JP6028982B2 - Manufacturing method of solar cell - Google Patents
Manufacturing method of solar cell Download PDFInfo
- Publication number
- JP6028982B2 JP6028982B2 JP2013529964A JP2013529964A JP6028982B2 JP 6028982 B2 JP6028982 B2 JP 6028982B2 JP 2013529964 A JP2013529964 A JP 2013529964A JP 2013529964 A JP2013529964 A JP 2013529964A JP 6028982 B2 JP6028982 B2 JP 6028982B2
- Authority
- JP
- Japan
- Prior art keywords
- type
- electrode
- solar cell
- thin wire
- base electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims description 38
- 238000007747 plating Methods 0.000 claims description 31
- 239000004065 semiconductor Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 8
- 230000005684 electric field Effects 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 239000010949 copper Substances 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000002585 base Substances 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022433—Particular geometry of the grid contacts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、太陽電池に係り、特に、受光面と反対の裏面側に正負の電極が配置される裏面接合型太陽電池に好適な技術に関するものである。 The present invention relates to a solar cell, and more particularly to a technique suitable for a back junction solar cell in which positive and negative electrodes are arranged on the back side opposite to a light receiving surface.
シリコン基板の受光面には電極を形成せずに、基板の裏面のみに異なる導電型の電極を形成するいわゆる裏面接合型太陽電池が開発されている。裏面接合型太陽電池としては、太陽電池の受光面側に電極を形成せずに、基板の裏面にp型領域、n型領域を形成し、正負両キャリアの取り出しを櫛型に形成した取り出し電極から取り出すものが提案されている(例えば、特許文献1参照)。 A so-called back junction solar cell has been developed in which an electrode of a different conductivity type is formed only on the back surface of the substrate without forming an electrode on the light receiving surface of the silicon substrate. As a back junction solar cell, an extraction electrode in which a p-type region and an n-type region are formed on the back surface of the substrate without forming an electrode on the light-receiving surface side of the solar cell, and both positive and negative carriers are extracted in a comb shape. What is taken out from the above has been proposed (see, for example, Patent Document 1).
図9に従い従来の裏面接合型太陽電池について説明する。裏面接合型太陽電池100は、n型のシリコンからなる基板111の受光面側とは反対側の裏面に、n型電極116、p型電極117が形成される。n型電極116は、n型細線電極116fとn型バスバー電極116bとで構成され、p型電極117は、p型細線電極117fとp型バスバー電極117bとで構成される。
A conventional back junction solar cell will be described with reference to FIG. In the back junction
太陽電池の出力を向上させる観点から、p型電極117とn型電極116とが基板111の略全体を覆うように形成されている。そして、基板111の裏面上における一方の端部に、n型細線電極116fと交差する方向に延在するn型バスバー電極116bが形成され、n型細線電極116fとn型バスバー電極116bでn型電極116が構成される。また、シリコン基板101の裏面上における他方の端部に、p型細線電極117fと交差する方向に延在するp型バスバー電極117bが形成され、p型細線電極117fとp型バスバー電極117bでp型電極117が構成される。
From the viewpoint of improving the output of the solar cell, the p-
そして、n型電極116、及びp型電極117と接する基板11には、それぞれの領域に対応するように形成されたn型領域、p型領域が設けられる。
The
この裏面接合型太陽電池の受光面に太陽光が入射すると、基板111の受光面近傍で生じたキャリアが裏面に形成されたpn接合まで到達し、n型細線電極116fおよびp型細線電極117fに電流として収集される。収集された電流は、バスバー電極116b、117bを介して外部に出力される。
When sunlight is incident on the light receiving surface of the back junction solar cell, carriers generated in the vicinity of the light receiving surface of the
ところで、裏面接合型太陽電池においては、太陽電池の出力を外部に無駄なく取り出すことができるように、メッキにより下地電極上に銅などを成長させ、低抵抗の電極を形成していた。しかし、メッキで電極を形成する場合、電極の先端に電流が集中し、端部分にメッキが厚く形成され、電極の膜厚にばらつきが発生する問題が生じる恐れがあった。 By the way, in the back junction solar cell, copper or the like is grown on the base electrode by plating to form a low resistance electrode so that the output of the solar cell can be taken out without waste. However, when an electrode is formed by plating, current concentrates at the tip of the electrode, and the plating is formed thick at the end portion, which may cause a problem in that the film thickness of the electrode varies.
本発明は、電極の膜厚のばらつきが少ない太陽電池の提供することを課題とする。 An object of the present invention is to provide a solar cell with little variation in electrode film thickness.
本発明の太陽電池は、半導体基板に、受光面と、前記受光面の反対側に設けられた裏面とを有する太陽電池であって、前記基板の一主面上に形成された電極部を備え、前記電極部は、前記一主面上に形成された複数の第1細線電極と、前記第1細線電極に隣接して形成された複数の第2細線電極と、前記複数の第1細線電極を互い接続する第1バスバー電極と、前記複数の第2細線電極を互い接続する第2バスバー電極と、を有し、前記第1細線電極及び第2細線電極のそれぞれの電極端部は、二辺が交差する部分が円弧状に形成されている。 The solar cell of the present invention is a solar cell having a light receiving surface and a back surface provided on the opposite side of the light receiving surface on a semiconductor substrate, and includes an electrode portion formed on one main surface of the substrate. The electrode section includes a plurality of first thin wire electrodes formed on the one main surface, a plurality of second thin wire electrodes formed adjacent to the first thin wire electrode, and the plurality of first thin wire electrodes. Are connected to each other, and a plurality of second bus bar electrodes are connected to each other, and each end of each of the first thin wire electrode and the second thin wire electrode has two A portion where the sides intersect is formed in an arc shape.
本発明の太陽電池モジュールは、電気的に接続されている複数の太陽電池を含む太陽電池モジュールであって、前記太陽電池は、半導体基板に、太陽光を受光する受光面と、前記受光面の反対側に設けられた裏面とを有し、前記基板の一主面上に形成された電極部を備え、前記電極部は、前記一主面上に形成された複数の第1細線電極と、前記第1細線電極に隣接して形成された複数の第2細線電極と、前記複数の第1細線電極を互い接続する第1バスバー電極と、前記複数の第2細線電極を互い接続する第2バスバー電極と、を有し、前記第1細線電極及び第2細線電極のそれぞれの電極端部は、二辺が交差する部分が円弧状に形成されている。 The solar cell module of the present invention is a solar cell module including a plurality of electrically connected solar cells, and the solar cell includes a light receiving surface that receives sunlight on a semiconductor substrate, and a light receiving surface. An electrode portion formed on one main surface of the substrate, and the electrode portion includes a plurality of first fine wire electrodes formed on the one main surface; A plurality of second thin wire electrodes formed adjacent to the first thin wire electrodes, a first bus bar electrode that connects the plurality of first thin wire electrodes to each other, and a second that connects the plurality of second thin wire electrodes to each other A bus bar electrode, and each electrode end of the first thin wire electrode and the second thin wire electrode is formed in a circular arc shape at a portion where two sides intersect.
本発明の太陽電池は、第1電極、第2電極の端部近傍の膜厚のばらつきが少ない太陽電池を提供することができる。 The solar cell of the present invention can provide a solar cell with little variation in film thickness in the vicinity of the end portions of the first electrode and the second electrode.
本発明の実施形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated in order to avoid duplication of description.
尚、本願明細書において、「受光面」とは、太陽電池または太陽電池モジュールにおいて、光が主として入射する表面を意味し、「裏面」とは、受光面と反対側の表面を意味する。 In the present specification, “light-receiving surface” means a surface on which light is mainly incident in a solar cell or a solar cell module, and “back surface” means a surface opposite to the light-receiving surface.
本実施形態では、図1及び図2に示すように、基板11として、単結晶シリコンウェハーを用い、その基板11の上にアモルファスシリコン層を積層して形成した太陽電池10とした。より具体的には、太陽電池10は、基板11となるn型の単結晶シリコンウェハーの受光面上に、実質的に真性な非晶質半導体19、n型非晶質シリコン20、窒化シリコンなどの保護膜21が順次積層された構成を有する。また、基板11の裏面においては、n型電極16に対応するn領域12では、基板11上に、実質的に真性な非晶質半導体層121、n型非晶質半導体層122、窒化シリコン層123、n型電極16が順次積層され、窒化シリコン層123を貫通する穴を介して、n型非晶質半導体層122とn型電極16とが接続された構造を有する。また、p型電極17に対応するp領域13では、基板11上に、実質的に真性な非晶質半導体層131、p型非晶質半導体層132、p型電極17が順次積層された構造を有する。In this embodiment, as shown in FIGS. 1 and 2, the
また、n領域12のn型電極16は、n型細線電極16fとn型バスバー電極16bとで構成され、p領域13のp型電極17は、p型細線電極17fとp型バスバー電極17bとで構成される。
The n-
太陽電池の出力を向上させる観点から、n型電極16とp型電極17とが基板11の裏面全体を略覆うように、互いに所定の間隔を隔てて櫛型形状に形成される。これにより、多くの領域で光電変換により生じた電流を、n型電極16とp型電極17との間で略一定の電界を発生させることで効率良く収集することができる。
From the viewpoint of improving the output of the solar cell, the n-
n型バスバー電極16bは、シリコン基板11の裏面上における一方の端部に、n型細線電極16fと交差する方向に延在して形成され、n型細線電極16fと接続されている。p型バスバー電極17bは、シリコン基板11の裏面上における他方の端部にp型細線電極17fと交差する方向で延在して形成され、p型細線電極17fと接続されている。
The n-type
これら電極16f、16b、17f、17bは、太陽電池に発生する電流を外部に十分に取り出すことができるように、メッキにより銅などの金属を下地電極上に成長させ、低抵抗の電極が形成される。
These
本実施形態では、スパッタなどにより形成した下地電極16a、17a上にメッキにより銅層(メッキ層)16m、17mを成長させたものを用いる。下地電極16a、17aは、銅により構成される。
In this embodiment, copper layers (plated layers) 16m and 17m are grown on the
そして、下地電極16a上にメッキにより銅層16mが設けられ、n型細線電極16fが形成される。p型領域13上に下地電極17aが形成され、その下地電極17a上にメッキにより銅層17mが設けられ、p型細線電極17fが形成される。
Then, a
以下に、図3を用いて本実施形態の特徴部分である電極16、17の形状、特に細線電極16fの端部について説明を行う。
Hereinafter, the shapes of the
細線電極16fが有する端部の角においては、メッキ時に電流が集中し、他のメッキを処理する領域に比べてメッキされ易くなることがあった。これにより、メッキ膜厚が大きくなる他、処理領域以外の領域までメッキされてしまい、電極間のショート等の問題が生じていた。
At the corners of the end portions of the
そこで、細線電極16fの端部を半円状に形成し、電流集中を抑制することを検討していた。しかし、細線電極16fの端部を半円状に形成した場合、この細線電極16fの端部に対向するp型電極17の面積が大きくなり、無効部分が多くなる新たな問題が生じていた。
Therefore, it has been studied to suppress the current concentration by forming the end of the
具体的には、細線電極16fの端部を丸くした場合、細線電極16fとこの細線電極16fに隣接するp型電極17までの距離が広くなり、生じる電界が弱くなり効率良く発生した電流を取り出せない問題点が生じる。そこで、p型電極17の形状を、細線電極16f付近に形成されるp型電極17までの距離を略一定となるように円弧状部17bc’を形成し、略一定の電界が生じるようにすることが検討された。しかし、この場合では、p型電極17の面積が大きくなり、発電に寄与しない無効部分(図3のa部部分)が大きくなってしまう問題があった。
Specifically, when the end of the
他方では、細線電極16fの端部を矩形形状とし、p型電極17の形状を、この細線電極16f付近に形成されるp型電極17までの距離を略一定となるように形成し、略一定の電界が生じるように形成することを検討していた。これにより、細線電極16fに隣接するp型電極17は、低抵抗で且つ形成される面積が小さい細線電極17fと、低抵抗で且つ形成される面積が小さいバスバー電極17bとで構成することできる。この結果、発電に寄与しない無効部分を狭くした構成とすることができる。しかしながら、矩形形状にすると、二辺が直交する角部にメッキ時の電流が集中し、電極の膜厚にばらつきが発生する問題があった。
On the other hand, the end of the
そこで、本発明は、図3に示すように、細線電極16fの端部を、二辺が交差する角部を円弧状部16rとし、細線電極16fの先端部は、円弧状部16r、16rの間に直線状の端辺16cを有する輪郭とする。
Therefore, according to the present invention, as shown in FIG. 3, the end of the
また、p型電極17においては、この円弧状部16rに対応して、バスバー電極17bと細線電極17fが接続され、それぞれの辺が交差する部分は、円弧状部17bcが形成される。
Further, in the p-
本実施形態によれば、図3のaで示す無効領域を減らして、キャリアの収集効率を向上させる。そして、二辺が交差する部分を円弧状部16rとし、メッキ時の電流集中を抑制し、細線電極16fの膜厚のばらつきを小さくするとともに、処理領域以外がメッキされることを減らすことができる。
According to the present embodiment, the ineffective area indicated by a in FIG. 3 is reduced to improve carrier collection efficiency. Then, a portion where the two sides intersect with each other is formed into an arc-shaped
なお、上記の実施形態では、n型電極16の細線電極16fの端部及びp型電極17の形状について説明を行ったが、n型電極16の細線電極16fの端部をp型電極17の細線電極17fの端部に、またp型電極17をn型電極16に置き換え、同様な構成としても同様の作用効果を得ることができる。このため、細線電極16fの端部と同様に細線電極17fの端部を、またp型電極17と同様にn型電極16に形成を行った。加えて、n型バスバー電極16bとp型バスバー電極17bにおいても、細線電極16f同様、メッキ時に角部へ電流が集中し、他の処理領域に比べてメッキされ易くなるため、二辺が交差する角部を円弧状部とした。
In the above embodiment, the end of the
次に、円弧状部16rの半径の大きさとメッキ厚の関係につき、図4及び図5を参照して説明する。
Next, the relationship between the radius of the
円弧状部16rの半径の大きさとメッキ厚の関係を調べるために、図4に示す電極パターンを用意した。電極パターンは、幅(W)を1000μmとした。電極パターンは、下地電極として膜厚0.2μmの銅(Cu)をスパッタリングで形成し、フォトリソグラフィで所定の形状に形成した。その後、含りん銅(硫酸銅浴)をメッキ液として用い、0.01A/cm2の電流の条件で、下地電極16a上に銅をメッキで形成した。In order to investigate the relationship between the radius of the
端部の円弧状部16rの半径Rの大きさを2μmから100μmに変化させて、それぞれのメッキ膜厚の関係を測定した。測定は、先端から3Wの距離の中央部の測定位置(Tmid)と円弧状部16rの外周の最大膜厚箇所(Tr)を測定し、両者の比(Tr/Tmid)を用いて評価した。
The relationship between the plating film thicknesses was measured by changing the radius R of the
その結果を、表1及び図5に示す。 The results are shown in Table 1 and FIG.
表1、図5に示すように、円弧状部16rの半径Rが大きくなるにつれ、その比が1に近づき、中央部と円弧状部16rとの膜厚のばらつきが小さくなる。そして、その比が20%以下となるばらつきの大きさは、円弧状部16rの半径Rの値が20μm程度であった。局所的なストレスは、膜厚の変動幅が、概ね20%程度の範囲内であれば、電極の剥離等が発生しにくいことが、実際の装置でテストした結果、確認できている。したがって、電極の膜厚のばらつきの観点から、円弧状部16rの半径Rの値が20μm以上とすることが好ましい。また、円弧状部16rの半径Rを大きくすればするほど、ばらつきは少なくなるが、大きくするだけ、無効領域が増える。このことから、円弧状部16rの半径Rは20μm以上100μm以下とすることがより好ましい。
As shown in Table 1 and FIG. 5, as the radius R of the
これらのことを考慮すると、細線電極16fの幅(W)に対して円弧状部16rの半径Rは、2%以上10%以下とすることが好ましい。
Considering these, it is preferable that the radius R of the arc-shaped
次に、上記の太陽電池10を製造する方法について、説明する。
Next, a method for manufacturing the
単結晶シリコンからなる基板11は、単結晶シリコンのインゴッドをスライスして得られる。基板11の導電型はn型でもp型でもよいが、この実施形態では、n型単結晶シリコンからなる基板を用いた。また、基板11の大きさや厚みについても適宜変更が可能である。この実施形態では、厚さ200μm、大きさ100mm角の基板を用いた。
The
基板11の受光面上に、実質的に真性な非晶質半導体19、n型非晶質シリコン20、窒化シリコンなどの保護膜21を順次、CVD(Chemical Vapor Deposition)装置を用いて積層する。また、基板11の裏面においては、n型電極16に対応するn領域12では、実質的に真性な非晶質半導体層121、n型非晶質半導体層122、窒化シリコン層123を順次、CVD装置を用いて積層した後、弗硝酸及び弗酸を用いて、窒化シリコン層123を貫通し、n型非晶質半導体層122が露出するようにエッチングを行う。また、p型電極17に対応するp領域13では、基板11上に、実質的に真性な非晶質半導体層131、p型非晶質半導体層132を順次CVD装置を用いて積層する。On the light receiving surface of the
続いて、基板11の裏面側のn型領域12、p型領域13に、n型細線電極16f用並びにn型バスバー電極16b用の下地電極16a、p型細線電極17f用並びにバスバー電極17b用の下地電極17aを形成した。この実施形態では、下地用電極16a、17aは、銅をスパッタ法によりメタルマスクを用いて形成した。下地用電極16a、17aは、各々厚み0.1μm〜4μm、幅0.2mmに形成した。この時、メタルマスクを用いることにより、細線電極16f(17f)の端部の半径(R)が20μm以上の円弧状部16r(17r)の間に直線状の端部16c(17c)を有する輪郭を有して形成することができる。そして、バスバー電極17b(16b)と細線電極17f(16f)の接続部もこの円弧状部16r(17r)に対応した円弧状部17bc(16bc)が形成された電極16(17)に対応した形状の下地電極16a、17aを形成することができる。
Subsequently, in the n-
その後、下地電極16a、17aに対して、個別に給電しながら電界メッキを行い、メッキ層16m、17mを形成して、電極16、17を完成させ、本実施形態の太陽電池10が得られる。メッキは、アノードを含りん銅、カソードを下地電極16a又は17aとし、メッキ厚10μm〜30μm、この実施形態では、10μmとした。メッキ条件は、メッキ電流は0.01A/cm2、メッキ液は硫酸銅、電極間距離は5cm、温度は40℃とした。Thereafter, electric field plating is performed on the
上記のように、円弧状部16r(17r)と直線状の端辺16c(17c)を有する細線電極16f(17f)により、無効領域を減らして、キャリアの収集効率を向上させる。そして、二辺が交差する部分を円弧状部16r(17r)とし、メッキ時の電流集中を抑制し、膜厚のばらつきを小さくすることができるとともに、処理領域以外がメッキされることを減らすことができる。
As described above, the
なお、本発明の実施形態にかかる太陽電池を複数個用い、太陽電池モジュールを形成することができる。以下に、本発明の実施形態にかかる太陽電池を用いた太陽電池モジュールについて図6及び図7を参照して説明する。図6は、本発明の実施形態にかかる太陽電池と配線タブとの接続を示す模式的平面図、図7は、本発明の実施形態にかかる太陽電池を用いた太陽電池モジュールを示す概略断面図である。 In addition, a solar cell module can be formed using a plurality of solar cells according to embodiments of the present invention. Below, the solar cell module using the solar cell concerning embodiment of this invention is demonstrated with reference to FIG.6 and FIG.7. FIG. 6 is a schematic plan view showing the connection between the solar cell and the wiring tab according to the embodiment of the present invention, and FIG. 7 is a schematic sectional view showing the solar cell module using the solar cell according to the embodiment of the present invention. It is.
太陽電池モジュール60は、複数の太陽電池10を配線タブ50と渡り配線(図示しない)により形成した太陽電池ユニット60aを、ガラス等の表面保護部材41と樹脂等の裏面保護部材42の間に、EVA(Ethylene-Vinyl Acetate)等の透光性を有する封止材43を介して積層された構造を有する。
The
次に、太陽電池モジュール60の形成方法について説明を行う。まず、初めに複数の太陽電池10を、一方の太陽電池10のp側電極17のバスバー電極17bと、他方の太陽電池10のn側電極16のバスバー電極16bと、が隣接するように配置する。そして、一方の太陽電池10のバスバー電極17bと、他方の太陽電池10のバスバー電極16bと、を配線タブ50を用いて電気的に接続し、ストリング60bを形成する。更に、ストリング60bとした太陽電池10は、ストリング間を接続する渡り配線(図示しない)を接続し、太陽電池ユニット60aを形成する。
Next, a method for forming the
最後に、図7に示すように、太陽電池モジュール60は、受光面側からガラス等の表面保護部材41、EVA等の透光性を有する封止材43、太陽電池ユニット60a、封止材43、裏面保護部材42をこの順序で積層し、ラミネートすることにより完成する。
Finally, as shown in FIG. 7, the
本実施形態にかかる太陽電池モジュール60は、発電した電力を効率よく収集することができる太陽電池10を用いることにより、発電効率を高くすることができる。
The
なお、上記の実施形態にかかる太陽電池は、基板11に非晶質シリコン膜などを積層して形成した太陽電池を用いたが、これに限られず、ドーパントを拡散して形成した太陽電池としてもよい。さらには、上記の実施形態にかかる太陽電池は、裏面接合型の太陽電池を用いたが、これに限られず、受光面と裏面の両方に電極を形成した太陽電池としてもよく、メッキにより電極を形成するものであれば同様に適用できる。したがって、図8に示すように、一導電型の半導体基板11の表面側に他導電型の不純物領域13を設け、基板11の裏面側に、基板11と一導電型の電極16と、スルーホール31を介して接続された他導電型の電極17を形成する場合にあっても同様に用いることができる。なお、この場合にあっては、電極17と基板11の間には、絶縁膜18が形成され、一導電型の電極16と他導電型の電極17とが接触しないように配置される。
In addition, although the solar cell concerning the said embodiment used the solar cell formed by laminating | stacking an amorphous silicon film etc. on the board |
また、上記の実施形態においては、電極は、電解メッキを用いて形成しているが、無電解メッキで形成してもよい。なお、電極として無電解メッキで銅を析出させるためには、銅よりイオン化傾向の大きい錫やニッケルなどの金属で下地電極を形成すればよい。また、無電解メッキ液としては、例えば硫酸第二銅、エチレンジアミン四酢酸、ホルムアルデヒド、及び水酸化アルカリの少なくとも一つを主成分としているものを用いることができる。 In the above embodiment, the electrode is formed by electrolytic plating, but may be formed by electroless plating. In order to deposit copper by electroless plating as an electrode, a base electrode may be formed of a metal such as tin or nickel that has a higher ionization tendency than copper. Further, as the electroless plating solution, for example, a solution containing at least one of cupric sulfate, ethylenediaminetetraacetic acid, formaldehyde, and alkali hydroxide as a main component can be used.
上記の実施形態は、スパッタ法により下地電極として銅などの蒸着金属膜からなる層を形成したが、これに限らず、例えば、導電性樹脂であるAgペーストをスクリーン印刷により形成し、加熱して、Agペーストを硬化させ、下地電極として用いることもできる。 In the above embodiment, a layer made of a vapor-deposited metal film such as copper is formed as a base electrode by sputtering. However, the present invention is not limited to this. For example, an Ag paste that is a conductive resin is formed by screen printing and heated. The Ag paste can be cured and used as a base electrode.
また、n領域12のn型非晶質半導体層122、またはp領域13のp型非晶質半導体層132、と下地電極との間には、ITO(酸化インジウム錫)、SnO2(酸化錫)、ZnO(酸化亜鉛)等からなる透明電極を形成してもよい。Between the n-type
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記の実施形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims for patent, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims for patent.
10 太陽電池
11 基板
12 n型領域
13 p型領域
16 n型電極
16f n型細線電極
16b n型バスバー電極
16r 円弧状部
17 p型電極
17f p型細線電極
17b p型バスバー電極
17r 円弧状部10
Claims (4)
前記p型領域に複数のp型細線下地電極と前記複数のp型細線下地電極を互いに接続するp型バスバー下地電極とを含むp型下地電極を形成し、前記n型領域にn型細線下地電極と前記複数のn型細線下地電極を互いに接続するn型バスバー下地電極とを含むn型下地電極を形成し、
前記p型下地電極、前記n型下地電極に給電しながら電界メッキを行って、p型メッキ層、n型メッキ層を形成する、太陽電池の製造方法であって、
前記p型細線下地電極及び前記n型細線下地電極のそれぞれの電極端部は、二辺が交差する部分が半径が20μm以上100μm以下の円弧状とされた円弧状部を二つ有するように形成されている、太陽電池の製造方法。 The back surface of the semiconductor substrate having a rear surface provided on the opposite side of the light-receiving surface and the light receiving surface, to form a p-type region and the n-type region,
A p-type base electrode including a plurality of p-type thin wire base electrodes and a p-type bus bar base electrode connecting the plurality of p-type thin wire base electrodes to each other is formed in the p-type region, and an n-type thin wire base is formed in the n-type region Forming an n-type base electrode including an electrode and an n-type bus bar base electrode connecting the plurality of n-type thin wire base electrodes to each other;
A method of manufacturing a solar cell , wherein electric field plating is performed while feeding power to the p-type base electrode and the n-type base electrode, thereby forming a p-type plating layer and an n-type plating layer ,
The electrode ends of each of the p-type thin wire base electrode and the n-type thin wire base electrode are formed so as to have two arc-shaped portions having a radius of 20 μm or more and 100 μm or less at a portion where two sides intersect. A method for manufacturing a solar cell.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011183712 | 2011-08-25 | ||
JP2011183712 | 2011-08-25 | ||
PCT/JP2012/070294 WO2013027591A1 (en) | 2011-08-25 | 2012-08-09 | Solar cell and solar cell module |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013027591A1 JPWO2013027591A1 (en) | 2015-03-19 |
JP6028982B2 true JP6028982B2 (en) | 2016-11-24 |
Family
ID=47746338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013529964A Expired - Fee Related JP6028982B2 (en) | 2011-08-25 | 2012-08-09 | Manufacturing method of solar cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6028982B2 (en) |
WO (1) | WO2013027591A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015053303A (en) * | 2013-09-05 | 2015-03-19 | シャープ株式会社 | Solar cell, solar cell module, and method for manufacturing solar cell |
CN109564946B (en) | 2016-08-15 | 2023-10-03 | 夏普株式会社 | Photoelectric conversion element and photoelectric conversion device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0793453B2 (en) * | 1992-03-11 | 1995-10-09 | 株式会社日立製作所 | Method for manufacturing silicon solar cell element |
JP2010095762A (en) * | 2008-10-16 | 2010-04-30 | Fuji Electric Systems Co Ltd | Electroplating method |
JP5627243B2 (en) * | 2010-01-28 | 2014-11-19 | 三洋電機株式会社 | Solar cell and method for manufacturing solar cell |
JP5974300B2 (en) * | 2010-08-24 | 2016-08-23 | パナソニックIpマネジメント株式会社 | Solar cell and manufacturing method thereof |
JP5410397B2 (en) * | 2010-10-29 | 2014-02-05 | シャープ株式会社 | Manufacturing method of semiconductor device, manufacturing method of back electrode type solar cell with wiring substrate, manufacturing method of solar cell module, semiconductor device, back electrode type solar cell with wiring substrate and solar cell module |
-
2012
- 2012-08-09 JP JP2013529964A patent/JP6028982B2/en not_active Expired - Fee Related
- 2012-08-09 WO PCT/JP2012/070294 patent/WO2013027591A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2013027591A1 (en) | 2015-03-19 |
WO2013027591A1 (en) | 2013-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9502590B2 (en) | Photovoltaic devices with electroplated metal grids | |
US20170194516A1 (en) | Advanced design of metallic grid in photovoltaic structures | |
US9773928B2 (en) | Solar cell with electroplated metal grid | |
US10090428B2 (en) | Solar cell and method for manufacturing the same | |
CN107710419B (en) | Solar cell and solar cell module | |
US9123861B2 (en) | Solar battery, manufacturing method thereof, and solar battery module | |
US20170256661A1 (en) | Method of manufacturing photovoltaic panels with various geometrical shapes | |
EP3823047A1 (en) | Solar cell | |
JP5241961B2 (en) | SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE | |
JP2015512563A (en) | Semiconductor wafer cell and module processing for back contact photovoltaic modules | |
JP2015525961A (en) | Solar cell | |
KR20110053465A (en) | Solar cell and solar cell module with one-sided connections | |
KR20130037628A (en) | Photovoltaic device and manufacturing method the same | |
TW201225325A (en) | Solar cell and manufacturing method thereof | |
US8859889B2 (en) | Solar cell elements and solar cell module using same | |
JP6300712B2 (en) | Solar cell and method for manufacturing solar cell | |
EP2605285B1 (en) | Photovoltaic device | |
JP2015207598A (en) | Solar cell module, solar cell, and inter-element connection body | |
KR101038967B1 (en) | Solar cell and method for manufacturing the same | |
JP6028982B2 (en) | Manufacturing method of solar cell | |
WO2012128284A1 (en) | Rear surface electrode-type solar cell, manufacturing method for rear surface electrode-type solar cell, and solar cell module | |
JP2010108994A (en) | Method of manufacturing solar cell | |
JPWO2014076972A1 (en) | Solar cell and resistance calculation method for solar cell | |
TW201635568A (en) | Solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20150224 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161005 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6028982 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |