Nothing Special   »   [go: up one dir, main page]

JP6471625B2 - Superconducting conductive element - Google Patents

Superconducting conductive element Download PDF

Info

Publication number
JP6471625B2
JP6471625B2 JP2015127507A JP2015127507A JP6471625B2 JP 6471625 B2 JP6471625 B2 JP 6471625B2 JP 2015127507 A JP2015127507 A JP 2015127507A JP 2015127507 A JP2015127507 A JP 2015127507A JP 6471625 B2 JP6471625 B2 JP 6471625B2
Authority
JP
Japan
Prior art keywords
conductive element
superconducting
oxide superconducting
superconducting bulk
superconducting conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015127507A
Other languages
Japanese (ja)
Other versions
JP2017011204A (en
Inventor
手嶋 英一
英一 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015127507A priority Critical patent/JP6471625B2/en
Publication of JP2017011204A publication Critical patent/JP2017011204A/en
Application granted granted Critical
Publication of JP6471625B2 publication Critical patent/JP6471625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、酸化物超電導バルク体を利用した超電導通電素子に関する。   The present invention relates to a superconducting conductive element using an oxide superconducting bulk material.

酸化物超電導バルク体を始めとする超電導体は、電気抵抗がゼロの状態で電流を流すことができるので、電流リードや限流器、永久電流スイッチ等の通電素子に用いられる。酸化物超電導バルク体は脆性材料であるセラミックスの1種であり、酸化物超電導バルク体には超電導線材と異なり、それ自体には金属被覆や金属基板のような支持体がない。そこで、酸化物超電導バルク体を用いた通電素子は、特許文献1に開示されているように、主に酸化物超電導バルク体と、半田等で酸化物超電導バルク体の両端に電気的に接続された電極端子と、樹脂等で酸化物超電導バルク体に接着された支持体とから構成される。   Superconductors such as oxide superconducting bulk bodies can be used for current-carrying elements such as current leads, current limiters, and permanent current switches because current can flow with zero electrical resistance. An oxide superconducting bulk is a kind of ceramic that is a brittle material. Unlike a superconducting wire, an oxide superconducting bulk does not have a support such as a metal coating or a metal substrate. Therefore, the current-carrying element using the oxide superconducting bulk body is electrically connected to both ends of the oxide superconducting bulk body mainly with an oxide superconducting bulk body and solder as disclosed in Patent Document 1. Electrode terminals and a support bonded to the oxide superconducting bulk with a resin or the like.

特に、単結晶状のREBaCu7−x中にREBaCuOが分散された酸化物超電導バルク体(ここで、REは希土類元素から選ばれる1種又は2種以上の元素で、酸素欠損量(x)は0.2以下)は、電気抵抗ゼロで流すことのできる単位面積当たりの電流(臨界電流密度)が大きいため、同じ定格電流容量に対して酸化物超電導バルク体の断面積を小さくすることができる。一方で、断面積が小さいことは通電素子を組み立てる際や組み立てた後に酸化物超電導バルク体が破損しやすくなることを意味する。 In particular, an oxide superconducting bulk material in which RE 2 BaCuO 5 is dispersed in single crystal RE 1 Ba 2 Cu 3 O 7-x (where RE is one or more elements selected from rare earth elements) The oxygen deficiency (x) is 0.2 or less) because the current per unit area (critical current density) that can flow with zero electrical resistance is large, so that the oxide superconducting bulk body for the same rated current capacity The cross-sectional area can be reduced. On the other hand, a small cross-sectional area means that the oxide superconducting bulk body is easily damaged when or after the energization element is assembled.

そのため、単結晶状のREBaCu7−x中にREBaCuOが分散された酸化物超電導バルク体を通電素子に利用する際には、酸化物超電導バルク体を1本ずつ支持体で強固に補強される。例えば、非特許文献1には、支持体であるFRPカバーを樹脂接着とボルト締結で二重に固定することで素子全体を補強した、強靭な素子構造を実現することが記載されている。 Therefore, when an oxide superconducting bulk body in which RE 2 BaCuO 5 is dispersed in single-crystal RE 1 Ba 2 Cu 3 O 7-x is used as a current-carrying element, one oxide superconducting bulk body is used. Reinforced strongly by the support. For example, Non-Patent Document 1 describes that a strong element structure in which the entire element is reinforced by double fixing a FRP cover as a support by resin bonding and bolt fastening is described.

特開2008−177245号公報JP 2008-177245 A

低温工学、低温工学・超電導学会、第45巻、第1号(2010)、22頁Low Temperature Engineering, Society of Low Temperature Engineering and Superconductivity, Vol. 45, No. 1 (2010), p. 22

しかし、酸化物超電導バルク体1本毎に支持体を用いて樹脂接着とボルト締結で二重に固定することで強靭な素子構造を実現できるが、複数の超電導通電素子を使用する場合、超電導通電素子の占有する体積がかさばるという問題がある。   However, a strong element structure can be realized by using a support for each oxide superconducting bulk body and fixing it double by resin bonding and bolt fastening. However, when a plurality of superconducting elements are used, There is a problem that the volume occupied by the element is bulky.

そこで、本発明では、上記問題に鑑みてなされたものであり、本発明の目的とするところは、複数の酸化物超電導バルク体を用いたコンパクトで強靭な素子構造を有する超電導通電素子を提供することを目的とすることにある。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a superconducting conductive element having a compact and strong element structure using a plurality of oxide superconducting bulk bodies. The purpose is to.

本発明の超電導バルク体を利用した超電導通電素子は、以下のとおりである。
(1)
単結晶状のREBaCu7−x中にREBaCuOが分散された酸化物超電導バルク体を用いた超電導通電素子であって、
板状、棒状又はI型形状の酸化物超電導バルク体と、
前記酸化物超電導バルク体の両端に電気的に接続されると共に、外部と電気的に接続される外部接続部を有する電極端子と、
少なくとも前記酸化物超電導バルク体と前記電極端子との接続部を覆うように配置され、且つ、当該酸化物超電導バルク体及び当該接続部に接着され、当該酸化物超電導バルク体及び当該接続部を補強する支持体と、
から構成される超電導通電素子ユニットを有し、
複数の前記超電導通電素子ユニットが、前記支持体同士が接触して隣り合うように並列配置されると共に、
前記支持体と前記電極端子とを並列配置方向に貫通するように配置された締結部材によって固定されていることを特徴とする、超電導通電素子。
但し、REは希土類元素から選ばれる1種又は2種以上の元素で、酸素欠損量(x)は0.2以下である。
(2)
前記電極端子の外部接続部は、並列配置方向に隣り合う前記超電導通電素子ユニット同士において、互いにずれて配置されていることを特徴とする、上記(1)に記載の超電導通電素子。
(3)
前記電極端子の外部接続部は、通電方向に対して非対称な構造を有し、かつ並列配置方向に隣り合う前記超電導通電素子ユニット同士において、前記並列配置方向の面に対して、互いに逆向きに配置されていることを特徴とする、上記(1)に記載の超電導通電素子。
(4)
前記酸化物超電導バルク体が板状であり、当該酸化物超電導バルク体の厚み方向に、複数の前記超電導通電素子ユニットが並列配置されていることを特徴とする、上記(1)〜(3)のいずれか1項に記載の超電導通電素子。
Superconducting conductive elements using the superconducting bulk material of the present invention are as follows.
(1)
A superconducting conductive element using an oxide superconducting bulk material in which RE 2 BaCuO 5 is dispersed in single-crystal RE 1 Ba 2 Cu 3 O 7-x ,
A plate-like, rod-like or I-shaped oxide superconducting bulk body;
An electrode terminal having an external connection part electrically connected to both ends of the oxide superconducting bulk body and electrically connected to the outside;
It is arranged so as to cover at least the connection part between the oxide superconducting bulk body and the electrode terminal, and is bonded to the oxide superconducting bulk body and the connection part to reinforce the oxide superconducting bulk body and the connection part. A supporting body,
A superconducting conductive element unit composed of
A plurality of the superconducting conductive element units are arranged in parallel so that the supports are adjacent to each other,
A superconducting conductive element, wherein the superconducting conductive element is fixed by a fastening member disposed so as to penetrate the support and the electrode terminal in a parallel arrangement direction.
However, RE is one or more elements selected from rare earth elements, and the oxygen deficiency (x) is 0.2 or less.
(2)
The superconducting conductive element according to (1) above, wherein the external connection portions of the electrode terminals are arranged so as to be shifted from each other in the superconducting conductive element units adjacent in the parallel arrangement direction.
(3)
The external connection portions of the electrode terminals have a structure that is asymmetric with respect to the energization direction, and the superconducting conductive element units adjacent to each other in the parallel arrangement direction are opposite to each other with respect to the plane in the parallel arrangement direction. The superconducting conductive element according to (1) above, which is disposed.
(4)
The oxide superconducting bulk body is plate-shaped, and a plurality of the superconducting conductive element units are arranged in parallel in the thickness direction of the oxide superconducting bulk body, (1) to (3) above The superconducting conductive element according to any one of the above.

以上説明したように本発明によれば、複数の酸化物超電導バルク体を用いたコンパクトで強靭な素子構造を有する超電導通電素子を提供することができる。   As described above, according to the present invention, it is possible to provide a superconducting conductive element having a compact and strong element structure using a plurality of oxide superconducting bulk bodies.

本発明の第1の実施形態に係る超電導通電素子の一例を示す概略側面図である。It is a schematic side view which shows an example of the superconducting conductive element which concerns on the 1st Embodiment of this invention. 同実施形態に係る超電導通電素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the superconducting conductive element which concerns on the same embodiment. 従来の超電導通電素子を示す概略側面図である。It is a schematic side view which shows the conventional superconducting conductive element. 従来の超電導通電素子を示す概略断面図である。It is a schematic sectional drawing which shows the conventional superconducting conductive element. 本発明の第2の実施形態に係る超電導バルク磁石の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on the 2nd Embodiment of this invention. 同実施形態に係る超電導バルク磁石のさらに別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on the same embodiment. 同実施形態に係る超電導バルク磁石のさらに別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on the same embodiment. 同実施形態に係る超電導バルク磁石のさらに別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on the same embodiment. 同実施形態に係る超電導バルク磁石のさらに別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on the same embodiment. 超電導通電素子の概略構造断面図である。It is a schematic structure sectional view of a superconducting conductive element. 超電導通電素子に用いる酸化物超電導バルク体の形状例を示す斜視図である。It is a perspective view which shows the example of a shape of the oxide superconducting bulk body used for a superconducting conductive element.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

<1.概略構成>
酸化物超電導バルク体を利用した超電導通電素子200は、図7に示すように、酸化物超電導バルク体211、213と、電極端子231〜234と、支持体221、223とから構成される。酸化物超電導バルク体211、213は、例えば図8に示すような板状(210a)、棒状(210b)又はI型形状(210c)に構成されている。電極端子231〜234は、超電導通電素子200を外部と接続するためのものであり、酸化物超電導バルク体211、213の両端に電気的に接続される。外部2a〜2dとの接続を容易にするために、電極端子231〜234にはボルト締結用の穴を設けるのが好ましい。なお、図7において、領域Pは電極端子231〜234の外部2a〜2dとの外部接続部を示している。
<1. Schematic configuration>
As shown in FIG. 7, the superconducting conductive element 200 using the oxide superconducting bulk body includes oxide superconducting bulk bodies 211 and 213, electrode terminals 231 to 234, and supports 221 and 223. The oxide superconducting bulk bodies 211 and 213 are configured, for example, in a plate shape (210a), a rod shape (210b), or an I-shape (210c) as shown in FIG. The electrode terminals 231 to 234 are for connecting the superconducting conductive element 200 to the outside, and are electrically connected to both ends of the oxide superconducting bulk bodies 211 and 213. In order to facilitate connection to the external 2a to 2d, it is preferable to provide bolt fastening holes in the electrode terminals 231 to 234. In FIG. 7, a region P indicates an external connection portion between the electrode terminals 231 to 234 and the outsides 2 a to 2 d.

本実施形態に用いる電極端子231〜234の材質としては、電極端子自体のジュール発熱を小さくできることから、例えば銅、銀、アルミニウム等の電気良導体を用いるのが好ましい。また、電極端子231〜234の表面に錫、銀等のメッキ処理を施してもよい。酸化物超電導バルク体211、213と電極端子231〜234との間は、半田や銀ペースト等を用いることで電気的に接続することができる。酸化物超電導バルク体211、213と電極端子231〜234との接続部でもジュール発熱が生じるため、その接触抵抗は低い方が好ましい。特に酸化物用の半田、例えばセラソルザ(登録商標)等を用いると酸化物超電導バルク体211、213と電極端子231〜234との間の接触抵抗を小さくできるので好ましい。更に、酸化物超電導バルク体211、213の表面、少なくとも電極端子231〜234と接続する部分に銀を1〜10μm程度成膜することで、酸化物超電導バルク体211、213と電極端子231〜234との間の接触抵抗を一層小さくできるので好ましい。   As the material of the electrode terminals 231 to 234 used in the present embodiment, it is preferable to use a good electrical conductor such as copper, silver, or aluminum because the Joule heat generation of the electrode terminal itself can be reduced. Further, the surface of the electrode terminals 231 to 234 may be plated with tin, silver or the like. The oxide superconducting bulk bodies 211 and 213 and the electrode terminals 231 to 234 can be electrically connected by using solder, silver paste, or the like. Since the Joule heat is generated at the connecting portion between the oxide superconducting bulk bodies 211 and 213 and the electrode terminals 231 to 234, the contact resistance is preferably low. In particular, it is preferable to use an oxide solder such as Cerasolzer (registered trademark) because the contact resistance between the oxide superconducting bulk bodies 211 and 213 and the electrode terminals 231 to 234 can be reduced. Furthermore, the oxide superconducting bulk bodies 211 and 213 and the electrode terminals 231 to 234 are formed by depositing silver on the surface of the oxide superconducting bulk bodies 211 and 213, at least on the portion connected to the electrode terminals 231 to 234, about 1 to 10 μm. This is preferable because the contact resistance can be further reduced.

また、酸化物超電導バルク体211、213の断面積が同じでも、電極端子231〜234との接触抵抗を小さくするため、電極端子231〜234との接触面積の大きい板状やI型形状が棒状よりも好ましい。   In addition, even if the cross-sectional areas of the oxide superconducting bulk bodies 211 and 213 are the same, in order to reduce the contact resistance with the electrode terminals 231 to 234, a plate shape or an I-shape with a large contact area with the electrode terminals 231 to 234 is a rod shape. More preferred.

なお、図8の(b)では、断面形状が矩形の棒状を示しているが、本発明はかかる例に限定されず、例えば断面形状が他の多角形や円形であっても構わない。   In addition, in FIG.8 (b), although cross-sectional shape has shown the rectangular rod shape, this invention is not limited to this example, For example, a cross-sectional shape may be another polygonal shape or circular shape.

酸化物超電導バルク体211、213と電極端子231〜234との接続は、電極端子231〜234に溝や穴を設け、その溝や穴に酸化物超電導バルク体211、213を挿入し、酸化物超電導バルク体211、213の挿入された部分全体を半田付け等により電極端子231〜234に接続することが好ましい。酸化物超電導バルク体211、213と電極端子231〜234との接続部の機械的強度については支持体221、223が受け持つ。   The connection between the oxide superconducting bulk bodies 211 and 213 and the electrode terminals 231 to 234 is achieved by providing grooves and holes in the electrode terminals 231 to 234, inserting the oxide superconducting bulk bodies 211 and 213 into the grooves and holes, It is preferable to connect the entire inserted portions of the superconducting bulk bodies 211 and 213 to the electrode terminals 231 to 234 by soldering or the like. The supports 221 and 223 are responsible for the mechanical strength of the connecting portion between the oxide superconducting bulk bodies 211 and 213 and the electrode terminals 231 to 234.

支持体221、223は脆性材料のセラミックスである酸化物超電導バルク体211、213の割れを防止し補強するためのものであり、酸化物超電導バルク体211、213と、酸化物超電導バルク体211、213と電極端子231〜234との接続部の両方を覆うように固定される。支持体221、223の固定方法としては、接着樹脂251、253による樹脂接着とボルト241、243による締結とによって二重に固定するのが好ましい。これにより、強靭な構造とすることができる。接着樹脂251、253は、低温で十分な接着強度があるもの、例えば、エポキシ系樹脂等が好ましい。締結用のボルト241、243としては、非磁性で高強度のステンレス鋼製のものが好ましい。なお、図7において、領域Qは酸化物超電導バルク体211、213と電極端子231〜234との接続部を示している。   The supports 221 and 223 are for preventing and reinforcing cracking of the oxide superconducting bulk bodies 211 and 213 which are ceramics of brittle materials. The oxide superconducting bulk bodies 211 and 213, the oxide superconducting bulk body 211, It fixes so that both the connection part of 213 and the electrode terminals 231-234 may be covered. As a method of fixing the supports 221, 223, it is preferable to fix the support bodies 221 and 223 in a double manner by resin bonding with adhesive resins 251 and 253 and fastening with bolts 241 and 243. Thereby, it can be set as a tough structure. The adhesive resins 251 and 253 are preferably those having sufficient adhesive strength at low temperatures, for example, epoxy resins. The fastening bolts 241 and 243 are preferably made of non-magnetic and high-strength stainless steel. In FIG. 7, a region Q indicates a connection portion between the oxide superconducting bulk bodies 211 and 213 and the electrode terminals 231 to 234.

本実施形態で用いる支持体221、223としては、GFRP(ガラス繊維強化プラスチックス)やCFRP(炭素繊維強化プラスチックス)等の繊維強化材料、ステンレスやNiCr合金、Ti合金等の金属材料、アルミナや窒化珪素等のセラミックス材料等、強度や剛性が大きい材料が好ましく、それらの材料を組み合わせて用いてもよい。   As the supports 221 and 223 used in this embodiment, fiber reinforced materials such as GFRP (glass fiber reinforced plastics) and CFRP (carbon fiber reinforced plastics), metal materials such as stainless steel, NiCr alloy, Ti alloy, alumina, A material having high strength and rigidity, such as a ceramic material such as silicon nitride, is preferable, and these materials may be used in combination.

支持体221、223の熱膨張率の絶対値は、酸化物超電導バルク体211、213の熱膨張率の絶対値よりも大きい方が好ましいが、大き過ぎると逆効果になる可能性がある。酸化物超電導バルク体211、213と支持体221、223との熱膨張率の差は、0.01%〜0.17%の範囲が好ましく、さらに0.04%〜0.10%の範囲がより好ましい。例えば、溶融法で製造された単結晶状のREBaCu相(123相)中にREBaCuO相(211相)が微細分散した酸化物超電導バルク体の場合、300Kから77Kまでの熱膨張率は絶対値で0.16%であるが、同じ温度間での支持体の熱膨張率としては0.17%〜0.33%の範囲が好ましく、さらに0.2%〜0.26%の範囲がより好ましい。 The absolute value of the thermal expansion coefficient of the supports 221 and 223 is preferably larger than the absolute value of the thermal expansion coefficient of the oxide superconducting bulk bodies 211 and 213, but if it is too large, there is a possibility that an adverse effect is obtained. The difference in thermal expansion coefficient between the oxide superconducting bulk bodies 211 and 213 and the supports 221 and 223 is preferably in the range of 0.01% to 0.17%, and more preferably in the range of 0.04% to 0.10%. More preferred. For example, in the case of an oxide superconducting bulk body in which a RE 2 BaCuO 5 phase (211 phase) is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (123 phase) produced by a melting method, from 300K to 77K The thermal expansion coefficient is 0.16% in absolute value, but the thermal expansion coefficient of the support at the same temperature is preferably in the range of 0.17% to 0.33%, more preferably 0.2% to 0%. A range of .26% is more preferred.

本実施形態の超電導通電素子は複数個の超電導通素子ユニットを一体化した構造を有するが、隣り合うユニット間で支持体を共有化して支持体の使用枚数を減らすこともできる。しかし、酸化物超電導バルク体は脆性材料のセラミックスであり、通電素子組立中に割れる可能性があるため、割れ防止の観点からは個々の超電導通電素子毎に支持体を上下から各1枚で挟み込む方が好ましい。   Although the superconducting conductive element of the present embodiment has a structure in which a plurality of superconducting conductive element units are integrated, it is also possible to reduce the number of used supports by sharing a support between adjacent units. However, since the oxide superconducting bulk material is a brittle ceramic material and may break during energization element assembly, from the viewpoint of preventing cracking, each superconducting electroconductive element is sandwiched between the top and bottom one by one. Is preferred.

本実施形態で用いる超電導バルク体は、単結晶状のREBaCu7−x相(123相)中に直径20μm以下のREBaCuO相(211相)等に代表される非超電導相が分散した組織を有するものであればよく、特に、非超電導相が微細分散した組織を有するもの(以下、「QMG材料」ともいう。)が望ましい。ここで、単結晶状というのは、完璧な単結晶でなく、小傾角粒界等の実用に差し支えない欠陥を有するものも包含するという意味である。123相及び211相におけるREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luからなる希土類元素及びそれらの組み合わせで、La、Nd、Sm、Eu、Gdを含む123相は1:2:3の化学量論組成から外れ、REのサイトにBaが一部置換した状態になることもある。また、非超電導相である211相においても、La、Ndは、Y、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luとは幾分異なり、金属元素の比が非化学量論的組成であったり、結晶構造が異なっていることが知られている。 The superconducting bulk body used in the present embodiment is a non-crystal typified by a RE 2 BaCuO 5 phase (211 phase) having a diameter of 20 μm or less in a single-crystal RE 1 Ba 2 Cu 3 O 7-x phase (123 phase). Any material may be used as long as it has a structure in which the superconducting phase is dispersed, and in particular, a material having a structure in which the non-superconducting phase is finely dispersed (hereinafter also referred to as “QMG material”) is desirable. Here, the term “single crystal” means that it is not a perfect single crystal, but also includes those having defects that may impede practical use, such as a low-angle grain boundary. RE in the 123 phase and the 211 phase is a rare earth element composed of Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and combinations thereof, and La, Nd, Sm, Eu, The 123 phase containing Gd deviates from the 1: 2: 3 stoichiometric composition, and Ba may be partially substituted at the RE site. In the 211 phase which is a non-superconducting phase, La and Nd are somewhat different from Y, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and the ratio of metal elements is non-stoichiometric. It is known that it has a theoretical composition or a different crystal structure.

QMG材料中の211相の微細分散は、臨界電流密度(J)向上の観点から極めて重要である。Pt、Rh又はCeの少なくとも一つを微量添加することで、半溶融状態(211相と液相からなる状態)での211相の粒成長を抑制し、結果的に材料中の211相を約1μm程度に微細化する。添加量は、微細化効果が現れる量及び材料コストの観点から、Ptで0.2〜2.0質量%、Rhで0.01〜0.5質量%、Ceで0.5〜2.0質量%が望ましい。添加されたPt、Rh、Ceは123相中に一部固溶する。また、固溶できなかった元素は、BaやCuとの複合酸化物を形成し、材料中に点在することになる。123相中の211相の割合は、J特性及び機械強度の観点から、5〜35体積%が望ましい。また、材料中には、50〜500μm程度のボイド(気泡)を5〜20体積%含むことが一般的であり、さらにAg添加した場合、添加量によって1〜500μm程度のAg又はAg化合物を0体積%超25体積%以下含む。 The fine dispersion of the 211 phase in the QMG material is extremely important from the viewpoint of improving the critical current density (J c ). By adding a trace amount of at least one of Pt, Rh, or Ce, the grain growth of the 211 phase in the semi-molten state (a state composed of the 211 phase and the liquid phase) is suppressed, and as a result, the 211 phase in the material is reduced to about Refine to about 1 μm. The addition amount is 0.2 to 2.0 mass% for Pt, 0.01 to 0.5 mass% for Rh, and 0.5 to 2.0 mass for Ce from the viewpoint of the amount of the effect of miniaturization and the material cost. The mass% is desirable. The added Pt, Rh, and Ce partially dissolve in the 123 phase. In addition, elements that could not be dissolved form a composite oxide with Ba and Cu, and are scattered in the material. 211 phase ratio of 123 phase, from the viewpoint of J c properties and mechanical strength, is desirably 5 to 35% by volume. Further, the material generally contains 5 to 20% by volume of voids (bubbles) of about 50 to 500 μm, and when Ag is added, 0 to about 1 to 500 μm of Ag or Ag compound is added depending on the amount added. More than 25% by volume.

また、結晶成長後の超電導バルク体の酸素欠損量(x)は、0.5〜0.8程度で半導体的あるいは絶縁材料的な抵抗率の温度変化を示す。これを各RE系により350℃〜600℃で100時間程度、酸素雰囲気中においてアニールすることにより酸素が超電導バルク体中に取り込まれ、酸素欠損量(x)は0.2以下となり、良好な超電導特性を示す。このとき、超電導相中には双晶構造ができる。しかしながら、この点を含めここでは単結晶状と呼ぶことにする。   Further, the oxygen deficiency (x) of the superconducting bulk body after crystal growth is about 0.5 to 0.8, and shows a temperature change in resistivity like a semiconductor or an insulating material. This is annealed in an oxygen atmosphere at 350 ° C. to 600 ° C. for about 100 hours by each RE system, so that oxygen is taken into the superconducting bulk body and the oxygen deficiency (x) is 0.2 or less, which is a good superconductivity. Show properties. At this time, a twin structure is formed in the superconducting phase. However, including this point, it is referred to as a single crystal here.

酸化物超電導バルク体を通電素子として利用するには、結晶成長後の酸化物超電導バルク体を薄板形状やI字形状、棒状等に加工し、加工後に酸化物超電導バルク体の酸素アニールを行うことになる。酸化物超電導バルク体の表面に銀を成膜する場合には、銀成膜後に酸素アニールを行った方が銀の密着性が高まり、その結果、酸化物超電導バルク体と電極端子の接触抵抗が低減するので好ましい。   In order to use an oxide superconducting bulk body as a current-carrying element, the oxide superconducting bulk body after crystal growth is processed into a thin plate shape, I shape, rod shape, etc., and oxygen annealing of the oxide superconducting bulk body is performed after processing. become. When silver is deposited on the surface of the oxide superconducting bulk body, the oxygen adhesion is improved by performing oxygen annealing after the silver film is formed. As a result, the contact resistance between the oxide superconducting bulk body and the electrode terminal is reduced. Since it reduces, it is preferable.

<2.超電導通電素子の構成例>
以下に、本発明の実施形態について、図に沿って説明する。
<2. Configuration example of superconducting conductive element>
Embodiments of the present invention will be described below with reference to the drawings.

[2−1.第1の実施形態]
図1A及び図1Bは、本発明の第1の実施形態における超電導通電素子100の一例を示す概念図である。図1A及び図1Bの例では、酸化物超電導バルク体110を用いた6個の超電導通電素子ユニット102が、隣り合う支持体120が接触するように並列配置されている。そして、支持体120と電極端子130との接続部を並列配置方向に貫通するように締結部材140であるボルト142が配置されてナット144によりボルト締結されると共に、支持体120と酸化物超電導バルク体110及び電極端子130とが樹脂接着されている。
[2-1. First Embodiment]
1A and 1B are conceptual diagrams showing an example of the superconducting conductive element 100 according to the first embodiment of the present invention. In the example of FIGS. 1A and 1B, six superconducting conductive element units 102 using the oxide superconducting bulk body 110 are arranged in parallel so that the adjacent supports 120 are in contact with each other. Then, a bolt 142 that is a fastening member 140 is disposed so as to penetrate the connecting portion between the support 120 and the electrode terminal 130 in the parallel arrangement direction and is bolted by the nut 144, and the support 120 and the oxide superconducting bulk The body 110 and the electrode terminal 130 are bonded by resin.

酸化物超電導バルク体110は、単結晶状のREBaCu7−x相(123相)中に直径20μm以下のREBaCuO相(211相)等に代表される非超電導相が分散した組織を有するもので、高い臨界電流密度特性を示す。 The oxide superconducting bulk 110 has a non-superconducting phase represented by a RE 2 BaCuO 5 phase (211 phase) having a diameter of 20 μm or less in a single crystal RE 1 Ba 2 Cu 3 O 7-x phase (123 phase). Has a dispersed structure and exhibits high critical current density characteristics.

個々の超電導通電素子ユニット102を形成している酸化物超電導バルク体110の両端には、銅等の電気良導体からなる電極端子130と半田等で電気的に接続されている。   Both ends of the oxide superconducting bulk body 110 forming each superconducting conductive element unit 102 are electrically connected to electrode terminals 130 made of a good electrical conductor such as copper by solder or the like.

さらに、6個の酸化物超電導バルク体110は、FRP(繊維強化プラスチック)等の高剛性材料からなる支持体120で一体的に補強されている。支持体120は、低温でも接着力を有する樹脂によって支持体120と酸化物超電導バルク体110及び電極端子130とが接着され、更に非磁性で高強度のボルトによる締結で二重に固定されている。これにより、超電導通電素子100として強靭な構造を実現している。   Further, the six oxide superconducting bulk bodies 110 are integrally reinforced with a support body 120 made of a highly rigid material such as FRP (fiber reinforced plastic). The support 120 is bonded to the support 120, the oxide superconducting bulk 110, and the electrode terminal 130 by a resin having an adhesive force even at a low temperature, and further fixed in a double manner by fastening with a non-magnetic high-strength bolt. . Thereby, a strong structure is realized as the superconducting conductive element 100.

なお、図1A及び図1Bでは図示されていないが、本実施形態の超電導通電素子100は、電極端子部においてボルト締結や半田接続等によって外部と接続して用いられる。   Although not shown in FIGS. 1A and 1B, the superconducting conductive element 100 of the present embodiment is used by being connected to the outside at the electrode terminal portion by bolt fastening, solder connection, or the like.

ここで、図1A及び図1Bとの比較のため、図2A及び図2Bに従来の超電導通電素子の概念図を示す。図2A及び図2Bでは、図1A及び図1Bと同じ6個の超電導素子を配置した状態を示している。個々の超電導通電素子ユニット10aは、1個の酸化物超電導バルク体11の両端に電極端子13が電気的に接続され、樹脂接着およびボルト締結で二重に支持体12により補強されている。樹脂接着では、支持体12と酸化物超電導バルク体11及び電極端子13とが接着されている。また、酸化物超電導バルク体11、支持体12及び電極端子13は、これらを貫通するボルト等の締結部材14によって固定されている。   Here, for comparison with FIGS. 1A and 1B, FIGS. 2A and 2B are conceptual diagrams of conventional superconducting conductive elements. 2A and 2B show a state in which the same six superconducting elements as in FIGS. 1A and 1B are arranged. In each superconducting conductive element unit 10a, electrode terminals 13 are electrically connected to both ends of one oxide superconducting bulk body 11, and double reinforced by a support 12 by resin bonding and bolt fastening. In resin bonding, the support body 12, the oxide superconducting bulk body 11, and the electrode terminal 13 are bonded. Further, the oxide superconducting bulk body 11, the support body 12, and the electrode terminal 13 are fixed by a fastening member 14 such as a bolt penetrating them.

なお、図2A及び図2Bでは図示されていないが、個々の超電導通電素子ユニット10aは、電極端子部においてボルト締結や半田接続等によって外部と接続して用いられ、それぞれが外部と接続することによって装置内部で取付位置が固定されることになる。   Although not shown in FIGS. 2A and 2B, each superconducting conductive element unit 10a is used by being connected to the outside by bolt fastening, solder connection or the like at the electrode terminal portion, and by connecting each to the outside. The mounting position is fixed inside the apparatus.

図2A及び図2Bでは、個々の酸化物超電導バルク体11が個別に補強されている。すなわち複数個の超電導通電素子ユニット10aの支持体12のそれぞれが個別にボルト締結されているため、超電導通電素子ユニット10aのボルト締結部をメンテナンスすることを想定して、複数個の超電導通電素子ユニット10aをお互いに空間的に離して配置する必要がある。そのため、図2A及び図2Bに示すように超電導通電素子ユニット10aが空間的に占有する体積が大きくなって嵩張り、超電導通電素子ユニット10aの並列配置方向の厚さが厚くなる。   2A and 2B, the individual oxide superconducting bulk bodies 11 are individually reinforced. That is, since each of the support bodies 12 of the plurality of superconducting conductive element units 10a is individually bolted, the plurality of superconducting conductive element units are assumed to maintain the bolt fastening portion of the superconducting conductive element unit 10a. It is necessary to arrange 10a spatially apart from each other. Therefore, as shown in FIG. 2A and FIG. 2B, the volume that the superconducting conductive element unit 10a occupies spatially increases and becomes bulky, and the thickness of the superconducting conductive element unit 10a in the parallel arrangement direction increases.

これに対して、本実施形態の構造を有する図1A及び図1Bでは、6個の酸化物超電導バルク体110が一体的に支持体120で補強されているので、超電導通電素子ユニット102の並列配置方向の厚さが薄くなっている。すなわち、超電導通電素子100の占有体積が小さく、コンパクトな通電素子が実現できている。   On the other hand, in FIGS. 1A and 1B having the structure of the present embodiment, the six oxide superconducting bulk bodies 110 are integrally reinforced by the support body 120, so that the superconducting conductive element units 102 are arranged in parallel. The direction thickness is thin. In other words, the superconducting conductive element 100 occupies a small volume, and a compact energizing element can be realized.

図1A及び図1Bのような構造の超電導通電素子100の場合、1個当たりの超電導通電素子ユニット102の支持体120の厚さを、図2A及び図2Bの超電導通電素子ユニット10aにおける個々の支持体12の厚さと同じとしても、支持体全体を一体的に固定することで、通電素子全体の機械的強度は大きく向上する。逆に、1個当たりの超電導通電素子ユニット102の支持体120の厚さを、図2A及び図2Bの超電導通電素子100における個々の支持体の厚さよりも薄くしても、超電導通電素子全体としての強度を保つことができる。すなわち、単に図2A及び図2Bの超電導通電素子ユニット10aのボルト締結部をなくしたと仮定して隙間なく重ねた場合よりも、図1A及び図1Bの方が薄くすることも可能である。   In the case of the superconducting conductive element 100 having the structure as shown in FIGS. 1A and 1B, the thickness of the support 120 of the superconducting conductive element unit 102 per unit is determined as the individual support in the superconducting conductive element unit 10a of FIGS. 2A and 2B. Even if the thickness of the body 12 is the same, the mechanical strength of the entire energization element is greatly improved by fixing the entire support body integrally. On the contrary, even if the thickness of the support 120 of each superconducting conductive element unit 102 is smaller than the thickness of each support in the superconducting conductive element 100 of FIGS. 2A and 2B, the superconducting conductive element as a whole The strength of can be kept. That is, it is possible to make the thickness of FIG. 1A and FIG. 1B thinner than the case where the bolt fastening portion of the superconducting conductive element unit 10a of FIG. 2A and FIG.

N個の超電導通電素子ユニット102を一体的に支持する場合には、個々の支持体120の厚さをNの3乗根分の1に薄くしても、通電素子として同程度の機械的強度を有する。従って、本実施形態により、2個以上の複数の酸化物超電導バルク体110を用いたコンパクトで強靭な素子構造を有する超電導通電素子100を提供することができる。例えば、6個の酸化物超電導バルク体110を並列した場合は、0.55倍程度まで薄くしても、機械的強度を確保できる。   When the N superconducting conductive element units 102 are integrally supported, even if the thickness of each support 120 is reduced to 1/3 of the third root of N, the mechanical strength of the same level as the energization element is obtained. Have Therefore, according to this embodiment, it is possible to provide a superconducting conductive element 100 having a compact and strong element structure using two or more oxide superconducting bulk bodies 110. For example, when six oxide superconducting bulk bodies 110 are arranged in parallel, the mechanical strength can be secured even if the thickness is reduced to about 0.55 times.

[2−2.第2の実施形態]
次に、図3A〜図6に基づいて、本発明の第2の実施形態に係る超電導通電素子について説明する。
[2-2. Second Embodiment]
Next, a superconducting conductive element according to a second embodiment of the present invention will be described with reference to FIGS. 3A to 6.

図3Aは、本実施形態に係る超電導通電素子200Aの一態様を示す概念図である。超電導通電素子200Aは、図3Aに示すように、酸化物超電導バルク体を支持する支持体221a、223aと、外部との外部接続部231a〜234aをそれぞれ有する電極端子231〜234とを備える。また、超電導通電素子200Aの支持体221a、223a及び電極端子231〜234は、ボルト等の締結部材240によって固定されている。図3A上側に示すように、酸化物超電導バルク体を用いた超電導通電素子200Aでは、製作のし易さや配置のし易さの点から通電方向に対して通電素子全体や電極端子が対称的な構造を有する。   FIG. 3A is a conceptual diagram showing one aspect of the superconducting conductive element 200A according to the present embodiment. As shown in FIG. 3A, superconducting conductive element 200 </ b> A includes supports 221 a and 223 a that support the oxide superconducting bulk body, and electrode terminals 231 to 234 having external connection portions 231 a to 234 a, respectively. Further, the supports 221a and 223a and the electrode terminals 231 to 234 of the superconducting conductive element 200A are fixed by a fastening member 240 such as a bolt. As shown in the upper side of FIG. 3A, in the superconducting conductive element 200A using an oxide superconducting bulk body, the entire energizing element and the electrode terminals are symmetrical with respect to the energizing direction from the viewpoint of ease of manufacture and arrangement. It has a structure.

超電導通電素子200Aは、図3A下側のように、通電方向に対して対称的な構造を有する超電導通電素子ユニット202Aを配列した形で、複数個の超電導通電素子ユニット202Aを一体化して構成されている。このとき、超電導通電素子200Aを並列配置方向から見ると、電極端子231〜234の外部との外部接続部231a〜234aとは、ほぼ重なった状態となる。これにより、超電導通電素子200Aの占有体積が小さく、コンパクトな通電素子を実現できる。   The superconducting conductive element 200A is formed by integrating a plurality of superconducting conductive element units 202A in an array of superconducting conductive element units 202A having a symmetric structure with respect to the energization direction as shown in the lower side of FIG. 3A. ing. At this time, when the superconducting conductive element 200A is viewed from the parallel arrangement direction, the external connection portions 231a to 234a to the outside of the electrode terminals 231 to 234 are substantially overlapped. Thereby, the occupied volume of the superconducting conductive element 200A is small, and a compact energizing element can be realized.

ここで、複数個の超電導通電素子ユニットを用いて形成したコンパクトな超電導通電素子では、コンパクトな故に狭い空間において複数個所にて外部と接続する必要があるが、電極端子間がお互いに干渉するために、電極端子を介した外部との接続が難しくなる。そこで、図3Bに示すように、各超電導通電素子ユニット202Bを、通電方向に対して電極端子の外部との外部接続部231b、232b及び233b、234bが非対称的な構造を有するように構成する。そして、各超電導通電素子ユニット202Bを配列したときに、電極端子の外部との外部接続部231b、232b及び233b、234bが、並列配置方向からみて少なくとも一部がずれて配置されるように超電導通電素子200Bを構成する。このように複数個の超電導通電素子ユニット202Bを一体的化することで超電導通電素子200Bを構成することにより、電極端子が外部と接続しやすくなるのでより好ましい。   Here, a compact superconducting conductive element formed using a plurality of superconducting conductive element units needs to be connected to the outside at a plurality of locations in a narrow space due to its compactness, but the electrode terminals interfere with each other. In addition, it is difficult to connect to the outside via the electrode terminals. Therefore, as shown in FIG. 3B, each superconducting conductive element unit 202B is configured such that the external connection portions 231b, 232b and 233b, 234b to the outside of the electrode terminals have an asymmetric structure with respect to the energization direction. Then, when the superconducting conductive element units 202B are arranged, the superconducting conductive elements are arranged such that the external connection portions 231b, 232b and 233b, 234b to the outside of the electrode terminals are arranged at least partially deviated from the parallel arrangement direction. The element 200B is configured. Thus, it is more preferable that the superconducting conductive element 200B is configured by integrating the plurality of superconducting conductive element units 202B so that the electrode terminals can be easily connected to the outside.

図4〜図6は、本実施形態に係る超電導通電素子の別の態様を示す概念図である。図4は、図3Bと同等、電極端子を通電方向に対して非対象に配置した例であり、超電導通電素子ユニットを並列配置方向から見た状態を示す。図4に示す超電導通電素子300は、電極端子331〜334を通電方向に対して斜め方向に設けることで、並列配置方向から見て電極端子331と333、電極端子332と334が、それぞれ完全に重なり合わないように構成されている。これにより、電極端子と外部との接続が行い易くなる。なお、本発明は、図3Bや図4に示す例に限定されず、電極端子が通電方向に非対称な構造であればよい。   4-6 is a conceptual diagram which shows another aspect of the superconducting conductive element which concerns on this embodiment. FIG. 4 shows an example in which the electrode terminals are arranged in a non-target manner with respect to the energization direction, as in FIG. In the superconducting conductive element 300 shown in FIG. 4, the electrode terminals 331 to 334 are provided obliquely with respect to the energization direction, so that the electrode terminals 331 and 333 and the electrode terminals 332 and 334 are completely separated when viewed from the parallel arrangement direction. It is configured not to overlap. This facilitates the connection between the electrode terminal and the outside. In addition, this invention is not limited to the example shown to FIG. 3B and FIG. 4, What is necessary is just an electrode terminal asymmetrical to an electricity supply direction.

また、電極端子の相互干渉を緩和するための他の構成として、例えば図5に示すように、通電方向に対して電極端子431〜434を上下非対称な構造としてもよい。図3Bや図4では、通電方向に対して超電導通電素子ユニットを配列した面に関して電極端子が左右非対称な構造であったが、図5では、通電方向に対して電極端子が上下非対称な構造の2個の超電導通電素子ユニット402a、402bを一体化している。このように、超電導通電素子ユニット402a、402bの電極端子431〜434の外部接続部が離隔するように並列配置し、電極端子431と433、電極端子432と434の間隔を広げることで、電極端子431〜434の相互干渉を緩和することができる。   As another configuration for reducing the mutual interference between the electrode terminals, for example, as shown in FIG. 5, the electrode terminals 431 to 434 may have a vertically asymmetric structure with respect to the energization direction. 3B and 4, the electrode terminals are asymmetrical with respect to the surface on which the superconducting conductive element units are arranged with respect to the energization direction. However, in FIG. 5, the electrode terminals are asymmetric with respect to the energization direction. Two superconducting conductive element units 402a and 402b are integrated. In this way, the external connection portions of the electrode terminals 431 to 434 of the superconducting conductive element units 402a and 402b are arranged in parallel so as to be separated from each other, and the distance between the electrode terminals 431 and 433 and the electrode terminals 432 and 434 is increased, thereby Mutual interference between 431 to 434 can be reduced.

このように、並列配置方向に隣接する電極端子の相互干渉を緩和する構造であれば、電極端子は、通電方向に対して右非対称あるいは上下非対称のどちらの構造であってもよい。また、図6に示す超電導通電素子500のように3個の超電導通電素子ユニット502を一体化する場合には、通電方向に対して電極端子(535、536)が対称な構造のユニット502cと、電極端子(531〜534)が上下非対称な構造のユニット502a、502bの組み合わせになっている。このように、電極端子531〜536の相互干渉を緩和する構造であれば、電極端子531〜536が対象構造と非対称構造とされた超電導通電素子ユニットを組み合わせた構造であってもよい。   As described above, the electrode terminal may have either a right asymmetrical structure or a vertically asymmetrical structure with respect to the energization direction as long as it has a structure that reduces mutual interference between electrode terminals adjacent in the parallel arrangement direction. Further, when three superconducting conductive element units 502 are integrated like the superconducting conductive element 500 shown in FIG. 6, the unit 502c having a structure in which the electrode terminals (535, 536) are symmetrical with respect to the energizing direction; The electrode terminals (531 to 534) are a combination of units 502a and 502b having a vertically asymmetric structure. As described above, the electrode terminals 531 to 536 may have a structure in which superconducting conductive element units in which the target terminals 531 to 536 have an asymmetric structure are combined as long as the mutual interference of the electrode terminals 531 to 536 is mitigated.

(実施例1)
Ptを0.5質量%含み、かつDyBaCu中にDyBaCuOが微細分散した単結晶状の酸化物超電導バルク体に機械的加工を施して、幅3mm、厚さ0.8mm、長さ40mmの板状試料を製作した。この板状試料の表面に銀を約1μm成膜し、400℃で100hほど酸素気流中にて熱処理を行った後、酸化物用半田にて両端に図3Bのような形状の銅製電極端子を接続し、樹脂にてGFRP製支持体にて接着した。樹脂接着により、支持体と酸化物超電導バルク体及び電極端子とが接着された。同様のものを6個製作し、共通のボルト穴を介して6個をまとめてボルト頭厚3mmとナット厚3mmのボルトとナットを用いてボルト締結した。GFRP製支持体の肉厚は1.5mmで、厚さ3mmの銅製電極端子を含めた並列配置方向の超電導通電素子ユニット1個当たりの厚さは6mmで、6個まとめた全体の超電導通電素子における並列配置方向の厚さは42mm(ボルト締結部含む)であった。
Example 1
A single crystal oxide superconducting bulk body containing 0.5% by mass of Pt and in which Dy 2 BaCuO 5 is finely dispersed in Dy 1 Ba 2 Cu 3 O y is mechanically processed to have a width of 3 mm and a thickness of A plate-like sample having a length of 0.8 mm and a length of 40 mm was produced. After forming a silver film on the surface of this plate-shaped sample at a thickness of about 1 μm and performing heat treatment in an oxygen stream at 400 ° C. for about 100 hours, copper electrode terminals having a shape as shown in FIG. They were connected and adhered by a GFRP support with resin. The support, the oxide superconducting bulk body, and the electrode terminal were bonded by resin bonding. Six of the same ones were produced, and the six were assembled together through a common bolt hole, and bolted using bolts and nuts having a bolt head thickness of 3 mm and a nut thickness of 3 mm. The thickness of the support made of GFRP is 1.5 mm, and the thickness of each superconducting conductive element unit in the parallel arrangement direction including the copper electrode terminal having a thickness of 3 mm is 6 mm. The thickness in the parallel arrangement direction was 42 mm (including the bolt fastening portion).

一方、比較例として、同様の超電導通電素子を1個ずつ個別に製作し、6個配列した場合には、並列配置方向の厚さは92mmであった。これより、本実施例では超電導通電素子が占有する体積が約半分となった。   On the other hand, as a comparative example, when the same superconducting conductive elements were individually manufactured one by one and arranged six, the thickness in the parallel arrangement direction was 92 mm. Thus, in this example, the volume occupied by the superconducting conductive element was reduced to about half.

さらに、この超電導通電素子を液体窒素中で通電試験を行ったが、10回繰り返しても通電特性に変化は見られなかった。このことは、厚さが0.8mmと薄い脆性材料の酸化物超電導バルク体を用いて超電導通電素子を作製したにも関わらず、通電試験時の機械的取り扱いや冷却時の熱衝撃に対して、酸化物超電導バルク体が劣化していないことを示している。すなわち、本構造の超電導通電素子が強靭な構造を有することが分かった。   Furthermore, an energization test was performed on this superconducting conductive element in liquid nitrogen, but no change was observed in the energization characteristics even after repeated 10 times. This means that despite the fact that a superconducting conducting element was fabricated using a thin brittle oxide superconducting bulk material with a thickness of 0.8 mm, the mechanical handling during the energization test and the thermal shock during cooling This indicates that the oxide superconducting bulk material has not deteriorated. That is, it was found that the superconducting conductive element having this structure has a tough structure.

本結果から、本発明により、複数の酸化物超電導バルク体を用いたコンパクトな超電導通電素子を提供することができることが判る。   From this result, it can be seen that the present invention can provide a compact superconducting conductive element using a plurality of oxide superconducting bulk bodies.

(実施例2)
CeOを1質量%およびAgを10質量%含み、かつGdBaCu中にGdBaCuOが微細分散した単結晶状の酸化物超電導バルク体に機械的加工を施して、図8の(c)のような中央部が幅4mm、厚さ4mmで、長さ58mmのI型形状試料を製作した。このI型形状試料の表面に銀を約2μm成膜し、400℃で100hほど酸素気流中にて熱処理を行った後、酸化物用半田にて両端に銅製電極端子を接続し、樹脂にてGFRP製支持体にて接着した。銅製電極端子は図3Bのように通電方向に対して非対称な構造とした。同様のものを2個製作し、非対称な電極端子が逆方向になるように重ね、共通のボルト穴を介して2個をまとめてボルト締結した。GFRP製支持体の肉厚は4mmであるが、2個の支持体が接する面の肉厚だけを2mmと薄くした。その結果、銅製電極端子を含めた並列配置方向の1個当たりの厚さは14mmで、2個まとめた全体の超電導通電素子における並列配置方向の厚さは36mm(ボルト締結部含む)であった。
(Example 2)
A single crystal oxide superconducting bulk body containing 1 % by mass of CeO 2 and 10% by mass of Ag and having Gd 2 BaCuO 5 finely dispersed in Gd 1 Ba 2 Cu 3 O y is subjected to mechanical processing, As shown in FIG. 8 (c), an I-shaped sample having a width of 4 mm, a thickness of 4 mm, and a length of 58 mm was manufactured. After forming a silver film on the surface of this I-shaped sample with a thickness of about 2 μm and heat-treating at 400 ° C. for about 100 hours in an oxygen stream, copper electrode terminals are connected to both ends with an oxide solder, and resin is used. It adhered with the support body made from GFRP. The copper electrode terminal had an asymmetric structure with respect to the energization direction as shown in FIG. 3B. Two similar ones were produced, overlapped so that the asymmetric electrode terminals were in the opposite direction, and bolted together using a common bolt hole. The thickness of the GFRP support was 4 mm, but only the thickness of the surface where the two supports contacted was reduced to 2 mm. As a result, the thickness per one in the parallel arrangement direction including the copper electrode terminals was 14 mm, and the thickness in the parallel arrangement direction in the entire superconducting conductive element assembled into two pieces was 36 mm (including the bolt fastening portion). .

一方、比較例として、GFRP製支持体のどの面の肉厚も4mmである以外は同様の超電導通電素子を1個ずつ個別に製作し、2個配列した場合には、並列配置方向の厚さは52mmであった。本実施例では超電導通電素子が占有する体積が約3割減少した。さらに、電極端子の外部との外部接続部を通電方向に対して非対称な構造とし、逆方向に配置したことで、外部との接続が容易になったことも確認できた。   On the other hand, as a comparative example, except that the thickness of any surface of the GFRP support is 4 mm, when the same superconducting conductive elements are individually manufactured one by one and arranged in two, the thickness in the parallel arrangement direction Was 52 mm. In this example, the volume occupied by the superconducting conductive element was reduced by about 30%. Furthermore, it was confirmed that the external connection portion of the electrode terminal with the outside has an asymmetric structure with respect to the energization direction and is arranged in the reverse direction, thereby facilitating connection with the outside.

さらに、この超電導通電素子について液体窒素中で通電試験を行ったが、20回繰り返しても通電特性に変化は見られなかった。このことは、脆性材料の酸化物超電導バルク体を用いて超電導通電素子を作製したにも関わらず、通電試験時の機械的取り扱いや冷却時の熱衝撃に対して、酸化物超電導バルク体が劣化していないことを示している。すなわち、本構造の超電導通電素子が強靭な構造を有することが分かった。   Further, the current conduction test was performed on the superconducting conductive element in liquid nitrogen, but no change was observed in the current conduction characteristics even when repeated 20 times. This is because the oxide superconducting bulk body deteriorates due to mechanical handling during the energization test and thermal shock during cooling, even though the superconducting conductive element was fabricated using the oxide superconducting bulk body made of brittle material. Indicates that it has not. That is, it was found that the superconducting conductive element having this structure has a tough structure.

本結果から、本発明により、複数の酸化物超電導バルク体を用いたコンパクトな超電導通電素子を提供することができることが判る。   From this result, it can be seen that the present invention can provide a compact superconducting conductive element using a plurality of oxide superconducting bulk bodies.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

100 超電導通電素子
102 超電導通電素子ユニット
110 酸化物超電導バルク体
120 支持体
130 電極端子
140 締結部材
251、253 接着樹脂
DESCRIPTION OF SYMBOLS 100 Superconducting conductive element 102 Superconducting conductive element unit 110 Oxide superconducting bulk body 120 Support body 130 Electrode terminal 140 Fastening member 251, 253 Adhesive resin

Claims (4)

単結晶状のREBaCu7−x中にREBaCuOが分散された酸化物超電導バルク体を用いた超電導通電素子であって、
板状、棒状又はI型形状の酸化物超電導バルク体と、
前記酸化物超電導バルク体の両端に電気的に接続されると共に、外部と電気的に接続される外部接続部を有する電極端子と、
少なくとも前記酸化物超電導バルク体と前記電極端子との接続部を覆うように配置され、且つ、当該酸化物超電導バルク体及び当該接続部に接着され、当該酸化物超電導バルク体及び当該接続部を補強する支持体と、
から構成される超電導通電素子ユニットを有し、
複数の前記超電導通電素子ユニットが、前記支持体同士が接触して並列配置されると共に、
前記支持体と前記電極端子とを並列配置方向に貫通するように配置された締結部材によって固定されていることを特徴とする、超電導通電素子。
但し、REは希土類元素から選ばれる1種又は2種以上の元素で、酸素欠損量(x)は0.2以下である。
A superconducting conductive element using an oxide superconducting bulk material in which RE 2 BaCuO 5 is dispersed in single-crystal RE 1 Ba 2 Cu 3 O 7-x ,
A plate-like, rod-like or I-shaped oxide superconducting bulk body;
An electrode terminal having an external connection part electrically connected to both ends of the oxide superconducting bulk body and electrically connected to the outside;
It is arranged so as to cover at least the connection part between the oxide superconducting bulk body and the electrode terminal, and is bonded to the oxide superconducting bulk body and the connection part to reinforce the oxide superconducting bulk body and the connection part. A supporting body,
A superconducting conductive element unit composed of
A plurality of the superconducting conductive element units are arranged in parallel so that the supports are in contact with each other,
A superconducting conductive element, wherein the superconducting conductive element is fixed by a fastening member disposed so as to penetrate the support and the electrode terminal in a parallel arrangement direction.
However, RE is one or more elements selected from rare earth elements, and the oxygen deficiency (x) is 0.2 or less.
前記電極端子の外部接続部は、並列配置方向に隣り合う前記超電導通電素子ユニット同士において、互いにずれて配置されていることを特徴とする、請求項1に記載の超電導通電素子。   2. The superconducting conductive element according to claim 1, wherein the external connection portions of the electrode terminals are arranged so as to be shifted from each other in the superconducting conductive element units adjacent in the parallel arrangement direction. 前記電極端子の外部接続部は、通電方向に対して非対称な構造を有し、かつ並列配置方向に隣り合う前記超電導通電素子ユニット同士において、前記並列配置方向の面に対して、互いに逆向きに配置されていることを特徴とする、請求項1に記載の超電導通電素子。   The external connection portions of the electrode terminals have a structure that is asymmetric with respect to the energization direction, and the superconducting conductive element units adjacent to each other in the parallel arrangement direction are opposite to each other with respect to the plane in the parallel arrangement direction. The superconducting conductive element according to claim 1, wherein the superconducting conductive element is disposed. 前記酸化物超電導バルク体が板状であり、当該酸化物超電導バルク体の厚み方向に、複数の前記超電導通電素子ユニットが並列配置されていることを特徴とする、請求項1〜3のいずれか1項に記載の超電導通電素子。
The oxide superconducting bulk body is plate-shaped, and a plurality of the superconducting conductive element units are arranged in parallel in the thickness direction of the oxide superconducting bulk body. The superconducting conductive element according to Item 1.
JP2015127507A 2015-06-25 2015-06-25 Superconducting conductive element Active JP6471625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127507A JP6471625B2 (en) 2015-06-25 2015-06-25 Superconducting conductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015127507A JP6471625B2 (en) 2015-06-25 2015-06-25 Superconducting conductive element

Publications (2)

Publication Number Publication Date
JP2017011204A JP2017011204A (en) 2017-01-12
JP6471625B2 true JP6471625B2 (en) 2019-02-20

Family

ID=57761787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127507A Active JP6471625B2 (en) 2015-06-25 2015-06-25 Superconducting conductive element

Country Status (1)

Country Link
JP (1) JP6471625B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127463B2 (en) * 2018-10-02 2022-08-30 日本製鉄株式会社 Oxide superconducting bulk conductor
JP7335501B2 (en) * 2019-10-01 2023-08-30 日本製鉄株式会社 Oxide superconducting bulk conductor and current-carrying element
JP7419208B2 (en) * 2020-09-30 2024-01-22 株式会社東芝 Superconducting current lead and superconducting magnet device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565192A (en) * 1978-11-09 1980-05-16 Japan Atomic Energy Res Inst Toroidal coil
JPS6022804B2 (en) * 1979-06-07 1985-06-04 三菱電機株式会社 toroidal coil
JPH01133306A (en) * 1987-11-18 1989-05-25 Toshiba Corp Oxide superconducting coil
JPH06333728A (en) * 1993-05-27 1994-12-02 Mitsubishi Electric Corp Bi-base oxide superconductor for current lead and manufacture thereof
JP3357820B2 (en) * 1997-09-12 2002-12-16 株式会社東芝 Connection device and superconducting magnet
JP4201331B2 (en) * 2003-06-19 2008-12-24 住友電気工業株式会社 Phase branching structure of multiphase superconducting cable
JP4603331B2 (en) * 2003-12-02 2010-12-22 新日本製鐵株式会社 Oxide superconductor processing method, oxide superconducting energization element and superconducting magnet
JP4612311B2 (en) * 2004-01-28 2011-01-12 新日本製鐵株式会社 Oxide superconductor current lead
JP5037146B2 (en) * 2007-01-16 2012-09-26 新日本製鐵株式会社 Oxide superconductor energization element and manufacturing method thereof
JP5037193B2 (en) * 2007-03-29 2012-09-26 新日本製鐵株式会社 Oxide superconducting conductor conducting element
JP5233391B2 (en) * 2008-04-28 2013-07-10 新日鐵住金株式会社 Oxide superconductor conducting element
JP4865081B2 (en) * 2009-12-08 2012-02-01 新日本製鐵株式会社 Oxide superconducting bulk magnet member
JP5421170B2 (en) * 2010-03-30 2014-02-19 株式会社東芝 Superconducting current lead
KR101642878B1 (en) * 2010-05-20 2016-07-27 연세대학교 산학협력단 Conductor terminal and conducting device for high current
JP6247949B2 (en) * 2014-02-10 2017-12-13 古河電気工業株式会社 Multilayer superconductor

Also Published As

Publication number Publication date
JP2017011204A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
JP6471625B2 (en) Superconducting conductive element
JP5921940B2 (en) Superconducting coil conductive cooling plate and superconducting coil device
JP5724029B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP5022279B2 (en) Oxide superconducting current lead
JP2012256744A (en) Superconductive coil
JP5011181B2 (en) Oxide superconducting current lead
JP5675232B2 (en) Superconducting current lead
JP4402928B2 (en) Oxide superconductor conducting element
JP2008305765A (en) Oxide superconductive current lead
JP4612311B2 (en) Oxide superconductor current lead
JP5037193B2 (en) Oxide superconducting conductor conducting element
KR20170030233A (en) High Temperature Superconductive Wires
JP5233391B2 (en) Oxide superconductor conducting element
JP5278109B2 (en) Oxide superconductor conducting element
JP2012064323A (en) Superconductive current lead
JPH07283023A (en) Superconducting oxide current lead
US20120208702A1 (en) Composite with coated conductor
JP7127463B2 (en) Oxide superconducting bulk conductor
JP6125350B2 (en) Superconducting wire connection and superconducting current lead
JP4901585B2 (en) Oxide superconducting current lead
JP7335501B2 (en) Oxide superconducting bulk conductor and current-carrying element
JP7277721B2 (en) Oxide superconducting bulk conductor and its manufacturing method
JP6493547B2 (en) Oxide superconducting bulk magnet
JP5230925B2 (en) Superconducting current-carrying member with excellent deformability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R151 Written notification of patent or utility model registration

Ref document number: 6471625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350