JP6107670B2 - Novel mesogen / silicon compound copolymer and method for producing the copolymer - Google Patents
Novel mesogen / silicon compound copolymer and method for producing the copolymer Download PDFInfo
- Publication number
- JP6107670B2 JP6107670B2 JP2014000119A JP2014000119A JP6107670B2 JP 6107670 B2 JP6107670 B2 JP 6107670B2 JP 2014000119 A JP2014000119 A JP 2014000119A JP 2014000119 A JP2014000119 A JP 2014000119A JP 6107670 B2 JP6107670 B2 JP 6107670B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- atom
- formula
- carbon atoms
- divalent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Description
本発明は、新規メソゲン・ケイ素化合物共重合体、及び該共重合体の製造方法に関する。 The present invention relates to a novel mesogen / silicon compound copolymer and a method for producing the copolymer.
近年、電子デバイスの発展が著しいが、性能の向上に伴って発熱量が増大している。熱はデバイスに悪影響を与えるため、熱を外部に効率よく放出することが重要な課題となっている。その課題の解決法として、樹脂中への高熱伝導性の無機化合物粒子の充填が広く行われており、その結果、樹脂単体と比べて、より効率的に熱伝導を行えるようになる。しかし、一定量の樹脂に対して、無機化合物粒子の充填量には限界があるため、この方法では熱伝導性の向上に限界があった。更に無機化合物が高価という欠点もあった。 In recent years, the development of electronic devices has been remarkable, but the amount of heat generation has increased with the improvement of performance. Since heat adversely affects the device, it is an important issue to efficiently release the heat to the outside. As a solution to this problem, the filling of inorganic compound particles with high thermal conductivity into a resin is widely performed, and as a result, heat conduction can be performed more efficiently than a resin alone. However, since there is a limit to the filling amount of inorganic compound particles with respect to a certain amount of resin, this method has a limit in improving thermal conductivity. In addition, the inorganic compound is expensive.
このような背景から樹脂自体の熱伝導性向上が望まれていた。熱伝導性を向上させるには、樹脂中にメソゲン基と呼ばれる樹脂同士が重なり合いやすい部位を持たせることで達成できる。しかしながら、樹脂中のメソゲン基が多くなるほど融点の上昇、樹脂の溶媒への難溶化、といった取り扱いが悪化する欠点があった。そのため、メソゲン基を単純に増加させるだけでは、利用価値のある高熱伝導性樹脂を開発することはできなかった。 From such a background, it has been desired to improve the thermal conductivity of the resin itself. Improvement in thermal conductivity can be achieved by providing the resin with a portion where the resins called mesogenic groups tend to overlap each other. However, as the number of mesogenic groups in the resin increases, there is a drawback that handling becomes worse, such as an increase in melting point and a poor solubility of the resin in a solvent. For this reason, it has not been possible to develop a highly thermally conductive resin having utility value by simply increasing the number of mesogenic groups.
特許文献1(特開2011−84714号公報)には、メソゲン基とスペーサーとを共重合させた熱可塑性樹脂が開示されている。該高分子化合物はメソゲンのスタッキングにより、熱伝導性に優れることが記載されている。しかしながら、メソゲン基を持つ樹脂はメソゲン基のスタッキングにより、固くて脆くなり、更に溶媒に難溶化することが知られており、上記の樹脂も例外ではない。このような樹脂は脆いために利用箇所が限定されたり、溶媒に溶けづらくなるために押出成型のような無溶媒での使用に限られてきたりするのが問題となっている。 Patent Document 1 (Japanese Patent Laid-Open No. 2011-84714) discloses a thermoplastic resin obtained by copolymerizing a mesogenic group and a spacer. It is described that the polymer compound is excellent in thermal conductivity due to mesogen stacking. However, it is known that a resin having a mesogenic group becomes hard and brittle due to stacking of the mesogenic group, and further hardly soluble in a solvent, and the above resin is no exception. Since such a resin is brittle, there are problems in that its use location is limited, and since it is difficult to dissolve in a solvent, it is limited to use without solvent such as extrusion.
本発明は、上記事情に鑑みなされたもので、例えば放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に使用することができる新規なメソゲン・ケイ素化合物共重合体、及び該共重合体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances. For example, a novel mesogen-silicon compound copolymer that can be suitably used as a heat dissipation material or a resin material for semiconductor devices and electronic components, and the copolymer It aims at providing the manufacturing method of unification.
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、下記方法によって製造し得る、下記平均組成式(1)で表される構造を有する重量平均分子量が300〜500,000の新規なメソゲン・ケイ素化合物共重合体が、熱伝導性に優れ、更に汎用されている溶媒への分散性が顕著に優れることから、放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に使用し得ることを見出し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventors have a weight average molecular weight of 300 to 500,000 having a structure represented by the following average composition formula (1), which can be produced by the following method. The new mesogen-silicon compound copolymer has excellent thermal conductivity and remarkably excellent dispersibility in commonly used solvents. Therefore, it can be used as a heat dissipation material or a resin material for semiconductor devices and electronic components. It has been found that it can be suitably used, and the present invention has been made.
従って、本発明は、下記新規メソゲン・ケイ素化合物共重合体及び該共重合体の製造方法を提供する。
〔1〕
下記平均組成式(1)で表される構造を有する重量平均分子量が300〜500,000のメソゲン・ケイ素化合物共重合体。
〔2〕
前記平均組成式(1)中、kが0.5以下の正数である〔1〕記載のメソゲン・ケイ素化合物共重合体。
〔3〕
前記平均組成式(1)中、R 2 、R 3 が各々独立して炭素原子数1〜18のアルキレン基である〔1〕又は〔2〕記載のメソゲン・ケイ素化合物共重合体。
〔4〕
前記平均組成式(1)中、Zが下記一般式(2)又は(3)で示される基であることを特徴とする〔1〕〜〔3〕のいずれかに記載のメソゲン・ケイ素化合物共重合体。
〔5〕
〔1〕〜〔4〕のいずれかに記載のメソゲン・ケイ素化合物共重合体の製造方法であって、下記一般式(4)及び下記一般式(5)で表される化合物を無水酢酸と反応させ、アセチル化した後に、それらと下記一般式(6)で表される化合物又は下記一般式(6)及び下記一般式(7)で表される化合物とを脱酢酸重縮合反応させることを特徴とするメソゲン・ケイ素化合物共重合体の製造方法。
〔6〕
〔1〕〜〔4〕のいずれかに記載のメソゲン・ケイ素化合物共重合体の製造方法であって、脱塩酸剤存在下にて、下記一般式(4)及び下記一般式(5)で表される化合物と下記一般式(8)で表される化合物又は下記一般式(8)及び下記一般式(9)で表される化合物とを反応させることを特徴とするメソゲン・ケイ素化合物共重合体の製造方法。
〔7〕
〔1〕〜〔4〕のいずれかに記載のメソゲン・ケイ素化合物共重合体の製造方法であって、酸触媒存在下にて、下記一般式(4)及び下記一般式(5)で表される化合物と、下記一般式(6)で表される化合物又は下記一般式(6)及び下記一般式(7)で表される化合物とを反応させることを特徴とするメソゲン・ケイ素化合物共重合体の製造方法。
〔8〕
酸触媒が、硫酸、塩酸、硝酸又はリン酸である〔7〕記載のメソゲン・ケイ素化合物共重合体の製造方法。
Accordingly, the present invention provides the following novel mesogen / silicon compound copolymer and a method for producing the copolymer.
[1]
A mesogen / silicon compound copolymer having a structure represented by the following average composition formula (1) and having a weight average molecular weight of 300 to 500,000.
[2]
The mesogen / silicon compound copolymer according to [1], wherein k is a positive number of 0.5 or less in the average composition formula (1).
[3]
The mesogen / silicon compound copolymer according to [1] or [2], wherein in the average composition formula (1), R 2 and R 3 are each independently an alkylene group having 1 to 18 carbon atoms.
[ 4 ]
In the average composition formula (1), Z is a group represented by the following general formula (2) or (3), wherein the mesogenic silicon compound according to any one of [1] to [3] Polymer.
[ 5 ]
[1] A method for producing a mesogen / silicon compound copolymer according to any one of [4], wherein a compound represented by the following general formula (4) and the following general formula (5) is reacted with acetic anhydride. is, after acetylation, a compound represented by following general formula in which the following general formula (6) (6)及beauty under following general formula (7) with a compound represented by be de-acetic acid polycondensation A process for producing a mesogen-silicon compound copolymer characterized by the above.
[ 6 ]
[1] A method for producing a mesogen / silicon compound copolymer according to any one of [4], represented by the following general formula (4) and the following general formula (5) in the presence of a dehydrochlorinating agent. the compound with the compound represented by the following general formula (8) or the following general formula (8)及beauty under following general formula (9) with a compound represented by the mesogenic-silicon compound both which comprises reacting a A method for producing a polymer.
[ 7 ]
[1] A method for producing a mesogen-silicon compound copolymer according to any one of [4] , represented by the following general formula (4) and the following general formula (5) in the presence of an acid catalyst. that compound, the compound represented by the following general formula (6) or the following general formula (6)及beauty under following general formula (7) with a compound represented by the mesogenic-silicon compound both which comprises reacting a A method for producing a polymer.
[ 8 ]
[ 7 ] The method for producing a mesogen / silicon compound copolymer according to [ 7 ], wherein the acid catalyst is sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid.
本発明の新規なメソゲン・ケイ素化合物共重合体は、熱伝導性に優れ、更に汎用されている溶媒への分散性が顕著に優れることから、放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に用いることができる。 The novel mesogen-silicon compound copolymer of the present invention is excellent in thermal conductivity, and further has excellent dispersibility in commonly used solvents. Therefore, a heat dissipation material, or a resin for semiconductor devices and electronic components It can be suitably used as a material.
本発明のメソゲン・ケイ素化合物共重合体は、下記平均組成式(1)で表される構造を有し、重量平均分子量が300〜500,000、好ましくは1,000〜30,000のものである。
上記平均組成式(1)中、R1〜R4は各々独立して、同一でも異なっていてもよく、直鎖状、分岐状又は環状の、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、アラルキレン基や、これらの2種又はそれ以上が結合した基等の炭素原子数1〜20の2価炭化水素基である。 In the above average composition formula (1), R 1 to R 4 may each independently be the same or different and are linear, branched or cyclic, alkylene group, alkenylene group, alkynylene group, arylene group, It is a C1-C20 divalent hydrocarbon group such as an aralkylene group or a group in which two or more of these are bonded.
R1、R4としては、炭素原子数2〜16の2価炭化水素基が好ましく、炭素原子数4〜14の2価炭化水素基がより好ましく、特に炭素原子数6〜12の2価炭化水素基が特に好ましい。なお、R4はR1と異なるものである。
R1、R4として、具体的には、−CH2−、−(CH2)2−、−(CH2)3−、−(CH2)4−、−(CH2)5−、−(CH2)6−、−(CH2)8−、−(CH2)10−、−(CH2)12−、−(CH2)15−、−(CH2)20−、−CH=CH−、−C≡C−、−CH=CH−CH=CH−、−CH=CH−C≡C−、−(CH2)12CH(C6H5)−、−CH(CH3)−、−C(CH3)(CH3)−、−C(CH3)2(CH2)3C(CH3)2−、−CH2−CH(CH3)−、−CH2−CH(CH3)−CH(CH3)−、−CH2−CH(CH2CH2CH3)−、−CH2−C(CH2CH2CH3)(CH2CH2CH3)−、−CH2−C(CH2CH(CH3)CH3)(CH2CH2CH3)−、−CH2−C(CH2CH(CH3)CH3)(CH2C(CH3)(CH3)CH3)−等が例示できる。
R 1 and R 4 are preferably a divalent hydrocarbon group having 2 to 16 carbon atoms, more preferably a divalent hydrocarbon group having 4 to 14 carbon atoms, and particularly a divalent carbon group having 6 to 12 carbon atoms. A hydrogen group is particularly preferred. R 4 is different from R 1 .
Specific examples of R 1 and R 4 include —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 5 —, — (CH 2) 6 -, - (CH 2) 8 -, - (CH 2) 10 -, - (CH 2) 12 -, - (CH 2) 15 -, - (CH 2) 20 -, - CH = CH—, —C≡C—, —CH═CH—CH═CH—, —CH═CH—C≡C—, — (CH 2 ) 12 CH (C 6 H 5 ) —, —CH (CH 3 ) -, - C (CH 3) (CH 3) -, - C (CH 3) 2 (CH 2) 3 C (CH 3) 2 -, - CH 2 -CH (CH 3) -, - CH 2 -CH (CH 3 ) —CH (CH 3 ) —, —CH 2 —CH (CH 2 CH 2 CH 3 ) —, —CH 2 —C (CH 2 CH 2 CH 3 ) (CH 2 CH 2 CH 3 ) —, -CH 2 -C (CH 2 CH ( CH 3) CH 3) (CH 2 CH 2 CH 3 ) -, - CH 2 -C ( CH 2 CH (CH 3) CH 3) (CH 2 C (CH 3) (CH 3) CH 3) - and the like.
この他に、下記に示すような環状構造を有する2価炭化水素基や芳香環を有する2価炭化水素基も例示できる。
R2、R3としては、炭素原子数1〜18のアルキレン基等の2価炭化水素基が好ましく、炭素原子数1〜15の2価炭化水素基がより好ましく、炭素原子数3〜4の2価炭化水素基が特に好ましい。R2、R3として、具体的には、−CH2−、−(CH2)2−、−(CH2)3−、−(CH2)4−、−(CH2)2−CH(CH3)−等が例示できる。これらの中でも−(CH2)2−、−(CH2)3−、−(CH2)2−CH(CH3)−が好ましい。 R 2 and R 3 are preferably divalent hydrocarbon groups such as alkylene groups having 1 to 18 carbon atoms, more preferably divalent hydrocarbon groups having 1 to 15 carbon atoms, and 3 to 4 carbon atoms. A divalent hydrocarbon group is particularly preferred. As R 2 and R 3 , specifically, —CH 2 —, — (CH 2 ) 2 —, — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 2 —CH ( CH 3 ) — and the like can be exemplified. Among them - (CH 2) 2 -, - (CH 2) 3 -, - (CH 2) 2 -CH (CH 3) - are preferred.
また、l、nは各々0.5未満の正数を示し、m、kは各々0又は0.5以下の正数を示す。更にlとnはl+n=0.4〜0.6を満たし、mとkはm+k=0.4〜0.6を満たす。特に、l+n=0.5、m+k=0.5であることが好ましい。但し、l+n+m+k=1である。 L and n each represent a positive number less than 0.5, and m and k each represent a positive number of 0 or 0.5 or less. Furthermore, l and n satisfy l + n = 0.4 to 0.6, and m and k satisfy m + k = 0.4 to 0.6. In particular, it is preferable that l + n = 0.5 and m + k = 0.5. However, l + n + m + k = 1.
A、Bは各々独立して、−O−、−NH−、−S−の群から選ばれる2価の原子又は分子を示す。また、D、Eは各々独立して、−O−、*−R−NH−、*−R−S−の群から選ばれる2価の原子又は分子を示す。但し、*はフェニル基との結合方向を示し、Rは単結合、又はメチレン基、エチレン基、プロピレン基(トリメチレン基、メチルエチレン基)等の炭素原子数1〜3の2価炭化水素基を示す。 A and B each independently represent a divalent atom or molecule selected from the group of -O-, -NH-, and -S-. D and E each independently represent a divalent atom or molecule selected from the group of —O—, * —R—NH—, and * —R—S—. However, * shows the coupling | bonding direction with a phenyl group, R is a C1-C3 bivalent hydrocarbon group, such as a single bond or a methylene group, ethylene group, a propylene group (trimethylene group, methylethylene group). Show.
X、Yは各々独立して1価脂肪族炭化水素基、(メタ)アクリル基、CN、OCH3、NO2、F原子、Cl原子、Br原子、又はI原子を示す。1価脂肪族炭化水素基として、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等の直鎖状、分岐状又は環状のアルキル基、ビニル基、アリル基等のアルケニル基などの炭素原子数1〜10、特に1〜6のものが挙げられる。X、Yとしては、Cl、OCH3、アリル基、メタクリル基が好ましい。
またp、qは各々独立して0〜4の整数、好ましくは0又は1である。
X and Y each independently represent a monovalent aliphatic hydrocarbon group, (meth) acryl group, CN, OCH 3 , NO 2 , F atom, Cl atom, Br atom, or I atom. Specific examples of monovalent aliphatic hydrocarbon groups include linear, branched or cyclic alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and cyclohexyl groups, and vinyl groups. And those having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms such as an alkenyl group such as an allyl group. X and Y are preferably Cl, OCH 3 , an allyl group, and a methacryl group.
P and q are each independently an integer of 0 to 4, preferably 0 or 1.
Zはケイ素原子を含む2価の基であれば制限はないが、下記一般式(2)又は下記一般式(3)で示される構造の基であるときに、本発明の効果が顕著に現れる。
上記式(3)中、R5、R6は各々独立して、同一でも異なっていてもよく、直鎖状、分岐状又は環状の炭素原子数1〜10、好ましくは1〜6の1価炭化水素基である。1価炭化水素基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などが挙げられ、これらの中でもメチル基、フェニル基、ビニル基が好ましい。但し、R5、R6は同時にメチル基ではない。
aは0〜300の整数、好ましくは5〜20の整数であり、bは0〜300の整数、好ましくは0〜20の整数である。
In the above formula (3), R 5 and R 6 may each independently be the same or different and are monovalent having 1 to 10 carbon atoms, preferably 1 to 6 linear, branched or cyclic carbon atoms. It is a hydrocarbon group. Specific examples of the monovalent hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, and an octyl group. Cycloalkyl group such as cyclohexyl group, alkenyl group such as vinyl group, allyl group, propenyl group, aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, benzyl group, phenylethyl group, phenylpropyl group, etc. Aralkyl group etc. are mentioned, Among these, a methyl group, a phenyl group, and a vinyl group are preferable. However, R 5 and R 6 are not methyl groups at the same time.
a is an integer of 0 to 300, preferably an integer of 5 to 20, and b is an integer of 0 to 300, preferably an integer of 0 to 20.
式(3)で示される基としては、以下のものが挙げられる。
本発明のメソゲン・ケイ素化合物共重合体は、1,2,4−トリクロロベンゼンを溶出溶媒として高温GPC(ゲルパーミエーションクロマトグラフィー)で測定したポリスチレン換算の重量平均分子量が300〜500,000、好ましくは1,000〜300,000、より好ましくは1,000〜200,000である共重合体である。重量平均分子量が小さすぎると熱伝導率が低下し、大きすぎると溶媒への溶解性又は分散性が悪化する。 The mesogen / silicon compound copolymer of the present invention has a polystyrene-reduced weight average molecular weight of 300 to 500,000, preferably measured by high temperature GPC (gel permeation chromatography) using 1,2,4-trichlorobenzene as an elution solvent. Is a copolymer of 1,000 to 300,000, more preferably 1,000 to 200,000. If the weight average molecular weight is too small, the thermal conductivity decreases, and if it is too large, the solubility or dispersibility in the solvent deteriorates.
上記式(1)で表される繰返し単位を含有するメソゲン・ケイ素化合物共重合体において、各単位はランダムに結合していても、ブロック重合体として結合していてもよい。
このようなメソゲン・ケイ素化合物共重合体としては、以下のものが挙げられる。
In the mesogen / silicon compound copolymer containing the repeating unit represented by the above formula (1), each unit may be bonded at random or may be bonded as a block polymer.
Examples of such mesogen / silicon compound copolymers include the following.
次に、本発明のメソゲン・ケイ素化合物共重合体の製造方法を示すが、この限りでない。 Next, although the manufacturing method of the mesogen silicon compound copolymer of this invention is shown, it is not this limitation.
[製造法1]
本発明のメソゲン・ケイ素化合物共重合体の第1の製造方法を説明する。
本発明のメソゲン・ケイ素化合物共重合体は、下記一般式(4)、下記一般式(5)、下記一般式(6)、下記一般式(7)で表される化合物から選択される化合物を用いて、以下に示す方法により製造することができる。なお、前記式(1)において、m、kのいずれかが0のときは、下記式(6)又は(7)で表わされる化合物を用いることなく製造される。
[Production Method 1]
The first production method of the mesogen / silicon compound copolymer of the present invention will be described.
The mesogen / silicon compound copolymer of the present invention comprises a compound selected from compounds represented by the following general formula (4), the following general formula (5), the following general formula (6), and the following general formula (7). It can be manufactured by the method shown below. In addition, in the said Formula (1), when either m and k are 0, it manufactures without using the compound represented by following formula (6) or (7).
下記一般式(4)及び下記一般式(5)で表される化合物を無水酢酸と反応させ、アセチル化した後に、それらを下記一般式(6)及び/又は下記一般式(7)で表される化合物と共に脱酢酸重縮合反応を行うことで、本発明のメソゲン・ケイ素化合物共重合体を製造することができる。これらの反応は溶媒がない状態で行うことが好ましい。 After the compounds represented by the following general formula (4) and the following general formula (5) are reacted with acetic anhydride and acetylated, they are represented by the following general formula (6) and / or the following general formula (7). The mesogen-silicon compound copolymer of the present invention can be produced by performing a deacetic acid polycondensation reaction with the compound. These reactions are preferably carried out in the absence of a solvent.
このような式(4)で表される化合物の例として、以下のものが挙げられる。
このような式(5)で表される化合物の例として、以下のものが挙げられる。
このような式(6)、(7)で表される化合物として、以下のような構造が挙げられる。
本発明のメソゲン・ケイ素化合物共重合体の製造方法は、式(4)及び(5)で表される化合物を、無水酢酸を用いてそれぞれ個別に、又は一括して酢酸エステルとした後、別の反応槽又は同一の反応槽で、式(6)及び/又は(7)で表される化合物と脱酢酸重縮合反応させる方法が挙げられる。
なお、上記式(6)及び/又は式(7)で表される化合物は、式(4)及び式(5)で表される化合物と無水酢酸とを反応させる前に添加していてもよい。
The method for producing the mesogen / silicon compound copolymer of the present invention is obtained by separately converting the compounds represented by the formulas (4) and (5) into acetic acid esters using acetic anhydride, respectively, or separately. And a method in which a deacetic acid polycondensation reaction is carried out with the compound represented by the formula (6) and / or (7) in the same reaction tank.
In addition, the compound represented by the formula (6) and / or the formula (7) may be added before the compound represented by the formula (4) and the formula (5) is reacted with acetic anhydride. .
上記式(4)及び式(5)で表される化合物を反応させる際に用いる無水酢酸は、上記式(4)及び式(5)で表される化合物中のフェノール性ヒドロキシ基、アニリン性アミノ基、あるいはチオフェノール性チオール基1当量に対し、1当量以上加えることが好ましく、1.05当量以上、更には1.10〜1.50当量加えることがより好ましい。 Acetic anhydride used when the compounds represented by the above formulas (4) and (5) are reacted is a phenolic hydroxy group or an aniline amino group in the compounds represented by the above formulas (4) or (5). It is preferable to add 1 equivalent or more, more preferably 1.05 equivalent or more, and even more preferably 1.10 to 1.50 equivalent to 1 equivalent of the group or thiophenolic thiol group.
上記式(4)及び式(5)で表される化合物と無水酢酸との反応は、通常120〜220℃、更には130〜200℃、特には140〜180℃の温度で、0.5〜15時間、特に1〜5時間行われることが好ましい。反応温度が高すぎると分解や目的としない反応が進行する場合があり、低すぎると反応の進行が遅くなる場合がある。 The reaction between the compounds represented by the above formulas (4) and (5) and acetic anhydride is usually 120 to 220 ° C., more preferably 130 to 200 ° C., particularly 140 to 180 ° C., and 0.5 to It is preferably performed for 15 hours, particularly 1 to 5 hours. If the reaction temperature is too high, decomposition or an unintended reaction may proceed, and if it is too low, the progress of the reaction may be delayed.
脱酢酸重縮合反応は、通常120〜300℃、更には140〜280℃、特には150〜260℃の温度で、30分〜24時間、特に1〜10時間行われることが好ましい。反応の進行具合により、温度を上げ、反応速度を速めることもできる。しかし、反応温度が高すぎる場合は分解等の副反応が起こりやすく、低すぎると反応の進行は遅くなる場合がある。 The deacetic acid polycondensation reaction is preferably carried out at a temperature of usually 120 to 300 ° C., further 140 to 280 ° C., particularly 150 to 260 ° C., for 30 minutes to 24 hours, particularly 1 to 10 hours. Depending on the progress of the reaction, the temperature can be raised and the reaction rate can be increased. However, if the reaction temperature is too high, side reactions such as decomposition tend to occur, and if it is too low, the progress of the reaction may be slow.
[製造法2]
本発明のメソゲン・ケイ素化合物共重合体の第2の製造方法を説明する。
溶媒中、脱塩酸剤存在下にて、前記一般式(4)及び前記一般式(5)で表される化合物と下記一般式(8)及び/又は下記一般式(9)で表される化合物とを反応させることにより、本発明のメソゲン・ケイ素化合物共重合体を製造することもできる。なお、前記式(1)において、m、kのいずれかが0のときは、下記式(8)又は(9)で表わされる化合物を用いることなく製造される。
[Production Method 2]
A second method for producing the mesogen / silicon compound copolymer of the present invention will be described.
The compound represented by the general formula (4) and the general formula (5) and the compound represented by the following general formula (8) and / or the following general formula (9) in the presence of a dehydrochlorinating agent in a solvent. And the mesogen / silicon compound copolymer of the present invention can also be produced. In addition, in the said Formula (1), when either m or k is 0, it manufactures without using the compound represented by following formula (8) or (9).
このような化合物として、以下のような構造が挙げられる。
溶媒は、ヒドロキシ基やカルボキシ基、ハロゲンを持たないものであれば幅広く用いることができ、例えば、具体的に、トルエン、キシレン、ヘキサン、シクロヘキサン、エチルシクロヘキサン、イソドデカン、イソノナン、テトラヒドロフラン、1,4−ジオキサン、シクロペンタノン、酢酸エチル、アセトン等が挙げられる。
溶媒の使用量は、式(4)と式(5)の化合物合計の物質量に対し、0.1〜10モル/L、好ましくは0.1〜3モル/Lとなるように加える。
The solvent can be widely used as long as it does not have a hydroxy group, a carboxy group, or a halogen. For example, specifically, toluene, xylene, hexane, cyclohexane, ethylcyclohexane, isododecane, isononane, tetrahydrofuran, 1,4- Examples include dioxane, cyclopentanone, ethyl acetate, and acetone.
The amount of the solvent used is 0.1 to 10 mol / L, preferably 0.1 to 3 mol / L, based on the total amount of the compounds of formula (4) and formula (5).
脱塩酸剤は幅広く用いることができ、トリメチルアミン、ジエチルアミン、トリエチルアミン、炭酸カリウム、炭酸カルシウム、水酸化ナトリウム、水酸化マグネシウム、水酸化カリウム、水酸化カルシウム等が例示できる。脱塩酸剤は式(8)と(9)の化合物合計の物質量に対し、1.8〜20当量、好ましくは2〜10当量、更に好ましくは2〜6当量になるように添加することが望ましい。 The dehydrochlorinating agent can be widely used, and examples thereof include trimethylamine, diethylamine, triethylamine, potassium carbonate, calcium carbonate, sodium hydroxide, magnesium hydroxide, potassium hydroxide, and calcium hydroxide. The dehydrochlorinating agent may be added in an amount of 1.8 to 20 equivalents, preferably 2 to 10 equivalents, more preferably 2 to 6 equivalents, relative to the total amount of the compounds of formulas (8) and (9). desirable.
反応温度としては、脱塩反応時には通常0〜150℃、更には0〜100℃、特には5〜50℃の温度で、30分〜24時間、特に1〜10時間行われることが好ましく、熟成時には通常20〜150℃、更には20〜120℃、特には60〜80℃の温度で、30分〜24時間、特に1〜10時間行われることが好ましい。 The reaction temperature is preferably 0 to 150 ° C., more preferably 0 to 100 ° C., and particularly preferably 5 to 50 ° C. for 30 minutes to 24 hours, particularly 1 to 10 hours during the desalting reaction. Sometimes, it is usually carried out at a temperature of 20 to 150 ° C., further 20 to 120 ° C., particularly 60 to 80 ° C., for 30 minutes to 24 hours, particularly 1 to 10 hours.
[製造法3]
本発明のメソゲン・ケイ素化合物共重合体の第3の製造方法を説明する。
溶媒中、酸触媒存在下にて、前記一般式(4)及び前記一般式(5)で表される化合物と前記一般式(6)及び/又は前記一般式(7)で表される化合物とを脱水縮合反応させることにより、本発明のメソゲン・ケイ素化合物共重合体を製造することもできる。なお、前記式(1)において、m、kのいずれかが0のときは、下記式(6)又は(7)で表わされる化合物を用いることなく製造される。
[Production Method 3]
A third method for producing the mesogen / silicon compound copolymer of the present invention will be described.
In the presence of an acid catalyst in a solvent, the compound represented by the general formula (4) and the general formula (5) and the compound represented by the general formula (6) and / or the general formula (7) The mesogen / silicon compound copolymer of the present invention can also be produced by subjecting to a dehydration condensation reaction. In addition, in the said Formula (1), when either m and k are 0, it manufactures without using the compound represented by following formula (6) or (7).
溶媒としては、上記製造法2に記載の溶媒を同量程度用いることができる。 As the solvent, the same amount of the solvent described in the above production method 2 can be used.
酸触媒としては、硫酸、塩酸、硝酸、リン酸等が使用できる。
酸触媒の添加量は、溶媒に対し、0.01〜10質量%が好ましく、0.05〜8質量%がより好ましく、0.10〜5質量%が更に好ましく、0.20〜3質量%が特に好ましい。
As the acid catalyst, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid and the like can be used.
The addition amount of the acid catalyst is preferably 0.01 to 10% by mass, more preferably 0.05 to 8% by mass, still more preferably 0.10 to 5% by mass, and 0.20 to 3% by mass with respect to the solvent. Is particularly preferred.
反応温度としては、90〜160℃が好ましく、100〜150℃がより好ましく、120〜140℃が更に好ましい。反応温度が高すぎると分解等の副反応が起こりやすく、低すぎると反応の進行は遅くなる場合がある。また反応時間は0.5〜48時間であり、好ましくは2〜15時間がよい。 As reaction temperature, 90-160 degreeC is preferable, 100-150 degreeC is more preferable, 120-140 degreeC is still more preferable. If the reaction temperature is too high, side reactions such as decomposition tend to occur, and if it is too low, the progress of the reaction may be slow. The reaction time is 0.5 to 48 hours, preferably 2 to 15 hours.
溶媒中、前記一般式(4)及び式(5)で表される化合物、前記一般式(6)及び/又は式(7)で表される化合物、及び酸触媒を加え、90〜160℃にて加熱し、水が理論生成量の9割以上に達するまで反応を行い、反応混合物を水洗後、減圧蒸留を行うことで、本発明のメソゲン・ケイ素化合物共重合体を製造することができる。 In a solvent, the compound represented by the general formula (4) and the formula (5), the compound represented by the general formula (6) and / or the formula (7), and an acid catalyst are added, and the temperature is 90 to 160 ° C. The mesogen / silicon compound copolymer of the present invention can be produced by performing reaction until water reaches 90% or more of the theoretical production amount, washing the reaction mixture with water, and performing distillation under reduced pressure.
なお、上記製造方法1〜3において、上記式(5)で表される化合物の導入量は、上記式(4)及び(5)で表される化合物の合計添加量の内、10〜50mol%であることが好ましく、より好ましくは20〜35mol%である。式(5)で表される化合物の導入量が少ないと、熱伝導性が低下する場合があり、式(5)で表される化合物の導入量が多いと溶媒への分散性又は溶解性が低下する場合がある。 In addition, in the said manufacturing methods 1-3, the introduction amount of the compound represented by the said Formula (5) is 10-50 mol% among the total addition amount of the compound represented by the said Formula (4) and (5). It is preferable that it is, More preferably, it is 20-35 mol%. When the introduction amount of the compound represented by the formula (5) is small, the thermal conductivity may be lowered. When the introduction amount of the compound represented by the formula (5) is large, the dispersibility or solubility in the solvent is increased. May decrease.
また、上記式(6)及び/又は式(7)で表される化合物、又は上記式(8)及び/又は式(9)で表される化合物の導入量は、上記式(6)及び/又は式(7)、又は上記式(8)及び/又は式(9)で表される化合物が有するカルボキシ基のモル数の合計に対して、上記式(4)及び式(5)で表される化合物が有する反応性官能基のモル数の合計割合が0.67〜1.67、好ましくは0.83〜1.25となるように配合するのがよい。式(6)及び/又は式(7)で表される化合物、又は式(8)及び/又は式(9)で表される化合物の導入量が多い場合や少なすぎる場合には分子量が大きくならない傾向にある。 The amount of the compound represented by the above formula (6) and / or the formula (7) or the compound represented by the above formula (8) and / or the formula (9) may be introduced by the above formula (6) and / or Or it is represented by the said Formula (4) and Formula (5) with respect to the total number of moles of the carboxy group which the compound represented by Formula (7) or the said Formula (8) and / or Formula (9) has. The total number of moles of reactive functional groups possessed by the compound is 0.67 to 1.67, preferably 0.83 to 1.25. When the amount of the compound represented by formula (6) and / or formula (7), or the compound represented by formula (8) and / or formula (9) is large or too small, the molecular weight does not increase. There is a tendency.
本発明のメソゲン・ケイ素化合物共重合体の製造方法は、上記の方法に制限されるものではなく、公知の方法が使用できる。 The production method of the mesogen / silicon compound copolymer of the present invention is not limited to the above method, and a known method can be used.
一般的に、メソゲンを多く保有する樹脂は、特にランダム構造をとることで、メソゲンのスタッキングにより溶媒に難溶性を示す。しかしながら、本発明のメソゲン・ケイ素化合物共重合体は、汎用されている溶媒への分散性が顕著に優れている。具体的に、用いることができる溶媒としては、トルエン、ベンゼン、キシレン、スチレン、フェノール、クロロホルム、四塩化炭素、ヘキサン、シクロヘキサン、エチルシクロヘキサン、イソドデカン、イソノナン、テトラヒドロフラン、1,4−ジオキサン、シクロペンタノン、ジエチルアミン、トリエチルアミン、酢酸エチル、アセトン等が例示できる。 In general, a resin having a large amount of mesogen exhibits a poor solubility in a solvent due to mesogen stacking, particularly by taking a random structure. However, the mesogen / silicon compound copolymer of the present invention is remarkably excellent in dispersibility in commonly used solvents. Specific examples of solvents that can be used include toluene, benzene, xylene, styrene, phenol, chloroform, carbon tetrachloride, hexane, cyclohexane, ethylcyclohexane, isododecane, isononane, tetrahydrofuran, 1,4-dioxane, and cyclopentanone. , Diethylamine, triethylamine, ethyl acetate, acetone and the like.
本発明のメソゲン・ケイ素化合物共重合体は、例えば、放熱材料、又は半導体装置及び電子部品のための樹脂材料として好適に用いることができる。樹脂材料としての使用態様は、例えば、半導体装置の製造に使用される封止剤あるいは接着剤;ダイオード、トランジスタ、IC、及びLSI等の電子部品表面の保護膜材料、例えば、半導体素子表面のジャンクションコート膜、パッシベーション膜及びバッファーコート膜;LSI等のα線遮蔽膜;多層配線の層間絶縁膜;プリントサーキットボードのコンフォーマルコート;イオン注入マスク;太陽電池の表面保護膜などが挙げられる。 The mesogen / silicon compound copolymer of the present invention can be suitably used as, for example, a heat dissipation material or a resin material for semiconductor devices and electronic components. Examples of the usage as a resin material include: a sealant or an adhesive used in the manufacture of a semiconductor device; a protective film material on the surface of an electronic component such as a diode, transistor, IC, and LSI; Coating film, passivation film and buffer coating film; α-ray shielding film such as LSI; Interlayer insulating film of multilayer wiring; Conformal coating of printed circuit board; Ion implantation mask;
以下、実施例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、下記例中、Meはメチル基、Phはフェニル基を示す。 EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following examples, Me represents a methyl group and Ph represents a phenyl group.
実施例において使用した化合物を以下に示す。
[実施例1]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した500mLフラスコ内に、上記式(S−1)で示される化合物60.00g(0.322モル)、上記式(S−2)で示される化合物21.30g(0.046モル)、上記式(S−3)で示される化合物85.66g(0.372モル)、及び無水酢酸82.71g(0.810モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(1)とした。この樹脂を高温GPC TSKgel GMHHR−H(20)HT(東ソー社製 7.8mmI.D.×30cm)を用い、流量0.3ミリリットル/分、溶離液1,2,4−トリクロロベンゼン、カラム温度140℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(1)の重量平均分子量は1,800であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。1H−NMRスペクトルを図1に示す。
In a 500 mL flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 60.00 g (0.322 mol) of the compound represented by the above formula (S-1) and the above formula ( 21.30 g (0.046 mol) of the compound represented by S-2), 85.66 g (0.372 mol) of the compound represented by the above formula (S-3), and 82.71 g (0.810 mol) of acetic anhydride. Then, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was designated as resin (1). This resin was subjected to high temperature GPC TSKgel GMH HR- H (20) HT (7.8 mm ID x 30 cm, manufactured by Tosoh Corporation), flow rate 0.3 ml / min, eluent 1,2,4-trichlorobenzene, column The weight average molecular weight of the resin (1) was 1,800 as measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions at a temperature of 140 ° C. This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula. The 1 H-NMR spectrum is shown in FIG.
[実施例2]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した500mLフラスコ内に、上記式(S−4)で示される化合物33.16g(0.180モル)、上記式(S−5)で示される化合物118.13g(0.220モル)、上記式(S−6)で示される化合物21.10g(0.182モル)、上記式(S−7)で示される化合物29.36g(0.222モル)、及び無水酢酸89.84g(0.880モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(2)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(2)の重量平均分子量は3,400であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 500 mL flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 33.16 g (0.180 mol) of the compound represented by the above formula (S-4) and the above formula ( 118.13 g (0.220 mol) of the compound represented by S-5), 21.10 g (0.182 mol) of the compound represented by the above formula (S-6), and a compound represented by the above formula (S-7). After adding 29.36 g (0.222 mol) and acetic anhydride 89.84 g (0.880 mol), the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was named Resin (2). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (2) was 3,400 as measured by chromatography (GPC). This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[実施例3]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した500mLフラスコ内に、上記式(S−1)で示される化合物22.11g(0.120モル)、上記式(S−3)で示される化合物216.93g(0.404モル)、上記式(S−8)で示される化合物32.50g(0.280モル)、及び無水酢酸89.84g(0.880モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(3)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(3)の重量平均分子量は3,690であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 500 mL flask equipped with a stirrer, thermometer, nitrogen displacement device, Dean-Stark device and reflux condenser, 22.11 g (0.120 mol) of the compound represented by the above formula (S-1), 216.93 g (0.404 mol) of the compound represented by S-3), 32.50 g (0.280 mol) of the compound represented by the above formula (S-8), and 89.84 g (0.880 mol) of acetic anhydride. Then, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was designated as resin (3). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (3) was 3,690 as measured by chromatography (GPC). This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[実施例4]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器、具備した2Lフラスコ内に、上記式(S−2)で示される化合物578.46g(1.25モル)、上記式(S−9)で示される化合物230.30g(1.25モル)、上記式(S−6)で示される化合物290.18g(2.50モル)、及び無水酢酸561.50g(5.50モル)を加えた後、窒素ガス雰囲気で150℃に加温し、3時間撹拌を行った。その後、260℃まで加温し、更に6時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、260℃のまま減圧し、溶融重合を5時間行った。その結果、得られた樹脂を樹脂(4)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(4)の重量平均分子量は22,720であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 2 L flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 578.46 g (1.25 mol) of the compound represented by the above formula (S-2), 230.30 g (1.25 mol) of the compound represented by S-9), 290.18 g (2.50 mol) of the compound represented by the above formula (S-6), and 561.50 g (5.50 mol) of acetic anhydride. Then, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 3 hours. Thereafter, the mixture was heated to 260 ° C., and further stirred for 6 hours to distill off about 90% of the theoretical acetic acid production amount, and then the pressure was reduced at 260 ° C., and melt polymerization was carried out for 5 hours. As a result, the obtained resin was designated as resin (4). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (4) was 22,720 as measured by chromatography (GPC). This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[実施例5]
撹拌機、温度計、窒素置換装置、及び還流冷却器を具備した2Lフラスコ内に、上記式(S−9)で示される化合物76.42g(0.350モル)、上記式(S−10)で示される化合物180.64g(0.150モル)、トリエチルアミン200g(1.98モル)、及びトルエン1,000gを加えた後、窒素ガス雰囲気下、溶液を5〜15℃に保ちつつ、上記式(S−11)で示される化合物71.46g(0.352モル)及び上記式(S−12)で示される化合物32.09g(0.152モル)を均一に混ぜ合わせた溶液を系中に滴下した。滴下後、3時間撹拌を行い、その後、60℃まで加熱し、更に2時間撹拌した。反応混合液を濾過後、水洗し、減圧により未反応物や副生成物を除去することで本発明の樹脂を得た。得られた樹脂は下記式に示したもので、これを樹脂(5)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(5)の重量平均分子量は3,200であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 2 L flask equipped with a stirrer, a thermometer, a nitrogen substitution device, and a reflux condenser, the compound represented by the above formula (S-9) 76.42 g (0.350 mol), the above formula (S-10). After adding 180.64 g (0.150 mol) of the compound represented by the formula, 200 g (1.98 mol) of triethylamine, and 1,000 g of toluene, the above formula was maintained while maintaining the solution at 5 to 15 ° C. in a nitrogen gas atmosphere. A solution in which 71.46 g (0.352 mol) of the compound represented by (S-11) and 32.09 g (0.152 mol) of the compound represented by the above formula (S-12) were uniformly mixed was added to the system. It was dripped. After dropping, the mixture was stirred for 3 hours, then heated to 60 ° C. and further stirred for 2 hours. The reaction mixture was filtered, washed with water, and unreacted products and by-products were removed under reduced pressure to obtain the resin of the present invention. The obtained resin was shown in the following formula, and this was designated as resin (5). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (5) was 3,200 as measured by chromatography (GPC). This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[実施例6]
撹拌機、温度計、窒素置換装置、及び還流冷却器を具備した2Lフラスコ内に、上記式(S−1)で示される化合物62.85g(0.338モル)、上記式(S−13)で示される化合物61.08g(0.113モル)、トリエチルアミン200g(1.98モル)、及びトルエン1,000gを加えた後、窒素ガス雰囲気下、溶液を5〜15℃に保ちつつ、上記式(S−14)で示される化合物101.00g(0.378モル)及び上記式(S−15)で示される化合物14.45g(0.095モル)を均一に混ぜ合わせた溶液を系中に滴下した。滴下後、3時間撹拌を行い、その後、60℃まで加熱し、更に2時間撹拌した。反応混合液を濾過後、水洗し、減圧により未反応物や副生成物を除去することで本発明の樹脂を得た。得られた樹脂は下記式に示したもので、これを樹脂(6)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(6)の重量平均分子量は2,420であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 2 L flask equipped with a stirrer, a thermometer, a nitrogen displacement device, and a reflux condenser, 62.85 g (0.338 mol) of the compound represented by the above formula (S-1), and the above formula (S-13). After adding 61.08 g (0.113 mol) of the compound represented by the formula, 200 g (1.98 mol) of triethylamine, and 1,000 g of toluene, the above formula was maintained while maintaining the solution at 5 to 15 ° C. in a nitrogen gas atmosphere. A solution in which 101.00 g (0.378 mol) of the compound represented by (S-14) and 14.45 g (0.095 mol) of the compound represented by the above formula (S-15) were uniformly mixed was added to the system. It was dripped. After dropping, the mixture was stirred for 3 hours, then heated to 60 ° C. and further stirred for 2 hours. The reaction mixture was filtered, washed with water, and unreacted products and by-products were removed under reduced pressure to obtain the resin of the present invention. The obtained resin was shown in the following formula, and this was designated as resin (6). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (6) was 2,420 as measured by chromatography (GPC). This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[実施例7]
撹拌機、温度計、窒素置換装置、及び還流冷却器を具備した2Lフラスコ内に、上記式(S−4)で示される化合物138.18g(0.75モル)、上記式(S−8)で示される化合物710.68g(0.75モル)、トリエチルアミン516.07g(5.10モル)、及びトルエン1,000gを加えた後、窒素ガス雰囲気下、溶液を5〜15℃に保ちつつ、上記式(S−15)で示される化合物229.44g(1.50モル)を均一に混ぜ合わせた溶液を系中に滴下した。滴下後、3時間撹拌を行い、その後、80℃まで加熱し、更に5時間撹拌した。反応混合液を濾過後、水洗し、減圧により未反応物や副生成物を除去することで本発明の樹脂を得た。得られた樹脂は下記式に示したもので、これを樹脂(7)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(7)の重量平均分子量は20,120であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 2 L flask equipped with a stirrer, a thermometer, a nitrogen substitution device, and a reflux condenser, 138.18 g (0.75 mol) of the compound represented by the above formula (S-4), and the above formula (S-8). After adding 710.68 g (0.75 mol) of a compound represented by the formula, 516.07 g (5.10 mol) of triethylamine and 1,000 g of toluene, the solution was kept at 5 to 15 ° C. under a nitrogen gas atmosphere. A solution in which 229.44 g (1.50 mol) of the compound represented by the above formula (S-15) was uniformly mixed was dropped into the system. After dropping, the mixture was stirred for 3 hours, then heated to 80 ° C. and further stirred for 5 hours. The reaction mixture was filtered, washed with water, and unreacted products and by-products were removed under reduced pressure to obtain the resin of the present invention. The obtained resin was shown in the following formula, and this was designated as resin (7). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (7) was 20,120 as measured by chromatography (GPC). This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[実施例8]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した2Lフラスコ内に、上記式(S−4)で示される化合物73.70g(0.400モル)、上記式(S−16)で示される化合物45.68g(0.100モル)、上記式(S−17)で示される化合物87.44g(0.502モル)、トルエン1,000g、及び濃硫酸10gを加えた後、窒素ガス雰囲気で120℃に加温し、5時間撹拌を行った。理論生成量の9割以上の水の留出を確認後、反応混合物を水洗し、低沸点化合物を減圧留去することで、本発明の樹脂を得た。構造は下記式に示したもので、これを樹脂(8)とした。この樹脂をGPCカラム TSKgel Super HZM−H(東ソー社製)を用い、流量0.6ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(8)の重量平均分子量は2,000であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 2 L flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 73.70 g (0.400 mol) of the compound represented by the above formula (S-4), 45.68 g (0.100 mol) of the compound represented by S-16), 87.44 g (0.502 mol) of the compound represented by the above formula (S-17), 1,000 g of toluene, and 10 g of concentrated sulfuric acid were added. Then, it heated at 120 degreeC by nitrogen gas atmosphere, and stirred for 5 hours. After confirming distillation of 90% or more of the theoretical production amount, the reaction mixture was washed with water, and the low boiling point compound was distilled off under reduced pressure to obtain the resin of the present invention. The structure is shown in the following formula, and this is resin (8). Gel permeation chromatography using GPC column TSKgel Super HZM-H (manufactured by Tosoh Corporation) as a standard and monodisperse polystyrene as a standard under analysis conditions of flow rate 0.6 ml / min, elution solvent tetrahydrofuran, column temperature 40 ° C. The weight average molecular weight of the resin (8) was 2,000 as measured by chromatography (GPC). This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[実施例9]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した2Lフラスコ内に、上記式(S−1)で示される化合物48.88g(0.263モル)、上記式(S−13)で示される化合物47.50g(0.088モル)、上記式(S−17)で示される化合物30.79g(0.177モル)、上記式(S−18)で示される化合物29.36g(0.177モル)、トルエン1,000g、及び濃硫酸10gを加えた後、窒素ガス雰囲気で120℃に加温し、5時間撹拌を行った。理論生成量の9割以上の水の留出を確認後、反応混合物を水洗し、低沸点化合物を減圧留去することで、本発明の樹脂を得た。構造は下記式に示したもので、これを樹脂(9)とした。この樹脂を高温GPC TSKgel GMHHR−H(20)HT(東ソー社製 7.8mmI.D.×30cm)を用い、流量0.3ミリリットル/分、溶離液1,2,4−トリクロロベンゼン、カラム温度140℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(9)の重量平均分子量は3,550であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 2 L flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device and a reflux condenser, 48.88 g (0.263 mol) of the compound represented by the above formula (S-1), 47.50 g (0.088 mol) of a compound represented by S-13), 30.79 g (0.177 mol) of a compound represented by the above formula (S-17), and a compound represented by the above formula (S-18). After 29.36 g (0.177 mol), 1,000 g of toluene, and 10 g of concentrated sulfuric acid were added, the mixture was heated to 120 ° C. in a nitrogen gas atmosphere and stirred for 5 hours. After confirming distillation of 90% or more of the theoretical production amount, the reaction mixture was washed with water, and the low boiling point compound was distilled off under reduced pressure to obtain the resin of the present invention. The structure is shown in the following formula, and this is resin (9). This resin was subjected to high temperature GPC TSKgel GMH HR- H (20) HT (7.8 mm ID x 30 cm, manufactured by Tosoh Corporation), flow rate 0.3 ml / min, eluent 1,2,4-trichlorobenzene, column The weight average molecular weight of the resin (9) was 3,550 as measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions at a temperature of 140 ° C. This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[実施例10]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器を具備した2Lフラスコ内に、上記式(S−2)で示される化合物404.92g(0.88モル)、上記式(S−9)で示される化合物161.21g(0.88モル)、上記式(S−7)で示される化合物231.21g(1.75モル)、トルエン1,000g、及び濃硝酸25gを加えた後、窒素ガス雰囲気で150℃に加温し、10時間撹拌を行った。理論生成量の9割以上の水の留出を確認後、反応混合物を水洗し、低沸点化合物を減圧留去することで、本発明の樹脂を得た。構造は下記式に示したもので、これを樹脂(10)とした。この樹脂を高温GPC TSKgel GMHHR−H(20)HT(東ソー社製 7.8mmI.D.×30cm)を用い、流量0.3ミリリットル/分、溶離液1,2,4−トリクロロベンゼン、カラム温度140℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(10)の重量平均分子量は16,110であった。このものを1H−核磁気共鳴分析(1H−NMR分析)、赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 2 L flask equipped with a stirrer, thermometer, nitrogen displacement apparatus, Dean-Stark apparatus and reflux condenser, 404.92 g (0.88 mol) of the compound represented by the above formula (S-2), 161.21 g (0.88 mol) of the compound represented by S-9), 231.21 g (1.75 mol) of the compound represented by the above formula (S-7), 1,000 g of toluene, and 25 g of concentrated nitric acid were added. Then, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 10 hours. After confirming distillation of 90% or more of the theoretical production amount, the reaction mixture was washed with water, and the low boiling point compound was distilled off under reduced pressure to obtain the resin of the present invention. The structure is shown in the following formula, and this is resin (10). This resin was subjected to high temperature GPC TSKgel GMH HR- H (20) HT (7.8 mm ID x 30 cm, manufactured by Tosoh Corporation), flow rate 0.3 ml / min, eluent 1,2,4-trichlorobenzene, column The weight average molecular weight of the resin (10) was 16,110 as measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions at a temperature of 140 ° C. This was subjected to 1 H-nuclear magnetic resonance analysis ( 1 H-NMR analysis) and infrared absorption spectrum analysis (IR analysis). As a result, it was found to be a compound represented by the following average structural formula.
[比較例1]
撹拌機、温度計、窒素置換装置、ディーン・スターク装置及び還流冷却器、具備した1Lフラスコ内に、上記式(S−1)で示される化合物186.21g(1.00モル)、上記式(S−3)で示される化合物232.60g(1.01モル)、及び無水酢酸224.60g(2.20モル)を加えた後、窒素ガス雰囲気で150℃に加温し、1時間撹拌を行った。その後、240℃まで加温し、更に2時間撹拌を行って、理論酢酸生成量の9割程度の酢酸を留出させた後、240℃のまま減圧し、溶融重合を1.5時間行った。その結果、得られた樹脂を樹脂(11)とした。この樹脂を高温GPC TSKgel GMHHR−H(20)HT(東ソー社製 7.8mmI.D.×30cm)を用い、流量0.3ミリリットル/分、溶離液1,2,4−トリクロロベンゼン、カラム温度140℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、樹脂(11)の重量平均分子量は3,740であった。このものに赤外吸収スペクトル分析(IR分析)を行った結果、下記平均構造式で示される化合物であることがわかった。
In a 1 L flask equipped with a stirrer, a thermometer, a nitrogen displacement device, a Dean-Stark device, and a reflux condenser, 186.21 g (1.00 mol) of the compound represented by the above formula (S-1), After adding 232.60 g (1.01 mol) of the compound represented by S-3) and 224.60 g (2.20 mol) of acetic anhydride, the mixture was heated to 150 ° C. in a nitrogen gas atmosphere and stirred for 1 hour. went. Thereafter, the mixture was heated to 240 ° C., and further stirred for 2 hours to distill off about 90% of the theoretical acetic acid production amount, and then reduced in pressure at 240 ° C., and melt polymerization was carried out for 1.5 hours. . As a result, the obtained resin was designated as a resin (11). This resin was subjected to high temperature GPC TSKgel GMH HR- H (20) HT (7.8 mm ID x 30 cm, manufactured by Tosoh Corporation), flow rate 0.3 ml / min, eluent 1,2,4-trichlorobenzene, column The weight average molecular weight of the resin (11) was 3,740 as measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions at a temperature of 140 ° C. As a result of performing infrared absorption spectrum analysis (IR analysis) on this product, it was found to be a compound represented by the following average structural formula.
[溶解性試験]
上記実施例1〜10及び比較例1で得られた樹脂(1)〜(11)を各々細かく砕き、それらを表1及び表2に示す各溶媒100質量部に50質量部加え、撹拌装置(株式会社シンキー製 自転公転方式スーパーミキサー ARE−250)により、2,000rpmで20分間、室温(23℃)にて撹拌を行い、その溶解性を目視により調べた。結果を表1及び表2に示す。
[Solubility test]
Each of the resins (1) to (11) obtained in Examples 1 to 10 and Comparative Example 1 was finely crushed, and 50 parts by mass were added to 100 parts by mass of each solvent shown in Tables 1 and 2, and a stirrer ( The mixture was stirred at 2,000 rpm for 20 minutes at room temperature (23 ° C.) with a rotation / revolution supermixer (ARE-250) manufactured by Shinky Co., Ltd., and the solubility was visually examined. The results are shown in Tables 1 and 2.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014000119A JP6107670B2 (en) | 2014-01-06 | 2014-01-06 | Novel mesogen / silicon compound copolymer and method for producing the copolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014000119A JP6107670B2 (en) | 2014-01-06 | 2014-01-06 | Novel mesogen / silicon compound copolymer and method for producing the copolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015129204A JP2015129204A (en) | 2015-07-16 |
JP6107670B2 true JP6107670B2 (en) | 2017-04-05 |
Family
ID=53760194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014000119A Active JP6107670B2 (en) | 2014-01-06 | 2014-01-06 | Novel mesogen / silicon compound copolymer and method for producing the copolymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6107670B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019025398A1 (en) * | 2017-08-02 | 2019-02-07 | Merck Patent Gmbh | Liquid-crystal medium |
CN108034044B (en) * | 2017-12-29 | 2020-09-18 | 珠海长先新材料科技股份有限公司 | Water-based resin for shell paint and preparation method thereof |
WO2020254930A1 (en) * | 2019-06-17 | 2020-12-24 | 3M Innovative Properties Company | Organosilane, ionic organosilane, membrane composition, and membrane |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3397585B2 (en) * | 1996-07-01 | 2003-04-14 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus |
JP4339432B2 (en) * | 1998-11-26 | 2009-10-07 | ユニチカ株式会社 | Film forming resin |
JP5283442B2 (en) * | 2007-09-13 | 2013-09-04 | ユニチカ株式会社 | Organosiloxane copolymerized polyesteramide resin |
-
2014
- 2014-01-06 JP JP2014000119A patent/JP6107670B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015129204A (en) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754731B2 (en) | Epoxy resin, method for producing epoxy resin, and use thereof | |
JP5369629B2 (en) | Crosslinkable silicon compound, method for producing the same, crosslinkable composition, siloxane polymer, silicone film, silicon compound as a raw material for the crosslinkable silicon compound, and method for producing the same | |
US8026332B2 (en) | Sealing material for optical element and sealed optical element | |
JP6098531B2 (en) | Resin composition, resin film, semiconductor device and manufacturing method thereof | |
TW200418905A (en) | Silicon compound containing epoxy group and thermosetting resin composition | |
KR102590185B1 (en) | Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device | |
JP6265105B2 (en) | Silicone resin, resin composition, resin film, semiconductor device and manufacturing method thereof | |
JP2011190413A (en) | Siloxane polymer crosslinking-cured product | |
JP5673496B2 (en) | Resin composition, resin film, semiconductor device and manufacturing method thereof | |
JP2016156002A (en) | Curable resin composition and sealing material made using the same | |
JP6107670B2 (en) | Novel mesogen / silicon compound copolymer and method for producing the copolymer | |
JP2015155541A (en) | Siloxane polymer crosslinked cured product | |
US10040907B2 (en) | Method for producing siloxane resin | |
JP6164123B2 (en) | Curable composition, mesogenic group-containing cured product and method for producing the same | |
KR20170134509A (en) | High-RI Siloxane Monomers, Their Polymerization and Uses | |
JP2021178888A (en) | Polyorganosilsesquioxane, curable composition comprising the same, and cured product of curable composition | |
KR102590184B1 (en) | Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing semiconductor device | |
JP6065858B2 (en) | Resin composition, mesogenic group-containing cured product and method for producing the same | |
JP2012046465A (en) | Phenolic resin, epoxy resin, method for producing them, epoxy resin composition, and cured product | |
JP5268404B2 (en) | Phenol polymer, its production method and its use | |
JP2007231041A (en) | Curable resin composition | |
JP6107671B2 (en) | Novel mesogen / silicon compound copolymer and method for producing the copolymer | |
TW200916507A (en) | New silicone compound, and raw material thereof and method for producing the silicone compound | |
JP7104899B2 (en) | Active ester compound and curable composition | |
JP2005002321A (en) | Epoxy resin composition for sealing optical semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6107670 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |