Nothing Special   »   [go: up one dir, main page]

JP6460388B2 - Magnetoresistive device - Google Patents

Magnetoresistive device Download PDF

Info

Publication number
JP6460388B2
JP6460388B2 JP2015016672A JP2015016672A JP6460388B2 JP 6460388 B2 JP6460388 B2 JP 6460388B2 JP 2015016672 A JP2015016672 A JP 2015016672A JP 2015016672 A JP2015016672 A JP 2015016672A JP 6460388 B2 JP6460388 B2 JP 6460388B2
Authority
JP
Japan
Prior art keywords
magnetoresistive effect
magnetoresistive
elements
effect element
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015016672A
Other languages
Japanese (ja)
Other versions
JP2016143701A (en
Inventor
順一郎 占部
順一郎 占部
柴田 哲也
哲也 柴田
勝之 中田
勝之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015016672A priority Critical patent/JP6460388B2/en
Publication of JP2016143701A publication Critical patent/JP2016143701A/en
Application granted granted Critical
Publication of JP6460388B2 publication Critical patent/JP6460388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Description

本発明は、磁気抵抗効果デバイスに関する。   The present invention relates to a magnetoresistive device.

近年、スピントロニクス特有の現象を応用した製品の研究が進められており、その中で注目されている現象の一つが、スペーサー層を介して磁化固定層と磁化自由層を備えた磁気抵抗効果素子によるスピントルク発振である。この構造の磁気抵抗効果素子に直流電流を流すのと同時に、磁場印加機構によって磁場を印加することで、磁気抵抗効果素子にスピントルク発振を起こすことができ、そのスピントルク共鳴周波数と同じ周波数の交流電流が磁気抵抗効果素子から出力される。このスピントルク発振時においては、磁気抵抗効果素子に印加される磁場が強くなるに従って、磁気抵抗効果素子のスピントルク共鳴周波数は高くなる。また、スピントルク発振時において、磁気抵抗効果素子へ流れる直流電流の電流密度が大きくなるに従って、磁気抵抗効果素子のスピントルク共鳴周波数は低くなる。スペーサー層に磁性ナノコンタクトが備わっている場合、磁気抵抗効果素子に直流電流を流すと、スピン偏極電流が磁性ナノコンタクト内に流れ、磁性ナノコンタクト内のスピンが歳差運動を始めることで、スピントルク発振が起こるが、この時、磁性ナノコンタクト内に流れる直流電流の電流密度が大きいほど、磁気抵抗効果素子の磁性ナノコンタクト内のスピントルク共鳴周波数は高くなる。   In recent years, research on products that apply spintronics-specific phenomena has been promoted, and one of the phenomena that has attracted attention is due to magnetoresistive effect elements that have a magnetization fixed layer and a magnetization free layer via a spacer layer. Spin torque oscillation. By applying a magnetic field by a magnetic field application mechanism at the same time as applying a direct current to the magnetoresistive effect element having this structure, spin torque oscillation can be generated in the magnetoresistive effect element. An alternating current is output from the magnetoresistive element. During this spin torque oscillation, the spin torque resonance frequency of the magnetoresistive element increases as the magnetic field applied to the magnetoresistive element increases. Further, at the time of spin torque oscillation, the spin torque resonance frequency of the magnetoresistive element decreases as the current density of the direct current flowing to the magnetoresistive element increases. When the spacer layer is equipped with magnetic nanocontacts, when a direct current is passed through the magnetoresistive effect element, a spin-polarized current flows in the magnetic nanocontact, and the spins in the magnetic nanocontact start precession, Spin torque oscillation occurs. At this time, the higher the current density of the direct current flowing in the magnetic nanocontact, the higher the spin torque resonance frequency in the magnetic nanocontact of the magnetoresistive element.

磁気抵抗効果素子によるスピントルク発振を用いた発振器のような磁気抵抗効果デバイスが現在検討されている中で、その発振を高出力化する方法の一つとして、先行文献1では磁気抵抗効果素子の直列及び並列接続による集積化が示されている。集積化した全ての磁気抵抗効果素子に同時に磁場と直流電流を印加し、同じスピントルク共鳴周波数で発振させることで、集積化した磁気抵抗効果素子から高出力の発振が得られる。   A magnetoresistive effect device such as an oscillator using spin torque oscillation by a magnetoresistive effect element is currently being studied. As one of methods for increasing the output of the magnetoresistive effect element, the prior art document 1 describes a magnetoresistive effect element. Integration in series and parallel connection is shown. By simultaneously applying a magnetic field and a direct current to all the integrated magnetoresistive effect elements and oscillating at the same spin torque resonance frequency, high power oscillation can be obtained from the integrated magnetoresistive effect elements.

特許第5495108号Patent No. 5495108

しかし、集積化された磁気抵抗効果素子に磁場印加機構を用いて磁場を印加する際に、磁場印加機構の構造等による各素子に印加される磁場強度のばらつきや、各素子の構造の違いによる各素子間のスピントルク共鳴周波数のばらつき等によって、各素子のスピントルク共鳴周波数のばらつきが大きくなると、集積化した磁気抵抗効果素子からの発振出力が低下してしまうことが問題となる。本発明はこのような問題を解決すべくなされたものであり、大きな発振出力を得ることのできる磁気抵抗効果デバイスを提供することを目的とする。   However, when a magnetic field is applied to an integrated magnetoresistive effect element using a magnetic field application mechanism, the magnetic field strength applied to each element due to the structure of the magnetic field application mechanism, etc., or due to differences in the structure of each element If the variation of the spin torque resonance frequency of each element increases due to the variation of the spin torque resonance frequency between the elements, the problem is that the oscillation output from the integrated magnetoresistive effect element decreases. The present invention has been made to solve such a problem, and an object thereof is to provide a magnetoresistive effect device capable of obtaining a large oscillation output.

本発明の磁気抵抗効果デバイスは、単一の材料からなるスペーサー層と前記スペーサー層を介して磁化固定層と磁化自由層とを備えた磁気抵抗効果素子と、前記磁気抵抗効果素子に磁場を印加する磁場印加機構とを有し、前記磁気抵抗効果素子を含む直列素子部分が複数個並列に接続され、前記磁場が前記各磁気抵抗効果素子に印加された状態で前記各磁気抵抗効果素子に同じ大きさの電流密度の直流電流を流した際の前記各磁気抵抗効果素子のスピントルク共鳴周波数の大小関係と、実際に前記各磁気抵抗効果素子を流れる直流電流の電流密度の大小関係が同じであることを特徴とする。   The magnetoresistive effect device of the present invention includes a spacer layer made of a single material, a magnetoresistive effect element including a magnetization fixed layer and a magnetization free layer via the spacer layer, and a magnetic field applied to the magnetoresistive effect element. A plurality of series element portions including the magnetoresistive effect element connected in parallel, and the magnetic field applied to each magnetoresistive effect element is the same as each magnetoresistive effect element. The magnitude relationship between the spin torque resonance frequencies of the magnetoresistive effect elements when a direct current having a large current density is passed is the same as the magnitude relationship between the current densities of the DC currents actually flowing through the magnetoresistive effect elements. It is characterized by being.

ここで、任意の2つの直列素子部分(部分A,部分B)に含まれる各磁気抵抗効果素子に同じ電流密度J0の直流電流を流した場合の部分Aと部分Bの磁気抵抗効果素子のスピントルク共鳴周波数をそれぞれfa0、fb0とし、実際に部分A及び部分Bの磁気抵抗効果素子に流れる直流電流の電流密度をそれぞれJa、Jbとする。部分A及び部分Bの磁気抵抗効果素子に同じ電流密度J0の直流電流が流れる場合、Ja=Jbである。fa0>fb0の場合、Ja>Jbにすることで、部分Aの磁気抵抗効果素子を流れる直流電流の電流密度がJ0である場合、部分Bの磁気抵抗効果素子を流れる直流電流の電流密度JbはJb<J0となる。従って、この時の部分Bの磁気抵抗効果素子のスピントルク共鳴周波数はfb0より高くなるため、fa0との差を小さくすることが可能となる。また、fa0<fb0の場合、Ja<Jbにすることで、部分Aの磁気抵抗効果素子を流れる直流電流の電流密度がJ0である場合、部分Bの磁気抵抗効果素子を流れる直流電流の電流密度JbはJb>J0となる。従って、この時の部分Bの磁気抵抗効果素子のスピントルク共鳴周波数はfb0より低くなるため、fa0との差を小さくすることが可能となる。よって、この特徴の磁気抵抗効果デバイスによれば、出力電流の周波数のばらつきを抑え、大きな発振出力を得ることが可能となる。   Here, the spins of the magnetoresistive effect elements of the part A and the part B when a direct current of the same current density J0 is passed through each magnetoresistive effect element included in any two series element parts (part A, part B). The torque resonance frequencies are assumed to be fa0 and fb0, respectively, and the current densities of the direct currents actually flowing through the magnetoresistive effect elements in the parts A and B are assumed to be Ja and Jb, respectively. When direct currents having the same current density J0 flow through the magnetoresistive effect elements in the portions A and B, Ja = Jb. In the case of fa0> fb0, by setting Ja> Jb, when the current density of the direct current flowing through the magnetoresistive effect element of the portion A is J0, the current density Jb of the direct current flowing through the magnetoresistive effect element of the portion B is Jb <J0. Accordingly, since the spin torque resonance frequency of the magnetoresistive effect element in the portion B at this time is higher than fb0, the difference from fa0 can be reduced. Further, in the case of fa0 <fb0, by setting Ja <Jb, when the current density of the direct current flowing through the magnetoresistive effect element of the portion A is J0, the current density of the direct current flowing through the magnetoresistive effect element of the portion B Jb is Jb> J0. Therefore, since the spin torque resonance frequency of the magnetoresistive effect element in the portion B at this time is lower than fb0, the difference from fa0 can be reduced. Therefore, according to the magnetoresistive effect device having this feature, it is possible to suppress variation in the frequency of the output current and obtain a large oscillation output.

さらに、本発明の磁気抵抗効果デバイスは、前記直列素子部分の少なくとも1つは、前記磁気抵抗効果素子と直列に接続された抵抗素子を含むことを特徴とする。   Furthermore, the magnetoresistance effect device of the present invention is characterized in that at least one of the series element portions includes a resistance element connected in series with the magnetoresistance effect element.

これによれば、抵抗素子により各直列素子部分の抵抗値を調整することができるため、抵抗値による磁気抵抗効果素子のスピントルク共鳴周波数の調整がより簡易になる。   According to this, since the resistance value of each series element portion can be adjusted by the resistance element, the adjustment of the spin torque resonance frequency of the magnetoresistive effect element by the resistance value becomes easier.

さらに、前記各磁気抵抗効果素子は、膜構造が同じものであることを特徴とする。本発明における「膜構造が同じ」とは、磁気抵抗効果素子を構成する各層の材料および膜厚が同じであり、さらに各層の積層順が同じであることを意味する。   Further, each of the magnetoresistive elements has the same film structure. The “same film structure” in the present invention means that the materials and film thicknesses of the layers constituting the magnetoresistive element are the same, and the stacking order of the layers is the same.

これによれば、すべての磁気抵抗効果素子を一枚のウエハに一括に薄膜形成することができるため、製造がより簡易になる。   According to this, since all the magnetoresistive effect elements can be formed into a thin film on one wafer at a time, manufacturing becomes easier.

本発明の磁気抵抗効果デバイスは、磁性ナノコンタクトを備えたスペーサー層と前記スペーサー層を介して磁化固定層と磁化自由層とを備えた磁気抵抗効果素子と、前記磁気抵抗効果素子に磁場を印加する磁場印加機構とを有し、前記磁気抵抗効果素子を含む直列素子部分が複数個並列に接続され、前記磁場が前記各磁気抵抗効果素子に印加された状態で前記各磁気抵抗効果素子の前記磁性ナノコンタクトに同じ大きさの電流密度の直流電流を流した際の前記各磁気抵抗効果素子のスピントルク共鳴周波数の大小関係と、実際に前記各磁気抵抗効果素子の前記磁性ナノコンタクトを流れる直流電流の電流密度の大小関係が反対であることを特徴とする。   The magnetoresistive effect device of the present invention includes a spacer layer provided with magnetic nanocontacts, a magnetoresistive effect element provided with a magnetization fixed layer and a magnetization free layer via the spacer layer, and a magnetic field applied to the magnetoresistive effect element. A plurality of series element portions including the magnetoresistive effect element connected in parallel, and the magnetic field applied to the magnetoresistive effect element in the state where the magnetic field is applied to the magnetoresistive effect element. The magnitude relationship of the spin torque resonance frequency of each magnetoresistive effect element when a direct current having the same current density is passed through the magnetic nanocontact, and the direct current that actually flows through the magnetic nanocontact of each magnetoresistive effect element It is characterized in that the magnitude relation of the current density of the current is opposite.

ここで、任意の2つの直列素子部分(部分A,部分B)に含まれる各磁気抵抗効果素子の磁性ナノコンタクトに同じ電流密度J0の直流電流を流した場合の部分Aと部分Bの磁気抵抗効果素子のスピントルク共鳴周波数をそれぞれfa0、fb0とし、実際に部分A及び部分Bに含まれる磁気抵抗効果素子の磁性ナノコンタクトに流れる直流電流の電流密度をそれぞれJa、Jbとする。部分A及び部分Bの磁気抵抗効果素子の磁性ナノコンタクトに同じ電流密度J0の直流電流が流れる場合、Ja=Jbである。fa0>fb0の場合、Ja<Jbにすることで、部分Aの磁気抵抗効果素子の磁性ナノコンタクトを流れる直流電流の電流密度がJ0である場合、部分Bの磁気抵抗効果素子の磁性ナノコンタクトを流れる直流電流の電流密度JbはJb>J0となる。従って、この時の部分Bの磁気抵抗効果素子のスピントルク共鳴周波数はfb0より高くなるため、fa0との差を小さくすることが可能となる。また、fa0<fb0の場合、Ja>Jbにすることで、部分Aの磁気抵抗効果素子の磁性ナノコンタクトを流れる直流電流の電流密度がJ0である場合、部分Bの磁気抵抗効果素子の磁性ナノコンタクトを流れる直流電流の電流密度JbはJb<J0となる。従って、この時の部分Bの磁気抵抗効果素子のスピントルク共鳴周波数はfb0より低くなるため、fa0との差を小さくすることが可能となる。よって、この特徴の磁気抵抗効果デバイスによれば、出力電流の周波数のばらつきを抑え、大きな発振出力を得ることが可能となる。   Here, the magnetoresistance of the part A and the part B when a direct current of the same current density J0 is applied to the magnetic nanocontacts of each magnetoresistive effect element included in any two series element parts (part A, part B). It is assumed that the spin torque resonance frequencies of the effect element are fa0 and fb0, respectively, and the current densities of the direct currents that actually flow through the magnetic nanocontacts of the magnetoresistive effect element included in the part A and the part B are Ja and Jb, respectively. When a direct current of the same current density J0 flows through the magnetic nanocontacts of the magnetoresistive effect elements of the part A and the part B, Ja = Jb. In the case of fa0> fb0, by setting Ja <Jb, when the current density of the direct current flowing through the magnetic nanocontact of the magnetoresistive effect element of the portion A is J0, the magnetic nanocontact of the magnetoresistive effect element of the portion B is The current density Jb of the flowing direct current is Jb> J0. Accordingly, since the spin torque resonance frequency of the magnetoresistive effect element in the portion B at this time is higher than fb0, the difference from fa0 can be reduced. Further, in the case of fa0 <fb0, by setting Ja> Jb, when the current density of the direct current flowing through the magnetic nanocontact of the magnetoresistive effect element of the portion A is J0, the magnetic nanometer of the magnetoresistive effect element of the portion B is The current density Jb of the direct current flowing through the contact is Jb <J0. Therefore, since the spin torque resonance frequency of the magnetoresistive effect element in the portion B at this time is lower than fb0, the difference from fa0 can be reduced. Therefore, according to the magnetoresistive effect device having this feature, it is possible to suppress variation in the frequency of the output current and obtain a large oscillation output.

さらに、本発明の磁気抵抗効果デバイスは、前記直列素子部分の少なくとも1つは、前記磁気抵抗効果素子と直列に接続された抵抗素子を含むことを特徴とする。   Furthermore, the magnetoresistance effect device of the present invention is characterized in that at least one of the series element portions includes a resistance element connected in series with the magnetoresistance effect element.

これによれば、抵抗素子により各直列素子部分の抵抗値を調整することで、各直列素子部分に流れる直流電流の電流密度を調整することができるため、電流密度の調整による磁気抵抗効果素子のスピントルク共鳴周波数の調整がより簡易になる。   According to this, since the current density of the direct current flowing through each series element portion can be adjusted by adjusting the resistance value of each series element portion by the resistance element, the magnetoresistive effect element by adjusting the current density can be adjusted. Adjustment of the spin torque resonance frequency becomes easier.

さらに、前記各磁気抵抗効果素子は、膜構造が同じものであることを特徴とする。   Further, each of the magnetoresistive elements has the same film structure.

これによれば、すべての磁気抵抗効果素子を一枚のウエハに一括に薄膜成型することができるため、製造がより簡易になる。   According to this, since all the magnetoresistive effect elements can be formed into a thin film collectively on a single wafer, the manufacturing becomes easier.

本発明によれば、大きな発振出力を得ることのできる磁気抵抗効果デバイスを提供できる。   According to the present invention, it is possible to provide a magnetoresistive effect device capable of obtaining a large oscillation output.

本発明の実施形態1の磁気抵抗効果デバイスの断面図である。It is sectional drawing of the magnetoresistive effect device of Embodiment 1 of this invention. 本発明の実施形態1における磁気抵抗素子に流れる直流電流の電流密度Jとスピントルク共鳴周波数fの関係を示す図である。It is a figure which shows the relationship between the current density J of the direct current which flows into the magnetoresistive element in Embodiment 1 of this invention, and the spin torque resonance frequency f. 本発明の実施形態1における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 1 of this invention, and a frequency. 本発明の実施形態1における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 1 of this invention, and a frequency. 本発明の実施形態1における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 1 of this invention, and a frequency. 本発明の実施形態1における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 1 of this invention, and a frequency. 本発明の実施形態2の磁気抵抗効果デバイスの断面図である。It is sectional drawing of the magnetoresistive effect device of Embodiment 2 of this invention. 本発明の実施形態2の磁気抵抗効果デバイスの上面図である。It is a top view of the magnetoresistive effect device of Embodiment 2 of the present invention. 本発明の実施形態2における磁気抵抗素子に流れる直流電流の電流密度Jとスピントルク共鳴周波数fの関係を示す図である。It is a figure which shows the relationship between the current density J of the direct current which flows into the magnetoresistive element in Embodiment 2 of this invention, and the spin torque resonance frequency f. 本発明の実施形態2における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 2 of this invention, and a frequency. 本発明の実施形態2における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 2 of this invention, and a frequency. 本発明の実施形態2における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 2 of this invention, and a frequency. 本発明の実施形態2における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 2 of this invention, and a frequency. 本発明の実施形態3の磁気抵抗効果デバイスの断面図である。It is sectional drawing of the magnetoresistive effect device of Embodiment 3 of this invention. 本発明の実施形態3における磁気抵抗素子に流れる直流電流の電流密度Jとスピントルク共鳴周波数fの関係を示す図である。It is a figure which shows the relationship between the current density J of the direct current which flows into the magnetoresistive element in Embodiment 3 of this invention, and the spin torque resonance frequency f. 本発明の実施形態3における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 3 of this invention, and a frequency. 本発明の実施形態3における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 3 of this invention, and a frequency. 本発明の実施形態3における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 3 of this invention, and a frequency. 本発明の実施形態3における磁気抵抗効果デバイスからの発振出力と周波数との関係を示す図である。It is a figure which shows the relationship between the oscillation output from the magnetoresistive effect device in Embodiment 3 of this invention, and a frequency.

以下、本発明における好ましい実施形態を示す。しかし、本発明はこれらの実施形態に限定されるものではなく、形態が本発明の技術的思想を有するものである限り、本発明の範囲に含まれる。各実施形態における各構成及びそれらの組み合わせなどは一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to these embodiments, and is included in the scope of the present invention as long as the form has the technical idea of the present invention. Each configuration in each embodiment, a combination thereof, and the like are examples, and the addition, omission, replacement, and other changes of the configuration can be made without departing from the spirit of the present invention. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.

(実施形態1)
図1は本発明の実施形態1に係る磁気抵抗効果デバイス100の断面図である。本実施形態1の磁気抵抗効果デバイス100は、磁気抵抗効果素子102と抵抗素子103とを備えた複数の直列素子部分101と、磁場印加機構107とを備える。磁気抵抗効果素子102は、単一の材料からなるスペーサー層105とスペーサー層105を介して磁化固定層104と磁化自由層106とを備える。より具体的には、磁気抵抗効果デバイス100は3つの直列素子部分101a、101b、101cを備え、直列素子部分101aは磁気抵抗効果素子102aと抵抗素子103aを有し、直列素子部分101bは磁気抵抗効果素子102bと抵抗素子103bを有し、直列素子部分101cは磁気抵抗効果素子102cと抵抗素子103cを有する。磁気抵抗効果素子102a、102bおよび102cは、全て構成が同じ(膜構造、形状および大きさが同じ)である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a magnetoresistive effect device 100 according to Embodiment 1 of the present invention. The magnetoresistive effect device 100 according to the first exemplary embodiment includes a plurality of series element portions 101 including a magnetoresistive effect element 102 and a resistance element 103, and a magnetic field application mechanism 107. The magnetoresistive element 102 includes a spacer layer 105 made of a single material and a magnetization fixed layer 104 and a magnetization free layer 106 via the spacer layer 105. More specifically, the magnetoresistive effect device 100 includes three series element portions 101a, 101b, and 101c. The series element portion 101a includes a magnetoresistive effect element 102a and a resistor element 103a, and the series element portion 101b includes a magnetoresistive element. The effect element 102b and the resistance element 103b are included, and the series element portion 101c includes the magnetoresistance effect element 102c and the resistance element 103c. The magnetoresistive elements 102a, 102b, and 102c have the same configuration (the same film structure, shape, and size).

直列素子部分101a、101b、101cは半導体基板113上に積層されており、直列素子部分101a、101b、101cの外側に絶縁体層110が配置されている。   The serial element portions 101a, 101b, and 101c are stacked on the semiconductor substrate 113, and the insulator layer 110 is disposed outside the serial element portions 101a, 101b, and 101c.

磁気抵抗効果素子102(102a、102b、102c)は、磁気抵抗効果デバイス100において、入力された直流電流をスピントルク発振によって交流電流に変換する機能を有する。   The magnetoresistive effect element 102 (102a, 102b, 102c) has a function of converting an input direct current into an alternating current by spin torque oscillation in the magnetoresistive effect device 100.

磁気抵抗効果素子102のスピントルク発振について説明する。ここで発振とは、振動的でない直流電流により電気的振動が誘起される現象である。   The spin torque oscillation of the magnetoresistive effect element 102 will be described. Oscillation is a phenomenon in which electrical vibration is induced by a non-vibrating direct current.

磁気抵抗効果素子102の発振は磁気抵抗効果素子102の磁性層の磁化のダイナミクスにより生じる。磁場印加機構107によって磁場を印加するのと同時に、磁気抵抗効果素子102の積層面に垂直な方向に磁化自由層106からスペーサー層105を介して磁化固定層104の方向の直流電流を印加することで生じる磁化自由層106の磁化の歳差運動によって、高周波で抵抗値が変化する磁気抵抗効果が発生し、およそ100MHzから数十THzの高周波数で振動する交流電流が発生する。磁気抵抗効果素子102a、102b、102cは、膜面に平行な面の平面視形状がいずれも円形になっている。   The oscillation of the magnetoresistive effect element 102 is caused by the magnetization dynamics of the magnetic layer of the magnetoresistive effect element 102. At the same time as applying the magnetic field by the magnetic field applying mechanism 107, a direct current in the direction of the magnetization fixed layer 104 is applied from the magnetization free layer 106 through the spacer layer 105 in the direction perpendicular to the laminated surface of the magnetoresistive effect element 102. Due to the precession of the magnetization of the magnetization free layer 106 generated in step (b), a magnetoresistance effect in which the resistance value changes at a high frequency is generated, and an alternating current that vibrates at a high frequency of about 100 MHz to several tens of THz is generated. The magnetoresistive effect elements 102a, 102b, and 102c all have a circular shape when viewed from the plane parallel to the film surface.

次に、磁化固定層104、スペーサー層105及び磁化自由層106について説明する。   Next, the magnetization fixed layer 104, the spacer layer 105, and the magnetization free layer 106 will be described.

磁化固定層104は、その磁化の方向が磁場印加機構107から発生する磁場によって変化しない機能を有する。磁化固定層104は、Fe、Co、Ni、FeCoまたはCoFeB等の高スピン分極率材料から構成されることが好ましい。これにより、高出力のスピントルク発振を得ることができる。また、図示しないが、磁化固定層104の磁化を固定するために、磁化固定層104と接するように、PtMn、FeMnまたはIrMn等の材料から構成される反強磁性層を付加しても良い。これにより、磁化固定層104の磁化の方向の固定強度を強くすることが可能となる。また、磁化固定層104の結晶構造、形状などに起因する磁気異方性を利用して磁化を固定してもよい。   The magnetization fixed layer 104 has a function in which the magnetization direction is not changed by a magnetic field generated from the magnetic field application mechanism 107. The magnetization fixed layer 104 is preferably made of a high spin polarizability material such as Fe, Co, Ni, FeCo, or CoFeB. Thereby, high output spin torque oscillation can be obtained. Although not shown, an antiferromagnetic layer made of a material such as PtMn, FeMn, or IrMn may be added so as to be in contact with the magnetization fixed layer 104 in order to fix the magnetization of the magnetization fixed layer 104. As a result, the fixed strength in the magnetization direction of the magnetization fixed layer 104 can be increased. Further, the magnetization may be fixed using magnetic anisotropy caused by the crystal structure, shape, etc. of the magnetization fixed layer 104.

スペーサー層105は、磁化固定層104の磁化と磁化自由層106の磁化を相互作用させて磁気抵抗効果を得る機能を有する。スペーサー層105は単一の材料からなり、CuまたはAg等の非磁性の導電材料で構成されても良いし、AlOx(酸化アルミニウム)、MgO(酸化マグネシウム)またはMgAl等の非磁性の絶縁材料で構成されても良い。また、スペーサー層105は磁性材料で構成されてもよい。 The spacer layer 105 has a function of obtaining a magnetoresistance effect by causing the magnetization of the magnetization fixed layer 104 and the magnetization of the magnetization free layer 106 to interact with each other. The spacer layer 105 is made of a single material and may be made of a nonmagnetic conductive material such as Cu or Ag, or a nonmagnetic material such as AlOx (aluminum oxide), MgO (magnesium oxide), or MgAl 2 O 4. It may be made of an insulating material. The spacer layer 105 may be made of a magnetic material.

磁化自由層106は、その磁化の方向が磁場印加機構107から発生する磁場によって変化する機能を有する。磁化自由層106は、Fe、Co、Ni、FeCoまたはCoFeB等の高スピン分極率材料から構成されることが好ましい。これにより、高出力のスピントルク発振を得ることができる。   The magnetization free layer 106 has a function of changing the magnetization direction by a magnetic field generated from the magnetic field application mechanism 107. The magnetization free layer 106 is preferably made of a high spin polarizability material such as Fe, Co, Ni, FeCo, or CoFeB. Thereby, high output spin torque oscillation can be obtained.

抵抗素子103a、103b、103cは、図1に示されるように、それぞれ磁気抵抗効果素子102a、102b、102cに直列接続されており、直列素子部分101a、101b、101cの抵抗値を調節する。抵抗素子103a、103b、103cは、Cu、AgまたはNiCr等の導電材料で構成されても良いし、SiやGe等の半導体で構成されていても良い。   As shown in FIG. 1, the resistance elements 103a, 103b, and 103c are connected in series to the magnetoresistance effect elements 102a, 102b, and 102c, respectively, and adjust the resistance values of the serial element portions 101a, 101b, and 101c. The resistance elements 103a, 103b, and 103c may be made of a conductive material such as Cu, Ag, or NiCr, or may be made of a semiconductor such as Si or Ge.

磁場印加機構107は、磁気抵抗効果素子102に磁場を印加する。磁気抵抗効果素子102に磁場を印加した状態で磁気抵抗効果素子102に直流電流を印加することで、スピントルク発振が起こり、磁気抵抗効果素子102からスピントルク共鳴周波数と同じ周波数の交流電流が出力される。本実施形態の磁場印加機構107は、一つの永久磁石であり、図1に示すように磁気抵抗効果素子102cの側に配置されている。磁場印加機構107は、一つの永久磁石に限らず、複数の永久磁石や電磁石、ループコイルでもよい。   The magnetic field application mechanism 107 applies a magnetic field to the magnetoresistive effect element 102. By applying a direct current to the magnetoresistive effect element 102 with a magnetic field applied to the magnetoresistive effect element 102, spin torque oscillation occurs, and an alternating current having the same frequency as the spin torque resonance frequency is output from the magnetoresistive effect element 102. Is done. The magnetic field application mechanism 107 of this embodiment is a single permanent magnet, and is arranged on the magnetoresistive element 102c side as shown in FIG. The magnetic field application mechanism 107 is not limited to a single permanent magnet, but may be a plurality of permanent magnets, electromagnets, or loop coils.

図1に示されるように、磁気抵抗効果素子102の積層方向に直列素子部分101を介して信号電極層108と接地電極層109が配設されている。信号電極層108には、直流電流入力端子111と交流電流出力端子112が接続されている。また、信号電極層108と接地電極層109の間に直列素子部分101a、101b、101cが電気的に並列接続されており、直流電流入力端子111が直流電圧源または直流電流源に接続され、接地電極層109が直流電圧源または直流電流源のグラウンドに接続されることにより、直列素子部分101a、101b、101cに同時に直流電流が流され、磁場印加機構107によって磁場が印加されて磁気抵抗効果素子102a、102b、102cがスピントルク発振を起こすことで、交流電流出力端子112から交流電流が取り出される。ここで各直列素子部分101a、101b、101cにおいて、抵抗素子103a、103b、103cは信号電極層108と接地電極層109との間に複数個接続されていてもよい。   As shown in FIG. 1, a signal electrode layer 108 and a ground electrode layer 109 are disposed in the stacking direction of the magnetoresistive effect element 102 via a series element portion 101. A DC current input terminal 111 and an AC current output terminal 112 are connected to the signal electrode layer 108. Further, the series element portions 101a, 101b, and 101c are electrically connected in parallel between the signal electrode layer 108 and the ground electrode layer 109, and the DC current input terminal 111 is connected to a DC voltage source or a DC current source, and grounded. When the electrode layer 109 is connected to the ground of the DC voltage source or the DC current source, a DC current is simultaneously applied to the series element portions 101a, 101b, and 101c, and a magnetic field is applied by the magnetic field applying mechanism 107, thereby the magnetoresistive effect element. An alternating current is taken out from the alternating current output terminal 112 by causing the spin torque oscillation in 102a, 102b, and 102c. Here, in each of the serial element portions 101a, 101b, and 101c, a plurality of resistance elements 103a, 103b, and 103c may be connected between the signal electrode layer 108 and the ground electrode layer 109.

抵抗素子103a,103b,103cの抵抗値をRa、Rb,Rcとする。磁気抵抗効果デバイス100では、Rc<Rb<Raとなっている。例えば、抵抗素子103a,103b,103cの材料として、不純物を含む半導体を用い、抵抗素子103a,103b,103cそれぞれにおいて不純物の含有率を異ならせることで、抵抗素子103a,103b,103cの抵抗値を異なるものとすることができる。磁気抵抗効果素子102a、102b、102cは膜構造が同じであり、これらは並列に接続されているので、仮にRa=Rb=Rcの場合には、磁気抵抗効果素子102a、102b、102cには同じ大きさの電流密度の電流が流れる。磁気抵抗効果デバイス100では、Rc<Rb<Raとなっているので、実際に各磁気抵抗効果素子102a、102b、102cを流れる直流電流の電流密度をそれぞれJa、Jb、Jcとすると、Ja<Jb<Jcとなる。   The resistance values of the resistance elements 103a, 103b, and 103c are Ra, Rb, and Rc. In the magnetoresistance effect device 100, Rc <Rb <Ra. For example, as a material of the resistance elements 103a, 103b, and 103c, a semiconductor containing an impurity is used, and the resistance values of the resistance elements 103a, 103b, and 103c are changed by changing the impurity contents in the resistance elements 103a, 103b, and 103c. Can be different. The magnetoresistive elements 102a, 102b, and 102c have the same film structure and are connected in parallel. Therefore, if Ra = Rb = Rc, the same as the magnetoresistive elements 102a, 102b, and 102c. A current having a large current density flows. In the magnetoresistive effect device 100, since Rc <Rb <Ra, assuming that the current densities of the direct currents actually flowing through the magnetoresistive effect elements 102a, 102b, 102c are Ja, Jb, Jc, respectively, Ja <Jb <Jc.

磁場印加機構107によって発生する磁場の強度は磁場印加機構107からの距離に反比例しており、磁気抵抗効果素子102aが配置されている場所の磁場強度をHa、磁気抵抗効果素子102bが配置されている場所の磁場強度をHb、磁気抵抗効果素子102cが配置されている場所の磁場強度をHcとすると、Ha<Hb<Hcである。つまり、磁気抵抗効果デバイス100では、各磁気抵抗効果素子102a、102b、102cに印加される磁場の強度Ha、Hb、Hcの大小関係(Ha<Hb<Hc)と、各磁気抵抗効果素子102a、102b、102cに対応した各直列素子部分101a、101b、101cの抵抗素子103a、103b、103cの抵抗値Ra、Rb,Rcの大小関係(Rc<Rb<Ra)が反対になっており、各磁気抵抗効果素子102a、102b、102cに印加される磁場の強度Ha、Hb、Hcの大小関係(Ha<Hb<Hc)と、実際に各磁気抵抗効果素子102a、102b、102cを流れる直流電流の電流密度Ja、Jb、Jcの大小関係(Ja<Jb<Jc)が同じになっている。ここで、各磁気抵抗効果素子102a、102b、102cに同じ大きさの電流密度J0の直流電流を流した場合の磁気抵抗効果素子102a、102b、102cのスピントルク発振周波数をそれぞれfa0、fb0、fc0とすると、磁気抵抗効果素子に印加される磁場が強くなるに従って磁気抵抗効果素子のスピントルク共鳴周波数は高くなるので、fa0<fb0<fc0となる。   The strength of the magnetic field generated by the magnetic field applying mechanism 107 is inversely proportional to the distance from the magnetic field applying mechanism 107, and the magnetic field strength of the place where the magnetoresistive effect element 102a is arranged is Ha and the magnetoresistive effect element 102b is arranged. If the magnetic field strength at the place where the magnetic resistance effect element 102c is located is Hb and the magnetic field strength at the place where the magnetoresistive effect element 102c is arranged is Hc, then Ha <Hb <Hc. That is, in the magnetoresistive effect device 100, the magnitude relationship (Ha <Hb <Hc) of the magnetic field strengths Ha, Hb, Hc applied to the magnetoresistive effect elements 102a, 102b, 102c, and the magnetoresistive effect elements 102a, The magnitude relations (Rc <Rb <Ra) of the resistance values Ra, Rb, Rc of the resistance elements 103a, 103b, 103c of the series element portions 101a, 101b, 101c corresponding to 102b, 102c are opposite to each other. The magnitude relationship (Ha <Hb <Hc) of the magnetic field strengths Ha, Hb, Hc applied to the resistance effect elements 102a, 102b, 102c, and the current of the direct current that actually flows through each of the magnetoresistance effect elements 102a, 102b, 102c. The magnitude relationships (Ja <Jb <Jc) of the densities Ja, Jb, and Jc are the same. Here, the spin torque oscillation frequencies of the magnetoresistive effect elements 102a, 102b, and 102c when a direct current of the same current density J0 flows through the magnetoresistive effect elements 102a, 102b, and 102c are fa0, fb0, and fc0, respectively. Then, as the magnetic field applied to the magnetoresistive element increases, the spin torque resonance frequency of the magnetoresistive element increases, so that fa0 <fb0 <fc0.

図2は各磁気抵抗素子102a、102b、102cに流れる直流電流の電流密度Jとスピントルク共鳴周波数fの関係である。図2における直線Aは、磁気抵抗効果素子102aに流れる直流電流の電流密度Jと磁気抵抗効果素子102aのスピントルク共鳴周波数faの関係を表している。図2における直線Bは、磁気抵抗効果素子102bに流れる直流電流の電流密度Jと磁気抵抗効果素子102bのスピントルク共鳴周波数fbの関係を示している。図2における直線Cは、磁気抵抗効果素子102cに流れる直流電流の電流密度Jと磁気抵抗効果素子102cのスピントルク共鳴周波数fcの関係を示している。図2に示すように、単一の材料からなるスペーサー層を有する磁気抵抗効果素子では、磁気抵抗効果素子を流れる直流電流の電流密度が大きくなるに従って磁気抵抗効果素子のスピントルク共鳴周波数は低くなる。   FIG. 2 shows the relationship between the current density J of the direct current flowing through the magnetoresistive elements 102a, 102b, and 102c and the spin torque resonance frequency f. A straight line A in FIG. 2 represents the relationship between the current density J of the direct current flowing through the magnetoresistive effect element 102a and the spin torque resonance frequency fa of the magnetoresistive effect element 102a. A straight line B in FIG. 2 shows the relationship between the current density J of the direct current flowing through the magnetoresistive effect element 102b and the spin torque resonance frequency fb of the magnetoresistive effect element 102b. A straight line C in FIG. 2 shows the relationship between the current density J of the direct current flowing through the magnetoresistive effect element 102c and the spin torque resonance frequency fc of the magnetoresistive effect element 102c. As shown in FIG. 2, in a magnetoresistive element having a spacer layer made of a single material, the spin torque resonance frequency of the magnetoresistive element decreases as the current density of the direct current flowing through the magnetoresistive element increases. .

図3A、図3B、図3C、図3Dは磁気抵抗効果デバイス100からの発振出力の周波数分布を示している。図3Aは、抵抗素子103a,103b,103cの抵抗値をRa=Rb=Rcとし、各磁気抵抗効果素子102a、102b、102cを流れる直流電流の電流密度がJ0である場合の磁気抵抗効果デバイス100からの発振出力の周波数分布である。この時、図3Aに示されるように、出力電流の周波数のばらつきによって、高出力が得られない。   3A, 3B, 3C, and 3D show the frequency distribution of the oscillation output from the magnetoresistive effect device 100. FIG. FIG. 3A shows a magnetoresistive effect device 100 when the resistance values of the resistance elements 103a, 103b, and 103c are Ra = Rb = Rc and the current density of the direct current flowing through the magnetoresistive effect elements 102a, 102b, and 102c is J0. It is a frequency distribution of the oscillation output from. At this time, as shown in FIG. 3A, a high output cannot be obtained due to variations in the frequency of the output current.

まず、直列素子部分101aに含まれている抵抗素子103aの抵抗値Raを直列素子部分101bに含まれている抵抗素子103bの抵抗値Rbより大きくすると、磁気抵抗効果素子102bを流れる直流電流の電流密度がJ0の場合、磁気抵抗効果素子102aを流れる直流電流Jaの電流密度はJ0(=Jb)より小さくなり、図3Bに示されるように、faをfb(=fb0)に近づけることができる。それと同様に、直列素子部分101cに含まれている抵抗素子103cの抵抗値Rcを直列素子部分101bに含まれている抵抗素子103bの抵抗値Rbより小さくすると、磁気抵抗効果素子102bを流れる直流電流の電流密度がJ0の場合、磁気抵抗効果素子102cを流れる直流電流の電流密度JcはJ0(=Jb)より大きくなり、図3Cに示されるように、fcをfb(=fb0)に近づけることができる。従って、磁場印加機構107が印加する磁場が各磁気抵抗効果素子102a、102b、102cに印加された状態で各磁気抵抗効果素子102a、102b、102cに同じ大きさの電流密度の直流電流J0を流した際の各磁気抵抗効果素子102a、102b、102cのスピントルク発振周波数fa0、fb0、fc0の大小関係(fa0<fb0<fc0)と、実際に各磁気抵抗効果素子102a、102b、102cを流れる直流電流の電流密度Ja、Jb、Jcの大小関係が同じ、すなわちJa<Jb<Jcであることで、図3Dに示されるように、磁気抵抗効果デバイス100からの発振出力を大きくすることが可能となる。ここで、抵抗素子103aの抵抗値Raは、図2に示されるようにJa≒J1となるように、抵抗素子103cの抵抗値Rcは、図2に示されるようにJc≒J2となるように決定されることが望ましい。以上のように磁気抵抗効果デバイス100によれば、磁場印加機構107が印加する磁場の強度のばらつきによる出力電流の周波数のばらつきが抑制され、大きな発振出力を得ることが可能となる。   First, when the resistance value Ra of the resistance element 103a included in the series element portion 101a is larger than the resistance value Rb of the resistance element 103b included in the series element portion 101b, the current of the direct current flowing through the magnetoresistive effect element 102b. When the density is J0, the current density of the direct current Ja flowing through the magnetoresistive element 102a is smaller than J0 (= Jb), and as shown in FIG. 3B, fa can be made closer to fb (= fb0). Similarly, when the resistance value Rc of the resistance element 103c included in the series element portion 101c is smaller than the resistance value Rb of the resistance element 103b included in the series element portion 101b, the direct current flowing through the magnetoresistive effect element 102b When the current density of J0 is J0, the current density Jc of the direct current flowing through the magnetoresistive effect element 102c becomes larger than J0 (= Jb), and as shown in FIG. 3C, fc may approach fb (= fb0). it can. Therefore, a direct current J0 having the same current density is supplied to each magnetoresistive effect element 102a, 102b, 102c in a state where the magnetic field applied by the magnetic field applying mechanism 107 is applied to each magnetoresistive effect element 102a, 102b, 102c. And the magnitude relationship (fa0 <fb0 <fc0) of the spin torque oscillation frequencies fa0, fb0, fc0 of the magnetoresistive effect elements 102a, 102b, 102c and the direct current that actually flows through the magnetoresistive effect elements 102a, 102b, 102c. Since the magnitude relationships of the current densities Ja, Jb, and Jc are the same, that is, Ja <Jb <Jc, the oscillation output from the magnetoresistive effect device 100 can be increased as shown in FIG. 3D. Become. Here, the resistance value Ra of the resistance element 103a is Ja≈J1 as shown in FIG. 2, and the resistance value Rc of the resistance element 103c is Jc≈J2 as shown in FIG. It is desirable to be determined. As described above, according to the magnetoresistive effect device 100, the variation in the frequency of the output current due to the variation in the strength of the magnetic field applied by the magnetic field application mechanism 107 is suppressed, and a large oscillation output can be obtained.

磁気抵抗効果デバイス100では、直列素子部分101a、101b、101cが磁気抵抗効果素子102a、102b、102cと直列に接続された抵抗素子103a、103b、103cを含んでいるので、抵抗素子103a、103b、103cにより各直列素子部分101a、101b、101cの抵抗値を調整することができるため、抵抗値による磁気抵抗効果素子102a、102b、102cのスピントルク共鳴周波数の調整が簡易である。   In the magnetoresistive effect device 100, since the serial element portions 101a, 101b, and 101c include the resistive elements 103a, 103b, and 103c connected in series with the magnetoresistive effect elements 102a, 102b, and 102c, the resistive elements 103a, 103b, Since the resistance value of each of the serial element portions 101a, 101b, and 101c can be adjusted by 103c, the adjustment of the spin torque resonance frequency of the magnetoresistive effect elements 102a, 102b, and 102c by the resistance value is simple.

さらに、各磁気抵抗効果素子102a、102b、102cは、膜構造が同じものであるので、すべての磁気抵抗効果素子102a、102b、102cを一枚のウエハに一括に薄膜形成することができるため、磁気抵抗効果デバイス100はその製造が簡易である。   Furthermore, since each magnetoresistive effect element 102a, 102b, 102c has the same film structure, all the magnetoresistive effect elements 102a, 102b, 102c can be formed into a thin film at once on one wafer. The magnetoresistive device 100 is easy to manufacture.

実施形態1では、抵抗素子103a,103b、103cがそれぞれ直列素子部分101a、101b、101cに含まれているが、抵抗素子103a、103b、103cは必ずしも直列素子部分101a、101b、101cに含まれていなくてもよい。例えば、直列素子部分101cは磁気抵抗素子102cのみで構成されているような形態でも良い。この場合、直列素子部分101cには抵抗素子は含まれないが、直列素子部分101cの抵抗素子の抵抗値は最小とみなして各直列素子部分の抵抗素子の抵抗値の大小関係を考える。   In the first embodiment, the resistance elements 103a, 103b, and 103c are included in the series element portions 101a, 101b, and 101c, respectively, but the resistance elements 103a, 103b, and 103c are not necessarily included in the series element portions 101a, 101b, and 101c. It does not have to be. For example, the serial element portion 101c may be configured by only the magnetoresistive element 102c. In this case, although the resistance element is not included in the series element portion 101c, the resistance value of the resistance element of the series element portion 101c is regarded as the minimum, and the magnitude relation of the resistance value of the resistance element of each series element portion is considered.

また、実施形態1では、磁気抵抗効果素子102a、102b、102cは、膜構造が同じものであるが、磁気抵抗効果素子102a、102b、102cは同じ膜構造でなくても良い。例えば、各磁気抵抗効果素子102a、102b、102c間でスペーサー層105の厚さを異ならせることで各磁気抵抗効果素子102a、102b、102cの抵抗値を異ならせて、抵抗素子103a,103b、103cを用いずに、実際に各磁気抵抗効果素子102a、102b、102cを流れる直流電流の電流密度Ja、Jb、Jcの大小関係を調整しても良い。   In the first embodiment, the magnetoresistive elements 102a, 102b, and 102c have the same film structure, but the magnetoresistive elements 102a, 102b, and 102c do not have to have the same film structure. For example, the resistance values of the magnetoresistive elements 102a, 102b, and 102c are made different by changing the thickness of the spacer layer 105 between the magnetoresistive elements 102a, 102b, and 102c, so that the resistive elements 103a, 103b, and 103c are changed. The magnitude relationship between the current densities Ja, Jb, and Jc of the direct currents that actually flow through the magnetoresistive elements 102a, 102b, and 102c may be adjusted without using.

また、実施形態1では、各磁気抵抗効果素子102a、102b、102cは、電流方向に垂直な断面の面積は同じであるが、電流方向に垂直な断面の面積を異ならせても良い。例えば、各磁気抵抗効果素子102a、102b、102cの膜構造を同じとし、電流方向に垂直な断面の断面形状を相似形とし(断面形状のアスペクト比を同じとし)、電流方向に垂直な断面の断面積を異ならせるようにしても良い。この場合、抵抗素子103a、103b、103cを用いずに磁気抵抗効果素子102a、102b、102cのみを並列に接続した場合には、各磁気抵抗効果素子102a、102b、102cには同じ大きさの電流密度の直流電流が流れるので、実施形態1と同様に、抵抗素子103a、103b、103cを用いて、実際に各磁気抵抗効果素子102a、102b、102cを流れる直流電流の電流密度Ja、Jb、Jcの大小関係を調整することができる。ここで、アスペクト比とは、断面の形状もしくは平面視形状が、楕円形の場合にはその長軸の長さと短軸の長さの比(長軸の長さ/短軸の長さ)であり、長方形の場合にはその長辺の長さと短辺の長さの比(長辺の長さ/短辺の長さ)である。断面の形状もしくは平面視形状が、円形または正方形の場合はアスペクト比は1である。   In the first embodiment, the magnetoresistive elements 102a, 102b, and 102c have the same cross-sectional area perpendicular to the current direction, but may have different cross-sectional areas perpendicular to the current direction. For example, the magnetoresistive elements 102a, 102b, and 102c have the same film structure, the cross-sectional shape perpendicular to the current direction is similar (the aspect ratio of the cross-sectional shape is the same), and the cross-section perpendicular to the current direction is the same. The cross-sectional areas may be different. In this case, when only the magnetoresistance effect elements 102a, 102b, and 102c are connected in parallel without using the resistance elements 103a, 103b, and 103c, currents of the same magnitude are supplied to the magnetoresistance effect elements 102a, 102b, and 102c. Since the direct current of the density flows, the current density Ja, Jb, Jc of the direct current that actually flows through the magnetoresistive elements 102a, 102b, 102c using the resistance elements 103a, 103b, 103c as in the first embodiment. Can be adjusted. Here, the aspect ratio is the ratio of the major axis length to the minor axis length (major axis length / minor axis length) when the cross-sectional shape or planar view shape is an ellipse. Yes, in the case of a rectangle, the ratio of the length of the long side to the length of the short side (long side length / short side length). The aspect ratio is 1 when the cross-sectional shape or planar view shape is circular or square.

(実施形態2)
図4は本発明の実施形態2に係る磁気抵抗効果デバイス400の断面図である。磁気抵抗効果デバイス400において、実施形態1の磁気抵抗効果デバイス100と共通する事項は適宜説明を省略する。実施形態1の磁気抵抗効果デバイス100と共通している要素は同じ符号を用いており、共通している要素の説明は省略する。本実施形態2の磁気抵抗効果デバイス400は、実施形態1の磁気抵抗効果デバイス100における直列素子部分101a、101b、101cにかえて直列素子部分401a、401b、401cを有し、磁気抵抗効果素子102a、102b、102cにかえて磁気抵抗効果素子402a、402b、402cを有し、抵抗素子103a、103b、103cにかえて抵抗素子403a、403b、403cを有し、磁場印加機構107にかえて磁場印加機構407を有する。磁気抵抗効果デバイス400は、磁気抵抗効果素子402と抵抗素子403とを備えた複数の直列素子部分401と、磁場印加機構407とを備える。磁気抵抗効果素子402は、単一の材料からなるスペーサー層105とスペーサー層105を介して磁化固定層104と磁化自由層106とを備える。より具体的には、磁気抵抗効果デバイス500は3つの直列素子部分401a、401b、401cを備え、直列素子部分401aは磁気抵抗効果素子402aと抵抗素子403aを有し、直列素子部分401bは磁気抵抗効果素子402bと抵抗素子403bを有し、直列素子部分401cは磁気抵抗効果素子402cと抵抗素子403cを有する。
(Embodiment 2)
FIG. 4 is a cross-sectional view of a magnetoresistive effect device 400 according to Embodiment 2 of the present invention. In the magnetoresistive effect device 400, the description common to the magnetoresistive effect device 100 of Embodiment 1 is omitted as appropriate. Elements common to the magnetoresistive effect device 100 of Embodiment 1 are denoted by the same reference numerals, and description of common elements is omitted. The magnetoresistive effect device 400 according to the second embodiment includes serial element portions 401a, 401b, and 401c instead of the serial element portions 101a, 101b, and 101c in the magnetoresistive effect device 100 according to the first embodiment, and includes the magnetoresistive effect element 102a. , 102b, and 102c, magnetoresistive effect elements 402a, 402b, and 402c are provided. Resistive elements 103a, 103b, and 103c are provided, and resistive elements 403a, 403b, and 403c are provided. A mechanism 407 is included. The magnetoresistive effect device 400 includes a plurality of series element portions 401 including a magnetoresistive effect element 402 and a resistive element 403, and a magnetic field application mechanism 407. The magnetoresistive element 402 includes a spacer layer 105 made of a single material and a magnetization fixed layer 104 and a magnetization free layer 106 via the spacer layer 105. More specifically, the magnetoresistive effect device 500 includes three series element portions 401a, 401b, and 401c. The series element portion 401a includes a magnetoresistive effect element 402a and a resistor element 403a, and the series element portion 401b is a magnetoresistive element. The series element portion 401c includes a magnetoresistive effect element 402c and a resistance element 403c.

磁場印加機構407は、2つの永久磁石からなり、図4に示すように2つの永久磁石が磁気抵抗効果素子402a、402b、402cの両側を挟むように配置されている。磁場印加機構407の永久磁石にかえて電磁石やループコイルを用いてもよい。この場合、磁場印加機構407から各磁気抵抗効果素子402a、402b、402cに印加される磁場の強度は、互いに等しくなっている。   The magnetic field application mechanism 407 is composed of two permanent magnets, and the two permanent magnets are arranged so as to sandwich both sides of the magnetoresistive effect elements 402a, 402b, and 402c as shown in FIG. Instead of the permanent magnet of the magnetic field application mechanism 407, an electromagnet or a loop coil may be used. In this case, the strengths of the magnetic fields applied from the magnetic field application mechanism 407 to the magnetoresistive elements 402a, 402b, and 402c are equal to each other.

磁気抵抗効果素子402a、402b、402cの膜構造は実施形態1の磁気抵抗効果素子102a、102b、102cと同じである。磁気抵抗効果素子402a、402b、402cは、膜面に平行な面の平面視形状が長方形であるが、それぞれアスペクト比が異なっている。図5は、磁気抵抗効果デバイス400の上面図である。磁場印加機構407によって磁気抵抗効果素子402a、402b、402cに印加される磁場の磁場強度は同じであり、磁気抵抗効果素子402a、402b、402cの膜面に平行な面の平面視形状の長辺方向と実質的に同じ方向の磁場が磁気抵抗効果素子402a、402b、402cに印加される。図5に示すように、磁気抵抗効果素子402a、402b、402cの膜面に平行な面の平面視形状のY方向の寸法は同じであるが、長辺方向であるX方向の寸法が異なっている。ここで、磁気抵抗効果素子402a、402b、402cのY方向の寸法をY0,磁気抵抗効果素子402a、402b、402cのX方向の寸法をそれぞれXa,Xb,Xcとすると、アスペクト比(X/Y)の大小関係が(Xa/Y0)<(Xb/Y0)<(Xc/Y0)となる。この場合、各磁気抵抗効果素子402a、402b、402cに同じ大きさの電流密度J0の直流電流を流した場合の各磁気抵抗効果素子402a、402b、402cのスピントルク共鳴周波数をそれぞれfa0、fb0、fc0とすると、磁気抵抗効果素子の膜面に平行な面の平面視形状のアスペクト比が大きくなるに従って磁気抵抗効果素子のスピントルク共鳴周波数は高くなるので、fa0<fb0<fc0となる。   The film structure of the magnetoresistive effect elements 402a, 402b, and 402c is the same as that of the magnetoresistive effect elements 102a, 102b, and 102c of the first embodiment. The magnetoresistive elements 402a, 402b, and 402c have a rectangular shape in plan view of a plane parallel to the film surface, but have different aspect ratios. FIG. 5 is a top view of the magnetoresistive effect device 400. The magnetic field strength of the magnetic field applied to the magnetoresistive effect elements 402a, 402b, and 402c by the magnetic field applying mechanism 407 is the same, and the long side of the plane view shape parallel to the film surface of the magnetoresistive effect elements 402a, 402b, and 402c A magnetic field in substantially the same direction as the direction is applied to the magnetoresistive effect elements 402a, 402b, and 402c. As shown in FIG. 5, the dimension in the Y direction of the planar view shape of the plane parallel to the film surface of the magnetoresistive effect elements 402a, 402b, and 402c is the same, but the dimension in the X direction that is the long side direction is different. Yes. Here, when the dimension in the Y direction of the magnetoresistive effect elements 402a, 402b, and 402c is Y0, and the dimension in the X direction of the magnetoresistive effect elements 402a, 402b, and 402c is Xa, Xb, and Xc, respectively, the aspect ratio (X / Y ) Is (Xa / Y0) <(Xb / Y0) <(Xc / Y0). In this case, the spin torque resonance frequencies of the magnetoresistive elements 402a, 402b, and 402c when a direct current of the same current density J0 is passed through the magnetoresistive elements 402a, 402b, and 402c are fa0, fb0, Assuming fc0, the spin torque resonance frequency of the magnetoresistive element increases as the aspect ratio of the planar shape of the plane parallel to the film surface of the magnetoresistive element increases, so that fa0 <fb0 <fc0.

抵抗素子403a、403b、403cの抵抗値をRa、Rb、Rcとする。磁気抵抗効果デバイス400では、Rc<Rb<Raとなっている。磁気抵抗効果素子402a、402b、402cは膜構造が同じであり、これらは並列に接続されているので、仮にRa=Rb=Rcの場合には、磁気抵抗効果素子402a、402b、402cには同じ大きさの電流密度の電流が流れる。磁気抵抗効果デバイス400では、Rc<Rb<Raとなっているので、実際に各磁気抵抗効果素子402a、402b、402cを流れる直流電流の電流密度をそれぞれJa、Jb、Jcとすると、Ja<Jb<Jcとなる。   The resistance values of the resistance elements 403a, 403b, and 403c are Ra, Rb, and Rc. In the magnetoresistance effect device 400, Rc <Rb <Ra. Since the magnetoresistive elements 402a, 402b, and 402c have the same film structure and are connected in parallel, if Ra = Rb = Rc, it is the same as the magnetoresistive elements 402a, 402b, and 402c. A current having a large current density flows. In the magnetoresistive effect device 400, since Rc <Rb <Ra, if the current densities of the direct currents actually flowing through the magnetoresistive effect elements 402a, 402b, and 402c are Ja, Jb, and Jc, respectively, Ja <Jb <Jc.

磁気抵抗効果デバイス400では、各磁気抵抗効果素子402a、402b、402cの膜面に平行な面の平面視形状のアスペクト比(Xa/Y0)、(Xb/Y0)、(Xc/Y0)の大小関係((Xa/Y0)<(Xb/Y0)<(Xc/Y0))と、各磁気抵抗効果素子402a、402b、402cに対応した各直列素子部分401a、401b、401cの抵抗素子403a、403b、403cの抵抗値Ra、Rb、Rcの大小関係(Rc<Rb<Ra)が反対になっており、各磁気抵抗効果素子402a、402b、402cの膜面に平行な面の平面視形状のアスペクト比(Xa/Y0)、(Xb/Y0)、(Xc/Y0)の大小関係((Xa/Y0)<(Xb/Y0)<(Xc/Y0))と、実際に各磁気抵抗効果素子402a、402b、402cを流れる直流電流の電流密度Ja、Jb、Jcの大小関係(Ja<Jb<Jc)が同じになっている。   In the magnetoresistive effect device 400, the aspect ratios (Xa / Y0), (Xb / Y0), and (Xc / Y0) of the planar view shape of the plane parallel to the film surface of each of the magnetoresistive elements 402a, 402b, and 402c are large or small. The relationship ((Xa / Y0) <(Xb / Y0) <(Xc / Y0)) and the resistance elements 403a, 403b of the series element portions 401a, 401b, 401c corresponding to the magnetoresistive elements 402a, 402b, 402c , 403c resistance values Ra, Rb, Rc are opposite in magnitude (Rc <Rb <Ra), and the aspect of the planar view of the plane parallel to the film surface of each of the magnetoresistive elements 402a, 402b, 402c The magnitude relationship ((Xa / Y0) <(Xb / Y0) <(Xc / Y0)) of the ratios (Xa / Y0), (Xb / Y0), and (Xc / Y0)) and the magnetoresistive elements 40 actually a, 402b, current density Ja of the DC current flowing through 402c, Jb, the magnitude relation of Jc (Ja <Jb <Jc) is the same.

図6は各磁気抵抗素子402a、402b、402cに流れる直流電流の電流密度Jとスピントルク共鳴周波数fの関係である。図6における直線Aは、磁気抵抗効果素子402aに流れる直流電流の電流密度Jと磁気抵抗効果素子402aのスピントルク共鳴周波数faの関係を表している。図6における直線Bは、磁気抵抗効果素子402bに流れる直流電流の電流密度Jと磁気抵抗効果素子402bのスピントルク共鳴周波数fbの関係を示している。図6における直線Cは、磁気抵抗効果素子402cに流れる直流電流の電流密度Jと磁気抵抗効果素子402cのスピントルク共鳴周波数fcの関係を示している。図6に示すように、単一の材料からなるスペーサー層を有する磁気抵抗効果素子では、磁気抵抗効果素子を流れる直流電流の電流密度が大きくなるに従って磁気抵抗効果素子のスピントルク共鳴周波数は低くなる。   FIG. 6 shows the relationship between the current density J of the direct current flowing through the magnetoresistive elements 402a, 402b, and 402c and the spin torque resonance frequency f. A straight line A in FIG. 6 represents the relationship between the current density J of the direct current flowing through the magnetoresistive effect element 402a and the spin torque resonance frequency fa of the magnetoresistive effect element 402a. A straight line B in FIG. 6 shows the relationship between the current density J of the direct current flowing through the magnetoresistive effect element 402b and the spin torque resonance frequency fb of the magnetoresistive effect element 402b. A straight line C in FIG. 6 shows the relationship between the current density J of the direct current flowing through the magnetoresistive effect element 402c and the spin torque resonance frequency fc of the magnetoresistive effect element 402c. As shown in FIG. 6, in a magnetoresistive element having a spacer layer made of a single material, the spin torque resonance frequency of the magnetoresistive element decreases as the current density of the direct current flowing through the magnetoresistive element increases. .

図7A、図7B、図7C、図7Dは磁気抵抗効果デバイス400からの発振出力の周波数分布を示している。図7Aは、抵抗素子403a,403b,403cの抵抗値をRa=Rb=Rcとし、各磁気抵抗効果素子402a、402b、402cを流れる直流電流の電流密度がJ0である場合の磁気抵抗効果デバイス400からの発振出力の周波数分布である。この時、図7Aに示されるように、出力電流の周波数のばらつきによって、高出力が得られない。   7A, 7B, 7C, and 7D show the frequency distribution of the oscillation output from the magnetoresistive effect device 400. FIG. FIG. 7A shows a magnetoresistive effect device 400 in which the resistance values of the resistance elements 403a, 403b, and 403c are Ra = Rb = Rc and the current density of the direct current flowing through the magnetoresistive effect elements 402a, 402b, and 402c is J0. It is a frequency distribution of the oscillation output from. At this time, as shown in FIG. 7A, a high output cannot be obtained due to variations in the frequency of the output current.

まず、直列素子部分401aに含まれている抵抗素子403aの抵抗値Raを直列素子部分401bに含まれている抵抗素子403bの抵抗値Rbより大きくすると、磁気抵抗効果素子402bを流れる直流電流の電流密度がJ0の場合、磁気抵抗効果素子402aを流れる直流電流の電流密度JaはJ0(=Jb)より小さくなり、図7Bに示されるように、faをfb(=fb0)に近づけることができる。それと同様に、直列素子部分401cに含まれている抵抗素子403cの抵抗値Rcを直列素子部分401bに含まれている抵抗素子403bの抵抗値Rbより小さくすると、磁気抵抗効果素子402bを流れる直流電流の電流密度がJ0の場合、磁気抵抗効果素子402cを流れる直流電流の電流密度JcはJ0(=Jb)より大きくなり、図7Cに示されるように、fcをfb(=fb0)に近づけることができる。従って、磁場印加機構407が印加する磁場が各磁気抵抗効果素子402a、402b、402cに印加された状態で各磁気抵抗効果素子402a、402b、402cに同じ大きさの電流密度の直流電流J0を流した際の各磁気抵抗効果素子402a、402b、402cのスピントルク発振周波数fa0、fb0、fc0の大小関係(fa0<fb0<fc0)と、実際に各磁気抵抗効果素子402a、402b、402cを流れる直流電流の電流密度Ja、Jb、Jcの大小関係が同じ、すなわちJa<Jb<Jcであることで、図7Dに示されるように、磁気抵抗効果デバイス400からの発振出力を大きくすることが可能となる。ここで、抵抗素子403aの抵抗値Raは、図6に示されるようにJa≒J1となるように、抵抗素子403cの抵抗値Rcは、図6に示されるようにJc≒J2となるように決定されることが望ましい。以上のように磁気抵抗効果デバイス400によれば、各磁気抵抗素子402a、402b、402cの平面視形状のばらつきによる出力電流の周波数のばらつきが抑制され、大きな発振出力を得ることが可能となる。   First, when the resistance value Ra of the resistance element 403a included in the series element portion 401a is larger than the resistance value Rb of the resistance element 403b included in the series element portion 401b, the current of the direct current flowing through the magnetoresistive effect element 402b. When the density is J0, the current density Ja of the direct current flowing through the magnetoresistive effect element 402a is smaller than J0 (= Jb), and as shown in FIG. 7B, fa can be made closer to fb (= fb0). Similarly, when the resistance value Rc of the resistance element 403c included in the series element portion 401c is smaller than the resistance value Rb of the resistance element 403b included in the series element portion 401b, the direct current flowing through the magnetoresistive effect element 402b When the current density of J0 is J0, the current density Jc of the direct current flowing through the magnetoresistive effect element 402c is larger than J0 (= Jb), and as shown in FIG. 7C, fc may be close to fb (= fb0). it can. Accordingly, the DC current J0 having the same current density is supplied to each of the magnetoresistive elements 402a, 402b, and 402c in a state where the magnetic field applied by the magnetic field applying mechanism 407 is applied to each of the magnetoresistive elements 402a, 402b, and 402c. The magnitude relationship (fa0 <fb0 <fc0) of the spin torque oscillation frequencies fa0, fb0, fc0 of the magnetoresistive effect elements 402a, 402b, 402c and the direct current that actually flows through the magnetoresistive effect elements 402a, 402b, 402c. Since the magnitude relationships of the current densities Ja, Jb, and Jc are the same, that is, Ja <Jb <Jc, the oscillation output from the magnetoresistive effect device 400 can be increased as shown in FIG. 7D. Become. Here, the resistance value Ra of the resistance element 403a is Ja≈J1 as shown in FIG. 6, and the resistance value Rc of the resistance element 403c is Jc≈J2 as shown in FIG. It is desirable to be determined. As described above, according to the magnetoresistive effect device 400, the variation in the frequency of the output current due to the variation in the planar view shape of each of the magnetoresistive elements 402a, 402b, and 402c is suppressed, and a large oscillation output can be obtained.

磁気抵抗効果デバイス400では、直列素子部分401a、401b、401cが磁気抵抗効果素子402a、402b、402cと直列に接続された抵抗素子403a、403b、403cを含んでいるので、抵抗素子403a、403b、403cにより各直列素子部分401a、401b、401cの抵抗値を調整することができるため、抵抗値による磁気抵抗効果素子402a、402b、402cのスピントルク共鳴周波数の調整が簡易である。   In the magnetoresistive effect device 400, since the serial element portions 401a, 401b, and 401c include the resistive elements 403a, 403b, and 403c connected in series with the magnetoresistive effect elements 402a, 402b, and 402c, the resistive elements 403a, 403b, Since the resistance values of the series element portions 401a, 401b, and 401c can be adjusted by 403c, the adjustment of the spin torque resonance frequency of the magnetoresistive effect elements 402a, 402b, and 402c by the resistance value is easy.

さらに、各磁気抵抗効果素子402a、402b、402cは、膜構造が同じものであるので、すべての磁気抵抗効果素子402a、402b、402cを一枚のウエハに一括に薄膜形成することができるため、磁気抵抗効果デバイス400はその製造が簡易である。   Furthermore, since each magnetoresistive effect element 402a, 402b, 402c has the same film structure, all the magnetoresistive effect elements 402a, 402b, 402c can be formed into a thin film at once on one wafer. The magnetoresistive device 400 is easy to manufacture.

実施形態2では、抵抗素子403a,403b、403cがそれぞれ直列素子部分401a、401b、401cに含まれているが、抵抗素子403a,403b、403cは必ずしも直列素子部分401a、401b、401cに含まれていなくてもよい。例えば、直列素子部分401cは磁気抵抗素子402cのみで構成されているような形態でも良い。この場合、直列素子部分401cには抵抗素子は含まれないが、直列素子部分401cの抵抗素子の抵抗値は最小とみなして各直列素子部分の抵抗素子の抵抗値の大小関係を考える。   In the second embodiment, the resistance elements 403a, 403b, and 403c are included in the series element portions 401a, 401b, and 401c, respectively, but the resistance elements 403a, 403b, and 403c are not necessarily included in the series element portions 401a, 401b, and 401c. It does not have to be. For example, the serial element portion 401c may be configured by only the magnetoresistive element 402c. In this case, although the resistance element is not included in the series element portion 401c, the resistance value of the resistance element of the series element portion 401c is considered to be the minimum, and the magnitude relation of the resistance value of the resistance element of each series element portion is considered.

また、実施形態2では、磁気抵抗効果素子402a、402b、402cは、膜構造が同じものであるが、磁気抵抗効果素子402a、402b、402cは同じ膜構造でなくても良い。例えば、各磁気抵抗効果素子402a、402b、402c間でスペーサー層105の厚さを異ならせることで各磁気抵抗効果素子402a、402b、402cの抵抗値を異ならせて、抵抗素子403a,403b、403cを用いずに、実際に各磁気抵抗効果素子402a、402b、402cを流れる直流電流の電流密度Ja、Jb、Jcの大小関係を調整しても良い。   In the second embodiment, the magnetoresistive elements 402a, 402b, and 402c have the same film structure, but the magnetoresistive elements 402a, 402b, and 402c may not have the same film structure. For example, the resistance values of the magnetoresistive elements 402a, 402b, and 402c are made different by changing the thickness of the spacer layer 105 between the magnetoresistive elements 402a, 402b, and 402c, so that the resistive elements 403a, 403b, and 403c are changed. The magnitude relationship between the current densities Ja, Jb, and Jc of the direct currents that actually flow through the magnetoresistive elements 402a, 402b, and 402c may be adjusted.

実施形態1においては、各磁気抵抗効果素子に印加される磁場強度が異なる例で説明し、実施形態2においては、各磁気抵抗効果素子の膜面に平行な面の平面視形状のアスペクト比が異なる例で説明したが、各磁気抵抗効果素子に印加される磁場強度が異なり、かつ、各磁気抵抗効果素子の膜面に平行な面の平面視形状のアスペクト比が異なるようにしても良い。このような場合でも、磁場印加機構が印加する磁場が各磁気抵抗効果素子に印加された状態で各磁気抵抗効果素子に同じ大きさの電流密度の直流電流を流した際の各磁気抵抗効果素子のスピントルク発振周波数の大小関係と、実際に各磁気抵抗効果素子を流れる直流電流の電流密度の大小関係が同じであることで、大きな発振出力を磁気抵抗効果デバイスから得ることが可能となる。   In the first embodiment, an example in which the magnetic field strength applied to each magnetoresistive effect element is different will be described. In the second embodiment, the aspect ratio of the planar view shape of a plane parallel to the film surface of each magnetoresistive effect element is described. Although described in different examples, the magnetic field strength applied to each magnetoresistive effect element may be different, and the aspect ratio of the planar view shape of the plane parallel to the film surface of each magnetoresistive effect element may be different. Even in such a case, each magnetoresistive effect element when a direct current having the same current density is passed through each magnetoresistive effect element in a state where the magnetic field applied by the magnetic field application mechanism is applied to each magnetoresistive effect element. Since the magnitude relation of the spin torque oscillation frequency of the current and the magnitude relation of the current density of the direct current flowing through each magnetoresistive effect element are the same, a large oscillation output can be obtained from the magnetoresistive effect device.

(実施形態3)
図8は本発明の実施形態3に係る磁気抵抗効果デバイス800の断面図である。磁気抵抗効果デバイス800において、実施形態1の磁気抵抗効果デバイス100と共通する事項は適宜説明を省略する。実施形態1の磁気抵抗効果デバイス100と共通している要素は同じ符号を用いており、共通している要素の説明は省略する。本実施形態3の磁気抵抗効果デバイス800は、実施形態1の磁気抵抗効果デバイス100における直列素子部分101a、101b、101cにかえて直列素子部分801a、801b、801cを有し、磁気抵抗効果素子102a、102b、102cにかえて磁気抵抗効果素子802a、802b、802cを有し、抵抗素子103a、103b、103cにかえて抵抗素子803a、803b、803cを有する。
(Embodiment 3)
FIG. 8 is a cross-sectional view of a magnetoresistive effect device 800 according to Embodiment 3 of the present invention. In the magnetoresistive effect device 800, the description common to the magnetoresistive effect device 100 of the first embodiment is omitted as appropriate. Elements common to the magnetoresistive effect device 100 of Embodiment 1 are denoted by the same reference numerals, and description of common elements is omitted. The magnetoresistive effect device 800 according to the third embodiment includes serial element portions 801a, 801b, and 801c in place of the serial element portions 101a, 101b, and 101c in the magnetoresistive effect device 100 according to the first embodiment, and includes the magnetoresistive effect element 102a. , 102b, and 102c are replaced with magnetoresistive elements 802a, 802b, and 802c, and the resistive elements 103a, 103b, and 103c are replaced with resistive elements 803a, 803b, and 803c.

磁気抵抗効果デバイス800は、磁気抵抗効果素子802と抵抗素子803とを備えた複数の直列素子部分801と、磁場印加機構107とを備える。磁気抵抗効果素子802は、磁性ナノコンタクト814を備えたスペーサー層805とスペーサー層805を介して磁化固定層104と磁化自由層106とを備える。より具体的には、磁気抵抗効果デバイス800は3つの直列素子部分801a、801b、801cを備え、直列素子部分801aは磁気抵抗効果素子802aと抵抗素子803aを有し、直列素子部分801bは磁気抵抗効果素子802bと抵抗素子803bを有し、直列素子部分801cは磁気抵抗効果素子802cと抵抗素子803cを有する。磁気抵抗効果素子802a、802bおよび802cは、全て構成が同じ(膜構造、形状および大きさが同じ)である。   The magnetoresistive effect device 800 includes a plurality of series element portions 801 including a magnetoresistive effect element 802 and a resistance element 803, and the magnetic field application mechanism 107. The magnetoresistive effect element 802 includes a spacer layer 805 including magnetic nanocontacts 814 and a magnetization fixed layer 104 and a magnetization free layer 106 via the spacer layer 805. More specifically, the magnetoresistive effect device 800 includes three series element portions 801a, 801b, and 801c. The series element portion 801a includes a magnetoresistive effect element 802a and a resistance element 803a, and the series element portion 801b is a magnetoresistive element. The effect element 802b and the resistance element 803b are included, and the series element portion 801c includes the magnetoresistance effect element 802c and the resistance element 803c. The magnetoresistive elements 802a, 802b and 802c all have the same configuration (the same film structure, shape and size).

本実施形態に係る磁気抵抗効果素子802のスピントルク発振について説明する。ここで発振とは、振動的でない直流電流により電気的振動が誘起される現象である。   The spin torque oscillation of the magnetoresistive effect element 802 according to this embodiment will be described. Oscillation is a phenomenon in which electrical vibration is induced by a non-vibrating direct current.

磁気抵抗効果素子802の発振は磁気抵抗効果素子802の磁性層の磁化のダイナミクスにより生じる。磁場印加機構107によって磁場を印加するのと同時に、磁気抵抗効果素子802の積層面に垂直な方向に磁化自由層106からスペーサー層805内の磁性ナノコンタクト814を介して磁化固定層104の方向に直流電流を印加することで、磁性ナノコンタクト814内にスピン偏極電流が流れ、それにより生じる磁性ナノコンタクト814内のスピンの歳差運動によって、高周波で抵抗値が変化する磁気抵抗効果が発生し、およそ100MHzから数十THzの高周波数で振動する交流電流が発生する。磁気抵抗効果素子802a、802b、802cは、膜面に平行な面の平面視形状がいずれも円形になっている。   The oscillation of the magnetoresistive effect element 802 is caused by the magnetization dynamics of the magnetic layer of the magnetoresistive effect element 802. At the same time as applying the magnetic field by the magnetic field applying mechanism 107, the magnetization free layer 106 is directed in the direction of the magnetization fixed layer 104 through the magnetic nanocontact 814 in the spacer layer 805 in the direction perpendicular to the laminated surface of the magnetoresistive effect element 802. By applying a direct current, a spin-polarized current flows in the magnetic nanocontact 814, and a spin precession generated in the magnetic nanocontact 814 causes a magnetoresistive effect in which the resistance value changes at a high frequency. An alternating current that oscillates at a high frequency of about 100 MHz to several tens of THz is generated. The magnetoresistive elements 802a, 802b, and 802c each have a circular shape in plan view of a plane parallel to the film surface.

磁性ナノコンタクト814を備えたスペーサー層805は、磁化固定層104の磁化と磁化自由層106の磁化を相互作用させて磁気抵抗効果を得る機能を有する。磁性ナノコンタクト814は、磁化固定層104から磁化自由層106への導電材料からなるナノサイズの電流狭窄パスである。スペーサー層805における磁性ナノコンタクト814の周囲の部分815の材料には、AlO(酸化アルミニウム)、MgO(酸化マグネシウム)またはMgAl等の非磁性の絶縁材料や、磁性の絶縁材料を用いることができる。磁性ナノコンタクト814の材料には、FeとCoの合金、FeとCoとAlの合金またはFeとCoとAlとSiの合金などの磁性の導電材料を用いることができる。 The spacer layer 805 including the magnetic nanocontact 814 has a function of obtaining a magnetoresistance effect by causing the magnetization of the magnetization fixed layer 104 and the magnetization of the magnetization free layer 106 to interact with each other. The magnetic nanocontact 814 is a nano-sized current confinement path made of a conductive material from the magnetization fixed layer 104 to the magnetization free layer 106. A nonmagnetic insulating material such as AlO x (aluminum oxide), MgO (magnesium oxide), or MgAl 2 O 4, or a magnetic insulating material is used as the material of the portion 815 around the magnetic nanocontact 814 in the spacer layer 805. be able to. As a material of the magnetic nanocontact 814, a magnetic conductive material such as an alloy of Fe and Co, an alloy of Fe, Co, and Al, or an alloy of Fe, Co, Al, and Si can be used.

抵抗素子803a、803b、803cの抵抗値をRa、Rb、Rcとする。磁気抵抗効果デバイス800では、Ra<Rb<Rcとなっている。磁気抵抗効果素子802a、802b、802cは膜構造が同じであり、これらは並列に接続されているので、仮にRa=Rb=Rcの場合には、磁気抵抗効果素子802a、802b、802cの磁性ナノコンタクト814には同じ大きさの電流密度の電流が流れる。磁気抵抗効果デバイス800では、Ra<Rb<Rcとなっているので、実際に各磁気抵抗効果素子802a、802b、802cの磁性ナノコンタクト814を流れる直流電流の電流密度をそれぞれJa、Jb、Jcとすると、Jc<Jb<Jaとなる。   The resistance values of the resistance elements 803a, 803b, and 803c are Ra, Rb, and Rc. In the magnetoresistance effect device 800, Ra <Rb <Rc. The magnetoresistive effect elements 802a, 802b, and 802c have the same film structure and are connected in parallel. Therefore, if Ra = Rb = Rc, the magnetoresistive effect elements 802a, 802b, and 802c have magnetic nanostructures. A current having the same current density flows through the contact 814. In the magnetoresistive effect device 800, since Ra <Rb <Rc, the current densities of the direct currents that actually flow through the magnetic nanocontacts 814 of the magnetoresistive effect elements 802a, 802b, 802c are Ja, Jb, Jc, respectively. Then, Jc <Jb <Ja.

磁場印加機構107によって発生する磁場の強度は磁場印加機構107からの距離に反比例しており、磁気抵抗効果素子802aが配置されている場所の磁場強度をHa、磁気抵抗効果素子802bが配置されている場所の磁場強度をHb、磁気抵抗効果素子802cが配置されている場所の磁場強度をHcとすると、Ha<Hb<Hcである。つまり、磁気抵抗効果デバイス800では、各磁気抵抗効果素子802a、802b、802cに印加される磁場の強度Ha、Hb、Hcの大小関係(Ha<Hb<Hc)と、各磁気抵抗効果素子802a、802b、802cに対応した各直列素子部分801a、801b、801cの抵抗素子803a、803b、803cの抵抗値Ra、Rb、Rcの大小関係(Ra<Rb<Rc)が同じになっており、各磁気抵抗効果素子802a、802b、802cに印加される磁場の強度Ha、Hb、Hcの大小関係(Ha<Hb<Hc)と、実際に各磁気抵抗効果素子802a、802b、802cの磁性ナノコンタクト814を流れる直流電流の電流密度Ja、Jb、Jcの大小関係(Jc<Jb<Ja)が反対になっている。ここで、各磁気抵抗効果素子802a、802b、802cの磁性ナノコンタクト814に同じ大きさの電流密度J0の直流電流を流した場合の磁気抵抗効果素子802a、802b、802cのスピントルク発振周波数をそれぞれfa0、fb0、fc0とすると、磁気抵抗効果素子に印加される磁場が強くなるに従って磁気抵抗効果素子のスピントルク共鳴周波数は高くなるので、fa0<fb0<fc0となる。   The strength of the magnetic field generated by the magnetic field application mechanism 107 is inversely proportional to the distance from the magnetic field application mechanism 107, and the magnetic field strength of the place where the magnetoresistive effect element 802a is arranged is Ha, and the magnetoresistive effect element 802b is arranged. Assuming that the magnetic field strength at the location where the magnetic field strength is Hb and the magnetic field strength where the magnetoresistive effect element 802c is disposed is Hc, Ha <Hb <Hc. That is, in the magnetoresistive effect device 800, the magnitude relationship (Ha <Hb <Hc) of the magnetic field strengths Ha, Hb, and Hc applied to the magnetoresistive effect elements 802a, 802b, and 802c, and the magnetoresistive effect elements 802a, The magnitude relationships (Ra <Rb <Rc) of the resistance values Ra, Rb, Rc of the resistance elements 803a, 803b, 803c of the series element portions 801a, 801b, 801c corresponding to 802b, 802c are the same, and each magnetic field The magnitude relationship (Ha <Hb <Hc) of the magnetic field strengths Ha, Hb, Hc applied to the resistance effect elements 802a, 802b, 802c, and the magnetic nanocontacts 814 of the magnetoresistance effect elements 802a, 802b, 802c are actually shown. The magnitude relationship (Jc <Jb <Ja) of the current densities Ja, Jb and Jc of the flowing direct current is opposite. Here, the spin torque oscillation frequencies of the magnetoresistive effect elements 802a, 802b, and 802c when DC currents having the same current density J0 are passed through the magnetic nanocontacts 814 of the magnetoresistive effect elements 802a, 802b, and 802c, respectively. Assuming fa0, fb0, and fc0, the spin torque resonance frequency of the magnetoresistive element increases as the magnetic field applied to the magnetoresistive element increases, so that fa0 <fb0 <fc0.

図9は各磁気抵抗素子802a、802b、802cの磁性ナノコンタクト814に流れる直流電流の電流密度Jとスピントルク共鳴周波数fの関係である。図9における直線Aは、磁気抵抗効果素子802aの磁性ナノコンタクト814に流れる直流電流の電流密度Jと磁気抵抗効果素子802aのスピントルク共鳴周波数faの関係を表している。図9における直線Bは、磁気抵抗効果素子802bの磁性ナノコンタクト814に流れる直流電流の電流密度Jと磁気抵抗効果素子802bのスピントルク共鳴周波数fbの関係を示している。図9における直線Cは、磁気抵抗効果素子802cの磁性ナノコンタクト814に流れる直流電流の電流密度Jと磁気抵抗効果素子802cのスピントルク共鳴周波数fcの関係を示している。図9に示すように、スペーサー層に磁性ナノコンタクトを備える磁気抵抗効果素子では、磁気ナノコンタクトに流れる直流電流の電流密度が大きくなるに従って磁気抵抗効果素子のスピントルク共鳴周波数は高くなる。(スペーサー層に磁性ナノコンタクトを備える磁気抵抗効果素子は、磁気ナノコンタクトに流れる直流電流の電流密度が大きくなるに従って磁気抵抗効果素子のスピントルク共鳴周波数が高くなるような性質を示す電流密度の領域で用いられる。)。   FIG. 9 shows the relationship between the current density J of the direct current flowing through the magnetic nanocontact 814 of each of the magnetoresistive elements 802a, 802b, and 802c and the spin torque resonance frequency f. A straight line A in FIG. 9 represents the relationship between the current density J of the direct current flowing through the magnetic nanocontact 814 of the magnetoresistive effect element 802a and the spin torque resonance frequency fa of the magnetoresistive effect element 802a. A straight line B in FIG. 9 shows the relationship between the current density J of the direct current flowing through the magnetic nanocontact 814 of the magnetoresistive effect element 802b and the spin torque resonance frequency fb of the magnetoresistive effect element 802b. A straight line C in FIG. 9 indicates the relationship between the current density J of the direct current flowing through the magnetic nanocontact 814 of the magnetoresistive effect element 802c and the spin torque resonance frequency fc of the magnetoresistive effect element 802c. As shown in FIG. 9, in the magnetoresistive effect element including the magnetic nanocontact in the spacer layer, the spin torque resonance frequency of the magnetoresistive effect element increases as the current density of the direct current flowing through the magnetic nanocontact increases. (The magnetoresistive effect element having magnetic nanocontacts in the spacer layer has a current density region in which the spin torque resonance frequency of the magnetoresistive effect element increases as the current density of the direct current flowing through the magnetic nanocontact increases. Used in).

図10A、図10B、図10C、図10Dは磁気抵抗効果デバイス800からの発振出力の周波数分布を示している。図10Aは、抵抗素子803a,803b,803cの抵抗値をRa=Rb=Rcとし、各磁気抵抗効果素子802a、802b、802cの磁性ナノコンタクト814を流れる直流電流の電流密度がJ0である場合の磁気抵抗効果デバイス800からの発振出力の周波数分布である。この時、図10Aに示されるように、出力電流の周波数のばらつきによって、高出力が得られない。   10A, 10B, 10C, and 10D show the frequency distribution of the oscillation output from the magnetoresistive device 800. FIG. FIG. 10A shows a case where the resistance values of the resistance elements 803a, 803b, and 803c are Ra = Rb = Rc, and the current density of the direct current flowing through the magnetic nanocontacts 814 of the magnetoresistance effect elements 802a, 802b, and 802c is J0. 5 is a frequency distribution of oscillation output from the magnetoresistive effect device 800. At this time, as shown in FIG. 10A, a high output cannot be obtained due to variations in the frequency of the output current.

まず、直列素子部分801aに含まれている抵抗素子803aの抵抗値Raを直列素子部分801bに含まれている抵抗素子803bの抵抗値Rbより小さくすると、磁気抵抗効果素子802bの磁性ナノコンタクト814を流れる直流電流の電流密度がJ0の場合、磁気抵抗効果素子802aの磁性ナノコンタクト814を流れる直流電流の電流密度JaはJ0(=Jb)より大きくなり、図10Bに示されるように、faをfb(=fb0)に近づけることができる。それと同様に、直列素子部分801cに含まれている抵抗素子803cの抵抗値Rcを直列素子部分801bに含まれている抵抗素子803bの抵抗値Rbより大きくすると、磁気抵抗効果素子102bの磁性ナノコンタクト814を流れる直流電流の電流密度がJ0の場合、磁気抵抗効果素子802cの磁性ナノコンタクト814を流れる直流電流の電流密度はJ0(=Jb)より小さくなり、図10Cに示されるように、fcをfb(=fb0)に近づけることができる。従って、磁場印加機構807が印加する磁場が各磁気抵抗効果素子802a、802b、802cに印加された状態で各磁気抵抗効果素子802a、802b、802cの磁性ナノコンタクト814に同じ大きさの電流密度の直流電流J0を流した際の各磁気抵抗効果素子802a、802b、802cのスピントルク発振周波数fa0、fb0、fc0の大小関係(fa0<fb0<fc0)と、実際に各磁気抵抗効果素子802a、802b、802cの磁性ナノコンタクト814を流れる直流電流の電流密度Ja、Jb、Jcの大小関係が反対、すなわちJc<Jb<Jaであることで、図10Dに示されるように、磁気抵抗効果デバイス800からの発振出力を大きくすることが可能となる。ここで、抵抗素子803aの抵抗値Raは、図9に示されるようにJa≒J2となるように、抵抗素子803cの抵抗値Rcは、図9に示されるようにJc≒J1となるように決定されることが望ましい。以上のように磁気抵抗効果デバイス800によれば、磁場印加機構807が印加する磁場の強度のばらつきによる出力電流の周波数のばらつきが抑制され、大きな発振出力を得ることが可能となる。   First, when the resistance value Ra of the resistance element 803a included in the series element portion 801a is smaller than the resistance value Rb of the resistance element 803b included in the series element portion 801b, the magnetic nanocontact 814 of the magnetoresistance effect element 802b is changed. When the current density of the flowing direct current is J0, the current density Ja of the direct current flowing through the magnetic nanocontact 814 of the magnetoresistive effect element 802a is larger than J0 (= Jb), and as shown in FIG. (= Fb0). Similarly, when the resistance value Rc of the resistance element 803c included in the series element portion 801c is larger than the resistance value Rb of the resistance element 803b included in the series element portion 801b, the magnetic nanocontact of the magnetoresistive effect element 102b. When the current density of the direct current flowing through 814 is J0, the current density of the direct current flowing through the magnetic nanocontact 814 of the magnetoresistive effect element 802c is smaller than J0 (= Jb), and as shown in FIG. It can be close to fb (= fb0). Therefore, in the state where the magnetic field applied by the magnetic field application mechanism 807 is applied to the magnetoresistive elements 802a, 802b, and 802c, the magnetic nanocontacts 814 of the magnetoresistive elements 802a, 802b, and 802c have the same current density. The magnitude relation (fa0 <fb0 <fc0) of the spin torque oscillation frequencies fa0, fb0, fc0 of the magnetoresistive effect elements 802a, 802b, 802c when the direct current J0 is passed, and the actual magnetoresistive effect elements 802a, 802b , 802c magnetic nanocontacts 814, the magnitude relation of the current density Ja, Jb, Jc of the direct current is opposite, that is, Jc <Jb <Ja, so that as shown in FIG. The oscillation output can be increased. Here, the resistance value Ra of the resistance element 803a is Ja≈J2 as shown in FIG. 9, and the resistance value Rc of the resistance element 803c is Jc≈J1 as shown in FIG. It is desirable to be determined. As described above, according to the magnetoresistive effect device 800, the variation in the frequency of the output current due to the variation in the strength of the magnetic field applied by the magnetic field application mechanism 807 is suppressed, and a large oscillation output can be obtained.

磁気抵抗効果デバイス800では、直列素子部分801a、801b、801cが磁気抵抗効果素子802a、802b、802cと直列に接続された抵抗素子803a、803b、803cを含んでいるので、抵抗素子803a、803b、803cにより各直列素子部分801a、801b、801cの抵抗値を調整することができるため、抵抗値による磁気抵抗効果素子802a、802b、802cのスピントルク共鳴周波数の調整が簡易である。   In the magnetoresistive effect device 800, since the serial element portions 801a, 801b, 801c include the resistive elements 803a, 803b, 803c connected in series with the magnetoresistive effect elements 802a, 802b, 802c, the resistive elements 803a, 803b, Since the resistance value of each of the serial element portions 801a, 801b, and 801c can be adjusted by 803c, the adjustment of the spin torque resonance frequency of the magnetoresistance effect elements 802a, 802b, and 802c by the resistance value is easy.

さらに、各磁気抵抗効果素子802a、802b、802cは、膜構造が同じものであるので、すべての磁気抵抗効果素子802a、802b、802cを一枚のウエハに一括に薄膜形成することができるため、磁気抵抗効果デバイス800はその製造が簡易である。   Furthermore, since the magnetoresistive elements 802a, 802b, and 802c have the same film structure, all the magnetoresistive elements 802a, 802b, and 802c can be collectively formed into a thin film on one wafer. The magnetoresistive device 800 is easy to manufacture.

実施形態3では、抵抗素子803a,803b、803cがそれぞれ直列素子部分801a、801b、801cに含まれているが、抵抗素子803a,803b、803cは必ずしも直列素子部分801a、801b、801cに含まれていなくてもよい。例えば、直列素子部分801aは磁気抵抗素子802aのみで構成されているような形態でも良い。この場合、直列素子部分801aには抵抗素子は含まれないが、直列素子部分801aの抵抗素子の抵抗値は最小とみなして各直列素子部分の抵抗素子の抵抗値の大小関係を考える。   In the third embodiment, the resistance elements 803a, 803b, and 803c are included in the series element portions 801a, 801b, and 801c, respectively, but the resistance elements 803a, 803b, and 803c are not necessarily included in the series element portions 801a, 801b, and 801c. It does not have to be. For example, the serial element portion 801a may be configured by only the magnetoresistive element 802a. In this case, although the resistance element is not included in the series element portion 801a, the resistance value of the resistance element of the series element portion 801a is considered to be the minimum, and the magnitude relation of the resistance value of the resistance element of each series element portion is considered.

また、実施形態3では、磁気抵抗効果素子802a、802b、802cは、膜構造が同じものであるが、磁気抵抗効果素子802a、802b、802cは同じ膜構造でなくても良い。例えば、各磁気抵抗効果素子802a、802b、802c間でスペーサー層805の厚さを異ならせることで各磁気抵抗効果素子802a、802b、802cの抵抗値を異ならせて、抵抗素子803a,803b、803cを用いずに、実際に各磁気抵抗効果素子802a、802b、802cの磁性ナノコンタクト814を流れる直流電流の電流密度Ja、Jb、Jcの大小関係を調整しても良い。   In the third embodiment, the magnetoresistive elements 802a, 802b, and 802c have the same film structure, but the magnetoresistive elements 802a, 802b, and 802c do not have to have the same film structure. For example, the resistance values of the magnetoresistive elements 802a, 802b, and 802c are made different by changing the thickness of the spacer layer 805 between the magnetoresistive elements 802a, 802b, and 802c, so that the resistive elements 803a, 803b, and 803c are changed. The magnitude relationship between the current densities Ja, Jb, and Jc of the DC current that actually flows through the magnetic nanocontacts 814 of the magnetoresistive elements 802a, 802b, and 802c may be adjusted without using.

また、実施形態1〜3において、磁化自由層106から磁化固定層104の方向に直流電流を流す例について説明したが、磁化固定層104から磁化自由層106の方向に直流電流を流すようにしてもよい。   In the first to third embodiments, the example in which the direct current is passed from the magnetization free layer 106 to the magnetization fixed layer 104 has been described. However, the direct current is caused to flow from the magnetization fixed layer 104 to the magnetization free layer 106. Also good.

以上のように、本発明に係る磁気抵抗効果デバイスは、発振器などに利用可能である。   As described above, the magnetoresistive effect device according to the present invention can be used for an oscillator or the like.

100,400,800 磁気抵抗効果デバイス
101,101a,101b,101c、401,401a,401b、401c、801a,801b、801c 直列素子部分
102,102a,102b,102c、402,402a,402b、402c、802a,802b、802c 磁気抵抗効果素子
103、103a、103b,103c、403、403a、403b、403c、803a、803b、803c 抵抗素子
104 磁化固定層
105、805 スペーサー層
106 磁化自由層
107、407 磁場印加機構
108 信号電極層
109 接地電極層
110 絶縁体層
111 直流電流入力端子
112 交流電流出力端子
113 半導体基板
814 磁性ナノコンタクト
100, 400, 800 Magnetoresistive devices 101, 101a, 101b, 101c, 401, 401a, 401b, 401c, 801a, 801b, 801c Series element portions 102, 102a, 102b, 102c, 402, 402a, 402b, 402c, 802a , 802b, 802c Magnetoresistive element 103, 103a, 103b, 103c, 403, 403a, 403b, 403c, 803a, 803b, 803c Resistive element 104 Magnetization fixed layer 105, 805 Spacer layer 106 Magnetization free layer 107, 407 Magnetic field application mechanism 108 Signal electrode layer 109 Ground electrode layer 110 Insulator layer 111 DC current input terminal 112 AC current output terminal 113 Semiconductor substrate 814 Magnetic nanocontact

Claims (6)

単一の材料からなるスペーサー層と前記スペーサー層を介して磁化固定層と磁化自由層とを備えた磁気抵抗効果素子と、前記磁気抵抗効果素子に磁場を印加する磁場印加機構とを有し、
前記磁気抵抗効果素子を含む直列素子部分が複数個並列に接続され、
前記磁場が前記各磁気抵抗効果素子に印加された状態で前記各磁気抵抗効果素子に同じ大きさの電流密度の直流電流を流した際の前記各磁気抵抗効果素子からの出力電流の周波数のばらつきよりも、前記各磁気抵抗効果素子からの出力電流の周波数のばらつきが小さくなるように、前記磁場が前記各磁気抵抗効果素子に印加された状態で前記各磁気抵抗効果素子に同じ大きさの電流密度の直流電流を流した際の前記各磁気抵抗効果素子のスピントルク共鳴周波数の大小関係と、実際に前記各磁気抵抗効果素子を流れる直流電流の電流密度の大小関係が同じであることを特徴とする磁気抵抗効果デバイス。
A magnetoresistive effect element including a spacer layer made of a single material, a magnetization fixed layer and a magnetization free layer via the spacer layer, and a magnetic field application mechanism for applying a magnetic field to the magnetoresistive effect element,
A plurality of series element portions including the magnetoresistive effect element are connected in parallel,
Variation in frequency of output current from each magnetoresistive effect element when a direct current having the same current density is passed through each magnetoresistive effect element with the magnetic field applied to each magnetoresistive effect element Than the current of the same magnitude in each magnetoresistive effect element in a state where the magnetic field is applied to each magnetoresistive effect element so that the variation in frequency of the output current from each magnetoresistive effect element becomes smaller. The magnitude relationship of the spin torque resonance frequency of each magnetoresistive effect element when a direct current of density is passed is the same as the magnitude relationship of the current density of the DC current actually flowing through each magnetoresistive effect element. And magnetoresistive device.
前記直列素子部分の少なくとも1つは、前記磁気抵抗効果素子と直列に接続された抵抗素子を含むことを特徴とする請求項1に記載の磁気抵抗効果デバイス。   The magnetoresistive effect device according to claim 1, wherein at least one of the series element portions includes a resistive element connected in series with the magnetoresistive effect element. 前記各磁気抵抗効果素子は、膜構造が同じものであることを特徴とする請求項1または2に記載の磁気抵抗効果デバイス。   The magnetoresistive effect device according to claim 1, wherein the magnetoresistive effect elements have the same film structure. 磁性ナノコンタクトを備えたスペーサー層と前記スペーサー層を介して磁化固定層と磁化自由層とを備えた磁気抵抗効果素子と、前記磁気抵抗効果素子に磁場を印加する磁場印加機構とを有し、
前記磁気抵抗効果素子を含む直列素子部分が複数個並列に接続され、
前記磁場が前記各磁気抵抗効果素子に印加された状態で前記各磁気抵抗効果素子の前記磁性ナノコンタクトに同じ大きさの電流密度の直流電流を流した際の前記各磁気抵抗効果素子からの出力電流の周波数のばらつきよりも、前記各磁気抵抗効果素子からの出力電流の周波数のばらつきが小さくなるように、前記磁場が前記各磁気抵抗効果素子に印加された状態で前記各磁気抵抗効果素子の前記磁性ナノコンタクトに同じ大きさの電流密度の直流電流を流した際の前記各磁気抵抗効果素子のスピントルク共鳴周波数の大小関係と、実際に前記各磁気抵抗効果素子の前記磁性ナノコンタクトを流れる直流電流の電流密度の大小関係が反対であることを特徴とする磁気抵抗効果デバイス。
A magnetoresistive effect element including a spacer layer provided with magnetic nanocontacts, a magnetization fixed layer and a magnetization free layer via the spacer layer, and a magnetic field application mechanism for applying a magnetic field to the magnetoresistive effect element,
A plurality of series element portions including the magnetoresistive effect element are connected in parallel,
Output from each magnetoresistive effect element when a direct current having the same current density is passed through the magnetic nanocontact of each magnetoresistive effect element in a state where the magnetic field is applied to each magnetoresistive effect element Each of the magnetoresistive effect elements in a state in which the magnetic field is applied to each of the magnetoresistive effect elements so that the variation in the frequency of the output current from each of the magnetoresistive effect elements is smaller than the variation of the current frequency . The magnitude relation of the spin torque resonance frequency of each magnetoresistive effect element when a direct current of the same current density is passed through the magnetic nanocontact, and the actual flow through the magnetic nanocontact of each magnetoresistive effect element A magnetoresistive device characterized in that the magnitude relation of the current density of a direct current is opposite.
前記直列素子部分の少なくとも1つは、前記磁気抵抗効果素子と直列に接続された抵抗素子を含むことを特徴とする請求項4に記載の磁気抵抗効果デバイス。   The magnetoresistive effect device according to claim 4, wherein at least one of the series element portions includes a resistive element connected in series with the magnetoresistive effect element. 前記各磁気抵抗効果素子は、膜構造が同じものであることを特徴とする請求項4または5に記載の磁気抵抗効果デバイス。   6. The magnetoresistive effect device according to claim 4, wherein the magnetoresistive effect elements have the same film structure.
JP2015016672A 2015-01-30 2015-01-30 Magnetoresistive device Active JP6460388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016672A JP6460388B2 (en) 2015-01-30 2015-01-30 Magnetoresistive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016672A JP6460388B2 (en) 2015-01-30 2015-01-30 Magnetoresistive device

Publications (2)

Publication Number Publication Date
JP2016143701A JP2016143701A (en) 2016-08-08
JP6460388B2 true JP6460388B2 (en) 2019-01-30

Family

ID=56568874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016672A Active JP6460388B2 (en) 2015-01-30 2015-01-30 Magnetoresistive device

Country Status (1)

Country Link
JP (1) JP6460388B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642726B2 (en) * 2016-09-08 2020-02-12 Tdk株式会社 Magnetoresistive device
WO2018052062A1 (en) * 2016-09-14 2018-03-22 Tdk株式会社 Magnetoresistance effect device and magnetoresistance effect module
JPWO2018084007A1 (en) * 2016-11-07 2019-09-19 Tdk株式会社 Magnetoresistive device
JPWO2018116655A1 (en) * 2016-12-20 2019-10-24 Tdk株式会社 Magnetoresistive device
JPWO2018116656A1 (en) * 2016-12-20 2019-11-14 Tdk株式会社 Magnetoresistive device
JP2019027786A (en) * 2017-07-25 2019-02-21 Tdk株式会社 Magnetic field sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818234B2 (en) * 2007-09-05 2011-11-16 株式会社東芝 Magnetic recording / reproducing device
WO2009054182A1 (en) * 2007-10-25 2009-04-30 Fuji Electric Holdings Co., Ltd. Spin-valve element and its manufacturing method
JP5278876B2 (en) * 2007-10-31 2013-09-04 独立行政法人産業技術総合研究所 Microwave oscillation element and detection element
JP5280516B2 (en) * 2009-03-02 2013-09-04 株式会社日立製作所 Radio demultiplexer

Also Published As

Publication number Publication date
JP2016143701A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6460388B2 (en) Magnetoresistive device
JP5036585B2 (en) Magnetic oscillation element, magnetic head having the magnetic oscillation element, and magnetic recording / reproducing apparatus
Polianski et al. Current-induced transverse spin-wave instability in a thin nanomagnet
WO2018052062A1 (en) Magnetoresistance effect device and magnetoresistance effect module
JP2007184923A (en) Oscillator
JP2009130216A (en) Magnetic device and frequency detector
US20100308923A1 (en) Magnetic voltage controlled oscillator
JP2012044649A (en) Oscillator and method of operating the same
CN106252503A (en) Hyperfrequency spinning microwave oscillator based on antiferromagnet
JP2011101015A (en) Radio frequency oscillator
JP5233201B2 (en) Magnetic device and frequency detector
Bhuktare et al. Spintronic oscillator based on spin-current feedback using the spin hall effect
JP5680903B2 (en) Oscillator and operation method thereof
US20130169371A1 (en) Spin transfer oscillator
JP2015207625A (en) Magneto-resistance effect element and semiconductor circuit using the same
JP6569350B2 (en) Magnetoresistive device
JP5125287B2 (en) Magnetic device and frequency analyzer
JP2011181756A (en) Microwave element
JP2019129164A (en) Magneto-resistance effect device
JP6717137B2 (en) Resonant element, resonator and magnetoresistive device
JP2020035832A (en) Ac generation device
JP2012060033A (en) Spin wave element
JP2017157581A (en) Magnetic resistance effective device
JP6643612B2 (en) High frequency oscillator
JP6569349B2 (en) Magnetoresistive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181219

R150 Certificate of patent or registration of utility model

Ref document number: 6460388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150