JP6347164B2 - Low carbon aluminum killed steel manufacturing method - Google Patents
Low carbon aluminum killed steel manufacturing method Download PDFInfo
- Publication number
- JP6347164B2 JP6347164B2 JP2014147842A JP2014147842A JP6347164B2 JP 6347164 B2 JP6347164 B2 JP 6347164B2 JP 2014147842 A JP2014147842 A JP 2014147842A JP 2014147842 A JP2014147842 A JP 2014147842A JP 6347164 B2 JP6347164 B2 JP 6347164B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- killed steel
- temperature
- carbon aluminum
- aluminum killed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Continuous Casting (AREA)
Description
本発明は、表面性状に優れた低炭素アルミキルド鋼の製造方法に関するものであり、特にAlの含有量の多い低炭素アルミキルド鋼を製造する方法に関するものである。 The present invention relates to a method for producing a low-carbon aluminum killed steel having excellent surface properties, and particularly to a method for producing a low-carbon aluminum killed steel having a high Al content.
一般に、連続鋳造した低炭素アルミキルド鋼鋳片に発生する表面割れは、主に垂直曲げ型連続鋳造機或いは湾曲型連続鋳造機による曲げ矯正時或いは曲げ戻し矯正時の低ひずみ速度変形時に生じる傾向が強い。 In general, surface cracks that occur in continuously cast low carbon aluminum killed steel slabs tend to occur mainly during low strain rate deformation during straightening or unbending with a vertical bending continuous casting machine or curved continuous casting machine. strong.
この鋳片曲げ応力によって発生する表面割れは、表層組織のγ粒界への炭化物や窒化物が析出することによる粒界脆化の影響であり、オーステナイト粒界に沿って進展する。 The surface cracks generated by the slab bending stress are the effects of grain boundary embrittlement due to the precipitation of carbides and nitrides at the γ grain boundaries of the surface layer structure, and propagate along the austenite grain boundaries.
前記低炭素アルミキルド鋼鋳片の表面割れは、鋳片を曲げ矯正するときに、鋳片の表面温度が、高温延性を低下させるオーステナイト相からフェライト相に変態する温度(脆化温度域:約600〜850℃)になると発生することが知られている。 The surface crack of the low-carbon aluminum killed steel slab is a temperature at which the surface temperature of the slab transforms from an austenite phase to a ferrite phase that reduces high-temperature ductility (embrittlement temperature range: about 600) when the slab is bent and straightened. It is known that it occurs at ˜850 ° C.).
従来、この脆化温度域で発現する鋳片表面割れ対策としては、鋳片を曲げ矯正する時の表面温度を、高温延性を低下させる温度域(脆化温度域)から低温側または高温側に回避させる方法が実施されている。このように、鋳片の曲げ矯正時の表面温度を制御して前記脆化温度域を回避することができれば、表面割れを防止することは可能である。 Conventionally, as a countermeasure against slab surface cracking that develops in this embrittlement temperature range, the surface temperature when bending the slab is changed from a temperature range (embrittlement temperature range) that reduces hot ductility to a low temperature side or a high temperature side A way to avoid it has been implemented. Thus, if the surface temperature at the time of straightening the slab can be controlled to avoid the embrittlement temperature region, surface cracking can be prevented.
しかしながら、現状では、鋳片の表面温度を制御して完全に脆化域を回避するのは困難であることから、前記低炭素アルミキルド鋼鋳片の表面割れを完全に防止することは難しい。 However, at present, it is difficult to completely avoid the brittle region by controlling the surface temperature of the slab, so it is difficult to completely prevent the surface cracking of the low carbon aluminum killed steel slab.
そこで、例えば特許文献1では、脆化温度域が820〜950℃の温度範囲の材料を連続鋳造する際、二次冷却帯の上部における鋳片上部の表面温度を650〜700℃に低下させて変態を起こさせ、それ以降は緩やかに復熱させて曲げ矯正点での表面温度を700〜800℃の範囲に保つようにする方法が開示されている。 Therefore, in Patent Document 1, for example, when continuously casting a material having a brittle temperature range of 820 to 950 ° C., the surface temperature of the upper part of the slab in the upper part of the secondary cooling zone is reduced to 650 to 700 ° C. A method is disclosed in which transformation is caused, and thereafter, the surface temperature at the bending straightening point is maintained in the range of 700 to 800 ° C. by slowly reheating.
また、特許文献2では、鋳片の分塊圧延時、加熱炉に装入する前に鋳片の表層部を350〜500℃の温度に1分間以上冷却して保持することで表面割れを防止する方法が開示されている。この特許文献2で開示された方法は、鋳片の表面温度を一旦低下させることにより、鋳片の大部分または全体をγ相からα相に変態させ、これによりγ粒径を微細化して組織的に割れ感受性を小さくする方法である。 Moreover, in patent document 2, surface cracking is prevented by cooling and holding the surface layer part of the slab at a temperature of 350 to 500 ° C. for 1 minute or more before charging into the heating furnace during the ingot rolling of the slab. A method is disclosed. In the method disclosed in Patent Document 2, the surface temperature of the slab is temporarily lowered to transform most or all of the slab from the γ phase to the α phase. This is a method of reducing cracking sensitivity.
前記特許文献1,2で開示された技術は、何れも、鋳片の表面温度を一旦低下させることにより、鋳片表層に相変態を生じさせ、金属組織的に強度を持たせて割れ感受性を低下する方法である。 The techniques disclosed in Patent Documents 1 and 2 both reduce the surface temperature of the slab, thereby causing a phase transformation in the surface of the slab, giving the metal structure strength and cracking sensitivity. It is a method of lowering.
しかしながら、特許文献1で開示された方法のように、連続鋳造中に鋳片上部の表面温度を700℃以下にまで低下させると鋳片の変形抵抗が増加し、曲げ矯正に要する力が大きくなって設備が大がかりなものとなってしまう。また、特許文献1で開示された方法では、フェライトバンドや表皮下割れが生成しやすい。 However, as in the method disclosed in Patent Document 1, when the surface temperature of the upper part of the slab is lowered to 700 ° C. or lower during continuous casting, the deformation resistance of the slab increases and the force required for bending correction increases. The equipment becomes large. Further, in the method disclosed in Patent Document 1, ferrite bands and epidermal cracks are likely to be generated.
また、特許文献2で開示された方法では、Cr:0.75〜1.5質量%、Mo:0.15〜0.35質量%、Ni:0.4〜2.0質量%の一種以上を含有し、焼き入れ性が改善され、かつアルミナイトライド(AlN)を形成しやすいアルミニウムキルド鋼を対象としている。 In the method disclosed in Patent Document 2, one or more of Cr: 0.75 to 1.5% by mass, Mo: 0.15 to 0.35% by mass, and Ni: 0.4 to 2.0% by mass. It is intended for an aluminum killed steel that has improved hardenability and easily forms aluminum nitride (AlN).
一方、特許文献3では、球状化焼鈍処理を省略しても熱間圧延のままで冷間加工性を向上させるために、Ti等のフェライト結晶粒径微細化元素を極力低減し、フェライト結集粒径を粗大化させるBやZrを添加する技術が開示されている。 On the other hand, in Patent Document 3, in order to improve the cold workability while maintaining the hot rolling even if the spheroidizing annealing treatment is omitted, the ferrite crystal grain refinement element such as Ti is reduced as much as possible, and the ferrite aggregated grains are reduced. A technique of adding B or Zr for increasing the diameter is disclosed.
特許文献3で開示された技術は、室温での変形抵抗、及び加工発熱領域での変形抵抗を低減する目的で、フェライト結晶粒径を粗大化させ、変形抵抗を低減することが目的である。 The technique disclosed in Patent Document 3 aims to reduce the deformation resistance by coarsening the ferrite crystal grain size in order to reduce the deformation resistance at room temperature and the deformation resistance in the processing heat generation region.
本発明が解決しようとする問題点は、特許文献1,2で開示された方法は、何れも、鋳片の表面温度を低下させて鋳片表層に相変態を生じさせ、金属組織的に強度を持たせて割れ感受性を低下させるので、曲げ矯正に大きな力が必要になって設備が大掛かりになるという点である。加えて、特許文献1の方法では、フェライトバンドや表皮下割れが生成しやすい一方、特許文献2はAlNを形成しやすいアルミニウムキルド鋼を対象としており、Alの添加量が多いことに起因して発生する表面割れの抑制を目的とする本発明とは相違するという点である。 The problems to be solved by the present invention are that the methods disclosed in Patent Documents 1 and 2 both reduce the surface temperature of the slab and cause a phase transformation in the surface of the slab, resulting in a metallographic strength. This reduces the susceptibility to cracking and requires a large amount of force for bending correction, resulting in a large facility. In addition, in the method of Patent Document 1, ferrite bands and subepidermal cracks are likely to be generated, while Patent Document 2 is directed to an aluminum killed steel that easily forms AlN, resulting in a large amount of Al added. This is a point different from the present invention aiming at suppression of generated surface cracks.
また、特許文献3で開示された技術を本願で対象とする熱間の鋳片に適用した場合、フェライト結晶粒径が粗大化して鋳片表面割れが生成しやすくなるという点である。 In addition, when the technique disclosed in Patent Document 3 is applied to a hot slab that is the subject of the present application, the ferrite crystal grain size becomes coarse, and a slab surface crack is likely to be generated.
本発明は、低炭素アルミキルド鋼鋳片の連続鋳造時に、表面温度を制御することなく、垂直曲げ型連続鋳造機或いは湾曲型連続鋳造機の曲げ矯正時或いは曲げ戻し矯正時に発生する鋳片表面割れを抑制することを目的としている。 The present invention relates to a slab surface crack that occurs during the straightening or straightening of a bending bend in a vertical bending continuous casting machine or a curved continuous casting machine without controlling the surface temperature during continuous casting of a low carbon aluminum killed steel slab. The purpose is to suppress.
すなわち、本発明は、
質量%で、C:0.01〜0.09%、Mn:0.25〜0.40%、Si:0.03%以下、P:0.005〜0.030%、S:0.01〜0.03%、Al:0.063〜0.093%、N:0.0060%以下、その他、Fe及び不純物からなる低炭素アルミキルド鋼を連続鋳造する方法であって、
前記低炭素アルミキルド鋼に、0.010%<Ti≦0.025%を添加し、鋳片の凝固シェル厚さが10mm〜30mmの二次冷却帯上部における鋳片の表面温度をALNの析出開始温度(1050℃)以上となるようにすることを最も主要な特徴としている。
That is, the present invention
C: 0.01-0. 09 %, Mn: 0.25 to 0.40%, Si: 0.03% or less, P: 0.005 to 0.030%, S: 0.01 to 0.03%, Al: 0.063 to 0. 093 %, N: 0.0060% or less, in addition, a method of continuously casting low carbon aluminum killed steel composed of Fe and impurities,
Addition of 0.010% <Ti ≦ 0.025% to the low carbon aluminum killed steel, and ALN precipitation starts at the surface temperature of the slab at the upper part of the secondary cooling zone where the solidified shell thickness of the slab is 10 mm to 30 mm The most important feature is that the temperature (1050 ° C.) or higher.
本発明は、0.010%<Ti≦0.025%を添加し、鋳片の凝固シェル厚さが10mm〜30mmの二次冷却帯上部における鋳片の表面温度をALNの析出開始温度(1050℃)以上とするので、Alを0.063〜0.093質量%含有する低炭素アルミキルド鋼の連続鋳造においてもAlNの析出を抑制することができる。 In the present invention, 0.010% <Ti ≦ 0.025% is added, and the surface temperature of the slab in the upper part of the secondary cooling zone having a solidified shell thickness of 10 mm to 30 mm is set to the ALN precipitation start temperature (1050 ° C) or more, so that Al is 0.063-0. Precipitation of AlN can also be suppressed in continuous casting of low carbon aluminum killed steel containing 093 % by mass.
上記本発明において、AlNの析出を抑制する観点からは、鋳片の表面温度は、TiNの析出開始温度(1400℃)以下とすることが望ましい。 In the present invention, from the viewpoint of suppressing the precipitation of AlN, the surface temperature of the slab, the precipitation start temperature of TiN (1400 ° C.) is preferably set to below.
本発明では、AlNの析出を抑制することができるので、Alの添加量を多くすることに起因して発生する低炭素アルミキルド鋼の鋳片表面割れを防止することができる。 In the present invention, since precipitation of AlN can be suppressed, it is possible to prevent slab surface cracking of the low carbon aluminum killed steel that is caused by increasing the amount of Al added.
本発明は、低炭素アルミキルド鋼製品の中で時効硬化の抑制が要求されて、Alの添加量を多くしなければならない鋼種において、Alの添加量を多くすることに起因して発生する表面割れを抑制することを目的とするものである。 The present invention is required to suppress age hardening in low-carbon aluminum killed steel products, and in steel types where the amount of Al added must be increased, surface cracks caused by increasing the amount of Al added. It aims at suppressing.
低炭素アルミキルド鋼鋳片の表面割れが発生した粒界部にはAlNの析出が確認されており、γ粒界に析出したAlNに曲げ矯正応力が集中することによって表面割れが発生している可能性が高いと考えられる。 Precipitation of AlN has been confirmed at the grain boundaries where surface cracks have occurred in low carbon aluminum killed steel slabs, and surface cracks can occur due to concentration of bending straightening stress on AlN precipitated at the γ grain boundaries. It is considered that the nature is high.
一方、低炭素アルミキルド鋼に、Nとの親和力がAlに比べて大きい特性を有するTiを添加することによって、TiN(チタンナイトライド)がAlNに対して優先的に析出する。 On the other hand, TiN (titanium nitride) is preferentially precipitated with respect to AlN by adding Ti, which has a higher affinity with N to low carbon aluminum killed steel than Al.
発明者らは、このことが垂直曲げ型連続鋳造機或いは湾曲型連続鋳造機の、曲げ矯正時或いは曲げ戻し矯正時に発生する鋳片表面割れの主原因であるAlNの析出を抑制し、表面割れ発生の抑制に有効であることを知見した。 The inventors suppress the precipitation of AlN, which is the main cause of slab surface cracking that occurs during bending correction or bending correction in a vertical bending type continuous casting machine or a curved type continuous casting machine. It was found that it is effective in suppressing the occurrence.
また、凝固シェルの厚さが10mm〜30mmの範囲の二次冷却帯上部における鋳片の表面温度をTiNの析出開始温度(約1400℃)からALNの析出開始温度(約1050℃)の間に制御することにより、特に鋳片表層部におけるTiNの析出を優先的に行わせてALNの析出を抑制でき、Ti添加の効果をより得ることが可能であることを知見した。 Further, the surface temperature of the slab at the upper part of the secondary cooling zone with the thickness of the solidified shell ranging from 10 mm to 30 mm is between the TiN precipitation start temperature (about 1400 ° C.) and the ALN precipitation start temperature (about 1050 ° C.). It has been found that by controlling, it is possible to preferentially precipitate TiN in the slab surface layer portion to suppress the precipitation of ALN, and to obtain the effect of adding Ti more.
すなわち、本発明は、上記目的を、成分制御として適切な量のTi添加を行うことと、二次冷却帯上部における鋳片温度を制御することにより実現した。 That is, the present invention achieves the above object by adding an appropriate amount of Ti as a component control and controlling the slab temperature in the upper part of the secondary cooling zone.
具体的には、本発明は、
質量%で、C:0.01〜0.09%、Mn:0.25〜0.40%、Si:0.03%以下、P:0.005〜0.030%、S:0.01〜0.03%、Al:0.063〜0.093%、N:0.0060%以下、その他、Fe及び不純物からなる低炭素アルミキルド鋼を連続鋳造する方法であって、
前記低炭素アルミキルド鋼に、0.010%<Ti≦0.025%を添加し、鋳片の凝固シェル厚さが10mm〜30mmの二次冷却帯上部における鋳片の表面温度をALNの析出開始温度(1050℃)以上となるようにすることを特徴とするものである。
Specifically, the present invention provides:
C: 0.01-0. 09 %, Mn: 0.25 to 0.40%, Si: 0.03% or less, P: 0.005 to 0.030%, S: 0.01 to 0.03%, Al: 0.063 to 0. 093 %, N: 0.0060% or less, in addition, a method of continuously casting low carbon aluminum killed steel composed of Fe and impurities,
Addition of 0.010% <Ti ≦ 0.025% to the low carbon aluminum killed steel, and ALN precipitation starts at the surface temperature of the slab at the upper part of the secondary cooling zone where the solidified shell thickness of the slab is 10 mm to 30 mm The temperature is set to be equal to or higher than 1050 ° C.
AlNの析出を抑制する観点からは、前記した鋳片の表面温度を、TiNの析出開始温度(1400℃)以下とすることが望ましい。発明者らの試験によれば、より望ましい鋳片の表面温度の範囲は1055℃〜1082℃の範囲である。 From the viewpoint of suppressing the precipitation of AlN, the surface temperature of the slab described above, deposition starting temperature of TiN (1400 ° C.) is preferably set to below. According to the inventors' tests, the more desirable range of the surface temperature of the slab is 1055 ° C to 1082 ° C.
本発明において、上記化学成分範囲の低炭素アルミキルド鋼を対象とする理由、及びTiの添加量を規定する理由を、以下に説明する。以下、「質量%」を単に「%」と記載する。 In the present invention, the reason why the low-carbon aluminum killed steel having the above chemical composition range is targeted and the reason for defining the addition amount of Ti will be described below. Hereinafter, “mass%” is simply referred to as “%”.
・C:0.01〜0.09%
Cは、鋼材の必要強度を付与するのに必須の元素である。しかしながら、含有量が0.01%未満では求める強度が得られず、また、0.01%未満の低濃度に制御しようとするとコスト高となり経済的ではない。一方、0.09%を超えて含有させた場合は、鋼の強度が高まって製品の加工性が低下してしまい、製品に要求される特性を満たすことができなくなるからである。
従って、本発明ではCの含有量を0.01〜0.09%と規定した。
C: 0.01-0. 09 %
C is an element essential for imparting the necessary strength of the steel material. However, if the content is less than 0.01%, the required strength cannot be obtained, and if it is attempted to control the concentration to a low concentration of less than 0.01%, the cost increases and it is not economical. On the other hand, 0. This is because if the content exceeds 09 %, the strength of the steel increases and the workability of the product decreases, making it impossible to satisfy the properties required for the product.
Therefore, in the present invention, the C content is set to 0.01-0. It was defined as 09 %.
・Mn:0.25〜0.40%
Mnは脱酸及び脱硫に有効であるのみならず、冷間加工後の熱処理時における焼入れ焼き戻し軟化抵抗を向上させるのに有効な元素である。前記作用を有効に発現させるには、0.25%以上添加する必要がある。しかしながら、0.40%を超えて添加すると、冷間加工性を阻害するベイナイトを容易に発生させる。従って、本発明では、Mnの含有量を0.25〜0.40%と規定した。
・ Mn: 0.25 to 0.40%
Mn is not only effective for deoxidation and desulfurization, but is also an element effective for improving the quenching and tempering softening resistance during the heat treatment after cold working. In order to effectively exhibit the above action, it is necessary to add 0.25% or more. However, if added over 0.40%, bainite that inhibits cold workability is easily generated. Therefore, in the present invention, the Mn content is specified to be 0.25 to 0.40%.
・Si:0.03%以下
Siは脱酸剤として有効な元素であるが、0.03%を超えて添加すると、固溶強化により変形能低下を生じる可能性があり、含有量はできるだけ少ないことが望ましい。そこで、本発明ではSiの含有量を0.03%以下とした。
-Si: 0.03% or less Si is an element effective as a deoxidizing agent, but if added over 0.03%, there is a possibility that the deformability is lowered due to solid solution strengthening, and the content is as low as possible It is desirable. Therefore, in the present invention, the Si content is set to 0.03% or less.
・P:0.005〜0.030%
Pは、焼き入れ性向上元素として有効である。但し、0.030%を超えて添加すると、凝固時にミクロ偏析し、熱間圧延時に粒界偏析して粒界を脆化させ、冷間加工の際に割れるおそれがある。一方、添加量が0.005%未満の場合は、脱P処理工程の負荷が高く、コスト悪化を招いてしまう。従って、本発明では、Pの含有量を0.005〜0.030%と規定した。
・ P: 0.005 to 0.030%
P is effective as an element for improving hardenability. However, if added over 0.030%, microsegregation occurs during solidification, grain boundary segregation occurs during hot rolling, embrittles the grain boundary, and cracks may occur during cold working. On the other hand, when the addition amount is less than 0.005%, the load of the de-P treatment process is high, leading to cost deterioration. Therefore, in this invention, content of P was prescribed | regulated as 0.005-0.030%.
・S:0.01〜0.03%
Sは、主にMnSの硫化物系介在物を形成する。そして、その含有量が0.03%を超えると、熱間圧延時に鋳塊に偏析して鋳塊を脆化させ、冷間加工時に割れるおそれがある。一方、その含有量が0.01%未満の場合は、MnSの硫化物系介在物が析出し難く、その結果、製品の被削性が低下してしまうおそれがある。そこで、本発明では、Sの含有量を0.01〜0.03%と規定した。
・ S: 0.01-0.03%
S mainly forms sulfide inclusions of MnS. And when the content exceeds 0.03%, it may segregate in the ingot at the time of hot rolling, embrittle the ingot, and may break at the time of cold working. On the other hand, if the content is less than 0.01%, MnS sulfide inclusions are difficult to precipitate, and as a result, the machinability of the product may be reduced. Therefore, in the present invention, the S content is defined as 0.01 to 0.03%.
・Al:0.063〜0.093%
Alは、脱酸に有効な元素であるが、窒化物(AlN)を生成し易く、AlNが多くなると結晶粒の微細化を生じる。また、AlはNを固定する元素として、下記で説明するNと結合することで、鋼中のフリーなNにより生じる時効硬化の問題を解決する。しかしながら、連続鋳造中において、AlNが結晶粒界に析出した状態で、鋳片圧下等の応力を付与した場合、結晶粒界に応力集中が生じ、表面割れを発生させる要因となる。従って、本発明では、AlNは出来るだけ生成させない方が良いので、AlNをできるだけ生成させないために、狙いを組成範囲の中央値よりも下を目標として0.063%以上、0.093%以下とした。
-Al: 0.063-0. 093 %
Al is an element effective for deoxidation, but nitride (AlN) is easily generated, and when AlN increases, crystal grains become finer. Moreover, Al combines with N described below as an element for fixing N, thereby solving the problem of age hardening caused by free N in steel. However, if stress such as slab pressure is applied while AlN is precipitated at the grain boundaries during continuous casting, stress concentration occurs at the grain boundaries, causing surface cracks. Therefore, in the present invention, it is better not to generate AlN as much as possible. Therefore, in order to prevent the generation of AlN as much as possible, the aim is 0.063% or more with a target lower than the median of the composition range. 093 % or less.
・N:0.0060%以下
Nは鋼中にフリーな状態で存在した場合、製品の時効硬化を引き起こす元素であり、低炭素鋼等、加工性が求められる製品においては、極力低位であることが望ましい。しかしながら、Nを低位にしようとした場合、大気からのNピックアップを抑制するために、過度なシールをする必要があり、操業上のコスト低下を招いてしまう。従って、本発明では、Nの狙いを0.0060%以下とした。
-N: 0.0060% or less N is an element that causes age hardening of products when present in a free state in steel, and should be as low as possible in products that require workability, such as low-carbon steel. Is desirable. However, when N is to be lowered, it is necessary to perform excessive sealing in order to suppress N pickup from the atmosphere, leading to a reduction in operational costs. Therefore, in the present invention, the aim of N is set to 0.0060% or less.
・Ti:0.010%を超え、0.025%以下
Tiは、鋼中のNと結合し、TiNとなって析出することにより、AlNの析出を抑制し、オーステナイト粒界での鋳片表面割れを抑制する。Alの含有量が0.063〜0.12%の本発明では、Tiを0.025%添加すれば鋼中のNと結合するのに十分である。また、0.025%を超えて添加してもその効果に変化は無く、コスト面での負荷が大きくなることから、上限値を0.025%とした。尚、含有量が過大となると、TiNの粗大化を招き、疲労強度を低下させる原因となる。一方、Tiの添加量が0.010%以下の場合は、AlNの析出を抑制する効果を期待できないので、下限値を0.010%とした。
Ti: more than 0.010% and 0.025% or less Ti binds to N in steel and precipitates as TiN, thereby suppressing precipitation of AlN and slab surface at austenite grain boundaries Suppresses cracking. In the present invention in which the Al content is 0.063 to 0.12%, the addition of 0.025% Ti is sufficient for bonding with N in the steel. Moreover, even if added over 0.025%, there is no change in the effect, and the load in terms of cost increases, so the upper limit was made 0.025%. If the content is excessive, TiN becomes coarse and causes a decrease in fatigue strength. On the other hand, when the addition amount of Ti is 0.010% or less, the effect of suppressing the precipitation of AlN cannot be expected, so the lower limit was set to 0.010%.
上記本発明によれば、低炭素アルミキルド鋼の連続鋳造において、安定してAlNの析出を抑制でき、鋳片の表面温度を制御するための設備改造や低温鋳片矯正装置を設置することなく、鋳片に発生する表面割れを抑制することができる。 According to the present invention, in continuous casting of low carbon aluminum killed steel, it is possible to stably suppress precipitation of AlN, without installing equipment remodeling and low temperature slab straightening device for controlling the surface temperature of the slab, Surface cracks occurring in the slab can be suppressed.
以下、本発明の効果を確認するために行った試験結果について説明する。
試験は、下記表1に示す化学成分の低炭素アルミキルド鋼から厚さ339mm、幅465mmの鋳片を湾曲型連続鋳造機を用いて連続鋳造し、その表面に発生した表面割れを調査することにより行った。連続鋳造は、0.60〜0.70m/minの速度で行い、二次冷却水の比水量は0.18〜0.35リットル/kg -steelとなるように制御した。
Hereinafter, the results of tests conducted to confirm the effects of the present invention will be described.
The test is performed by continuously casting a slab having a thickness of 339 mm and a width of 465 mm from a low carbon aluminum killed steel having the chemical composition shown in Table 1 below using a curved continuous casting machine, and investigating surface cracks generated on the surface. went. Continuous casting was performed at a speed of 0.60 to 0.70 m / min, and the specific amount of secondary cooling water was controlled to be 0.18 to 0.35 liter / kg-steel.
下記表2に試験条件及び試験結果を示す。
下記表2中の軽手入れ率は、連続鋳造機にて鋳造した鋳片を分塊工場に搬送して分塊圧延した後の鋼片の表面割れを手入れし、その割れ個数及び手入れ所要工数により評価した表面品質指標である。
Table 2 below shows test conditions and test results.
The light care rate in Table 2 below is based on the number of cracks and the number of man-hours required for maintenance after the surface slab of the steel slab after the slab cast by the continuous casting machine is transported to the slab and rolled. This is an evaluated surface quality index.
前記軽手入率が大きいほど表面品質は良好であることを表す。この軽手入れ率が100%よりも小さいものは、鋼片表面をグラインダーにて研削する必要があり、歩留りが低下するのみならず、研削量が過大となる場合は製品化できないものがあることを意味する。下記表2では、軽手入率が100%の場合を〇、100未満で90%以上の場合を△、90%未満の場合を×として評価した。 The larger the light care rate, the better the surface quality. If this light care rate is less than 100%, it is necessary to grind the steel slab surface with a grinder, which not only reduces the yield, but also cannot be commercialized if the grinding amount is excessive. means. In Table 2 below, the case where the light care rate was 100% was evaluated as ◯, the case where it was less than 100 and 90% or more was evaluated as Δ, and the case where it was less than 90% was evaluated as ×.
比較例1では、Alの含有量が本発明で規定する範囲よりも少ない0.062%であったので、Tiの添加量が本発明で規定する量よりも少ない0.001%であっても、AlNの析出量が少なくて手入れをする必要がなく、軽手入れ率は100%で、評価は〇であった。 In Comparative Example 1, the Al content was 0.062%, which is less than the range specified in the present invention. Therefore, even if the addition amount of Ti is 0.001%, which is less than the amount specified in the present invention. The amount of precipitated AlN was small and it was not necessary to care for it, the light care rate was 100%, and the evaluation was ◯.
しかしながら、比較例2では、Alの含有量が本発明で規定する範囲内である0.083%であるにも拘らず、Tiの添加量が本発明で規定する量よりも少ない0.002%であったので、AlNの析出により表面割れが発生し、軽手入率が76%で評価は×となった。 However, in Comparative Example 2, although the Al content is 0.083%, which is within the range defined by the present invention, the amount of Ti added is 0.002%, which is less than the amount defined by the present invention. Therefore, surface cracking occurred due to the precipitation of AlN, and the light maintenance rate was 76%, and the evaluation was x.
また、比較例3も比較例2と同様、Alの含有量が本発明で規定する範囲内である0.080%にも拘らず、Tiの添加量が本発明で規定する量よりも少ない0.010%であったので、AlNの析出により表面割れが発生し、軽手入率が71%で評価は×となった。 Further, in Comparative Example 3 as well as Comparative Example 2, although the Al content is 0.080% which is within the range defined by the present invention, the amount of Ti added is less than the amount defined by the present invention. Since it was .010%, surface cracking occurred due to precipitation of AlN, and the evaluation was x with a light care rate of 71%.
これら比較例1〜3の場合、鋳片の凝固シェル厚さが10mm〜30mmの二次冷却帯上部における鋳片の表面温度は、何れも、ALNの析出開始温度である1050℃以上であった。 In the case of these comparative examples 1 to 3, the surface temperature of the slab at the upper part of the secondary cooling zone where the solidified shell thickness of the slab was 10 mm to 30 mm was 1050 ° C. or more, which is the ALN precipitation start temperature. .
一方、比較例4は、Alの含有量が本発明で規定する範囲内である0.083%で、Tiの添加量も本発明で規定する範囲内の0.023%であるものの、鋳造速度Vcが0.60m/minに低下した時にも二次冷却帯上部における冷却水の比水量を0.35リットル/kgの一定としたので、鋳片の凝固シェル厚さが10mm〜30mmの二次冷却帯上部における鋳片の表面温度がALNの析出開始温度未満の980℃に低下した。従って、軽手入れ率は91%で100%とはならず、評価は△であった。 On the other hand, in Comparative Example 4, although the Al content is 0.083%, which is within the range defined by the present invention, and the addition amount of Ti is 0.023%, which is within the range defined by the present invention, the casting speed Even when Vc is reduced to 0.60 m / min, the specific water volume of the cooling water at the upper part of the secondary cooling zone is kept constant at 0.35 liter / kg, so that the secondary shell having a solidified shell thickness of 10 mm to 30 mm is obtained. The surface temperature of the slab at the upper part of the cooling zone was lowered to 980 ° C., which was lower than the ALN precipitation start temperature. Therefore, the light care rate was 91%, not 100%, and the evaluation was Δ.
これに対して、Alの含有量が0.084%で、Tiの添加量が0.025%の発明例1や、Alの含有量が0.093%で、Tiの添加量が0.023%の発明例2は、何れも、本発明で対象とする低炭素アルミキルド鋼に本発明で規定する範囲内のTiを添加したので、軽手入れ率は100%で、評価は〇であった。 In contrast, Invention Example 1 in which the Al content is 0.084% and the Ti addition amount is 0.025%, and the Al content is 0.093% and the Ti addition amount is 0.023%. % Of Invention Example 2 was obtained by adding Ti within the range specified in the present invention to the low-carbon aluminum killed steel targeted in the present invention, so that the light care rate was 100% and the evaluation was “good”.
また、Alの含有量が0.073%で、Tiの添加量が0.011%の発明例3も、本発明で対象とする低炭素アルミキルド鋼に本発明で規定する範囲内のTiを添加したので、軽手入れ率は100%で、評価は〇であった。 In addition, in Invention Example 3 in which the Al content is 0.073% and the Ti addition amount is 0.011%, Ti within the range defined in the present invention is added to the low-carbon aluminum killed steel targeted by the present invention. Therefore, the light care rate was 100%, and the evaluation was ◯.
これら発明例1〜3の場合、鋳片の凝固シェル厚さが10mm〜30mmの二次冷却帯上部における鋳片の表面温度は、何れも、ALNの析出開始温度である1050℃以上であった。 In the case of these inventive examples 1 to 3, the surface temperature of the slab at the upper part of the secondary cooling zone where the solidified shell thickness of the slab is 10 mm to 30 mm was 1050 ° C. or more, which is the ALN precipitation start temperature. .
一方、Alの含有量が0.082%で、Tiの添加量が0.022%の発明例4の場合は、鋳造速度Vcが0.60m/minに低下した時において、特に二次冷却帯上部における冷却水の比水量を0.18リットル/kgと、発明例1〜3よりも低下させて、鋳片の凝固シェル厚さが10mm〜30mmの二次冷却帯上部における鋳片の表面温度を、ALNの析出開始温度である1050℃以上としたので、軽手入れ率は100%で、評価は〇であった。 On the other hand, in the case of Invention Example 4 in which the Al content is 0.082% and the Ti addition amount is 0.022%, the secondary cooling zone is particularly effective when the casting speed Vc is reduced to 0.60 m / min. The specific surface water temperature of the slab in the upper part of the secondary cooling zone with a solidified shell thickness of 10 mm to 30 mm is reduced to 0.18 liter / kg, which is lower than that of Invention Examples 1 to 3. Was set to 1050 ° C. or more, which is the ALN deposition start temperature, and the light care rate was 100%, and the evaluation was “good”.
本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。 It goes without saying that the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in each claim.
本発明方法は、上記実施例で説明した鋳片サイズによらず、スラブやビレットの連続鋳造においても適用可能と考える。また、鋳造速度や二次冷却は連続鋳造機毎の鋳造制約があるため、鋳造速度及び二次冷却水の比水量も上記実施例で説明した範囲に限らず、特にその上下限値は無いと考えられる。 The method of the present invention can be applied to continuous casting of slabs and billets regardless of the slab size described in the above embodiments. Moreover, since casting speed and secondary cooling have casting restrictions for each continuous casting machine, the casting speed and the specific water amount of the secondary cooling water are not limited to the ranges described in the above embodiment, and there are no upper and lower limit values in particular. Conceivable.
Claims (2)
前記低炭素アルミキルド鋼に、0.010%<Ti≦0.025%を添加し、鋳片の凝固シェル厚さが10mm〜30mmの二次冷却帯上部における鋳片の表面温度をALNの析出開始温度(1050℃)以上となるようにすることを特徴とする低炭素アルミキルド鋼の製造方法。 C: 0.01-0. 09 %, Mn: 0.25 to 0.40%, Si: 0.03% or less, P: 0.005 to 0.030%, S: 0.01 to 0.03%, Al: 0.063 to 0. 093 %, N: 0.0060% or less, in addition, a method of continuously casting low carbon aluminum killed steel composed of Fe and impurities,
Addition of 0.010% <Ti ≦ 0.025% to the low carbon aluminum killed steel, and ALN precipitation starts at the surface temperature of the slab at the upper part of the secondary cooling zone where the solidified shell thickness of the slab is 10 mm to 30 mm A method for producing a low-carbon aluminum killed steel, characterized by having a temperature (1050 ° C.) or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014147842A JP6347164B2 (en) | 2014-07-18 | 2014-07-18 | Low carbon aluminum killed steel manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014147842A JP6347164B2 (en) | 2014-07-18 | 2014-07-18 | Low carbon aluminum killed steel manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016022498A JP2016022498A (en) | 2016-02-08 |
JP6347164B2 true JP6347164B2 (en) | 2018-06-27 |
Family
ID=55269764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014147842A Active JP6347164B2 (en) | 2014-07-18 | 2014-07-18 | Low carbon aluminum killed steel manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6347164B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112792307A (en) * | 2020-12-28 | 2021-05-14 | 江苏永钢集团有限公司 | Process method for improving surface quality of low-carbon tube blank steel |
CN114054711B (en) * | 2021-11-23 | 2023-06-09 | 马鞍山钢铁股份有限公司 | Control method for surface inclusion of low-carbon enamel steel casting blank |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3042398B2 (en) * | 1996-03-27 | 2000-05-15 | 住友金属工業株式会社 | How to control slab surface cracks |
JP3412418B2 (en) * | 1996-10-07 | 2003-06-03 | 住友金属工業株式会社 | Slab secondary cooling device |
JP3239808B2 (en) * | 1997-07-18 | 2001-12-17 | 住友金属工業株式会社 | Steel continuous casting method |
JP4240576B2 (en) * | 1998-05-18 | 2009-03-18 | 住友金属工業株式会社 | Steel sheet with excellent surface properties |
JP3542913B2 (en) * | 1998-10-30 | 2004-07-14 | 新日本製鐵株式会社 | Slab for thin steel sheet with less inclusion defect and method for producing the same |
JP3427794B2 (en) * | 1999-08-31 | 2003-07-22 | 住友金属工業株式会社 | Continuous casting method |
JP2001191158A (en) * | 1999-12-28 | 2001-07-17 | Sumitomo Metal Ind Ltd | Continuous casting method of steel |
JP4728532B2 (en) * | 2001-08-27 | 2011-07-20 | 新日本製鐵株式会社 | Steel continuous casting method |
US20070251663A1 (en) * | 2006-04-28 | 2007-11-01 | William Sheldon | Active temperature feedback control of continuous casting |
-
2014
- 2014-07-18 JP JP2014147842A patent/JP6347164B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016022498A (en) | 2016-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10577671B2 (en) | High-hardness hot-rolled steel product, and a method of manufacturing the same | |
JP6017341B2 (en) | High strength cold-rolled steel sheet with excellent bendability | |
JP6048626B1 (en) | Thick, high toughness, high strength steel plate and method for producing the same | |
JP5229823B2 (en) | High-strength, high-toughness cast steel and method for producing the same | |
JP6143355B2 (en) | Hot-rolled steel sheet with excellent drawability and surface hardness after carburizing heat treatment | |
JP4808828B2 (en) | Induction hardening steel and method of manufacturing induction hardening steel parts | |
JP6222041B2 (en) | Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof | |
JP2019081930A (en) | Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same | |
CN111936643B (en) | Steel composition with enhanced Hydrogen Induced Cracking (HIC) resistance and method of manufacturing steel of steel composition | |
JP6347164B2 (en) | Low carbon aluminum killed steel manufacturing method | |
JP6509187B2 (en) | High strength cold rolled steel sheet excellent in bending workability and manufacturing method thereof | |
JP6453693B2 (en) | Heat treated steel wire with excellent fatigue characteristics | |
JP2015006684A (en) | Continuous casting method of steel | |
JP2018044223A (en) | Abrasion resistant steel sheet and manufacturing method therefor | |
KR101368496B1 (en) | High strength cold-rolled steel sheet and method for manufacturing the same | |
JP6684905B2 (en) | High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same | |
JP7427764B2 (en) | High-strength spring wire rod and steel wire and manufacturing method thereof | |
JP2019081929A (en) | Nickel-containing steel plate and method for manufacturing the same | |
JP6225733B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP6589096B2 (en) | Continuous casting method of Ni-containing steel | |
JP2019081931A (en) | Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same | |
JP6402533B2 (en) | Continuous casting method of Ni-containing steel | |
JP2016141821A (en) | Softening heat treatment method of steel material excellent in cold forgeability and crystal grain coarsening resistance | |
JP2014136824A (en) | Raw material slab, thin steel sheet and manufacturing method of the same | |
JP5821792B2 (en) | Method for producing continuous cast slab of steel containing B and method for continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180403 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180501 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180514 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6347164 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |