Nothing Special   »   [go: up one dir, main page]

JP6209695B1 - アルミナ系熱伝導性酸化物及びその製造方法 - Google Patents

アルミナ系熱伝導性酸化物及びその製造方法 Download PDF

Info

Publication number
JP6209695B1
JP6209695B1 JP2017038977A JP2017038977A JP6209695B1 JP 6209695 B1 JP6209695 B1 JP 6209695B1 JP 2017038977 A JP2017038977 A JP 2017038977A JP 2017038977 A JP2017038977 A JP 2017038977A JP 6209695 B1 JP6209695 B1 JP 6209695B1
Authority
JP
Japan
Prior art keywords
raw material
resin
oxide
alumina
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017038977A
Other languages
English (en)
Other versions
JP2018145025A (ja
Inventor
西尾 章
章 西尾
山根 健一
健一 山根
尚嗣 山村
尚嗣 山村
慎吾 冨永
慎吾 冨永
博哉 鬼塚
博哉 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017038977A priority Critical patent/JP6209695B1/ja
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Publication of JP6209695B1 publication Critical patent/JP6209695B1/ja
Application granted granted Critical
Priority to KR1020197028534A priority patent/KR102070032B1/ko
Priority to PCT/JP2018/007251 priority patent/WO2018159608A1/ja
Priority to US16/486,793 priority patent/US20190359875A1/en
Priority to CN201880014859.4A priority patent/CN110352178B/zh
Priority to EP18761134.8A priority patent/EP3590891B1/en
Priority to TW107107079A priority patent/TWI806853B/zh
Publication of JP2018145025A publication Critical patent/JP2018145025A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/128Borates containing plural metal or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/324Alkali metal phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/053Oxides composed of metals from groups of the periodic table
    • H01L2924/054313th Group
    • H01L2924/05432Al2O3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Geology (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】熱伝導性のみならず、耐薬品性、耐水性、及び電気絶縁性に優れているとともに、樹脂への練り込み性(混和性)が良好であり、成形性に優れた樹脂組成物等の材料や物品を製造することが可能なアルミナ系熱伝導性酸化物を提供する。【解決手段】アルミニウム原料を含有する原料混合物を焼成して得られるアルミナ系熱伝導性酸化物である。アルミニウム原料が、ベーマイト、水酸化アルミニウム、及びアルミナからなる群より選択される少なくとも一種であり、原料混合物が、ホウ酸化合物と、タングステン化合物などの酸化物原料とをさらに含有し、原料混合物中、アルミニウム原料100質量部に対する、ホウ酸化合物の含有量が0.1〜5質量部であり、酸化物原料の含有量が0.1〜20質量部である。【選択図】なし

Description

本発明は、アルミナ系熱伝導性酸化物及びその製造方法、並びにアルミナ系熱伝導性酸化物を用いた熱伝導性組成物、物品、液状組成物、及び熱伝導性薄膜に関する。
現在、熱伝導性材料として数多くの素材が検討されている。半導体素子の集積度の向上に伴い、熱を逃がす要求はますます強くなっており、従来よりもはるかに高い熱伝導性及び絶縁性を有する材料の開発が不可欠となっている。このような要求を満たす材料として、熱伝導性のフィラーを樹脂に練り込んで得られるコンポジット材料(樹脂組成物)が知られている。
コンポジット材料に用いられるフィラーとしては、シリカよりも熱伝導率が高く、アルミナよりも硬度が低い酸化マグネシウムが検討されている。酸化マグネシウムは、高融点、高熱伝導性、及び低毒性などの性質を有することから、耐熱材料や充填材などとして広く利用されている。さらに、近年、各種表面処理を施すことにより酸化マグネシウムの性能を向上させることも検討されている。
しかし、酸化マグネシウムは、シリカやアルミナに比べて吸湿性が高い。このため、酸化マグネシウムをフィラーとして用いたコンポジット材料は、吸湿に伴うフィラーの体積膨張によりクラックが発生しやすく、熱伝導性が低下しやすくなることがある。このため、酸化マグネシウムをフィラーとして用いたコンポジット材料の場合、半導体素子などの長期的な安定性を確保する上で課題があった。また、酸化亜鉛をフィラーとして用いることも検討されている。しかし、酸化亜鉛は、水分や酸に対する安定性及び絶縁性が低いという課題を有している。
その他、フィラー用の熱伝導材料としては、窒化ホウ素や窒化アルミニウムなどが使用されている。しかしながら、これらの材料は高価であるとともに、窒化アルミニウムについては耐水性に劣ることが知られている。窒化ホウ素の形状は鱗片状であるため、配向方向への熱伝導性は良好であるが、配向方向に直交する方向への熱伝導率はさほど良好であるとは言えない。また、樹脂に窒化ホウ素を練り込もうとしても充填量を上げることは困難である。このため、窒化ホウ素の高い熱伝導性を生かし切れないといった課題もある。一方、金属酸化物以外の熱伝導材料としては、カーボンナノチューブ、ダイヤモンド、金属などがある。しかしながら、これらの材料は導電性を有するため、半導体素子などの放熱に用いることはできない。
ところで、酸化アルミニウムは耐水性及び耐酸性に優れているとともに、良好な熱伝導性を有し、かつ、安価であることから、多くの場面で用いられている。そして、熱伝導性の向上を図るべく、樹脂への練り込み性(充填性)に優れた酸化アルミニウムが求められている。
なお、関連する従来技術として、ホウ素及び/又はフッ素を含むアンモニウム化合物を鉱化剤として用い、水酸化アルミニウム(ギブサイト)を1,200℃以上で焼成して、平均粒径1〜10μm、D/H比が1に近いα−アルミナ粉末を製造する方法が提案されている(特許文献1)。また、フッ素化合物等をアルミナ原料に添加して得た混合物を高温焼成して、平均粒子径が0.5〜6μmであり、D/H比が1〜3である多面体形状のα−アルミナを製造する方法が提案されている(特許文献2)。さらに、遷移アルミナ等のアルミナ原料を、ハロゲンガスを含む雰囲気ガス中で焼成して、均質で8面体以上の多面体形状を有し、D/H比が0.5〜5又は1〜30であるα−アルミナ単結晶粒子からなるα−アルミナ粉末の製造方法が提案されている(特許文献3)。また、[001]面以外の結晶面を主結晶面とし、六角錐形以外の多面体形状の微粒子を主成分とする、モリブデンを含むα−アルミナ微粒子を製造する方法、及びこのα−アルミナ微粒子を用いた樹脂組成物が提案されている(特許文献4及び5)。
また、電子機器の小型化に伴い、ヒートシンクやファン等を利用した放熱機構を設けることが困難な場合が多くなってきた。このため、発熱体の表面に熱伝導性の良好なコーティング層(熱伝導性薄膜)を設ける方法が注目されている。このような熱伝導性薄膜を形成するためのコーティング剤(液状組成物)には、薄膜を形成するための樹脂と、無機フィラーとが含まれていることが多い。
例えば、酸化アルミニウム及び窒化アルミニウムを含有する熱伝導性の樹脂組成物が提案されている(特許文献6)。また、窒化ホウ素を含有する熱伝導性の樹脂組成物が提案されている(特許文献7)。さらに、酸化マグネシウムや水酸化アルミニウムを含有する放熱性インキが提案されている(特許文献8及び9)。
特開昭59−97528号公報 特開2008−127257号公報 特許第3744010号公報 特許第5720848号公報 特許第5975182号公報 特開2015−10200号公報 特開2015−34269号公報 特開2007−45876号公報 特開2007−169516号公報
しかしながら、特許文献1で提案された方法で製造されるα−アルミナ粉末は、不可避的に粒子形状が不均一であるとともに、粒度分布も広い。さらに、この方法では、粒子径1μm以下のα−アルミナ粉末を製造することが困難であった。また、特許文献2で提案された方法で製造されるα−アルミナは、その平均粒子径が0.5〜6μmのもののみであり、熱伝導性フィラーとしては評価されていなかった。さらに、特許文献3で提案された製造方法を実施するには、気密性が高く、雰囲気調整のための特殊な機構を備えた焼成炉が必要であった。また、ガスが到達しない粉体層内では形状が不均一になるなど、所望とするα−アルミナ粉末を得るのが困難な方法であった。また、特許文献4及び5で提案されたα−アルミナ微粒子は、真球状のアルミナよりも比重が重いため、このα−アルミナ微粒子を含有する樹脂組成物も重くなってしまう。さらに、α−アルミナの熱伝導率も低下してしまう可能性もある。
また、特許文献6で提案された樹脂組成物に用いる無機フィラーは硬度が高いため(モース硬度=8〜9)、塗工時に塗工ロールが損傷しやすい。また、窒化アルミニウムは大気中の水分と反応しやすいため、形成された薄膜中の樹脂が経時劣化しやすいといった懸念もある。一方、特許文献7で提案された樹脂組成物に用いる窒化ホウ素は、熱伝導性が良好でありながらも、硬度が低い(モース硬度=2)。しかし、窒化ホウ素の形状は鱗片状であるために、形成される薄膜の熱伝導率には異方性があり、薄膜の厚み方向への熱伝導性が不足する場合がある。
また、特許文献8で提案された放熱性インキに用いる酸化マグネシウムは硬度が比較的高く(モース硬度=6)、しかも、耐水性及び耐酸性に乏しいという点で用途が制限されることがある。そして、特許文献9で提案された放熱インキに用いる水酸化アルミニウムは、熱伝導性の無機フィラーのなかでも熱伝導性が低いため、十分な熱伝導性を得ようとするには充填率を高める必要がある。したがって、形成される薄膜中の樹脂の含有率が相対的に減少してしまい、成膜性及び基材への密着性の低下が懸念される。
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、熱伝導性のみならず、耐薬品性、耐水性、及び電気絶縁性に優れているとともに、樹脂への練り込み性(混和性)が良好であり、成形性に優れた樹脂組成物等の材料や物品を製造することが可能なアルミナ系熱伝導性酸化物、及びその製造方法を提供することにある。また、本発明の課題とするところは、上記アルミナ系熱伝導性酸化物を用いた熱伝導性組成物及び物品を提供することにある。
さらに、本発明の課題とするところは、熱伝導性、耐薬品性、及び各種の基材への密着性に優れた熱伝導性薄膜を形成することが可能な、取り扱い性の良好な液状組成物、この液状組成物を用いて形成される熱伝導性薄膜、並びにこの熱伝導性薄膜を備えた電子機器用部材を提供することにある。
すなわち、本発明によれば、以下に示すアルミナ系熱伝導性酸化物が提供される。
[1]アルミニウム原料を含有する原料混合物を焼成して得られるアルミナ系熱伝導性酸化物であって、前記アルミニウム原料が、ベーマイト、水酸化アルミニウム、及びアルミナからなる群より選択される少なくとも一種であり、前記原料混合物が、ホウ酸化合物と、タングステン化合物、ビスマス化合物、バナジウム化合物、チタン化合物、フリット、リン化合物、亜鉛化合物、及びセリウム化合物からなる群より選択される少なくとも一種の酸化物原料と、をさらに含有し、前記原料混合物中、前記アルミニウム原料100質量部に対する、前記ホウ酸化合物の含有量が0.1〜5質量部であり、前記酸化物原料の含有量が0.1〜20質量部であるアルミナ系熱伝導性酸化物。
[2]前記酸化物原料が、熱分解若しくは相転移して酸化物を生成する、金属の酸化物、水酸化物、オキソ酸塩、炭酸塩、炭酸水素塩、又はアンモニウム塩である前記[1]に記載のアルミナ系熱伝導性酸化物。
[3]鉄、コバルト、銅、マンガン、ニッケル、及びクロムからなる群より選択される少なくとも一種の元素を含有する、着色した前記[1]又は[2]に記載のアルミナ系熱伝導性酸化物。
[4]前記フリットが、Siを含有するとともに、Li、B、Na、K、Mg、Ca、Al、Zn、F、Ti、Zr、及びPからなる群より選択される少なくとも一種の元素をさらに含有する、Pbを含有しない非着色グレードのものである前記[1]〜[3]のいずれかに記載のアルミナ系熱伝導性酸化物。
[5]前記アルミニウム原料の形状が、数平均粒子径が0.1〜80μmの粒子である前記[1]〜[4]のいずれかに記載のアルミナ系熱伝導性酸化物。
さらに、本発明によれば、以下に示すアルミナ系熱伝導性酸化物の製造方法が提供される。
[6]前記[1]〜[5]のいずれかに記載のアルミナ系熱伝導性酸化物の製造方法であって、ベーマイト、水酸化アルミニウム、及びアルミナからなる群より選択される少なくとも一種のアルミニウム原料と、ホウ酸化合物と、タングステン化合物、ビスマス化合物、バナジウム化合物、チタン化合物、フリット、リン化合物、亜鉛化合物、及びセリウム化合物からなる群より選択される少なくとも一種の酸化物原料とを混合して原料混合物を得る工程と、得られた前記原料混合物を焼成する工程と、を有し、前記原料混合物中、前記アルミニウム原料100質量部に対する、前記ホウ素化合物の含有量が0.1〜5質量部であり、前記酸化物原料の含有量が0.1〜20質量部であるアルミナ系熱伝導性酸化物の製造方法。
[7]前記原料混合物を、空気中、600〜1,500℃で焼成する前記[6]に記載のアルミナ系熱伝導性酸化物の製造方法。
[8]前記アルミニウム原料、前記ホウ酸化合物、及び前記酸化物原料を、乾式法により混合して前記原料混合物を得る前記[6]又は[7]に記載のアルミナ系熱伝導性酸化物の製造方法。
また、本発明によれば、以下に示す熱伝導性組成物及び物品が提供される。
[9]前記[1]〜[5]のいずれかに記載のアルミナ系熱伝導性酸化物と、熱伝導性フィラーと、を含有する熱伝導性組成物。
[10]前記[1]〜[5]のいずれかに記載のアルミナ系熱伝導性酸化物を含有する物品。
[11]熱伝導性フィラーをさらに含有する前記[10]に記載の物品。
[12]グラビアインキ、塗工液、樹脂組成物、及び接着剤組成物のいずれかである前記[10]又は[11]に記載の物品。
さらに、本発明によれば、以下に示す液状組成物、熱伝導性薄膜、及び電子機器用部材が提供される。
[13]熱伝導性薄膜を形成するために用いられる液状組成物であって、前記[1]〜[5]のいずれかに記載のアルミナ系熱伝導性酸化物を含む熱伝導性成分と、膜形成用樹脂と、溶剤と、を含有する液状組成物。
[14]前記熱伝導性成分が、硫酸バリウム、タルク、及び窒化ホウ素からなる群より選択される少なくとも一種をさらに含有する前記[13]に記載の液状組成物。
[15]前記膜形成用樹脂100質量部に対する、前記熱伝導性成分の含有量が、20〜200質量部である前記[13]又は[14]に記載の液状組成物。
[16]前記膜形成用樹脂が、アクリル系樹脂、ウレタン系樹脂、ウレア系樹脂、エポキシ系樹脂、ゴム系樹脂、フッ素系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂、セルロース系樹脂、及び熱可塑性エラストマーからなる群より選択される少なくとも一種の溶剤可溶性樹脂である前記[13]〜[15]のいずれかに記載の液状組成物。
[17]前記[13]〜[16]のいずれかに記載の液状組成物を塗工して形成される熱伝導性薄膜。
[18]金属製部材と、前記金属製部材の表面上に配置された前記[17]に記載の熱伝導性薄膜と、を備えた電子機器用部材。
本発明によれば、熱伝導性のみならず、耐薬品性、耐水性、及び電気絶縁性に優れているとともに、樹脂への練り込み性(混和性)が良好であり、成形性に優れた樹脂組成物等の材料や物品を製造することが可能なアルミナ系熱伝導性酸化物、及びその製造方法を提供することができる。また、本発明によれば、上記アルミナ系熱伝導性酸化物を用いた熱伝導性組成物及び物品を提供することができる。
さらに、本発明によれば、熱伝導性、耐薬品性、及び各種の基材への密着性に優れた熱伝導性薄膜を形成することが可能な、取り扱い性の良好な液状組成物、この液状組成物を用いて形成される熱伝導性薄膜、並びにこの熱伝導性薄膜を備えた電子機器用部材を提供することができる。
<アルミナ系熱伝導性酸化物>
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明のアルミナ系熱伝導性酸化物(以下、単に「熱伝導性酸化物」とも記す)は、アルミニウム原料を含有する原料混合物を焼成して得られるものである。また、アルミニウム原料が、ベーマイト、水酸化アルミニウム、及びアルミナからなる群より選択される少なくとも一種であり、原料混合物が、ホウ酸化合物と、タングステン化合物、ビスマス化合物、バナジウム化合物、チタン化合物、フリット、リン化合物、亜鉛化合物、及びセリウム化合物からなる群より選択される少なくとも一種の酸化物原料と、をさらに含有する。そして、原料混合物中、アルミニウム原料100質量部に対する、ホウ酸化合物の含有量が0.1〜5質量部であり、酸化物原料の含有量が0.1〜20質量部である。以下、本発明の熱伝導性酸化物の詳細について説明する。
樹脂は一般的に熱伝導性が低い。このため、樹脂製物品の熱伝導性を向上させようとするには、通常、アルミナなどの熱伝導性フィラーを樹脂に多量に添加する手法が採用される。熱伝導性フィラーを樹脂に配合し、熱伝導性フィラー同士が接点を持つように樹脂中に分散させることで、熱伝導性フィラー特有の熱伝導性が発揮される。但し、より高い熱伝導性を発揮させるには、より大粒径のアルミナを使用するか、或いは真球状のアルミナを使用するかして、大量のアルミナを樹脂に分散しやすいように設計する。しかし、このように設計されたアルミナを樹脂に配合すると、アルミナ同士の接点が少なくなり、熱伝導性はさほど向上しないことが多い。一方、粒子径のより小さいアルミナを樹脂に添加すると、樹脂への練り込み性(混和性)が低下して大量のアルミナを樹脂中に分散させることが困難になり、熱伝導性を向上させることが困難になる。
本発明の熱伝導性酸化物は、アルミナなどのアルミニウム原料、ホウ酸化合物、及び酸化物原料を含有する原料混合物を焼成して得られるものである。アルミニウム原料と、その他の原料(ホウ酸化合物及び酸化物原料)は、焼成時に溶融するとともに、原料同士の一部が反応して熱伝導性酸化物を生成する。すなわち、少量配合したその他の原料がフラックス(鉱化剤)として機能し、アルミニウム原料同士の一部を結合させたり、熱伝導性酸化物の表面を滑らかにしたりする効果があると考えられる。これにより、熱伝導性酸化物同士の接点が多いにもかかわらず、樹脂に対する濡れ性が高い熱伝導性酸化物が得られるので、熱伝導性が向上するとともに、成形性にも優れた樹脂組成物などの材料や物品を製造することが可能となる。
このことから、特に大粒径や真球状のアルミニウム原料を用いる必要はない。さらに、配合するホウ酸化合物や酸化物原料の量を適宜調整することで、樹脂に対する充填性を高めることができるとともに、熱伝導性フィラーとして一般的に用いられているアルミナに比して熱伝導率が高い熱伝導性酸化物とすることができる。
本発明の熱伝導性酸化物は、熱伝導性に優れているとともに、耐薬品性、耐水性、及び電気絶縁性に優れている。しかも、樹脂に対する濡れ性が高く、樹脂への練り込み性(混和性)が良好であることから、成形性に優れた樹脂組成物等の材料や、塗料や接着剤組成などの物品を製造することが可能なものである。
(アルミニウム原料)
本発明の熱伝導性酸化物は、アルミニウム原料及びその他の原料を含有する原料混合物を焼成して得られるものであり、好ましくはα−アルミナを主成分として構成されている。アルミニウム原料は、ベーマイト、水酸化アルミニウム、及びアルミナからなる群より選択される少なくとも一種である。
アルミナは、出発原料と焼成温度の違いから異なった結晶組成(α、γ、η、θ、χ、κなど)の中間アルミナを経て、最終的にα−アルミナ(α−Al23)となる。α−アルミナは、工業的には、原料であるボーキサイトから苛性ソーダ等のアルカリ溶液でアルミナ分を抽出した後、水酸化アルミニウムを形成し、この水酸化アルミニウムを焼成することで製造される(バイヤー法)。上記の方法によって得られる水酸化アルミニウムは、通常、三水和物であるギプサイト(Al23・3H2O)である。一般的に、ダイアスポア以外のギプサイト、バイヤライト、及びベーマイト(AlO(OH)を90%以上含有する無機化合物)などの水酸化アルミニウムや、アルミナゲル等の非晶質アルミナ水和物は、焼成により脱水し、η−アルミナ、χ−アルミナ、γ−アルミナ、κ−アルミナ、θ−アルミナなど中間アルミナを経て、最終的には最も安定なα−アルミナになる。この遷移には、出発物質と焼成条件や雰囲気に固有の遷移系列があることもよく知られている。
アルミナとしては、安定なα−アルミナの他、遷移アルミナであるγ−アルミナ、及びθ−アルミナを用いることが好ましい。さらに、アルミニウム原料としては、ベーマイトや水酸化アルミニウムを用いることができる。アルミニウム原料の形状及び粒径は、得られる熱伝導性酸化物の熱伝導性や樹脂への練り込み性に影響を及ぼす。アルミニウム原料の形状は、数平均粒子径が0.1〜80μmの粒子であることが好ましい。より具体的なアルミニウム原料の形状としては、球状や無定形などを挙げることができる。
(その他の原料)
アルミニウム原料とともに用いるその他の原料は、ホウ酸化合物と酸化物原料を含む。また、酸化物原料は、タングステン化合物、ビスマス化合物、バナジウム化合物、チタン化合物、フリット、リン化合物、亜鉛化合物、及びセリウム化合物からなる群より選択される少なくとも一種である。その他の原料は、焼成時に溶融またはアルミニウム原料と反応することで、アルミニウム原料の粒子同士の一部を結合させたり、粒子表面に滑らかな層を形成したりする。これにより、得られる熱伝導性酸化物の樹脂への濡れ性が高まり、樹脂への練り込み性(混和性)が向上する。その他原料としてフリット又はリン化合物を含むものは板状や棒状などに形状を変えることができる。また、亜鉛化合物を含むものはフィラーの摩耗性を下げることができる。さらに、鉄、コバルト、銅、マンガン、ニッケル、クロム、ケイ素からなる群より選択される少なくとも一種の元素を含有させることで、着色した熱伝導性酸化物とすることができる。
ホウ酸化合物としては、ホウ酸、ホウ酸ナトリウム、ホウ酸アンモニウム、ホウ酸マグネシウム、ホウ酸リチウムなどを挙げることができる。タングステン化合物としては、タングステン酸アンモニウム、タングステン酸ナトリウムなどを挙げることができる。ビスマス化合物としては、三酸化ビスマス、炭酸酸化ビスマス、水酸化ビスマスなどを挙げることができる。バナジウム化合物としては、酸化バナジウム、窒化バナジウム、水酸化バナジウムなどを挙げることができる。チタン化合物としては酸化チタンなどを挙げることができる。フリットは、いわゆる多成分ガラスであり、数種類の元素により構成されている。フリットの融点は、400〜800℃であることが好ましい。フリットとしては、後で着色することを考慮すると、非着色グレードのフリットが好ましい。また、フリットは、Siを含有するとともに、Li、B、Na、K、Mg、Ca、Al、Zn、F、Ti、Zr、及びPからなる群より選択される少なくとも一種の元素をさらに含有するものが好ましい。このような組成のフリットを用いると、得られる熱伝導性酸化物の熱伝導性への影響が少なくなるとともに、樹脂に対する濡れ性がさらに向上し、樹脂への練り込み性(混和性)をより高めることができる。さらに、フリットは、Pbを実質的に含有しないことが好ましい。
リン化合物としては、六酸化四リン、リン酸、リン酸ナトリウムなどを挙げることができる。亜鉛化合物としては、酸化亜鉛、炭酸亜鉛、水酸化亜鉛などを挙げることができる。セリウム化合物としては、酸化セリウム、炭酸セリウム八水和物、水酸化セリウムなどを挙げることができる。
ホウ酸は、水溶解度の高い化合物である。但し、ホウ酸はアルミニウム原料との反応性を有するため、焼成によって複合酸化物が形成され、耐水性に優れた熱伝導性酸化物を得ることができる。例えば、アルミニウム原料とホウ酸を焼成すると、ホウ酸アルミニウムが形成される。また、アルミニウム原料と、亜鉛化合物、及び酸化チタンの少なくともいずれかを焼成すると、アルミニウム原料中に複合酸化物が一部形成される。
また、ホウ酸及びフリットと、アルミニウム原料との混合物を焼成すると、ホウ酸の一部がアルミニウム原料及びフリット中のシリカとそれぞれ反応して、ホウ酸アルミニウム及びホウ珪酸ガラスを形成して溶融する。このように、ホウ酸化合物とその他の原料は、二種以上を組み合わせて用いることができる。
酸化物原料としては、熱分解若しくは相転移して酸化物を生成する、金属の酸化物、水酸化物、オキソ酸塩、炭酸塩、炭酸水素塩、又はアンモニウム塩を用いることが好ましい。熱分解又は相転移して酸化物を生成する成分を酸化物原料として用いることで、粒子径を制御することができるとともに、反応を均一化することができ、かつ、粒子表面を滑らかにすることができる。
原料混合物中のホウ酸化合物の含有量は、アルミニウム原料100質量部に対して0.1〜5質量部であり、好ましくは0.1〜4質量部、さらに好ましくは0.1〜3質量部、特に好ましくは0.3〜1.5質量部、最も好ましくは0.3〜1.0質量部である。アルミニウム原料100質量部に対するホウ酸化合物の含有量が0.1質量部未満であると、アルミニウム原料の性質が支配的となり、熱伝導性及び樹脂への練り込み性の改善効果を得ることができない。一方、アルミニウム原料100質量部に対するホウ酸化合物の含有量が5質量部超であると、ホウ酸アルミニウムの針状晶の影響が大きくなり、樹脂への練りこみ性が低下する場合がある。
また、原料混合物中の酸化物原料の含有量は、アルミニウム原料100質量部に対して、0.1〜20質量部であり、好ましくは0.1〜10質量部、さらに好ましくは0.1〜8質量部、特に好ましくは0.3〜5質量部、最も好ましくは0.5〜5質量部である。アルミニウム原料100質量部に対する酸化物原料の含有量が0.1質量部未満であると、アルミニウム原料の性質が支配的となり、熱伝導性及び樹脂への練り込み性の改善効果を得ることができない。一方、アルミニウム原料100質量部に対する酸化物原料の含有量が20質量部超であると、得られる熱伝導性酸化物の熱伝導性がかえって低下する。
酸化物原料としてフリットを用いると、焼成後に塊となりやすく、粉末として得ることが困難になる傾向にある。アルミニウム原料100質量部に対する、ホウ酸化合物や酸化物原料の量をそれぞれ上記の範囲とすることで、アルミナなどのアルミニウム原料の諸耐性を維持しつつ、熱伝導性、耐薬品性、耐水性、及び電気絶縁性に優れているとともに、樹脂への練り込み性(混和性)が良好であり、成形性に優れた樹脂組成物等の材料や物品を製造することが可能な熱伝導性酸化物を得ることができる。本発明の熱伝導性酸化物は、酸化マグネシウム、酸化亜鉛、及び酸化アルミニウムのいずれと比較しても熱伝導性に優れている。さらに、本発明の熱伝導性酸化物は、窒化アルミニウム、酸化マグネシウム、及び酸化亜鉛のいずれと比較しても耐水性及び耐薬品性に優れている。
(表面処理)
本発明の熱伝導性酸化物を表面処理することも好ましい。表面処理した熱伝導性酸化物は、樹脂に対する親和性及び分散性が向上するため、熱伝導性に優れた樹脂組成物などの物品を製造することができる。表面処理に使用する化合物(処理剤)としては、脂肪酸、脂肪酸エステル、脂肪酸金属塩、リン酸エステル、リン酸エステル金属塩、シランカップリング剤、界面活性剤、高分子凝集剤、チタネート、及びシリコンなどを挙げることができる。これらの処理剤は、一種単独で又は二種以上を組み合わせて用いることができる。表面処理に用いる化合物の量は、熱伝導性酸化物100質量部に対して、0.01〜5質量部とすることが好ましい。処理の方法としては、例えば、熱伝導性酸化物の粉末に処理剤を投入し、混合して処理する方法や、焼成後の熱伝導性酸化物の粉末を水に投入して分散させた後、さらに処理剤を投入し、濾過及び乾燥する方法などがある。
(熱伝導性酸化物の使用)
本発明の熱伝導性酸化物の好ましい利用のなかでも、熱伝導性付与を目的とした、熱可塑性樹脂や熱硬化性樹脂などの種々のプラスチックスへの添加が有効である。特に、熱可塑性樹脂へ添加した場合においては、従来の熱伝導性フィラーを用いた場合よりも射出成形等による成形性の自由度が高まるために好ましい。熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、アクリロニトリル−エチレン−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、熱可塑性ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリアミノビスマレイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリメタクリル酸メチル樹脂、ポリ酢酸ビニル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、ビスマレイミドトリアジン樹脂、ポリメチルペンテン樹脂、フッ化樹脂、液晶ポリマー、オレフィン−ビニルアルコール共重合体、アイオノマー樹脂、ポリアリレート樹脂などを用いることができる。これらの熱可塑性樹脂は、一種単独で又は二種以上を組み合わせて用いることができる。
<アルミナ系熱伝導性酸化物の製造方法>
次に、本発明の熱伝導性酸化物の製造方法について説明する。本発明の熱伝導性酸化物の製造方法は、アルミニウム原料と、ホウ酸化合物と、酸化物原料とを混合して原料混合物を得る工程(工程(1))と、得られた原料混合物を焼成する工程(工程(2))とを有する。そして、原料混合物中、アルミニウム原料100質量部に対する、ホウ酸化合物の含有量が0.1〜5質量部であり、酸化物原料の含有量が0.1〜20質量部である。以下、その詳細について説明する。
工程(1)では、アルミニウム原料、ホウ酸化合物、及び酸化物原料を混合する。原料を混合するための一般的な方法としては、湿式法と乾式法がある。しかし、ホウ酸化合物は水溶性であるため、湿式法によって上記の原料を混合すると、ろ過の際にホウ酸化合物が失われやすくなる場合がある。このため、アルミニウム原料、ホウ酸化合物、及び酸化物原料は、乾式法によって混合することが好ましい。
乾式法では、ポットミル、ヘンシェルミキサー、エアーミックス、コニカルブレンダー、遊星ボールミル、振動ミル、リボンミキサー、及びバーチカルブレンダーなどの機器を使用して各成分を混合した後、焼成する。各成分の混合に際しては、各成分が均一となるように混合すればよく、各成分の粒子を粉砕する必要はない。また、湿式法においても、各成分の粒子を粉砕する必要はなく、各成分が均一となるように混合すればよい。
工程(2)では、工程(1)で得た原料混合物を、通常、600〜1,500℃、好ましくは1,100〜1,500℃で焼成する。焼成することによって、アルミニウム原料を結晶化したα−アルミナとすることができる。焼成温度が600℃未満であると、α−アルミナ構造が形成されにくくなる。遷移アルミナの熱伝導率はα−アルミナの熱伝導率よりも低いため、焼成してα−アルミナを形成させることが好ましい。一方、焼成温度が1,500℃を超えても、得られる熱伝導性酸化物の特性は大きく変化せず、エネルギー消費が無駄になる傾向にある。焼成後、必要に応じて焼成物を粉砕すれば、熱伝導性酸化物を得ることができる。
<熱伝導性組成物>
本発明の熱伝導性組成物は、上述のアルミナ系熱伝導性酸化物と、熱伝導性フィラーとを含有する。以下、その詳細について説明する。
一般的なフィラーは、強度や機能性の向上などを目的として、樹脂、ゴム、及び塗料などの材料に添加される。熱伝導性フィラーの配合量が増加すると、通常、樹脂などの材料の溶融流動性及び機械的強度が低下する。また、カーボン系フィラーは導電性を有するため、樹脂に配合すると樹脂本来の特徴である絶縁性が損なわれやすいといった問題がある。さらに、セラミック系フィラーは絶縁性を有するが、熱伝導性が低いなどの問題がある。熱伝導性フィラーには、例えば、銀、銅、アルミニウム、鉄などの金属系フィラー;アルミナ、マグネシア、シリカ、窒化ホウ素、窒化アルミニウム、炭化ケイ素、炭化ホウ素、炭化チタンなどの無機系フィラー;ダイヤモンド、黒鉛、グラファイトなどの炭素系フィラー等がある。高い電気絶縁性が要求される電子機器等では、アルミナ、酸化マグネシウム、酸化亜鉛、シリカ、窒化ホウ素、窒化アルミニウム、ダイヤモンドなどのフィラーが好ましいとされている。しかし、これらのフィラーは、耐水性、耐薬品性、硬度、及び電気絶縁性の面で課題が多い。また、顔料や染料などをさらに加えて着色した場合には、傷がつくと白化しやすくなる。
これに対して、本発明の熱伝導性酸化物は、以上の各種フィラーの弱点が改善され、優れた特性を有していることから改良フィラーとして好適に用いることができる。さらに、既存の熱伝導性フィラーの弱点を補うべく、上記の各種熱伝導性フィラーとともに利用することも好ましい。すなわち、前述の熱伝導性酸化物と、上記の各種熱伝導性フィラーとを含有する本発明の熱伝導性組成物は、目的とする特性に応じて調製される好ましい態様である。また、本発明の熱伝導性酸化物は、顔料や染料を添加しなくとも、鉄、コバルト、銅、マンガン、ニッケル、及びクロムからなる群より選択される少なくとも一種の元素を含有させることで着色することができるため、白化防止することも可能である。
<物品>
本発明の物品は、前述の熱伝導性酸化物を含有する、例えば、グラビアインキ、塗工液、樹脂組成物、及び接着剤組成物などの物品(熱伝導性物品、熱伝導性材料)である。なお、本発明の物品には、必要に応じて、前述の各種熱伝導性フィラーがさらに含有されていることも好ましい。
(グラビアインキ)
本発明の熱伝導性酸化物は、電池用包装材料用のトップコート剤等として用いられるグラビアインキに添加して用いることができる。グラビアインキ中の熱伝導性酸化物の含有量は、グラビアインキ全体に対して、5〜80質量%であることが好ましく、10〜50質量%であることがさらに好ましい。このようなグラビアインキ(電池用包装材料用のトップコート剤)を使用すれば、耐酸性等の耐薬品性に優れているとともに、熱伝導率が高く、かつ、放射率も高い電池用包装材料を作製することができる。
(塗工液)
本発明の熱伝導性酸化物は、塗料等の塗工液に添加して用いることができる。塗工液は、熱伝導性酸化物とともに、例えば、着色剤、被膜又は成形物形成用の樹脂、及び溶剤等をビヒクルに混合及び分散させて得られる着色用製剤とすることもできる。塗工液中の熱伝導性酸化物の含有量は、塗工液全体に対して、5〜80質量%であることが好ましく、10〜70質量%であることがさらに好ましい。このようにして調製される塗工液を用いて形成した塗工被膜や塗工成形物は、耐水性、耐薬品性、及び絶縁性に優れているとともに、強度が保持され、かつ、熱伝導性にも優れている。さらに、この塗工液を用いて、アルミニウム、銅、銀、金、及びステンレスなどの金属製部材の表面上に熱伝導性の薄膜を形成することで、金属自体の熱伝導率を低下させることなく、放射率を向上させることができる。
塗工液に含有させることのできる樹脂の具体例としては、ポリオレフィン系、ポリエステル系、ポリスチレン系、アクリル系、フッ素系、ポリアミド系、セルロース系、ポリカーボネート系、ポリ乳酸系の熱可塑性樹脂;ウレタン系、フェノール系の熱硬化性樹脂などを挙げることができる。
塗工液に含有させることのできる溶媒としては、水や有機溶剤を用いることができる。有機溶剤の具体例としては、メタノール、エタノール、ブタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、ブチルアセテート、シクロヘキサンなどを挙げることができる。
塗工液には、用途に応じて、本発明の目的を損なわない範囲で「その他の成分」を適宜選択して含有させることができる。「その他の成分」の具体例としては、酸化防止剤、紫外線吸収剤、光安定剤、分散剤、帯電防止剤、滑剤、殺菌剤などを挙げることができる。
分散剤としては、例えば、多価カルボン酸を含む脂肪酸、不飽和脂肪酸等のアニオン性界面活性剤;高分子型のイオン性界面活性剤;りん酸エステル系化合物などを挙げることができる。
塗工液を塗工する方法としては、従来公知の方法を採用することができる。具体的には、スプレー塗装、ハケ塗り、静電塗装、カーテン塗装、ロールコータを用いる方法、浸漬による方法などを挙げることができる。また、塗工した塗工液を被膜とするための乾燥方法としても、従来公知の方法を採用することができる。具体的には、自然乾燥、焼き付け等の方法を、塗工液の性状などに応じて適宜選択して採用すればよい。
塗工液を用いれば、基材上に塗工して得られる塗工被膜や塗工成形物を作製することができる。基材としては、金属、ガラス、天然樹脂、合成樹脂、セラミックス、木材、紙、繊維、不織布、織布、及び皮革などを用途に応じて選択することができる。なお、このようにして機能性が付与された塗工被膜は、家庭用以外にも、工業、農業、鉱業、漁業等の各産業に利用することができる。また、塗工形状にも制限はなく、シート状、フィルム状、板状など、用途に応じて選択することができる。
(樹脂組成物)
本発明の熱伝導性酸化物をポリアミド樹脂やポリオレフィン樹脂などの樹脂に配合することで、樹脂組成物とすることができる。より具体的には、樹脂に対して、必要に応じてその他の添加剤とともに熱伝導性酸化物を公知の方法に準じて配合及び混合すれば、樹脂組成物を得ることができる。さらに、得られた樹脂組成物を押出成形機に供して成形すれば、所定の樹脂成形物を製造することができる。樹脂組成物中の熱伝導性酸化物の含有量は、樹脂組成物全体に対して、5〜95質量%であることが好ましい。熱伝導性酸化物の含有量を上記の範囲とすることで、耐水性、耐薬品性、及び絶縁性により優れているとともに、強度がさらに保持され、かつ、より成形性に優れた樹脂組成物とすることができる。熱伝導性酸化物の含有量が95質量%超であると、強度や成形性が低下する場合がある。一方、熱伝導性酸化物の含有量が5質量%未満であると、熱伝導性が不足する場合がある。
樹脂への熱伝導性酸化物の添加方法は特に限定されず、従来公知の方法を採用することができる。例えば、熱伝導性酸化物を樹脂に直接配合して、混練及び成形加工する方法の他、熱伝導性酸化物を樹脂や滑剤等に予め高濃度に分散させておいた組成物(マスターバッチ)を使用する方法などがある。その他の添加剤としては、酸化防止剤、紫外線防止剤、帯電防止剤、抗菌剤、安定剤、架橋剤、可塑剤、潤滑剤、離型剤、難燃剤、タルク、アルミナ、クレー、シリカ等の無機充填剤を挙げることができる。また、熱伝導性酸化物の分散助剤として、水、金属石けん、ポリエチレンワックス等を用いることもできる。金属石けんとしては、例えば、ステアリン酸リチウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸カルシウム、パルミチン酸マグネシウム、オレイン酸カルシウム、オレイン酸コバルトなどを挙げることができる。ポリエチレンワックスとしては、例えば、一般重合型、分解型、変成型などの各種ポリエチレンワックスを用いることができる。
なお、上述の塗工液や樹脂組成物には、各種の有機顔料や無機顔料を着色剤として配合することもできる。着色剤としては、例えば、フタロシアニン系顔料、アゾ系顔料、アゾメチン系顔料、イソインドリノン系顔料、キナクリドン系顔料、アンスラキノン系顔料、ジオキサジン系顔料、及びペリノン・ペリレン系顔料等の有機顔料;黒色以外の複合酸化物系顔料;酸化チタン系白色顔料、酸化チタン系黄色顔料、酸化チタン系黒色顔料などの酸化チタン系顔料;カーボンブラック、群青、ベンガラ等の無機顔料などを挙げることができる。なお、フタロシアニン系顔料としては、臭素化フタロシアニンブルー顔料、フタロシアニングリーン顔料などを挙げることができる。また、アゾ系顔料としては、ポリ縮合アゾ系顔料、アゾメチンアゾ系顔料などを挙げることができる。
さらに、コンパウンド用樹脂に対して、熱伝導性酸化物、各種顔料、及び添加剤等を配合したマスターバッチコンパウンドを、押出成形機等を使用して溶融混練することによっても樹脂組成物を得ることができる。より具体的には、(i)コンパウンド用樹脂に熱伝導性酸化物及び分散助剤を配合するとともに、必要に応じてその他の添加剤を添加して、ヘンシェルミキサー等の混合機を使用して混合する;(ii)マスターバッチコンパウンドをニーダーや加熱二本ロールミルを使用して混練した後、冷却してから粉砕機で粉砕して粗粉状にする;(iii)マスターバッチコンパウンドを押出成形機に供し、押出成形してビーズ状や柱形状などの形状に成形する;ことなどによって、樹脂組成物を得ることができる。成形方法は特に限定されず、例えば、射出成形法、押出成形法、加熱圧縮成形法、ブロー成形法、インフレーション成形法、真空成形法などを採用すればよい。
(接着剤組成物)
本発明の熱伝導性酸化物は、接着剤に添加して接着剤組成物として用いることができる。接着剤に含有される樹脂の種類は限定されず、ウレタン系、エポキシ系、酢酸ビニル系、アクリル系等の接着性を有する樹脂であればよい。また、接着機構についても限定されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。接着剤組成物中の熱伝導性酸化物の含有量は、接着剤組成物全体に対して、5〜80質量%であることが好ましく、10〜50質量%であることがさらに好ましい。熱伝導性酸化物の含有量を上記の範囲とすることで、熱伝導性、接着性、耐水性、耐薬品性、及び絶縁性により優れた接着剤組成物とすることができる。熱伝導性酸化物の含有量が80質量%を超えると、接着強度が不足する場合がある。一方、熱伝導性酸化物の含有量が5質量%未満であると、熱伝導性が不足する場合がある。
本発明の熱伝導性酸化物は、上述のようなグラビアインキ、塗工液、樹脂組成物、及び接着剤組成物などの熱伝導性物品や熱伝導性材料とし、これを用いることで、放熱性(熱伝導性)と同時に、優れた耐薬品性、耐水性、及び絶縁性を有する電子デバイスとしても使用することができる。より具体的には、金属回路基板、回路基板、金属積層板、内層回路入り金属張積層板、電池用包装材、封止材、保護シートなどに利用することができる。さらに、接着性シート、放熱シート、放熱コート剤、半導体封止剤、接着剤、放熱スペーサー、グリースなどとして使用することができる。
<液状組成物>
本発明の液状組成物は、熱伝導性薄膜を形成するために用いられる液状組成物であり、上述のアルミナ系熱伝導性酸化物を含む熱伝導性成分と、膜形成用樹脂と、溶剤と、を含有する。
(熱伝導性成分)
熱伝導性成分には、上述のアルミナ系熱伝導性酸化物が含有される。また、熱伝導性成分は、硫酸バリウム、タルク、及び窒化ホウ素からなる群より選択される少なくとも一種をさらに含有することが好ましい。アルミナ系熱伝導性酸化物とともに、硫酸バリウム等の成分を用いることで、より熱伝導性に優れた薄膜を形成することができる。
液状組成物中の熱伝導性成分の量は、膜形成用樹脂100質量部に対して、20〜200質量部であることが好ましく、50〜150質量部であることがさらに好ましい。熱伝導性成分の含有量が20質量部未満であると、形成される薄膜の熱伝導性が不足する場合がある。一方、熱伝導性成分の含有量が200質量部超であると、膜形成用樹脂の含有量が相対的に増加するため、成膜性が低下するとともに、形成される薄膜の基材への密着性が低下する傾向にある。
(膜形成用樹脂)
膜形成用樹脂としては、成膜可能であるとともに、溶剤に可能な樹脂(溶剤可溶性樹脂)を用いることができる。このような溶剤可溶性樹脂としては、アクリル系樹脂、ウレタン系樹脂、ウレア系樹脂、エポキシ系樹脂、ゴム系樹脂、フッ素系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロース系樹脂、シリコーン系樹脂、及び熱可塑性エラストマーからなる群より選択される少なくとも一種を用いることができる。
アクリル系樹脂としては、例えば、アクリルシリコーン系樹脂、アクリルフッ素系樹脂、ポリメチルメタクリレート(PMMA)、ポリエチルメタクリレート、ポリメチルアクリレート、ポリエチルアクリレート、ポリヒドロキシメタクリレート等を挙げることができる。
ウレタン系樹脂としては、エーテル系、エステル系、カーボネート系、アクリル系、及び脂肪族系等のウレタン樹脂;これらのウレタン樹脂にシリコーン系ポリオールやフッ素系ポリオールを共重合させて得られる樹脂等を挙げることができる。なお、ウレタン系樹脂の分子構造中には、ウレア結合又はイミド結合が含まれていてもよく、溶媒は水であっても有機溶剤であってもよい。
ウレア系樹脂は、その分子構造中にウレア結合を有する樹脂であればよく、例えば、ウレタンウレアエラストマー、メラミン樹脂、尿素ホルムアルデヒド樹脂等を挙げることができる。
エポキシ系樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、臭素化エポキシ樹脂、ポリグリコール型エポキシ樹脂、ポリアミド併用型エポキシ樹脂、シリコーン変性エポキシ樹脂、アミノ樹脂併用型エポキシ樹脂、アルキッド樹脂併用型エポキシ樹脂等を挙げることができる。
ゴム系樹脂としては、例えば、天然ゴム(NR)、ブタジエンゴム(BR)、アクリロニトリル−ブタジエンゴム(NBR)、水素添加NBR(H−NBR)、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR)、ウレタンゴム、クロロプレンゴム(CR)、エピクロロヒドリンゴム(ECO)、エチレン−プロピレン−ジエンポリマー(EPDM)、アクリルゴム(ACM)、クロロスルホン化ポリエチレン(CSM)、多硫化ゴム、フッ素ゴム等を挙げることができる。
フッ素系樹脂としては、例えば、ポリビニリデンフルオライド(PVDF)、フッ化ビニリデン−四フッ化エチレン共重合体、フッ化ビニリデン−四フッ化エチレン−六フッ化プロピレン共重合体等を挙げることができる。
ポリアミド系樹脂としては、例えば、アルコール可溶性メトキシメチル化ナイロン等を挙げることができる。ポリイミド系樹脂としては、例えば、ポリアミドイミド(PAI)、ポリアミック酸、シリコーンイミド等を挙げることができる。
セルロース系樹脂としては、例えば、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースアセテートプロピオネート等のセルロースエステル;メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース等のセルロースエーテルを挙げることができる。
シリコーン系樹脂としては、例えば、メチルシリコーン、メチルフェニルシリコーン、ポリエステル樹脂変性シリコーン、シリル基含有変性シリコーン等を挙げることができる。
熱可塑性エラストマーとしては、例えば、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、スチレン−エチレン・ブチレン−スチレンブロック共重合体(SEBS)、スチレン−エチレン・プロピレン−スチレンブロック共重合体(SEPS)等のスチレン系熱可塑性エラストマー;ウレタン系熱可塑性エラストマー(TPU);オレフィン系熱可塑性エラストマー(TPO);ポリエステル系熱可塑性エラストマー(TPEE);ポリアミド系熱可塑性エラストマー;フッ素系熱可塑性エラストマー;塩ビ系熱可塑性エラストマー等を挙げることができる。
(溶剤)
溶剤は、樹脂からなる薄膜を形成するためのコーティング剤に用いられる一般的な溶剤であればよい。溶剤としては、水、又は、芳香族系溶媒、炭化水素系溶媒、アルコール系溶媒、グリコール誘導体、ケトン系溶媒、ハロゲン系溶媒、エステル系溶媒、エーテル系溶媒、及び含窒素系溶媒等の有機溶剤を用いることができる。これらの溶剤は、一種単独で又は二種以上を組み合わせて用いることができる。
芳香族系溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、ノニルベンゼン、デシルベンゼン、ウンデシルベンゼン、ドデシルベンゼン、テトラリン、シクロヘキシルベンゼン等を挙げることができる。炭化水素系溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカンなどの炭素数6以上の直鎖、分岐鎖の飽和、不飽和の炭化水素系溶媒を挙げることができる。
アルコール系溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,4−ブテンジオール等を挙げることができる。
グリコール誘導体としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノメチルエーテルアセテート等を挙げることができる。ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等を挙げることができる。
ハロゲン系溶媒としては、例えば、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、テトラクロロエタン、トリクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等を挙げることができる。エステル系溶媒としては、例えば、2−メトキシブチルアセテート、3−メトキシブチルアセテート、4−メトキシブチルアセテート、2−メチル−3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、3−エチル−3−メトキシブチルアセテート、2−エトキシブチルアセテート、4−エトキシブチルアセテート、4−プロポキシブチルアセテート、2−メトキシペンチルアセテート、3−メトキシペンチルアセテート、4−メトキシペンチルアセテート、2−メチル−3−メトキシペンチルアセテート、3−メチル−3−メトキシペンチルアセテート、3−メチル−4−メトキシペンチルアセテート、4−メチル−4−メトキシペンチルアセテート、メチルラクテート、エチルラクテート、メチルアセテート、エチルアセテート、プロピルアセテート、ブチルアセテート、アミルアセテート、メチルプロピオネート、エチルプロピオネート、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、メチルブチレート、エチルブチレート、プロピルブチレート等を挙げることができる。
エーテル系溶媒としては、例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール、3−フェノキシトルエン等を挙げることができる。含窒素系溶媒としては、例えば、N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N−エチルアセトアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルピロリドン、N−エチルピロリドン、N−プロピルピロリドン、N−ビニルピロリドン、N,N’−ジメチルイミダゾリジノン、γ−ブチロラクタム、ε−カプロラクタム等を挙げることができる。
液状組成物中の溶剤の量は特に限定されず、用途に応じて適宜設定すればよい。液状組成物中の溶剤の量は、通常、1〜90質量%であり、好ましくは10〜80質量%である。
また、水性のポリウレタン樹脂などのウレタン系樹脂を液状組成物に添加し、硬化させることで、熱伝導性に優れた薄膜を形成することができる。このようにして形成される熱伝導性の薄膜は、例えば、電子機器用の放熱シートとして用いることができる。
<熱伝導性薄膜>
本発明の熱伝導性薄膜は、上述の液状組成物を塗工して形成される。液状組成物には、前述の通り、アルミナ系熱伝導性酸化物を含む熱伝導性成分が含まれている。このため、この液状組成物を用いて形成される本発明の熱伝導性薄膜は、熱伝導性及び耐薬品性に優れているとともに、各種の基材への密着性にも優れている。なお、本発明の熱伝導性薄膜は、通常、膜形成用樹脂により形成された薄い樹脂層中にアルミナ系熱伝導性酸化物を含む熱伝導性成分が分散されることで形成されている。
本発明の熱伝導性薄膜を形成するには、例えば、所望とする基材に液状組成物を塗布する、又は基材を液状組成物に含浸させる。これにより、基材の表面上に液状組成物からなる塗膜を形成することができる。その後、塗膜を乾燥させれば、熱伝導性薄膜を形成することができる。液状組成物の塗布方法(含浸方法)としては、例えば、印刷方法、ブレードコーティング法、(マイヤー)バーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法、ロールコーティング法等の一般的な方法を採用することができる。塗膜の乾燥は風乾でもよく熱乾燥でもよい。熱乾燥すれば、塗膜を容易に乾燥させて熱伝導性薄膜を形成することができる。乾燥方法としては、例えば、オーブンに入れる方法、オーブン内を通過させる方法、加熱ローラに接触させる方法等の一般的な方法を採用することができる。
本発明の熱伝導性薄膜は、例えば、リチウム二次電池等の発熱しやすい電子部品等の表面上に配置することで、発生した熱を熱放射及び熱伝導により外部へと容易に放熱することができる。また、液状組成物を塗布及び乾燥等することによって容易に形成することができるため、製造コストの面で有利である。本発明の熱伝導性薄膜は、特に、ラミネート型のリチウム二次電池を構成する外装材の表面に配置されることが好ましい。
ラミネート型のリチウム二次電池を構成する外装材(リチウム二次電池用外装材)は、例えば、ヒートシール可能なシーラント層、アルミニウム箔、及びPETフィルム等の基材フィルムが、必要に応じて接着剤層を介在させた状態で積層されることによって形成されている。そして、本発明の熱伝導性薄膜は、基材フィルムの表面上に配置されることで、シーラント層の側に配置される電池本体から発生した熱を熱放射及び熱伝導により外部へと放熱することができる。
本発明の熱伝導性薄膜は、アルミニウム、銅、銀、金、及びステンレスなどの金属表面への密着性に優れている。また、これらの金属製の部材の表面上に熱伝導性薄膜を密着して配置することで、金属自体の熱伝導率を低下させることなく、放射率を向上させることができる。このため、アルミニウム、銅、銀、金、及びステンレスなどの金属製部材の表面上に本発明の熱伝導性薄膜を配置することで、ヒートシンク等の電子機器用部材とすることができる。なお、熱伝導性薄膜は、前述の液状組成物を金属製部材の表面に塗工した後、乾燥等することによって容易に形成することができるため、製造コストの面でも有利である。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
<アルミニウム原料>
以下に示すアルミニウム原料を用いた。
・水酸化アルミニウムA:球状、数平均粒子径6.5μm
・水酸化アルミニウムB:球状、数平均粒子径10μm
・水酸化アルミニウムC:球状、数平均粒子径1.2μm
・α−アルミナ:球状、数平均粒子径20μm
・ベーマイト:球状、数平均粒子径7μm
<その他の原料>
その他の原料のうち、フリットについては以下に示すものを用いた。
・フリットA:Na、K、B、Si、Al、F、及びPを主成分とし、軟化点450℃
・フリットB:B、Si、Mg、及びAlを主成分とし、軟化点650℃
・フリットC:B、Si、Na、K、Ti及びFを主成分とし、軟化点530℃
<熱伝導性酸化物の製造>
(実施例1)
水酸化アルミニウムA 100部、ホウ酸0.1部、及びタングステン酸ナトリウム0.1部を小型ミキサーに投入し、撹拌混合して原料混合物を得た。得られた原料混合物を、空気中、1,250℃で3時間焼成した後に粉砕して、粉末状の熱伝導性酸化物を得た。
(実施例2〜162)
表1−1〜1−7に示す種類及び量のアルミニウム原料、ホウ酸化合物、及びその他の原料を用いたこと以外は、前述の実施例1と同様にして粉末状の熱伝導性酸化物を得た。
(実施例163〜174)
表1−7〜1−8に示す種類及び量のアルミニウム原料、ホウ酸化合物、その他の原料及び着色用原料を用いたこと以外は、前述の実施例1と同様にして粉末状の熱伝導性酸化物を得た。
(比較例1)
水酸化アルミニウムAを、空気中、1,200℃で2時間焼成して得た粉末を比較例1の試料とした。
(比較例4)
ベーマイトを、空気中、1,200℃で2時間焼成して得た粉末を比較例4の試料とした。
(比較例2、3、5〜8)
表1−8に示す物質を、それぞれ比較例2、3、5〜8の試料とした。
(比較例9)
水酸化アルミニウムA 100部、及び酸化モリブデン50部を小型ミキサーに投入し、撹拌混合して原料混合物を得た。得られた原料混合物を、空気中、1,250℃で3時間焼成した後に粉砕して粉末を得た。得られた粉末を比較例9の試料とした。
(比較例10)
水酸化アルミニウムA 100部、及び酸化モリブデン100部を小型ミキサーに投入し、撹拌混合して原料混合物を得た。得られた原料混合物を、空気中、1,250℃で3時間焼成した後に粉砕して粉末を得た。得られた粉末を比較例10の試料とした。
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
<評価(1)>
(評価用成形体Aの作製)
ポリプロピレン(プライムポリマー社製、MFR 20g/10min)50部と、熱伝導性酸化物50部とを混合して得た樹脂組成物をプラストミルに入れ、設定温度200℃の条件で溶融混練した。次いで、175℃の条件で金型プレス成型して評価用成形体Aを作製した。
(評価用成形体Bの作製)
ポリプロピレン(プライムポリマー社製、MFR 20g/10min)30部と、熱伝導性酸化物70部とを混合して得た樹脂組成物をプラストミルに入れ、設定温度200℃の条件で溶融混練した。次いで、175℃の条件で金型プレス成形して評価用成形体Bを作製した。
(耐薬品性)
評価用成形体Bを40mm×40mm×厚さ1mmの大きさに切り出して試験片を得た。得られた試験片を5%塩酸、5%硫酸水溶液、5%硝酸水溶液、及び5%水酸化ナトリウム水溶液の順にそれぞれ浸漬し、1日1回撹拌して一週間ずつ静置した。浸漬前後の試験片の質量を測定して浸漬前の試験片の質量を基準とした質量変化率(%)を算出し、以下に示す評価基準にしたがって耐薬品性を評価した。結果を表2−1〜2−6に示す。
○:質量変化率が2%未満
×:質量変化率が2%以上
(耐水性)
評価用成形体Bを40mm×40mm×厚さ1mmの大きさに切り出して試験片を得た。得られた試験片を温度70℃、相対湿度90%の雰囲気下に8日間放置した後、表面に付着した水を拭き取ってから、温度28℃、相対湿度50%の雰囲気下に3時間放置した。さらに、試験片を121℃、2気圧、相対湿度100%のオートクレーブ中に120時間保持した。処理前後の試験片の耐電圧を測定して処理前の試験片の耐電圧を基準とした耐電圧低下率(%)を算出し、以下に示す評価基準にしたがって耐水性を評価した。結果を表2−1〜2−6に示す。
○:耐電圧低下率が10%未満
△:耐電圧低下率が10%以上50%未満
×:耐電圧低下率が50%以上
(電気絶縁性)
アルミニウム製リング内に熱伝導性酸化物を充填した後、油圧プレスにより加圧成型(20MPa)して測定用試料を作製した。電気抵抗率計を使用して作製した測定用試料の電気体積抵抗値を測定し、以下に示す評価基準にしたがって電気絶縁性を評価した。結果を表2−1〜2−6に示す。
◎:電気体積抵抗値が1010Ω・cm以上
○:電気体積抵抗値が105Ω・cm以上1010Ω・cm未満
△:電気体積抵抗値が10Ω・cm以上105Ω・cm未満
×:電気体積抵抗値が10Ω・cm未満
(濡れ性)
ポリオール(商品名「クラレポリオールP−1010」、クラレ社製、粘度(25℃)1,500kPa・s)50部と、熱伝導性酸化物50部とを混合して分散液を得た。E型回転粘度計を使用して得られた分散液の溶液粘度(25℃、回転数0.5rpm)を測定し、以下に示す評価基準にしたがって、樹脂に対する熱伝導性酸化物の濡れ性を評価した。結果を表2−1〜2−6に示す。
◎:溶液粘度が2,000mPa・s以上5,000mPa・s未満
○:溶液粘度が5,000mPa・s以上15,000mPa・s未満
△:溶液粘度が15,000mPa・s以上25,000mPa・s未満
×:溶液粘度が25,000mPa・s以上
(成形性)
評価用成形体Bを作製する際の機械の摩耗性、及び作製した評価用成形体Bの表面状態を観察し、以下に示す評価基準にしたがって成形性を評価した。結果を表2−1〜2−6に示す。
以下の基準で判定した。
○:摩耗性及び表面状態に特に問題なし
△:摩耗性及び表面状態のいずれかに問題あり
×:摩耗性及び表面状態に問題あり
(モース硬度の測定)
モース硬度既知の鉱物の平滑表面どうしの間に熱伝導性酸化物を配置して擦り合わせ、鉱物の平滑表面の状態を観察することによって、熱伝導性酸化物のモース硬度を測定した。結果を表2−1〜2−6に示す。
(熱伝導率の測定)
ポリプロピレン(プライムポリマー社製、MFR 20g/10min)30部と、熱伝導性酸化物70部とを混合して得た樹脂組成物をプラストミルに入れ、設定温度200℃の条件で溶融混練した。次いで、縦20mm×横20mm×高さ6mmの金型を用いて175℃の条件で金型プレス成形して試験片を作製した。熱物性測定装置(商品名「TPS−2500S」、京都電子工業社製)を使用して作製した試験片の熱伝導率を測定した。結果を表2−1〜2−6に示す。
(絶縁破壊電圧の測定)
評価用成形体Bを100mm×100mm×厚さ1mmの大きさに切り出して試験片を得た。得られた試験片を油中に浸漬し、交流10mA、昇圧速度2kV/secの条件下、JIS K6911及びC2110−1に準拠して絶縁破壊電圧を測定した。測定した絶縁破壊電圧の値を試験片の厚さ(mm)で割って得た絶縁破壊強さ(kV/mm)の値を表3に示す。
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
Figure 0006209695
<塗工液の調製及び評価>
実施例105、比較例3、及び比較例6の熱伝導性酸化物をそれぞれ15部、粘度3,500mPa・sのウレタン系樹脂62部、並びに酢酸エチル23部を混合し、ペイントシェイカーで分散させて塗工液を調製した。ガラス棒を用いて調製した各塗工液を離型紙に均一に塗布した後、100℃のオーブンに2分間入れ、溶剤成分を揮発させて厚さ50μmの塗工皮膜を形成した。この塗工皮膜の熱伝導率及び放射率を測定したところ、比較例3のα−アルミナを用いて形成した塗工皮膜の熱伝導率は0.28W/mKであり、放射率は0.88であった。また、比較例6の酸化亜鉛を用いて形成した塗工皮膜の熱伝導率は0.18W/mKであり、放射率は0.88であった。これに対して、実施例105の熱伝導性酸化物を用いて形成した塗工皮膜の熱伝導率は0.37W/mKであり、放射率は0.93であった。比較例6の酸化亜鉛を用いて形成した塗工皮膜の熱伝導率が非常に低かったのは、酸化亜鉛の粒子径が大きいため、塗工液を塗布する際に酸化亜鉛がガラス棒で掻き取られたためであると考えられる。以上より、塗工液に用いる熱伝導性酸化物の平均粒子径は、形成しようとする塗工皮膜の厚さに対して十分に小さいことが好ましい。また、実施例105の熱伝導性酸化物を用いて調製した塗工液を、グラビアコーターにより電池外装材用のナイロンフィルムに塗工し、電池外装材トップコートとして使用した。その結果、効果的に放熱し、電池の温度上昇を軽減できることが分かった。なお、放射率の測定方法を以下に示す。
(放射率の測定)
縦40mm×横40mm以上の面積であるとともに、厚さ1mm以下であり、かつ、平滑表面を有する樹脂成形体を試験片として用意した。そして、放射率計(商品名「D and S AERD」、京都電子工業社製)を使用して用意した試験片の放射率を測定した。
<接着剤の調製及び評価>
実施例105、比較例3、及び比較例6の熱伝導性酸化物をそれぞれ35部と、粘度300mPa・sのポリエステルポリオール65部とを混合し、ペイントシェイカーを用いて分散させて分散液を調製した。調製した分散液98部と、粘度2,600mPa・sのポリイソシアネート2部とを混合し、ディゾルバーを用いて撹拌して、ウレタン樹脂系の化学反応型接着剤を得た。ガラス棒を用いて得られた各接着剤を離型紙に均一に塗布した後、100℃のオーブンに2分間入れて溶剤成分を揮発させた。さらに、40℃のオーブンに96時間入れて、接着剤の硬化皮膜を形成した。この硬化皮膜の熱伝導率を測定したところ、比較例3のα−アルミナを用いて形成した硬化皮膜の熱伝導率は0.51W/mKであった。また、比較例6の酸化亜鉛を用いて形成した硬化皮膜の熱伝導率は0.56W/mKであった。これに対して、実施例105の熱伝導性酸化物を用いて形成した硬化皮膜の熱伝導率は0.67W/mKと高いことが分かった。
<液状組成物の製造>
(実施例175〜185、比較例11〜20)
表4に示す種類及び量の各成分を混合するとともに、ペイントシェイカー(ガラスビーズ(直径2mm)使用)を用いて撹拌して分散液を得た。得られた分散液100部に対し、ポリイソシアネート樹脂(商品名「タケネートD−160N」、三井化学社製、樹脂分75%、溶剤分25%)3部をそれぞれ添加した後、撹拌して、液状組成物を得た。なお、表4中の「膜形成用樹脂」及び「溶剤」として、以下に示すものを用いた。また、比較例11及び12については、粒子径を揃えるためボールミルによる粉砕を行った。
・膜形成用樹脂:ポリウレタン樹脂(商品名「サンプレンIB−1700D」、三洋化成工業社製、樹脂分30%、溶剤分70%)
・溶剤:メチルエチルケトン/トルエン/イソプロピルアルコール混合溶媒
Figure 0006209695
<評価(2)>
(評価用塗膜の形成)
マルチコーター(商品名「K−303」、RK Print Coat Instruments社製)を使用して液状組成物を離型紙にそれぞれ塗工した後、熱風乾燥して溶剤を除去した。次いで、40℃の乾燥機にて48時間エージングして、熱伝導性成分(フィラー)の濃度が48%であり、膜厚が約100μmである評価用塗膜を形成した。
(熱伝導率(薄膜)の測定)
評価用塗膜を縦40mm×横40mmの大きさに切り出して試験片を得た。熱物性測定装置(商品名「TPS−2500S」、京都電子工業社製)の「うす膜測定モジュール」にて得られた試験片の熱伝導率を測定した。結果を表5に示す。
(熱伝導率(ブロック)の測定)
ポリプロピレン(プライムポリマー社製、MFR 20g/10min)50部、及び各熱伝導性成分50部を混合して得た樹脂組成物をプラストミルに入れ、設定温度200℃の条件で溶融混練した。次いで、縦20mm×横20mm×高さ6mmの金型を使用し、175℃の条件で金型プレス成形して試験片を得た。熱物性測定装置(商品名「TPS−2500S」、京都電子工業社製)の「標準等方性測定モジュール」にて得られた試験片の熱伝導率を測定した。結果を表5に示す。
(濡れ性)
ポリオール(商品名「クラレポリオールP−1010」、クラレ社製、粘度(25℃)1,500kPa・s)50部と、熱伝導性酸化物50部とを混合して分散液を得た。E型回転粘度計を使用して得られた分散液の溶液粘度(25℃、回転数0.5rpm)を測定し、以下に示す評価基準にしたがって、樹脂に対する熱伝導性酸化物の濡れ性を評価した。結果を表5に示す。
◎:溶液粘度が2,000mPa・s以上5,000mPa・s未満
○:溶液粘度が5,000mPa・s以上15,000mPa・s未満
△:溶液粘度が15,000mPa・s以上25,000mPa・s未満
×:溶液粘度が25,000mPa・s以上
(耐薬品性)
評価用塗膜を縦40mm×横40mm×厚さ100μmの大きさに切り出して試験片を得た。得られた試験片を5%塩酸、5%硫酸水溶液、5%硝酸水溶液、及び5%水酸化ナトリウム水溶液にそれぞれ浸漬し、1日1回撹拌して一週間ずつ静置した。浸漬前後の試験片の質量を測定して浸漬前の試験片の質量を基準とした質量変化率(%)を算出し、以下に示す評価基準にしたがって耐薬品性を評価した。結果を表5に示す。
○:質量変化率が5%未満
△:質量変化率が5%以上20%未満
×:質量変化率が20%以上
(放射率の測定)
評価用塗膜を縦40mm×横40mmの大きさに切り出して試験片を得た。放射率計(商品名「D and S AERD」、京都電子工業社製)を使用して得られた試験片の放射率を測定した。結果を表5に示す。
(密着性)
バーコーター#5を使用して、二軸延伸ポリエステルフィルム(商品名「エステルフィルム E−5102」、東洋紡社製)と二軸延伸ナイロンフィルム(商品名「ハーデンフィルム N1102」、東洋紡社製)のコロナ処理面(処理PET、処理NY)及びコロナ未処理面(未処理PET、未処理NY)に液状組成物をそれぞれ塗工した。熱風乾燥して溶剤を除去した後、40℃の乾燥機にて48時間エージングして、フィルム表面上に薄膜が形成された試験片を作製した。セロハンテープ(商品名「セロテープ(登録商標)」、ニチバン社製、24mm幅)を試験片の薄膜表面に貼りつけ、垂直方向に剥がす操作を同一箇所で3回実施した後、薄膜の状態を確認し、以下に示す評価基準にしたがって密着性を評価した結果を表5に示す。
○:剥がれがなし
△:一部剥がれあり
×:大部分剥がれた
Figure 0006209695
(実施例186)
実施例177の液状組成物をアルミニウム製の部材の表面に塗工した。熱風乾燥して溶剤を除去した後、40℃の乾燥機にて48時間エージングして、部材の表面上に薄膜が形成された試験片を作製した。前述の「評価(2)」の「熱伝導率(薄膜)の測定」と同様の方法で作製した試験片の熱伝導率を測定した。その結果、試験片の熱伝導率の値は、アルミニウムの熱伝導率を阻害することなく十分に高いことが判明した。また、前述の「評価(2)」の「放射率の測定」と同様の方法で測定した試験片の放射率は0.50であり、アルミニウム自体の放射率(0.03)から向上したことが判明した。さらに、形成された薄膜は、アルミニウム製の部材の表面への密着性が高いものであった。
(実施例187)
実施例105の熱伝導性酸化物20部、水61部、及び膜形成用樹脂としての水性ポリウレタン樹脂19部を配合して液状組成物を調製した。調製した液状組成物をアルミニウム製の部材の表面へ塗工した後、熱風乾燥して溶剤を除去した。次いで、40℃の乾燥機にて48時間エージングして、部材の表面上に薄膜が形成された試験片を作製した。前述の「評価(2)」の「熱伝導率(薄膜)の測定」と同様の方法で作製した試験片の熱伝導率を測定した。その結果、試験片の熱伝導率の値は、アルミニウムの熱伝導率を阻害することなく十分に高いことが判明した。また、前述の「評価(2)」の「放射率の測定」と同様の方法で測定した試験片の放射率は、アルミニウム自体の放射率(0.03)よりも高いことがわかった。さらに、形成された薄膜は、アルミニウム製の部材の表面への密着性が高いものであった。

Claims (18)

  1. アルミニウム原料を含有する原料混合物を焼成して得られるアルミナ系熱伝導性酸化物であって、
    前記アルミニウム原料が、ベーマイト、水酸化アルミニウム、及びアルミナからなる群より選択される少なくとも一種であり、
    前記原料混合物が、ホウ酸化合物と、タングステン化合物、ビスマス化合物、バナジウム化合物、チタン化合物、フリット、リン化合物、亜鉛化合物、及びセリウム化合物からなる群より選択される少なくとも一種の酸化物原料と、をさらに含有し、
    前記原料混合物中、前記アルミニウム原料100質量部に対する、前記ホウ酸化合物の含有量が0.1〜5質量部であり、前記酸化物原料の含有量が0.1〜20質量部であるアルミナ系熱伝導性酸化物。
  2. 前記酸化物原料が、熱分解若しくは相転移して酸化物を生成する、金属の酸化物、水酸化物、オキソ酸塩、炭酸塩、炭酸水素塩、又はアンモニウム塩である請求項1に記載のアルミナ系熱伝導性酸化物。
  3. 鉄、コバルト、銅、マンガン、ニッケル、及びクロムからなる群より選択される少なくとも一種の元素を含有する、着色した請求項1又は2に記載のアルミナ系熱伝導性酸化物。
  4. 前記フリットが、Siを含有するとともに、Li、B、Na、K、Mg、Ca、Al、Zn、F、Ti、Zr、及びPからなる群より選択される少なくとも一種の元素をさらに含有する、Pbを含有しない非着色グレードのものである請求項1〜3のいずれか一項に記載のアルミナ系熱伝導性酸化物。
  5. 前記アルミニウム原料の形状が、数平均粒子径が0.1〜80μmの粒子である請求項1〜4のいずれか一項に記載のアルミナ系熱伝導性酸化物。
  6. 請求項1〜5のいずれか一項に記載のアルミナ系熱伝導性酸化物の製造方法であって、
    ベーマイト、水酸化アルミニウム、及びアルミナからなる群より選択される少なくとも一種のアルミニウム原料と、ホウ酸化合物と、タングステン化合物、ビスマス化合物、バナジウム化合物、チタン化合物、フリット、リン化合物、亜鉛化合物、及びセリウム化合物からなる群より選択される少なくとも一種の酸化物原料とを混合して原料混合物を得る工程と、
    得られた前記原料混合物を焼成する工程と、を有し、
    前記原料混合物中、前記アルミニウム原料100質量部に対する、前記ホウ素化合物の含有量が0.1〜5質量部であり、前記酸化物原料の含有量が0.1〜20質量部であるアルミナ系熱伝導性酸化物の製造方法。
  7. 前記原料混合物を、空気中、600〜1,500℃で焼成する請求項6に記載のアルミナ系熱伝導性酸化物の製造方法。
  8. 前記アルミニウム原料、前記ホウ酸化合物、及び前記酸化物原料を、乾式法により混合して前記原料混合物を得る請求項6又は7に記載のアルミナ系熱伝導性酸化物の製造方法。
  9. 請求項1〜5のいずれか一項に記載のアルミナ系熱伝導性酸化物と、熱伝導性フィラーと、を含有する熱伝導性組成物。
  10. 請求項1〜5のいずれか一項に記載のアルミナ系熱伝導性酸化物を含有する物品。
  11. 熱伝導性フィラーをさらに含有する請求項10に記載の物品。
  12. グラビアインキ、塗工液、樹脂組成物、及び接着剤組成物のいずれかである請求項10又は11に記載の物品。
  13. 熱伝導性薄膜を形成するために用いられる液状組成物であって、
    請求項1〜5のいずれか一項に記載のアルミナ系熱伝導性酸化物を含む熱伝導性成分と、膜形成用樹脂と、溶剤と、を含有する液状組成物。
  14. 前記熱伝導性成分が、硫酸バリウム、タルク、及び窒化ホウ素からなる群より選択される少なくとも一種をさらに含有する請求項13に記載の液状組成物。
  15. 前記膜形成用樹脂100質量部に対する、前記熱伝導性成分の含有量が、20〜200質量部である請求項13又は14に記載の液状組成物。
  16. 前記膜形成用樹脂が、アクリル系樹脂、ウレタン系樹脂、ウレア系樹脂、エポキシ系樹脂、ゴム系樹脂、フッ素系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂、セルロース系樹脂、及び熱可塑性エラストマーからなる群より選択される少なくとも一種の溶剤可溶性樹脂である請求項13〜15のいずれか一項に記載の液状組成物。
  17. 請求項13〜16のいずれか一項に記載の液状組成物を塗工して形成される熱伝導性薄膜。
  18. 金属製部材と、前記金属製部材の表面上に配置された請求項17に記載の熱伝導性薄膜と、を備えた電子機器用部材。
JP2017038977A 2017-03-02 2017-03-02 アルミナ系熱伝導性酸化物及びその製造方法 Active JP6209695B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017038977A JP6209695B1 (ja) 2017-03-02 2017-03-02 アルミナ系熱伝導性酸化物及びその製造方法
KR1020197028534A KR102070032B1 (ko) 2017-03-02 2018-02-27 알루미나계 열 전도성 산화물 및 그 제조 방법
EP18761134.8A EP3590891B1 (en) 2017-03-02 2018-02-27 Alumina-based thermally conductive oxide and method for producing same
PCT/JP2018/007251 WO2018159608A1 (ja) 2017-03-02 2018-02-27 アルミナ系熱伝導性酸化物及びその製造方法
US16/486,793 US20190359875A1 (en) 2017-03-02 2018-02-27 Alumina-based thermally conductive oxide and method for producing same
CN201880014859.4A CN110352178B (zh) 2017-03-02 2018-02-27 氧化铝系导热性氧化物及其的制造方法
TW107107079A TWI806853B (zh) 2017-03-02 2018-03-02 粉末狀之氧化鋁系熱傳導性氧化物及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017038977A JP6209695B1 (ja) 2017-03-02 2017-03-02 アルミナ系熱伝導性酸化物及びその製造方法

Publications (2)

Publication Number Publication Date
JP6209695B1 true JP6209695B1 (ja) 2017-10-04
JP2018145025A JP2018145025A (ja) 2018-09-20

Family

ID=59997823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038977A Active JP6209695B1 (ja) 2017-03-02 2017-03-02 アルミナ系熱伝導性酸化物及びその製造方法

Country Status (7)

Country Link
US (1) US20190359875A1 (ja)
EP (1) EP3590891B1 (ja)
JP (1) JP6209695B1 (ja)
KR (1) KR102070032B1 (ja)
CN (1) CN110352178B (ja)
TW (1) TWI806853B (ja)
WO (1) WO2018159608A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184886A (zh) * 2021-04-14 2021-07-30 雅安百图高新材料股份有限公司 一种高导热球形氧化铝的制备方法及产品

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196057B (zh) * 2016-05-31 2022-02-01 三井化学株式会社 导热性组合物
JP6561220B1 (ja) * 2019-02-18 2019-08-14 株式会社アドマテックス 粒子材料及び熱伝導物質
KR102408087B1 (ko) * 2019-12-23 2022-06-13 한국세라믹기술원 고방열 질화알루미늄-엘라스토머 복합소재 및 이의 제조 방법
JP7095194B1 (ja) * 2020-09-11 2022-07-04 富士高分子工業株式会社 熱伝導性グリース及びその製造方法
KR102397281B1 (ko) * 2022-01-26 2022-05-12 주식회사 씨케이이엠솔루션 경량화가 가능한 방열 접착제 조성물 및 그 제조 방법
KR102457897B1 (ko) * 2022-02-04 2022-10-25 주식회사 씨케이이엠솔루션 저유전 특성을 갖는 방열 접착제 조성물 및 그 제조 방법
CN114316477B (zh) * 2022-02-08 2023-04-28 东莞市明凯塑胶科技有限公司 一种tpe高弹性充电桩线缆专用材料及其制备方法
JP7185798B1 (ja) * 2022-04-27 2022-12-07 大日精化工業株式会社 アルミナ系熱伝導性丸み盤状粒子及びその製造方法、熱伝導性組成物、物品、液状組成物、熱伝導性薄膜、並びに、電子機器用部材
TWI854306B (zh) * 2022-09-19 2024-09-01 長庚大學 一種具有聚乳酸、聚偏二氟乙烯與聚甲基丙烯酸甲酯的複合材料及其形成方法
CN115521731A (zh) * 2022-10-11 2022-12-27 江苏联瑞新材料股份有限公司 一种高导热、低机械加工磨损性的功能填料及其制备方法
JP7358669B1 (ja) * 2023-03-27 2023-10-10 大日精化工業株式会社 熱伝導性粒子及びその製造方法、混合物、物品、樹脂組成物、並びに、熱伝導性薄膜
WO2024228939A1 (en) * 2023-05-03 2024-11-07 Rogers Corporation Thermal management sheet, method of manufacture, and articles using the same
CN116589864A (zh) * 2023-05-22 2023-08-15 苏州博濬新材料科技有限公司 一种能够维持高导热性的导热性树脂组合物制备方法
CN117238993B (zh) * 2023-09-12 2024-07-02 宁波勤邦新材料科技股份有限公司 一种高反黑背板基膜、制备方法及其应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156813A (ja) * 1974-11-14 1976-05-18 Tdk Electronics Co Ltd
JPS5997528A (ja) * 1982-08-24 1984-06-05 スイス・アルミニウム・リミテツド 結晶アルミナの製造方法
JPS62191420A (ja) * 1986-02-17 1987-08-21 Showa Alum Ind Kk 球状コランダム粒子の製造方法
JPH07187663A (ja) * 1993-06-30 1995-07-25 Sumitomo Chem Co Ltd α−アルミナ粉末の製造方法
JPH07206430A (ja) * 1993-04-13 1995-08-08 Sumitomo Chem Co Ltd α−アルミナ粉末およびその製造方法
JP2001261331A (ja) * 2000-03-24 2001-09-26 Kawai Sekkai Kogyo Kk 円盤状ベーマイト及び円盤状アルミナ並びにそれらの製造方法並びに樹脂組成物
JP2002348116A (ja) * 2001-05-30 2002-12-04 Showa Denko Kk アルミナ粒子及びその製造方法
JP2003002642A (ja) * 2001-06-18 2003-01-08 Kawai Sekkai Kogyo Kk 六角板状ベーマイト及び六角板状アルミナ並びにそれらの製造方法
JP2007045876A (ja) * 2005-08-08 2007-02-22 The Inctec Inc インキ組成物
JP2008127257A (ja) * 2006-11-22 2008-06-05 Nippon Light Metal Co Ltd 多面体形状α−アルミナ及びその製造方法
WO2014076828A1 (ja) * 2012-11-19 2014-05-22 株式会社 日立製作所 二次電池
JP2014218424A (ja) * 2013-04-30 2014-11-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung α−アルミナフレーク
JP2015034269A (ja) * 2013-08-09 2015-02-19 東洋インキScホールディングス株式会社 易変形性凝集体とその製造方法、熱伝導性樹脂組成物、熱伝導性部材とその製造方法、および熱伝導性接着シート

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271171A (en) * 1965-06-16 1966-09-06 Ferro Corp Gray ceramics containing a calcined mixture of aluminum and vanadium compounds
JPS5522357A (en) 1978-08-08 1980-02-18 Nippon Shokubai Kagaku Kogyo Co Ltd Monolithic catalyst for purification of waste gas
US6607570B1 (en) * 2000-02-02 2003-08-19 3M Innovative Properties Company Fused Al2O3-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
WO2002098796A1 (en) * 2001-05-30 2002-12-12 Showa Denko K.K. Spherical alumina particles and production process thereof
JP2003192339A (ja) * 2001-12-27 2003-07-09 Showa Denko Kk アルミナ粒、アルミナ粒の製造方法およびアルミナ粒を含む組成物
EP1633678B1 (en) * 2003-06-12 2017-05-17 Showa Denko K.K. Method for producing particulate alumina and composition containing particulate alumina
JP2005022963A (ja) * 2003-06-12 2005-01-27 Showa Denko Kk アルミナ粒の製造方法及び組成物
JP2007169516A (ja) 2005-12-22 2007-07-05 The Inctec Inc インキ組成物
CN102363577A (zh) * 2011-08-04 2012-02-29 中国铝业股份有限公司 导热用高温氧化铝填料的生产方法及其产品
JP5418720B2 (ja) * 2011-09-13 2014-02-19 Dic株式会社 無機フィラー複合体、熱伝導性樹脂組成物、及び成形体
CN103946331A (zh) * 2011-12-06 2014-07-23 日本瑞翁株式会社 导热性压敏粘接剂组合物、导热性压敏粘接性片材状成型体、它们的制造方法、及电子仪器
WO2014051091A1 (ja) 2012-09-28 2014-04-03 Dic株式会社 α-アルミナ微粒子及びその製造方法
US10047256B2 (en) * 2013-03-06 2018-08-14 Dic Corporation Epoxy resin composition, cured product, heat radiating material, and electronic member
JP6107479B2 (ja) 2013-07-01 2017-04-05 東洋インキScホールディングス株式会社 熱伝導性変形性凝集体、熱伝導性樹脂組成物、熱伝導部材、及びその製造方法
US10113096B2 (en) 2013-10-24 2018-10-30 Dic Corporation Resin composition, heat-dissipating material, and heat-dissipating member
CN103553096B (zh) * 2013-10-28 2015-02-11 郑州玉发精瓷科技有限公司 电子材料抛光用片状刚玉相氧化铝粉体的制备方法
CN106103346B (zh) * 2014-03-14 2018-07-31 大日精化工业株式会社 导热性复合氧化物、其制造方法、含导热性复合氧化物的组合物和其使用
CN106471035B (zh) * 2014-07-02 2019-04-16 Dic株式会社 电子材料用环氧树脂组合物、其固化物及电子构件
CN104987112A (zh) * 2015-07-24 2015-10-21 合肥凯士新材料贸易有限公司 一种高光洁度led灯散热用片状氧化铝多孔陶瓷及其制备方法
CN105174921A (zh) * 2015-09-15 2015-12-23 苏州亿馨源光电科技有限公司 一种耐热导电陶瓷材料及其制备方法
EP3323795A4 (en) * 2015-09-16 2019-03-13 Dainichiseika Color & Chemicals Mfg. Co., Ltd. ALUMINUM OXIDE-BASED HEAT-RELATED OXIDE AND METHOD FOR THE PRODUCTION THEREOF
CN105384441A (zh) * 2015-10-27 2016-03-09 合肥龙多电子科技有限公司 一种纳米二氧化钛增韧的高致密度氮化铝-碳化硅复合电路板基板材料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156813A (ja) * 1974-11-14 1976-05-18 Tdk Electronics Co Ltd
JPS5997528A (ja) * 1982-08-24 1984-06-05 スイス・アルミニウム・リミテツド 結晶アルミナの製造方法
JPS62191420A (ja) * 1986-02-17 1987-08-21 Showa Alum Ind Kk 球状コランダム粒子の製造方法
JPH07206430A (ja) * 1993-04-13 1995-08-08 Sumitomo Chem Co Ltd α−アルミナ粉末およびその製造方法
JPH07187663A (ja) * 1993-06-30 1995-07-25 Sumitomo Chem Co Ltd α−アルミナ粉末の製造方法
JP2001261331A (ja) * 2000-03-24 2001-09-26 Kawai Sekkai Kogyo Kk 円盤状ベーマイト及び円盤状アルミナ並びにそれらの製造方法並びに樹脂組成物
JP2002348116A (ja) * 2001-05-30 2002-12-04 Showa Denko Kk アルミナ粒子及びその製造方法
JP2003002642A (ja) * 2001-06-18 2003-01-08 Kawai Sekkai Kogyo Kk 六角板状ベーマイト及び六角板状アルミナ並びにそれらの製造方法
JP2007045876A (ja) * 2005-08-08 2007-02-22 The Inctec Inc インキ組成物
JP2008127257A (ja) * 2006-11-22 2008-06-05 Nippon Light Metal Co Ltd 多面体形状α−アルミナ及びその製造方法
WO2014076828A1 (ja) * 2012-11-19 2014-05-22 株式会社 日立製作所 二次電池
JP2014218424A (ja) * 2013-04-30 2014-11-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung α−アルミナフレーク
JP2015034269A (ja) * 2013-08-09 2015-02-19 東洋インキScホールディングス株式会社 易変形性凝集体とその製造方法、熱伝導性樹脂組成物、熱伝導性部材とその製造方法、および熱伝導性接着シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184886A (zh) * 2021-04-14 2021-07-30 雅安百图高新材料股份有限公司 一种高导热球形氧化铝的制备方法及产品

Also Published As

Publication number Publication date
US20190359875A1 (en) 2019-11-28
KR102070032B1 (ko) 2020-01-29
JP2018145025A (ja) 2018-09-20
WO2018159608A1 (ja) 2018-09-07
CN110352178A (zh) 2019-10-18
EP3590891A1 (en) 2020-01-08
TWI806853B (zh) 2023-07-01
EP3590891B1 (en) 2022-08-17
KR20190116530A (ko) 2019-10-14
TW201836984A (zh) 2018-10-16
CN110352178B (zh) 2021-03-05
EP3590891A4 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6209695B1 (ja) アルミナ系熱伝導性酸化物及びその製造方法
JP6121074B1 (ja) アルミナ系熱伝導性酸化物及びその製造方法
JP6474457B2 (ja) 熱伝導性複合酸化物、その製造方法、及び熱伝導性複合酸化物含有組成物
JP2019206459A (ja) 熱伝導性酸化物及びその製造方法
TWI481563B (zh) Magnesium oxide particles, a method for producing the same, a heat-dissipating filler, a resin composition, a heat-dissipating grease, and a heat-dissipating paint composition
KR102318631B1 (ko) 수지 조성물, 방열 재료 및 방열 부재
JP2016135841A (ja) 熱伝導性複合酸化物、熱伝導性樹脂組成物及び塗工液
JP6326536B2 (ja) 樹脂組成物、熱伝導性薄膜、及び熱伝導性物品
KR20160060908A (ko) 개질그라파이트가 함유된 카본계 무기필러 융합을 통한 김서림방지용 발열소재의 제조방법
JP7185798B1 (ja) アルミナ系熱伝導性丸み盤状粒子及びその製造方法、熱伝導性組成物、物品、液状組成物、熱伝導性薄膜、並びに、電子機器用部材
JP7358669B1 (ja) 熱伝導性粒子及びその製造方法、混合物、物品、樹脂組成物、並びに、熱伝導性薄膜
EP3196166A1 (en) Colloidal-silica-coated magnesium hydroxide

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6209695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250