Nothing Special   »   [go: up one dir, main page]

JP5037193B2 - Oxide superconducting conductor conducting element - Google Patents

Oxide superconducting conductor conducting element Download PDF

Info

Publication number
JP5037193B2
JP5037193B2 JP2007089435A JP2007089435A JP5037193B2 JP 5037193 B2 JP5037193 B2 JP 5037193B2 JP 2007089435 A JP2007089435 A JP 2007089435A JP 2007089435 A JP2007089435 A JP 2007089435A JP 5037193 B2 JP5037193 B2 JP 5037193B2
Authority
JP
Japan
Prior art keywords
oxide
heat transfer
oxide superconductor
transfer body
superconducting conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007089435A
Other languages
Japanese (ja)
Other versions
JP2008251720A (en
Inventor
英一 手嶋
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007089435A priority Critical patent/JP5037193B2/en
Publication of JP2008251720A publication Critical patent/JP2008251720A/en
Application granted granted Critical
Publication of JP5037193B2 publication Critical patent/JP5037193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は電流リードや限流器、永久電流スイッチ、通電マグネット等に使用する酸化物超電導体を用いた酸化物超電導導体通電素子に関する。   The present invention relates to an oxide superconducting conductor conducting element using an oxide superconductor used for a current lead, a current limiter, a permanent current switch, a conducting magnet, and the like.

酸化物超電導体は、電気抵抗がゼロで大電流を流せるので、電流リードや限流器、永久電流スイッチ、通電マグネット等の通電素子に用いられる。特許文献1に、超電導マグネット、超電導電流リードなどへの超電導導体の応用のためにはより長い導体を得ることが必要である。ところが、現状の超電導体の寸法は期待されるものよりはるかに短いと記載されているように、超電導導体の長さが短いという問題があった。酸化物超電導体通電素子において、酸化物超電導導体部を長尺化することは、電流リードでは熱侵入の低下、限流器や永久電流スイッチでは常電導抵抗値の増大、通電マグネットでは磁場強度の増大という高性能化に繋がる。   Oxide superconductors can be used for energizing elements such as current leads, current limiters, permanent current switches, and energizing magnets because they can flow large currents with zero electrical resistance. In Patent Document 1, it is necessary to obtain a longer conductor for the application of a superconducting conductor to a superconducting magnet, a superconducting current lead, or the like. However, there is a problem that the length of the superconducting conductor is short as it is described that the size of the current superconductor is much shorter than expected. In oxide superconductor energization elements, lengthening the oxide superconductor portion reduces heat penetration for current leads, increases normal conduction resistance for current limiters and permanent current switches, and increases magnetic field strength for current magnets. This leads to an increase in performance.

酸化物超電導体を線材化して長尺化することについては、特許文献1には、金属シースを用いた線材では熱伝導率が大きすぎるため電流リードとして利用できないという問題点があったと記載されている。これらの問題に対して、図8に示すように、特許文献1では、酸化物超電導体同士を接合して長尺化することが提案されている。さらに、特許文献1には、接合部に貴金属を分散させており、接合面での超電導粒子同士の接合が良好になり低抵抗が実現できると記載されている。   Regarding the lengthening of the oxide superconductor by making it into a wire, Patent Document 1 describes that a wire using a metal sheath has a problem that it cannot be used as a current lead because its thermal conductivity is too large. Yes. To solve these problems, as shown in FIG. 8, Patent Document 1 proposes joining oxide superconductors to make them longer. Furthermore, Patent Document 1 describes that noble metal is dispersed in the joint, and that superconducting particles are joined to each other at the joint surface and low resistance can be realized.

特開平5−159928号公報Japanese Patent Laid-Open No. 5-159928

上述したように、2つ以上の酸化物超電導体を接合して1つの酸化物超電導導体を形成することにより、酸化物超電導導体部の長尺化は可能になる。しかしながら、酸化物超電導体同士の接合部は、低抵抗とはいえ、電気抵抗が存在し、通電する際にジュール発熱が生じる。このジュール発熱の影響により十分な超電導特性が得られず、通電素子としての機能が損なわれるという問題点があった。例えば、特許文献1では、接合面の貴金属量を最適化した状態でも、接合面がない場合に比べて臨界電流密度が約1/2であることが示されている。   As described above, by joining two or more oxide superconductors to form one oxide superconductor, the oxide superconductor portion can be made longer. However, although the junction between the oxide superconductors has a low resistance, there is an electrical resistance, and Joule heat is generated when energized. Due to the effect of Joule heat generation, sufficient superconducting characteristics cannot be obtained, and the function as a current-carrying element is impaired. For example, Patent Document 1 shows that even when the amount of noble metal on the joint surface is optimized, the critical current density is about ½ compared to the case where there is no joint surface.

本発明は前述の問題点に鑑み、長尺で高性能な酸化物超電導導体通電素子を提供することを目的とする。   An object of the present invention is to provide a long and high-performance oxide superconducting conductor conducting element in view of the above-mentioned problems.

本発明の酸化物超電導導体通電素子は、以下のとおりである。
(1)2つ以上の酸化物超電導体を電気的に接合した酸化物超電導導体と、前記酸化物超電導導体の両端に電気的に接合した電極端子と、前記酸化物超電導導体を構成する酸化物超電導体間の接合部に接続した伝熱体とからなる電流リードであり、かつ前記伝熱体が片側の電極端子と接続されてなることを特徴とする酸化物超電導導体通電素子。
)前記伝熱体が、前記酸化物超電導体の表面上に形成された皮膜であることを特徴とする()に記載の酸化物超電導導体通電素子。
)前記伝熱体の断面積SA、前記伝熱体の皮膜が形成された酸化物超電導体の断面積をSB、前記伝熱体の熱伝導率をkA、前記伝熱体の皮膜が形成された酸化物超電導体の熱伝導率をkBとすると、前記伝熱体の断面積SAがSA≦SB×(kB/kA)であることを特徴とする()に記載の酸化物超電導導体通電素子。
)前記酸化物超電導体が、単結晶状のREBa2Cu3Ox相(REはY又は希土類元素から選ばれる1種又は2種以上、xは6.8以上で7以下)中にRE2BaCuO5相が微細分散した酸化物超電導体であることを特徴とする(1)〜()のいずれかに記載の酸化物超電導導体通電素子。
なお、本発明では、2つ以上の酸化物超電導体を接合して1つの導体にしたものを酸化物超電導導体として表記する。
The oxide superconducting conductor conducting element of the present invention is as follows.
(1) An oxide superconductor in which two or more oxide superconductors are electrically joined, an electrode terminal electrically joined to both ends of the oxide superconductor, and an oxide constituting the oxide superconductor An oxide superconducting conductor energization element comprising: a current lead including a heat transfer body connected to a joint between superconductors; and the heat transfer body connected to an electrode terminal on one side .
( 2 ) The oxide superconducting conductive element according to ( 1 ), wherein the heat transfer body is a film formed on a surface of the oxide superconductor.
( 3 ) The cross-sectional area S A of the heat transfer body, the cross-sectional area of the oxide superconductor on which the coating film of the heat transfer body is formed, S B , the thermal conductivity of the heat transfer body is k A , and the heat transfer body When the thermal conductivity of the oxide superconductor formed with the film is k B , the cross-sectional area S A of the heat transfer body is S A ≦ S B × (k B / k A ). ( 2 ) The oxide superconducting conductor energizing element according to ( 2 ).
( 4 ) The oxide superconductor is in a single-crystal REBa 2 Cu 3 O x phase (RE is one or more selected from Y or rare earth elements, x is 6.8 or more and 7 or less). The oxide superconductor conducting element according to any one of (1) to ( 3 ), wherein the RE 2 BaCuO 5 phase is a finely dispersed oxide superconductor.
In the present invention, two or more oxide superconductors joined to form one conductor are expressed as an oxide superconductor.

本発明によれば、簡便な手段で通電素子中の酸化物超電導導体部の実質的な長さを長尺化できるので、長尺で高性能な酸化物超電導導体通電素子を提供することができる。   According to the present invention, since the substantial length of the oxide superconducting conductor portion in the energization element can be increased by simple means, a long and high-performance oxide superconducting conductor energization element can be provided. .

以下に、本発明の実施の形態について、図に沿って説明する。
図1は、本発明における酸化物超電導導体通電素子の構造の一例を示す断面図である。図1において、2つの酸化物超電導体1a及び酸化物超電導体1bとが電気的に接合され、1つの酸化物超電導導体1を形成している。この酸化物超電導導体1の両端に、外部に接続するための電極端子2が半田等(図では省略されている)で電気的に接合されている。図1に示すように、2つの酸化物超電導体1a、1bを接合することにより、1つの酸化物超電導体を用いて作製する酸化物超電導体通電素子よりも、酸化物超電導導体部が長尺化し、その結果、酸化物超電導導体通電素子の高性能化が図れる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the structure of an oxide superconducting conductor conducting element according to the present invention. In FIG. 1, two oxide superconductors 1 a and an oxide superconductor 1 b are electrically joined to form one oxide superconductor 1. Electrode terminals 2 for external connection are electrically joined to both ends of the oxide superconducting conductor 1 with solder or the like (not shown in the figure). As shown in FIG. 1, by joining two oxide superconductors 1a and 1b, the oxide superconducting conductor portion is longer than the oxide superconductor energizing element manufactured using one oxide superconductor. As a result, high performance of the oxide superconducting conductor conducting element can be achieved.

2つの酸化物超電導体の接合方法としては、例えば、各々の酸化物超電導体の接合面に銀を1μm程度成膜し、銀成膜面同士を半田で接合する方法や、各々の酸化物超電導体の接合面に銀ペーストを塗布し、塗布面を密着させた状態で加熱して接合する方法等があり、これらの方法により接合面の電気抵抗を非常に小さくすることができる。しかし、非常に小さいとはいえ、接合抵抗が存在し、通電する際に接合面にジュール発熱が生じる。接合面に生じたジュール発熱は、酸化物超電導導体通電素子の機能を損なうおそれがある。図1では、2つの酸化物超電導体1a、1b同士の接合面3を囲むように伝熱体4を接合部に接続している。この伝熱体4の他端を、図示していない冷却設備、例えば、液体窒素等の冷媒や冷凍機のコールドヘッドに接続する。通電する際に接合面3の電気抵抗によって生じるジュール発熱は、伝熱体4を伝わって冷却設備側に抜熱されるので、接合面3に生じるジュール発熱によって通電素子の機能が損なわれることはない。   As a joining method of two oxide superconductors, for example, a silver film is formed on the joining surface of each oxide superconductor to a thickness of about 1 μm, and the silver film-forming surfaces are joined together by solder, or each oxide superconductor There is a method in which a silver paste is applied to the joint surface of the body, and heating is performed in a state where the coated surface is in close contact, and the electrical resistance of the joint surface can be extremely reduced by these methods. However, although it is very small, there is a junction resistance, and Joule heat is generated on the joint surface when energized. Joule heat generated on the joint surface may impair the function of the oxide superconducting conductor conducting element. In FIG. 1, the heat transfer body 4 is connected to the joint so as to surround the joint surface 3 between the two oxide superconductors 1 a and 1 b. The other end of the heat transfer body 4 is connected to a cooling facility (not shown), for example, a refrigerant such as liquid nitrogen or a cold head of a refrigerator. Since the Joule heat generated by the electrical resistance of the joint surface 3 when energized is transferred to the cooling facility side through the heat transfer body 4, the function of the energization element is not impaired by the Joule heat generated on the joint surface 3. .

本発明に用いる伝熱体4としては、銅、銀、アルミニウム等の金属、あるいは窒化珪素、炭化珪素等のセラミックスのような熱伝導率が高い材料が好ましい。さらに、伝熱体4を薄板状や細線状にして、電極端子2よりも断面積を小さくすることが好ましい。例えば、電流リードの応用の場合、伝熱体4の断面積を電極端子2の断面積よりも小さくすることにより、熱侵入量をあまり大きくすることなしに、2つの酸化物超電導体1a、1b間の接合面3に生じるジュール発熱を効果的に逃がすことができる。また、伝熱体4を皮膜として酸化物超電導体の表面に形成するようにしてもよい。   As the heat transfer body 4 used in the present invention, a material having high thermal conductivity such as a metal such as copper, silver or aluminum, or a ceramic such as silicon nitride or silicon carbide is preferable. Furthermore, it is preferable to make the heat transfer body 4 into a thin plate shape or a thin wire shape so that the cross-sectional area is smaller than that of the electrode terminal 2. For example, in the case of application of current leads, by making the cross-sectional area of the heat transfer body 4 smaller than the cross-sectional area of the electrode terminal 2, the two oxide superconductors 1a and 1b can be obtained without greatly increasing the amount of heat penetration. The Joule heat generated on the joint surface 3 can be effectively escaped. Further, the heat transfer body 4 may be formed on the surface of the oxide superconductor as a film.

本発明に用いる酸化物超電導体は、酸化物超電導体であれば特に材料系を制限するものではなく、RE-Ba-Cu-O(REはY又は希土類元素から選ばれた少なくとも1つの元素)系酸化物超電導バルク体、Bi系酸化物超電導バルク体等でもよい。しかしながら、酸化物超電導バルク体の中でも、溶融法で製造された単結晶状のREBa2Cu3Ox相(123相)中にRE2BaCuO5相(211相)が微細分散した酸化物超電導バルク体は、臨界電流密度が高く、通電素子応用に適した材料であるが、単結晶状に結晶成長させる際に精密な温度制御が必要なので大型化が難しい。したがって、RE-Ba-Cu-O系溶融バルク体を用いた通電素子については、本発明による長尺化の効果が特に顕著であるので、RE-Ba-Cu-O系溶融バルク体は、本発明にとって特に好ましい材料である。なお、図1では、同じ大きさの酸化物超電導体1a、1bを電気的に接合したが、接合する酸化物超電導体の形状やサイズ、材料系は異なったものでもよい。 The oxide superconductor used in the present invention is not particularly limited as long as it is an oxide superconductor. RE-Ba-Cu-O (RE is at least one element selected from Y or rare earth elements) A bulk oxide superconducting body or a bulk oxide superconducting Bi system may be used. However, among oxide superconducting bulk materials, an oxide superconducting bulk in which a RE 2 BaCuO 5 phase (211 phase) is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (123 phase) produced by a melting method. The body has a high critical current density and is a material suitable for energization element application, but it is difficult to increase the size because precise temperature control is required for crystal growth in a single crystal form. Therefore, the energization element using the RE-Ba-Cu-O melt bulk is particularly remarkable in the lengthening effect according to the present invention. Therefore, the RE-Ba-Cu-O melt bulk is A particularly preferred material for the invention. In FIG. 1, the oxide superconductors 1a and 1b having the same size are electrically joined. However, the shape, size, and material system of the oxide superconductor to be joined may be different.

図2は、本発明における酸化物超電導導体通電素子の構造の別の例を示す断面図である。図2では、伝熱体4の他端が片側の電極端子2に接続している。このような構造にすることにより、通電する際に2つの酸化物超電導体1a、1b間の接合面3の電気抵抗によって生じるジュール発熱は、伝熱体4を伝わって電極端子2側に抜熱されるので、接合面3に生じるジュール発熱により通電素子に機能が損なわれることはない。なお、図2に示す構造で、伝熱体4が金属のような電気良導体の場合、伝熱体4が電流の経路になる可能性があるが、本発明の通電素子は酸化物超電導導体通電素子なので、使用時には電気抵抗がほぼゼロの酸化物超電導導体1の部分を電流が流れる。このため、機能に影響はない。さらに、伝熱体4を冷凍機や冷媒等の冷却設備に接続する手間が省け、通電素子の取り付けも容易になる。   FIG. 2 is a cross-sectional view showing another example of the structure of the oxide superconducting conductor conducting element in the present invention. In FIG. 2, the other end of the heat transfer body 4 is connected to the electrode terminal 2 on one side. With this structure, Joule heat generated by the electrical resistance of the joint surface 3 between the two oxide superconductors 1a and 1b when energized is transferred to the electrode terminal 2 side through the heat transfer body 4. Therefore, the function of the energization element is not impaired by the Joule heat generated on the bonding surface 3. In the structure shown in FIG. 2, when the heat transfer body 4 is a good electrical conductor such as a metal, the heat transfer body 4 may be a current path. Since it is an element, a current flows through the portion of the oxide superconducting conductor 1 having almost zero electric resistance when used. For this reason, the function is not affected. Furthermore, the trouble of connecting the heat transfer body 4 to a cooling facility such as a refrigerator or a refrigerant can be saved, and the mounting of the energization element is facilitated.

図3は、本発明における酸化物超電導導体通電素子の構造の別の例を示す断面図である。図3では、図2に示す構造に酸化物超電導導体通電素子を補強するための支持体5が加えられている。2つ以上の酸化物超電導体を電気的に接合して1つの長尺化した酸化物超電導導体を形成した場合、長尺化により機械的強度が低下するおそれがあるので、支持体5により補強することが好ましい。支持体5としては、GFRPやCFRP等の繊維強化プラスチックスが高剛性であり、両端の電極端子2を電気的に絶縁できるので好ましい。   FIG. 3 is a cross-sectional view showing another example of the structure of the oxide superconducting conductive element in the present invention. In FIG. 3, a support 5 for reinforcing the oxide superconducting conductor conducting element is added to the structure shown in FIG. When two or more oxide superconductors are electrically joined to form one elongated oxide superconductor, the mechanical strength may decrease due to the lengthening. It is preferable to do. As the support 5, fiber reinforced plastics such as GFRP and CFRP are highly rigid and are preferable because the electrode terminals 2 at both ends can be electrically insulated.

図4は、本発明における酸化物超電導導体通電素子の構造の別の例を示す断面図である。図4に示すように、伝熱体4は酸化物超電導体1bの表面に形成された金属皮膜である。伝熱体4を酸化物超電導体1bの表面に形成した金属皮膜とすることにより、伝熱体4を支持体5の内部に容易に収納でき、素子全体の構成が簡素化される。本発明の酸化物超電導導体通電素子において、通電素子が電流リードの場合には、金属皮膜を伝わる熱が熱侵入量の増大をもたらすので、金属皮膜は片側の酸化物超電導体だけに形成することが好ましい。なお、この場合、伝熱体4として金属皮膜を設けた酸化物超電導体1bは、高温側の電極端子2に接続されている方が、高温側の電極端子2からの熱侵入を防げることから望ましい。   FIG. 4 is a cross-sectional view showing another example of the structure of the oxide superconducting conductive element in the present invention. As shown in FIG. 4, the heat transfer body 4 is a metal film formed on the surface of the oxide superconductor 1b. By using the metal film formed on the surface of the oxide superconductor 1b as the heat transfer body 4, the heat transfer body 4 can be easily accommodated in the support 5 and the configuration of the entire element is simplified. In the oxide superconducting conductor conducting element of the present invention, when the conducting element is a current lead, the heat conducted through the metal film increases the amount of heat penetration, so the metal film should be formed only on one side of the oxide superconductor. Is preferred. In this case, the oxide superconductor 1b provided with a metal film as the heat transfer body 4 can prevent heat intrusion from the electrode terminal 2 on the high temperature side when it is connected to the electrode terminal 2 on the high temperature side. desirable.

さらに、金属皮膜を伝わる熱侵入量が金属皮膜を形成した酸化物超電導体1bを伝わる熱侵入量を超えないようにすることがより好ましい。即ち、伝熱体4の断面積SA、伝熱体4の金属皮膜が形成された酸化物超電導体1bの断面積をSB、伝熱体4の熱伝導率をkA、伝熱体4の金属皮膜が形成された酸化物超電導体1bの熱伝導率をkBとすると、SA≦SB×(kB/kA)という条件を満足することが好ましい。例えば、伝熱体4としての金属皮膜の使用温度範囲の平均熱伝導率が800W/m・K、酸化物超電導体1bの使用温度範囲の平均熱伝導率が10W/m・Kの場合、厚さ1mmの酸化物超電導体1bの表面片側に金属皮膜を形成すると、12.5μm以下の厚さにすることが好ましい。 Furthermore, it is more preferable that the heat penetration amount transmitted through the metal film does not exceed the heat penetration amount transmitted through the oxide superconductor 1b on which the metal film is formed. That is, the cross-sectional area S A of the heat transfer body 4, the cross-sectional area of the oxide superconductor 1b on which the metal film of the heat transfer body 4 is formed is S B , the thermal conductivity of the heat transfer body 4 is k A , and the heat transfer body When the thermal conductivity of the oxide superconductor 1b on which the metal film 4 is formed is k B , it is preferable to satisfy the condition of S A ≦ S B × (k B / k A ). For example, when the average thermal conductivity in the operating temperature range of the metal film as the heat transfer body 4 is 800 W / m · K and the average thermal conductivity in the operating temperature range of the oxide superconductor 1b is 10 W / m · K, When a metal film is formed on one side of the surface of the oxide superconductor 1b having a thickness of 1 mm, the thickness is preferably 12.5 μm or less.

図5は、本発明における酸化物超電導導体通電素子の構造の別の例を示す断面図である。図2〜図4では、伝熱体4は片側の電極端子2に接続していたが、図5では、伝熱体4は両側の電極端子2に接続している。酸化物超電導導体通電素子が電流リードの場合には、熱侵入量を低減するために伝熱体4を片側の電極端子2だけに接続した方が好ましいが、限流器、永久電流スイッチ、通電マグネットなどに応用する場合は、熱侵入量を低減する必要はなく、酸化物超電導体1a、1b間の接合面3に生じるジュール発熱の抜熱だけを考慮すればよいので、伝熱体4を両端の電極端子2に接続した方が好ましい。   FIG. 5 is a cross-sectional view showing another example of the structure of the oxide superconducting conductor conducting element in the present invention. 2 to 4, the heat transfer body 4 is connected to the electrode terminal 2 on one side, but in FIG. 5, the heat transfer body 4 is connected to the electrode terminals 2 on both sides. When the oxide superconducting conductor energization element is a current lead, it is preferable to connect the heat transfer body 4 only to the electrode terminal 2 on one side in order to reduce the amount of heat penetration. However, the current limiter, permanent current switch, energization When applied to a magnet or the like, it is not necessary to reduce the amount of heat penetration, and only the heat removal of Joule heat generated at the joint surface 3 between the oxide superconductors 1a and 1b has to be taken into consideration. It is preferable to connect to the electrode terminals 2 at both ends.

図6は、本発明における酸化物超電導導体通電素子の構造の別の例を示す断面図である。図1〜図5では、2つの酸化物超電導体1a、1bを電気的に接合して1つの酸化物超電導導体1を形成したが、図6のように、3つ以上の酸化物超電導体も同様に電気的に接合し、より長尺化した酸化物超電導導体1を形成することができる。この場合、最も低温側に位置する酸化物超電導体1aを除いた2つの酸化物超電導体1b、1cに伝熱体4を設けることが、高温側の電極端子2からの侵入熱を防ぐ観点から好ましい。   FIG. 6 is a cross-sectional view showing another example of the structure of the oxide superconducting conductive element in the present invention. In FIG. 1 to FIG. 5, two oxide superconductors 1a and 1b are electrically joined to form one oxide superconductor 1. However, as shown in FIG. Similarly, it is possible to form an oxide superconducting conductor 1 which is electrically joined and lengthened. In this case, the provision of the heat transfer body 4 on the two oxide superconductors 1b and 1c excluding the oxide superconductor 1a located on the lowest temperature side from the viewpoint of preventing intrusion heat from the electrode terminal 2 on the high temperature side. preferable.

図7は、本発明における酸化物超電導導体通電素子の構造の別の例を示す断面図である。図1〜図6では、2つ以上の酸化物超電導体を通電方向に一方向に電気的に接合したが、図7に示すように、通電方向と直角方向に酸化物超電導体を積層して接合することもできる。積層方向に接合する方法は、限流器、永久電流スイッチ、通電マグネットのような応用において、ミアンダ構造や蚊取線香状構造の酸化物超電導体を電気的に接合する際に、コンパクトで高性能化を図れるので好ましい方法である。なお、図7に示すような構造の場合、伝熱体4は、各接合面3の電気的な短絡を防ぐために、電気絶縁性の材料が好ましい。伝熱体4に電気良導体を用いる場合には、抜熱するための冷却設備に接続する際に、絶縁性の伝熱性テープ等を介して接続することが好ましい。   FIG. 7 is a cross-sectional view showing another example of the structure of the oxide superconducting conductive element in the present invention. 1 to 6, two or more oxide superconductors are electrically joined in one direction in the energizing direction, but as shown in FIG. 7, the oxide superconductors are stacked in a direction perpendicular to the energizing direction. It can also be joined. The method of joining in the stacking direction is compact and high performance when electrically joining oxide superconductors of meander structure or mosquito coil incense-like structure in applications such as current limiters, permanent current switches, and energizing magnets. This is a preferable method. In the case of the structure shown in FIG. 7, the heat transfer body 4 is preferably made of an electrically insulating material in order to prevent an electrical short circuit between the joint surfaces 3. When a good electrical conductor is used for the heat transfer body 4, it is preferable to connect via an insulating heat transfer tape or the like when connecting to a cooling facility for extracting heat.

(実施例1)
まず、溶融法により直径46mm、厚さ15mmで、30mol%の211相と初期原料に5mass%添加した銀が123相中に微細分散したGd-Ba-Cu-O系単結晶状酸化物超電導体を作製した。そして、この酸化物超電導体から、長さ40mm、幅5mm、厚さ2mmの棒状の試料を2個切り出し、接合面に銀を成膜した後に半田にて接合して1つの酸化物超電導導体1を作製した。次に、この酸化物超電導導体1の両端を銅製の電極端子2と半田により接合した。そして、伝熱体4である厚さ0.1mmの銀箔で銀ペーストを用いて酸化物超電導体同士の接合面3を囲むように接合部に接続し、さらに、片側の電極端子2と接続して、図2に示すような構造の酸化物超電導導体通電素子Aを作製した。比較のため、長さ40mm、幅5mm、厚さ2mmの棒状の試料1個を用いて、図9に示すような構造の酸化物超電導体通電素子Bを作製した。
Example 1
First, a Gd—Ba—Cu—O single crystal oxide superconductor having a diameter of 46 mm and a thickness of 15 mm by a melting method, in which 30 mol% of 211 phase and 5 mass% of silver added to the initial material are finely dispersed in 123 phase. Was made. Then, from this oxide superconductor, two rod-shaped samples having a length of 40 mm, a width of 5 mm, and a thickness of 2 mm are cut out, silver is formed on the joint surface, and then joined with solder to form one oxide superconductor 1. Was made. Next, both ends of the oxide superconducting conductor 1 were joined to the copper electrode terminal 2 by soldering. And it connects to a junction part so that the joint surface 3 of oxide superconductors may be enclosed using a silver paste with the silver foil of thickness 0.1mm which is the heat-transfer body 4, Furthermore, it connects with the electrode terminal 2 of one side. Thus, an oxide superconducting conductive element A having a structure as shown in FIG. 2 was produced. For comparison, an oxide superconductor energization element B having a structure as shown in FIG. 9 was prepared using one rod-shaped sample having a length of 40 mm, a width of 5 mm, and a thickness of 2 mm.

酸化物超電導導体通電素子Aの場合、2つの酸化物超電導体1a、1b間の接合部3の通電方向長さが5mm、酸化物超電導体と電極端子2と間の接合部の通電方向長さが5mmであったので、酸化物超電導導体通電素子Aの酸化物超電導導体1の有効長である両電極端子間の距離は65mmとなった。   In the case of the oxide superconductor conducting element A, the energization direction length of the junction 3 between the two oxide superconductors 1 a and 1 b is 5 mm, and the energization direction length of the junction between the oxide superconductor and the electrode terminal 2. Was 5 mm, and the distance between both electrode terminals, which is the effective length of the oxide superconducting conductor 1 of the oxide superconducting conductor conducting element A, was 65 mm.

一方、酸化物超電導体通電素子Bの場合、酸化物超電導体と電極端子と間の接合部の通電方向長さが5mmであったので、酸化物超電導体通電素子Bの酸化物超電導導体の有効長である両電極端子間の距離は30mmとなった。   On the other hand, in the case of the oxide superconductor energization element B, since the energization direction length of the junction between the oxide superconductor and the electrode terminal was 5 mm, the oxide superconducting conductor of the oxide superconductor energization element B was effective. The distance between both long electrode terminals was 30 mm.

なお、熱侵入量は有効長に反比例し、常電導抵抗値は有効長に比例する。以上の結果から、酸化物超電導導体通電素子Aは、酸化物超電導体通電素子Bに比べて、電流リードとして用いた場合、熱侵入量が半分以下になり、また限流器や永久電流スイッチとして用いた場合、常電導抵抗値が2倍以上になることが確認できた。   The heat penetration amount is inversely proportional to the effective length, and the normal conductive resistance value is proportional to the effective length. From the above results, the oxide superconducting conductor energizing element A, when used as a current lead, compared to the oxide superconductor energizing element B, the heat penetration amount is less than half, and as a current limiter or permanent current switch When used, it was confirmed that the normal conductive resistance value was doubled or more.

さらに、酸化物超電導導体通電素子A及び酸化物超電導体通電素子Bの片端を冷却容器中の液体ヘリウムに浸漬させた状態で蒸発ガス流量を測定したところ、酸化物超電導導体通電素子Aは、酸化物超電導体通電素子Bに比べて、蒸発ガス流量が40%低下した。蒸発ガス流量が半分以下にならなかった理由は、輻射によるバックグランドの熱侵入量が存在するためである。したがって、本発明により、簡便な手段で、長尺で高性能な酸化物超電導導体通電素子を提供することができる。   Further, when the evaporative gas flow rate was measured with one end of the oxide superconductor conducting element A and the oxide superconductor conducting element B immersed in liquid helium in the cooling vessel, the oxide superconducting conductor conducting element A was oxidized. Compared to the superconductor conducting element B, the evaporative gas flow rate was reduced by 40%. The reason why the flow rate of the evaporative gas did not become half or less is that there is a background heat intrusion amount due to radiation. Therefore, according to the present invention, a long and high-performance oxide superconducting conductor conducting element can be provided by simple means.

(実施例2)
まず、溶融法により直径46mm、厚さ15mmで、25mol%の211相が123相中に微細分散したDy-Ba-Cu-O系単結晶状酸化物超電導体を作製した。そして、この酸化物超電導体から、長さ40mm、幅5mm、厚さ0.8mmの棒状の試料を2個切り出し、接合面3に銀ペーストを塗布し、密着させた状態で加熱し、長さ75mmの酸化物超電導導体1を作製した。この酸化物超電導導体1の接合面3から片側の半分部分(片側の酸化物超電導体部分)の表面に銀を厚さ10μm成膜し、伝熱体4となる金属皮膜を形成した。次に、酸化物超電導導体1の両端を銅製の電極端子2と半田接続し、ガラス繊維強化プラスチックス(GFRP)で酸化物超電導導体1の両側から接着固定して、図4に示すような構造の酸化物超電導導体通電素子Cを作製した。比較のため、伝熱体となる金属皮膜を形成する手順を省略して酸化物超電導導体通電素子Cと同じように作製し、図10に示すような伝熱体がない構造の酸化物超電導導体通電素子Dを作製した。
(Example 2)
First, a Dy—Ba—Cu—O single crystal oxide superconductor having a diameter of 46 mm, a thickness of 15 mm, and 25 mol% of 211 phase finely dispersed in 123 phase was prepared by a melting method. Then, from this oxide superconductor, two rod-shaped samples having a length of 40 mm, a width of 5 mm, and a thickness of 0.8 mm are cut out, and a silver paste is applied to the bonding surface 3 and heated in a closely contacted state. A 75 mm oxide superconducting conductor 1 was produced. A silver film having a thickness of 10 μm was formed on the surface of the half portion (one oxide superconductor portion) on one side from the joint surface 3 of the oxide superconductor 1 to form a metal film serving as the heat transfer body 4. Next, both ends of the oxide superconducting conductor 1 are solder-connected to the copper electrode terminals 2 and bonded and fixed from both sides of the oxide superconducting conductor 1 with glass fiber reinforced plastics (GFRP), and the structure as shown in FIG. An oxide superconducting conductor conducting element C was prepared. For comparison, an oxide superconducting conductor having a structure without a heat transfer body as shown in FIG. 10 was prepared in the same manner as the oxide superconducting conductor conducting element C by omitting the procedure for forming a metal film serving as a heat transfer body. An energizing element D was produced.

酸化物超電導導体通電素子C及び酸化物超電導導体通電素子Dについて、通電素子全体を液体窒素に浸漬させた状態で通電したところ、どちらの通電素子も500A通電できた。次に、両端の電極端子部のみを液体窒素で冷却し、通電素子中央部を両端の電極端子からの伝導冷却により冷却した状態で通電したところ、酸化物超電導導体通電素子Cは500A通電できたが、酸化物超電導導体通電素子Dについては、300A通電した際に素子が溶断し、それ以上通電できなかった。   When the oxide superconducting conductor conducting element C and the oxide superconducting conductor conducting element D were energized in a state where the entire energizing element was immersed in liquid nitrogen, both energizing elements were able to conduct 500 A. Next, when only the electrode terminal portions at both ends were cooled with liquid nitrogen and the current-carrying element central portion was cooled with conduction cooling from the electrode terminals at both ends, the oxide superconducting conductor energization element C was able to carry 500 A. However, with respect to the oxide superconducting conductor conducting element D, the element was melted when 300 A was energized, and no further energization was possible.

以上の結果から、本発明における伝熱体は、冷却条件が厳しい条件下でも、酸化物超電導体接合面に生じるジュール発熱を有効に抜熱することが確認できた。したがって、本発明により、簡便な手段で、長尺で高性能な酸化物超電導導体通電素子を提供することができる。   From the above results, it was confirmed that the heat transfer body in the present invention effectively removed Joule heat generated on the oxide superconductor joint surface even under severe cooling conditions. Therefore, according to the present invention, a long and high-performance oxide superconducting conductor conducting element can be provided by simple means.

(実施例3)
まず、溶融法により直径65mm、厚さ15mmで、20mol%の211相と初期原料に10mass%添加した銀が123相中に微細分散した(0.9Gd-0.1Dy)-Ba-Cu-O系単結晶状酸化物超電導体を作製した。そして、この酸化物超電導体から、外径60mm程度の蚊取線香状の酸化物超電導体を8枚切り出した。2枚の蚊取線香状酸化物超電導体を電流通電方向が同じ回転向きになるように積層し、蚊取線香状の中心部分で半田にて接合し、中心部分の半田接合部に薄い絶縁性ポリイミドフィルムを介して伝熱体4である厚さ0.1mmのアルミ箔を接着剤にて接続した。2枚ずつ接合した4組を蚊取線香状酸化物超電導体の外側で半田にて接合した後、外側の半田接合部に薄い絶縁性ポリイミドフィルムを介して伝熱体4である厚さ0.1mmのアルミ箔を接着剤にて接続し、8枚が積層した酸化物超電導導体1を作製した。この酸化物超電導導体1の両端を銅製の電極端子2と半田接合した。その後、素子全体をガラス繊維強化プラスチックス(GFRP)とエポキシ系樹脂(商品名:スタイキャスト2850FT)を用いて補強した、図7に示す構造に似た酸化物超電導導体通電素子Eを作製した。
(Example 3)
First, a 65 mm diameter, 15 mm thick, 20 mol% 211 phase and silver added at 10 mass% to the initial raw material were finely dispersed in the 123 phase by the melting method (0.9 Gd-0.1 Dy) -Ba-Cu-O single A crystalline oxide superconductor was prepared. And 8 pieces of mosquito coil incense-like oxide superconductors having an outer diameter of about 60 mm were cut out from the oxide superconductor. Two mosquito coil incense oxide superconductors are stacked so that the current-carrying direction is the same rotational direction, and is joined with solder at the central part of the mosquito coil incense, and thin insulation is provided at the solder joint in the central part. An aluminum foil having a thickness of 0.1 mm, which is a heat transfer body 4, was connected with an adhesive via a polyimide film. After joining four sets of two pieces joined together with solder on the outside of the mosquito coil incense oxide superconductor, the thickness 0. which is the heat transfer body 4 via a thin insulating polyimide film on the outside solder joint. A 1 mm aluminum foil was connected with an adhesive to produce an oxide superconducting conductor 1 in which eight sheets were laminated. Both ends of this oxide superconducting conductor 1 were soldered to the electrode terminal 2 made of copper. Thereafter, an oxide superconducting conductor conducting element E having a structure similar to that shown in FIG. 7 was produced in which the entire element was reinforced with glass fiber reinforced plastics (GFRP) and an epoxy resin (trade name: Stycast 2850FT).

酸化物超電導導体通電素子Eの電極端子部及び各伝熱体を冷凍機のコールドヘッドと接続した。接続に際しては、コールドヘッド部と電気的に絶縁されるように、ポリイミドフィルムを挟んで接続した。この状態で冷凍機により70Kに冷却し、通電したところ、500A通電でき、1T以上の磁場を発生することが確認できた。したがって、本発明により、簡便な手段で、長尺で高性能な酸化物超電導導体通電素子を提供することができる。   The electrode terminal part of the oxide superconducting conductor conducting element E and each heat transfer body were connected to the cold head of the refrigerator. At the time of connection, a polyimide film was sandwiched so as to be electrically insulated from the cold head portion. In this state, it was cooled to 70K with a refrigerator and energized. As a result, it was confirmed that 500 A could be energized and a magnetic field of 1 T or more was generated. Therefore, according to the present invention, a long and high-performance oxide superconducting conductor conducting element can be provided by simple means.

本発明によれば、簡便な手段で、長尺で高性能な酸化物超電導導体通電素子を提供することができるので、酸化物超電導体の工業上の利用範囲が拡大する。   According to the present invention, it is possible to provide a long and high-performance oxide superconducting conductor conducting element with simple means, so that the industrial application range of the oxide superconductor is expanded.

本発明の酸化物超電導導体通電素子の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the oxide superconducting conductor energization element of this invention. 本発明の酸化物超電導導体通電素子の構造の別の実施例を示す断面図である。It is sectional drawing which shows another Example of the structure of the oxide superconducting conductor energization element of this invention. 本発明の酸化物超電導導体通電素子の構造の別の例を示す断面図である。It is sectional drawing which shows another example of the structure of the oxide superconducting conductor energization element of this invention. 本発明の酸化物超電導導体通電素子の構造の別の例を示す断面図である。It is sectional drawing which shows another example of the structure of the oxide superconducting conductor energization element of this invention. 本発明の酸化物超電導導体通電素子の構造の別の例を示す断面図である。It is sectional drawing which shows another example of the structure of the oxide superconducting conductor energization element of this invention. 本発明の酸化物超電導導体通電素子の構造の別の例を示す断面図である。It is sectional drawing which shows another example of the structure of the oxide superconducting conductor energization element of this invention. 本発明の酸化物超電導導体通電素子の構造の別の例を示す断面図である。It is sectional drawing which shows another example of the structure of the oxide superconducting conductor energization element of this invention. 従来の酸化物超電導導導体の構造例を示す断面図である。It is sectional drawing which shows the structural example of the conventional oxide superconducting conductor. 比較例の酸化物超電導体通電素子の構造を示す断面図である。It is sectional drawing which shows the structure of the oxide superconductor energization element of a comparative example. 比較例の酸化物超電導導体通電素子の構造を示す断面図である。It is sectional drawing which shows the structure of the oxide superconducting conductor energization element of a comparative example.

符号の説明Explanation of symbols

1 酸化物超電導導体
2 電極端子
3 接合面
4 伝熱体
5 支持体
DESCRIPTION OF SYMBOLS 1 Oxide superconducting conductor 2 Electrode terminal 3 Joint surface 4 Heat transfer body 5 Support body

Claims (4)

2つ以上の酸化物超電導体を電気的に接合した酸化物超電導導体と、前記酸化物超電導導体の両端に電気的に接合した電極端子と、前記酸化物超電導導体を構成する酸化物超電導体間の接合部に接続した伝熱体とからなる電流リードであり、かつ前記伝熱体が片側の電極端子と接続されてなることを特徴とする酸化物超電導導体通電素子。 Between an oxide superconductor in which two or more oxide superconductors are electrically joined, an electrode terminal electrically joined to both ends of the oxide superconductor, and the oxide superconductor constituting the oxide superconductor An oxide superconducting conductor conducting element, characterized in that it is a current lead composed of a heat transfer body connected to a joint portion of the heat transfer body , and the heat transfer body is connected to an electrode terminal on one side . 前記伝熱体が、前記酸化物超電導体の表面上に形成された皮膜であることを特徴とする請求項に記載の酸化物超電導導体通電素子。 Oxide superconductor current device according to claim 1, wherein the heat transfer body, wherein the a film formed on the surface of the oxide superconductor. 前記伝熱体の断面積SA、前記伝熱体の皮膜が形成された酸化物超電導体の断面積をSB、前記伝熱体の熱伝導率をkA、前記伝熱体の皮膜が形成された酸化物超電導体の熱伝導率をkBとすると、前記伝熱体の断面積SAがSA≦SB×(kB/kA)であることを特徴とする請求項に記載の酸化物超電導導体通電素子。 The cross-sectional area S A of the heat transfer body, the cross-sectional area of the oxide superconductor on which the heat transfer body film is formed, S B , the thermal conductivity of the heat transfer body k A , and the heat transfer body film is When the thermal conductivity of the formed oxide superconductor and k B, according to claim 2 the cross-sectional area S a of the heat transfer member is characterized in that it is a S a ≦ S B × (k B / k a) An oxide superconducting conductor energizing element according to 1. 前記酸化物超電導体が、単結晶状のREBa2Cu3Ox相(REはY又は希土類元素から選ばれる1種又は2種以上、xは6.8以上で7以下)中にRE2BaCuO5相が微細分散した酸化物超電導体であることを特徴とする請求項1〜のいずれか1項に記載の酸化物超電導導体通電素子。 It said oxide superconductor is a single crystalline REBa 2 Cu 3 O x phase (RE is one or more selected from Y or a rare earth element, x is 7 or less 6.8 or more) RE 2 BaCuO in The oxide superconductor conducting element according to any one of claims 1 to 3 , wherein the oxide superconductor has five phases finely dispersed.
JP2007089435A 2007-03-29 2007-03-29 Oxide superconducting conductor conducting element Expired - Fee Related JP5037193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089435A JP5037193B2 (en) 2007-03-29 2007-03-29 Oxide superconducting conductor conducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089435A JP5037193B2 (en) 2007-03-29 2007-03-29 Oxide superconducting conductor conducting element

Publications (2)

Publication Number Publication Date
JP2008251720A JP2008251720A (en) 2008-10-16
JP5037193B2 true JP5037193B2 (en) 2012-09-26

Family

ID=39976343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089435A Expired - Fee Related JP5037193B2 (en) 2007-03-29 2007-03-29 Oxide superconducting conductor conducting element

Country Status (1)

Country Link
JP (1) JP5037193B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891167B2 (en) * 2012-12-27 2016-03-22 株式会社フジクラ Oxide superconducting thin film target and oxide superconducting wire manufacturing method
JP6471625B2 (en) * 2015-06-25 2019-02-20 新日鐵住金株式会社 Superconducting conductive element
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717683B2 (en) * 1998-10-30 2005-11-16 株式会社フジクラ Connection structure and connection method of oxide superconducting conductor
JP3836299B2 (en) * 2000-05-02 2006-10-25 株式会社フジクラ Connecting method of oxide superconductor
JP4603331B2 (en) * 2003-12-02 2010-12-22 新日本製鐵株式会社 Oxide superconductor processing method, oxide superconducting energization element and superconducting magnet
JP4612311B2 (en) * 2004-01-28 2011-01-12 新日本製鐵株式会社 Oxide superconductor current lead

Also Published As

Publication number Publication date
JP2008251720A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US8255024B2 (en) Resistive superconducting current-limiter device with bifilar coil winding composed of HTS ribbon conductors and turn separator
US5828291A (en) Multiple compound conductor current-limiting device
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
JP5037193B2 (en) Oxide superconducting conductor conducting element
JP5022279B2 (en) Oxide superconducting current lead
JP2012256744A (en) Superconductive coil
JP2012038812A (en) Superconducting coil device
JP6471625B2 (en) Superconducting conductive element
JP4402928B2 (en) Oxide superconductor conducting element
JP5011181B2 (en) Oxide superconducting current lead
JP5693915B2 (en) Superconducting current lead and superconducting magnet device
JP2011124188A (en) Connection method of oxide superconductive wire
JP2003282972A (en) Thermoelectric element
JP2015023056A (en) Laminated superconducting pancake coil and superconducting apparatus including the same
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
KR20210066011A (en) Method of Electrical Contact of Superconducting Strip Conductors
JP3357820B2 (en) Connection device and superconducting magnet
JP5233391B2 (en) Oxide superconductor conducting element
JP5278109B2 (en) Oxide superconductor conducting element
JP4728847B2 (en) Oxide superconductor conducting element
JP5037146B2 (en) Oxide superconductor energization element and manufacturing method thereof
JPS621276B2 (en)
JP2002289049A (en) Low-resistance conductor and its manufacturing method, and electric member using them
JP2770247B2 (en) Method for producing superconducting composite with electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5037193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees