polymer fiber conductive wire.
上記電気銅めっき工程の後に、上記多数のフィラメントの集合体を、250℃以下の温度で加熱処理する後処理工程を備える請求項5に記載のポリマー繊維導電線の製造方法。   The method for producing a polymer fiber conductive wire according to claim 5, further comprising a post-treatment step of heat-treating the aggregate of the plurality of filaments at a temperature of 250 ° C. or less after the electrolytic copper plating step.
JP2015092465A 2015-04-29 2015-04-29 Polymer fiber conductive wire and manufacturing method thereof Pending JP2016212960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092465A JP2016212960A (en) 2015-04-29 2015-04-29 Polymer fiber conductive wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092465A JP2016212960A (en) 2015-04-29 2015-04-29 Polymer fiber conductive wire and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2016212960A true JP2016212960A (en) 2016-12-15

Family

ID=57550205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092465A Pending JP2016212960A (en) 2015-04-29 2015-04-29 Polymer fiber conductive wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2016212960A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183178A (en) * 2018-03-31 2019-10-24 名古屋メッキ工業株式会社 Plating fiber and electric wire
WO2021145180A1 (en) * 2020-01-15 2021-07-22 株式会社クラレ Metal-covered liquid crystal polyester multifilament
JP7562096B2 (en) 2020-12-22 2024-10-07 株式会社クラレ Metal-coated liquid crystal polyester multifilament

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173636A (en) * 1993-12-16 1995-07-11 Toyobo Co Ltd Production of electroless-plated fiber
JP2003129373A (en) * 2001-10-22 2003-05-08 Mitsubishi Materials Corp Metal-coated fiber article and method for producing the same
JP2010100934A (en) * 2008-09-24 2010-05-06 Du Pont Toray Co Ltd Conductive high tenacity fiber yarn and method for manufacturing the same
JP2011231382A (en) * 2010-04-28 2011-11-17 Nagoya Plating Co Ltd Plating liquid for polymer fiber, method for plating polymer fiber using the same, and method for producing the same
JP2014086392A (en) * 2012-10-26 2014-05-12 Teijin Ltd Wire code and cable using the same
JP2014086390A (en) * 2012-10-26 2014-05-12 Teijin Ltd Insulated wire
JP2015203173A (en) * 2014-04-16 2015-11-16 帝人株式会社 Conductor, and high elongation electric wire cord made of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173636A (en) * 1993-12-16 1995-07-11 Toyobo Co Ltd Production of electroless-plated fiber
JP2003129373A (en) * 2001-10-22 2003-05-08 Mitsubishi Materials Corp Metal-coated fiber article and method for producing the same
JP2010100934A (en) * 2008-09-24 2010-05-06 Du Pont Toray Co Ltd Conductive high tenacity fiber yarn and method for manufacturing the same
JP2011231382A (en) * 2010-04-28 2011-11-17 Nagoya Plating Co Ltd Plating liquid for polymer fiber, method for plating polymer fiber using the same, and method for producing the same
JP2014086392A (en) * 2012-10-26 2014-05-12 Teijin Ltd Wire code and cable using the same
JP2014086390A (en) * 2012-10-26 2014-05-12 Teijin Ltd Insulated wire
JP2015203173A (en) * 2014-04-16 2015-11-16 帝人株式会社 Conductor, and high elongation electric wire cord made of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183178A (en) * 2018-03-31 2019-10-24 名古屋メッキ工業株式会社 Plating fiber and electric wire
JP7014414B2 (en) 2018-03-31 2022-02-01 名古屋メッキ工業株式会社 Plating fiber and electric wire
WO2021145180A1 (en) * 2020-01-15 2021-07-22 株式会社クラレ Metal-covered liquid crystal polyester multifilament
JPWO2021145180A1 (en) * 2020-01-15 2021-07-22
CN114981492A (en) * 2020-01-15 2022-08-30 株式会社可乐丽 Metal-coated liquid crystal polyester multifilament yarn
CN114981492B (en) * 2020-01-15 2023-09-08 株式会社可乐丽 Metal coated liquid crystal polyester multifilament yarn
JP7562096B2 (en) 2020-12-22 2024-10-07 株式会社クラレ Metal-coated liquid crystal polyester multifilament

Similar Documents

Publication Publication Date Title
US4634805A (en) Conductive cable or fabric
US8402733B2 (en) Multibundle yarn with reduced torsions
JP2018170267A (en) Electrically conductive carbon nanotube wire having metallic coating and methods of forming the same
JP2018186071A (en) Metal/carbon nanotube composite material wire
JP5255015B2 (en) Electroless copper plating method for polymer fiber
CN101521051A (en) Electrical conductor
JP2016212960A (en) Polymer fiber conductive wire and manufacturing method thereof
JP2007042355A (en) Composite coated copper wire and composite coated enamel copper wire
JP6736573B2 (en) Conductive textile element and method of making the same
JP6399668B1 (en) Fiber conductor, fiber electric wire and manufacturing method thereof
JP5708846B1 (en) Stranded conductor and insulated wire
KR20210112268A (en) Method of manufacturing carbon fiber heating wire and carbon fiber heating wire manufactured thereby
CN110373894A (en) High-performance carbon nanotube/metal composite conductive fiber and preparation method thereof
JP2015203173A (en) Conductor, and high elongation electric wire cord made of the same
JP2014127345A (en) Insulated wire
JP2010037623A (en) Plating method for carbon material and method for producing carbon material
CN107887053A (en) Plating copper cash, plating twisted wire and the manufacture method of insulated electric conductor and plating copper cash
JP6473307B2 (en) Manufacturing method of conductor for electric wire
JP6251114B2 (en) Electric wire cord
JP6805424B2 (en) Method of manufacturing conductive yarn
JPH02189811A (en) Conductor
JP6746842B2 (en) Method for producing cycloolefin yarn with metal coating
JP2014086390A (en) Insulated wire
JP7424042B2 (en) Stranded conductor, insulated wire, and method for manufacturing stranded conductor
KR20240069253A (en) Heated benches and heated bench covers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190910