JP6084948B2 - Flux-cored wire for gas shielded arc welding - Google Patents
Flux-cored wire for gas shielded arc welding Download PDFInfo
- Publication number
- JP6084948B2 JP6084948B2 JP2014086844A JP2014086844A JP6084948B2 JP 6084948 B2 JP6084948 B2 JP 6084948B2 JP 2014086844 A JP2014086844 A JP 2014086844A JP 2014086844 A JP2014086844 A JP 2014086844A JP 6084948 B2 JP6084948 B2 JP 6084948B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- flux
- heat input
- weld metal
- cored wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003466 welding Methods 0.000 title claims description 207
- 230000004907 flux Effects 0.000 claims description 55
- 229910000831 Steel Inorganic materials 0.000 claims description 34
- 239000010959 steel Substances 0.000 claims description 34
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 26
- 229910052797 bismuth Inorganic materials 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 150000002222 fluorine compounds Chemical class 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 description 97
- 239000002184 metal Substances 0.000 description 97
- 239000002893 slag Substances 0.000 description 45
- 230000036544 posture Effects 0.000 description 28
- 239000007789 gas Substances 0.000 description 19
- 239000011324 bead Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 239000011734 sodium Substances 0.000 description 15
- 238000005336 cracking Methods 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 10
- 229910052748 manganese Inorganic materials 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 238000005538 encapsulation Methods 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000007665 sagging Methods 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000013024 sodium fluoride Nutrition 0.000 description 2
- 239000011775 sodium fluoride Substances 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004111 Potassium silicate Chemical class 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DLHONNLASJQAHX-UHFFFAOYSA-N aluminum;potassium;oxygen(2-);silicon(4+) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Si+4].[Si+4].[Si+4].[K+] DLHONNLASJQAHX-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical class [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- -1 sodium fluoride Chemical class 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Nonmetallic Welding Materials (AREA)
Description
本発明は、軟鋼〜520MPa級高張力鋼のガスシールドアーク溶接用フラックス入りワイヤに関し、立向上進姿勢で大入熱および高パス間温度の溶接施工条件で溶接する際、溶接金属の機械的性質を確保しつつ、高能率で優れた溶接作業性を得ることができるガスシールドアーク溶接用フラックス入りワイヤに関する。 TECHNICAL FIELD The present invention relates to a flux-cored wire for gas shielded arc welding of mild steel to 520 MPa class high-strength steel. The present invention relates to a flux-cored wire for gas shield arc welding that can obtain excellent welding workability with high efficiency while securing the above.
建築および鉄骨などの建築分野では、溶接施工の高能率化からガスシールドアーク溶接用ワイヤが広く使われており、下向、水平、立向上進、立向下進、上向姿勢など様々な姿勢の溶接で使用されている。近年さらなる能率向上を図るため、溶接面の上に順次溶接していく多層盛溶接において、各層毎の溶接面の温度(以下、パス間温度という。)が高い高パス間温度で、かつ、大入熱での溶接施工条件に対応するガスシールドアーク溶接用ワイヤが要望されており、鉄骨工事技術指針(JASS6)では、入熱量およびパス間温度の管理目標上限(入熱40kJ/cm以下、パス間温度350℃以下)が規定され、特許文献1、特許文献2および特許文献3には、490〜520MPa級高張力鋼でのガスシールドアーク溶接において、大入熱および高パス間温度での溶接施工条件でも溶接金属の強度および靭性を確保できるように溶接用ソリッドワイヤ成分中のMo、Cr、Ti、B等の含有量を規定した溶接用ソリッドワイヤが開示されている。しかし、特許文献1〜3に開示されたソリッドワイヤらは、このような大入熱および高パス間温度での溶接施工条件で溶接を行った場合、必要な機械的性質を確保できるものの、アーク状態は不安定でスパッタ発生量は増加し、溶接作業者に対する負荷が大きくなるため、アーク状態が安定してスパッタ発生量の少ない溶接用フラックス入りワイヤへの適用が要望されている。 In the construction field such as architecture and steel frames, wire for gas shielded arc welding is widely used for improving the efficiency of welding work, and various postures such as downward, horizontal, vertical improvement, vertical downward, upward posture. Used in welding. In recent years, in order to further improve the efficiency, in multi-layer welding in which welding is sequentially performed on the weld surface, the temperature of the weld surface for each layer (hereinafter referred to as interpass temperature) is high, and the temperature is high. There is a demand for a gas shielded arc welding wire that meets the welding conditions for heat input, and the steelwork technical guidelines (JASS6) specify the upper limit of heat input and inter-pass temperature management target (heat input 40 kJ / cm or less, pass In the gas shielded arc welding of 490 to 520 MPa class high strength steel, welding at a high heat input and high interpass temperature is disclosed in Patent Document 1, Patent Document 2 and Patent Document 3. Disclosed is a solid wire for welding in which the contents of Mo, Cr, Ti, B, etc. in the solid wire component for welding are specified so that the strength and toughness of the weld metal can be secured even under construction conditions. That. However, although the solid wires disclosed in Patent Documents 1 to 3 can secure necessary mechanical properties when welding is performed under such welding conditions with large heat input and high-pass temperature, Since the state is unstable and the amount of spatter generated increases and the load on the welding operator increases, there is a demand for application to a flux-cored wire for welding with a stable arc state and a small amount of spatter generated.
このような大入熱および高パス間温度の溶接施工条件に対応したガスシールドアーク溶接用フラックス入りワイヤについては、特許文献4に、溶接用フラックス入りワイヤ中のC、Si、Mn、Ti、Ni、Mo、B、スラグ形成剤の含有量を規定することで、490〜520MPa級高張力鋼にて、大入熱および高パス間温度の溶接施工条件での溶接において、再熱部でも良好な機械的性質を有する溶接金属を得ることができる下向継手溶接用のフラックス入りワイヤが開示されている。 Regarding the flux-cored wire for gas shielded arc welding corresponding to such welding conditions of large heat input and high-pass temperature, Patent Document 4 describes C, Si, Mn, Ti, Ni in the flux-cored wire for welding. By prescribing the contents of Mo, B, and slag forming agents, it is possible to use 490 to 520 MPa class high-tensile strength steel. A flux-cored wire for welding a downward joint capable of obtaining a weld metal having mechanical properties is disclosed.
しかし、特許文献4に記載の溶接用フラックス入りワイヤは、立向上進姿勢での溶接を想定していないため、大入熱および高パス間温度の溶接施工条件で立向上進姿勢にて溶接した場合、溶接電流が高くなるため、溶融プールから溶融スラグおよび溶融金属が垂れる現象(以下、メタル垂れという。)が発生しやすくなり、溶接ビード形状が不良となる。 However, the flux-cored wire for welding described in Patent Document 4 is not assumed to be welded in a stand-up improvement posture, and is thus welded in a stand-up improvement posture under welding conditions of large heat input and high-pass temperature. In this case, since the welding current becomes high, a phenomenon in which molten slag and molten metal sag from the molten pool (hereinafter referred to as metal sag) is likely to occur, resulting in a poor weld bead shape.
また、特許文献5には、490〜520MPa級高張力鋼のガスシールドアーク溶接に関し、大入熱および高パス間温度の溶接施工条件での全姿勢溶接において、溶接作業性および溶接金属の機械的性質に優れる溶接用フラックス入りワイヤが開示されている。 Further, Patent Document 5 relates to gas shielded arc welding of 490 to 520 MPa class high strength steel. In all-position welding under welding conditions of high heat input and high pass temperature, welding workability and mechanical properties of the weld metal are disclosed. A welding flux-cored wire having excellent properties is disclosed.
しかし、特許文献5に記載の溶接用フラックス入りワイヤはあくまで全姿勢溶接用であり、立向上進姿勢での溶接に特化した溶接用フラックス入りワイヤではないため、立向上進姿勢での溶接のおける耐メタル垂れ性は不十分であり、通常入熱での立向上進姿勢溶接に比べてビード形状が劣化するという問題があった。 However, since the flux-cored wire for welding described in Patent Document 5 is only for welding in all positions, and is not a flux-cored wire for welding specialized in welding in a standing improvement posture, welding in a standing improvement posture is recommended. The metal sag resistance was insufficient, and there was a problem that the bead shape was deteriorated as compared to the standing improvement posture welding with normal heat input.
本発明は、軟鋼〜520MPa級高張力鋼の立向上進姿勢でのガスシールドアーク溶接に関し、大入熱および高パス間温度の溶接施工条件を採用することによって溶接能率を向上し、立向上進姿勢での溶接作業性が良好で、かつ、溶接金属の機械的性能が優れるなど高品質な溶接部が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。 The present invention relates to gas shielded arc welding in a stand-up improvement posture of mild steel to 520 MPa class high-strength steel, and improves welding efficiency by adopting welding conditions such as high heat input and high pass-to-pass temperature. An object of the present invention is to provide a flux-cored wire for gas shielded arc welding in which a high-quality welded part such as good welding workability in a posture and excellent mechanical performance of a weld metal is obtained.
本発明者らは、上記課題を解決すべく、フラックス入りワイヤの成分組成に着目し、成分組成について種々研究を行った。その結果、入熱量20〜40kJ/cm、パス間温度350℃以下の溶接施工条件で立向上進姿勢溶接した場合の溶接金属の十分な強度および靭性を確保するためには、溶接用フラックス入りワイヤ中のC、Si、Mn、B、TiO2換算値、SiO2換算値、AlのAl2O3換算値およびAl2O3の合計量、Mgの含有量を適量とし、強脱酸剤であるAl単体の含有量を多くすることで、SiおよびMnなどの溶接金属への歩留まりを確保し、溶接金属中の酸素量を低減することが効果的であることを見出した。また、大入熱溶接で問題となる高温割れを防止するためには、C、B、Biの含有量を適量とすることが効果的であること等を見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors paid attention to the component composition of the flux-cored wire and conducted various studies on the component composition. As a result, in order to ensure the sufficient strength and toughness of the weld metal when welding in a standing improvement posture under welding conditions where the heat input is 20 to 40 kJ / cm and the interpass temperature is 350 ° C. or less, a flux-cored wire for welding is used. C, Si, Mn, B, TiO 2 conversion value, SiO 2 conversion value, Al Al 2 O 3 conversion value and total amount of Al 2 O 3 and Mg content are appropriate amounts, and a strong deoxidizer It has been found that by increasing the content of a certain Al element, it is effective to secure the yield for weld metals such as Si and Mn and to reduce the oxygen content in the weld metal. Moreover, in order to prevent the hot crack which becomes a problem by high heat-input welding, it discovered that it was effective to make content of C, B, Bi suitable, etc., and completed this invention.
本発明の要旨は、次の通りである。 The gist of the present invention is as follows.
(1)鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、
鋼製外皮とフラックスの合計で、
C:0.02〜0.08%、
Si:0.3〜1.0%、
Mn:1.8〜2.8%、
AlのAl2O3換算値およびAl2O3の合計:0.4〜2.3%、かつ、Al:0.2〜1.1%、
B:0.002〜0.015%を含有し、
フラックスに、
Ti酸化物のTiO2換算値:5.5〜6.8%、
Si酸化物のSiO2換算値:0.4〜1.6%、
Zr酸化物のZrO2換算値:0.1〜0.6%、
Mg:0.1〜0.3%、
Na化合物のNa2O換算値およびK化合物のK2O換算値の合計:0.15〜0.30%、
弗素化合物のF換算値:0.03〜0.10%を含有し、
残部はFeおよび不可避不純物からなることを特徴とする入熱量20〜40kJ/cm、パス間温度350℃以下の溶接施工条件での立向上進溶接向けガスシールドアーク溶接用フラックス入りワイヤ。
(1) In a flux-cored wire for gas shielded arc welding formed by filling a steel outer shell with flux, in mass% with respect to the total mass of the wire,
The total of steel outer shell and flux,
C: 0.02 to 0.08%,
Si: 0.3 to 1.0%,
Mn: 1.8 to 2.8%
Al 2 O 3 conversion value of Al and Al 2 O 3 total: 0.4 to 2.3%, and Al: 0.2 to 1.1%,
B: contains 0.002 to 0.015%,
To the flux,
TiO 2 conversion value of Ti oxide: 5.5 to 6.8%,
SiO 2 conversion value of Si oxide: 0.4 to 1.6%,
ZrO 2 conversion value of Zr oxide: 0.1 to 0.6%,
Mg: 0.1 to 0.3%
Total K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound: 0.15 to 0.30%,
F conversion value of fluorine compound: 0.03 to 0.10% contained,
A flux-cored wire for gas shielded arc welding for standing up welding under welding conditions with a heat input of 20-40 kJ / cm and a pass-to-pass temperature of 350 ° C. or less, characterized in that the balance consists of Fe and inevitable impurities.
(2) ワイヤ全質量に対する質量%で、フラックスに、さらに、BiおよびBi酸化物のBi換算値の合計:0.005〜0.02%を含有することを特徴とする上記(1)に記載の入熱量20〜40kJ/cm、パス間温度350℃以下の溶接施工条件での立向上進溶接向けガスシールドアーク溶接用フラックス入りワイヤ。 (2) The mass% based on the total mass of the wire, and the flux further contains a total of Bi and Bi-converted values of Bi oxide: 0.005 to 0.02%. Flux-cored wire for gas shielded arc welding for vertical improvement welding under welding conditions of 20 to 40 kJ / cm and a temperature between passes of 350 ° C. or less.
本発明のガスシールドアーク溶接方法によれば、軟鋼〜520MPa級高張力鋼に対し、高い入熱(入熱量20〜40kJ/cm)およびパス間温度(350℃以下)の溶接施工条件で溶接を行うと共に、用いるフラックス入りワイヤの成分組成を適正にすることによって、立向上進姿勢での溶接においても、良好な溶接作業性が得られ、溶接パス数の減少および各パス毎の冷却待ち時間の短縮が図れることによる高能率な溶接ができ、かつ、機械的性能が良好で高品質の溶接部を得ることができる。 According to the gas shielded arc welding method of the present invention, welding is performed on mild steel to 520 MPa class high strength steel under welding conditions of high heat input (heat input 20 to 40 kJ / cm) and interpass temperature (350 ° C. or less). In addition, by optimizing the component composition of the flux-cored wire to be used, good welding workability can be obtained even in welding in a standing improvement posture, the number of welding passes is reduced, and the cooling waiting time for each pass is reduced. High-efficiency welding by shortening can be achieved, and a high-quality welded portion with good mechanical performance can be obtained.
本発明者らは、軟鋼〜520MPa級高張力鋼での立向上進姿勢での溶接において、大入熱およびパス間温度の溶接施工条件で溶接した場合でも、溶接作業性が良好で、機械的性能の優れた溶接金属を得るべくフラックス入りワイヤの成分組成について種々検討を行った。 The inventors of the present invention have good welding workability even when welding is performed with mild heat up to 520 MPa class high strength steel in a standing improvement posture, even when welding is performed under welding conditions of high heat input and interpass temperature. Various studies were made on the composition of the flux-cored wire in order to obtain a weld metal with excellent performance.
その結果、入熱量20〜40kJ/cm、パス間温度350℃以下の溶接施工条件で立向上進姿勢溶接した場合の溶接金属の十分な強度および靭性を確保するためには、溶接用フラックス入りワイヤ中のC、Si、Mn、B、TiO2換算値、SiO2換算値、AlのAl2O3換算値およびAl2O3の合計量、Mgの含有量を適量とし、強脱酸剤であるAl単体の含有量を多くすることで、SiおよびMnなどの溶接金属への歩留まりを確保し、溶接金属中の酸素量を低減することが効果的であることを見出した。また、大入熱溶接で問題となる高温割れを防止するためには、C、B、Biの含有量を適量とすることが効果的であることも見出した。 As a result, in order to ensure the sufficient strength and toughness of the weld metal when welding in a standing improvement posture under welding conditions where the heat input is 20 to 40 kJ / cm and the interpass temperature is 350 ° C. or less, a flux-cored wire for welding is used. C, Si, Mn, B, TiO 2 conversion value, SiO 2 conversion value, Al Al 2 O 3 conversion value and total amount of Al 2 O 3 and Mg content are appropriate amounts, and a strong deoxidizer It has been found that by increasing the content of a certain Al element, it is effective to secure the yield for weld metals such as Si and Mn and to reduce the oxygen content in the weld metal. In addition, it has also been found that it is effective to adjust the contents of C, B, and Bi to appropriate amounts in order to prevent hot cracking, which is a problem in high heat input welding.
また、入熱量20〜40kJ/cmおよびパス間温度350℃以下の溶接施工条件で立向上進姿勢溶接した場合の溶接作業性を良好にするには、溶接用フラックス入りワイヤ中のTiO2換算値、SiO2換算値、ZrO2換算値、AlのAl2O3換算値およびAl2O3の合計、Mg、Na2O換算値およびK2O換算値の合計、F換算値の量を適量とすることでアーク状態を安定させてスラグ被包性およびスラグ剥離性を良好にし、メタル垂れやスラグ巻込みおよび融合不良などの溶接欠陥を防止できることを見出した。 In addition, in order to improve the welding workability when welding in a standing posture with a heat input of 20 to 40 kJ / cm and an interpass temperature of 350 ° C. or less, a TiO 2 equivalent value in the flux-cored wire for welding is used. , SiO 2 converted value, ZrO 2 converted value, Al Al 2 O 3 converted value and Al 2 O 3 total, Mg, Na 2 O converted value, K 2 O converted value, F converted value Thus, it was found that the arc state is stabilized, slag encapsulation and slag peelability are improved, and welding defects such as metal sag, slag entrainment and poor fusion can be prevented.
さらに、Al単体の含有量を多くすることにより、立向上進姿勢溶接での大入熱および高パス間温度条件でも良好な機械的性質が得られることも見出した。 Furthermore, it has also been found that by increasing the content of Al alone, good mechanical properties can be obtained even under large heat input and high-pass temperature conditions in the vertical improvement welding.
また、溶接用フラックス入りワイヤ中のBiの含有量を適量とすることにより、スラグ剥離性を改善できることを見出した。 Moreover, it discovered that slag peelability can be improved by making content of Bi in the flux-cored wire for welding into suitable quantity.
以下、本発明のガスシールドアーク溶接用フラックス入りワイヤの立向上進姿勢での大入熱および高パス間温度の溶接施工条件の限定理由について説明する。 Hereinafter, the reasons for limiting the welding conditions of the high heat input and the high interpass temperature in the standing improvement posture of the flux-cored wire for gas shielded arc welding of the present invention will be described.
[入熱量:20〜40kJ/cm]
溶接の入熱量は、溶接によって外部から与えられる熱量を示すパラメータであり、溶接時の溶接電流、溶接電圧および溶接速度から算出され、この入熱量を上げることにより、1パス当りの溶着量が増加して溶接能率が向上することができる。入熱量が20kJ/cm未満であると、1パス当りの溶着量が少ないので、パス回数が必然的に多くなって溶接能率が向上しない。一方、入熱量が40kJ/cmを超えると、溶接部の冷却速度が遅くなり、溶接金属の組織が粗大化して溶接金属の必要な強度および靭性が得られなくなるとともに、高温割れも生じやすくなる。したがって、入熱量は20〜40kJ/cmとする。
[Amount of heat input: 20 to 40 kJ / cm]
The heat input of welding is a parameter indicating the amount of heat given from the outside by welding, and is calculated from the welding current, welding voltage and welding speed at the time of welding. By increasing this heat input, the amount of welding per pass increases. As a result, the welding efficiency can be improved. If the heat input is less than 20 kJ / cm, the amount of welding per pass is small, so the number of passes is inevitably increased and the welding efficiency is not improved. On the other hand, when the amount of heat input exceeds 40 kJ / cm, the cooling rate of the welded portion is slowed down, the weld metal structure becomes coarse and the required strength and toughness of the weld metal cannot be obtained, and hot cracking is likely to occur. Therefore, the heat input is 20 to 40 kJ / cm.
[パス間温度:350℃以下]
多層盛溶接では、溶接される鋼板は積層毎に溶接で加熱されるために非常に高温になるが、鋼板が高温状態のままで溶接を行うと、溶接金属の組織が粗大して機械的性質が低下するため、各積層毎にパス間温度を厳守することが重要である。パス間温度が350℃を超えると、溶接金属の組織が粗大化し、溶接金属の強度および靭性が著しく低下する。したがって、パス間温度は350℃以下とする。なお、溶接能率面から考慮し、パス間温度の下限は200℃であることが好ましい。
[Temperature between passes: 350 ° C or less]
In multi-layer welding, the steel sheets to be welded are heated to high temperatures because each layer is welded. However, when welding is performed while the steel sheets are in a high temperature state, the weld metal structure becomes coarse and mechanical properties are increased. Therefore, it is important to strictly observe the temperature between passes for each stack. When the temperature between passes exceeds 350 ° C., the structure of the weld metal becomes coarse, and the strength and toughness of the weld metal are significantly reduced. Therefore, the interpass temperature is set to 350 ° C. or lower. In view of welding efficiency, the lower limit of the interpass temperature is preferably 200 ° C.
次に、本発明のガスシールドアーク溶接用フラックス入りワイヤの立向上進姿勢での大入熱および高パス間温度の溶接施工条件で用いるフラックス入りワイヤの成分組成の限定理由について説明する。なお、成分についての「%」は質量%を意味する。 Next, the reason for limiting the component composition of the flux-cored wire used in the welding conditions of high heat input and high pass-to-pass temperature in the standing improvement posture of the flux-cored wire for gas shielded arc welding of the present invention will be described. Note that “%” for a component means mass%.
[C:0.02〜0.08%]
Cは、溶接金属の焼入れ性を高め、溶接金属の強度を確保するうえで重要な元素である。鋼製外皮とフラックスの合計(以下、溶接用フラックス入りワイヤ成分という。)のCが0.02%未満では、その効果が得られず、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接で必要な強度が得られない。一方、Cが0.08%を超えると、溶接金属の強度が過剰に高くなり、溶接金属の靭性が劣化する。また、溶接金属の高温割れ感受性が高くなり、高温割れを生じやすくなる。したがって、溶接用フラックス入りワイヤ成分中のCは0.02〜0.08%とする。
[C: 0.02 to 0.08%]
C is an important element for enhancing the hardenability of the weld metal and ensuring the strength of the weld metal. If the total of the steel outer shell and the flux (hereinafter referred to as the flux-cored wire component for welding) is less than 0.02%, the effect cannot be obtained, and the welding conditions with large heat input and high pass temperature are not obtained. The required strength cannot be obtained by the vertical improvement welding. On the other hand, when C exceeds 0.08%, the strength of the weld metal becomes excessively high and the toughness of the weld metal deteriorates. Moreover, the hot cracking sensitivity of a weld metal becomes high, and it becomes easy to produce a hot crack. Therefore, C in the flux-cored wire component for welding is 0.02 to 0.08%.
[Si:0.3〜1.0%]
Siは、溶接金属中の酸素量を低下させて溶接金属の靭性向上に重要な元素である。Siが0.3%未満では、溶接金属中のSiが不足し、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接で必要な溶接金属の強度および靭性が得られない。一方、Siが1.0%を超えると、溶接金属が脆化して靭性が劣化する。したがって、溶接用フラックス入りワイヤ成分中のSiは0.3〜1.0%とする。
[Si: 0.3-1.0%]
Si is an important element for improving the toughness of the weld metal by reducing the amount of oxygen in the weld metal. If Si is less than 0.3%, the Si in the weld metal is insufficient, and the strength and toughness of the weld metal required for standing up position welding under high heat input and high pass temperature welding conditions cannot be obtained. . On the other hand, if Si exceeds 1.0%, the weld metal becomes brittle and toughness deteriorates. Therefore, Si in the flux-cored wire component for welding is 0.3 to 1.0%.
[Mn:1.8〜2.8%]
Mnは、溶接金属中の酸素量を低下させて溶接金属の靭性を向上させる重要な元素である。また、溶接金属の強度を向上する効果があり、さらに、高融点のMnSを形成して溶接金属の高温割れも抑制する。Mnが1.8%未満では、溶接金属中のMnが不足し、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接で必要とする溶接金属の強度と靭性が得られない。一方、Mnが2.8%を超えると、溶接金属が脆化して靭性が劣化する。したがって、溶接用フラックス入りワイヤ成分中のMnは1.8〜2.8%とする。
[Mn: 1.8 to 2.8%]
Mn is an important element that lowers the amount of oxygen in the weld metal and improves the toughness of the weld metal. Moreover, there exists an effect which improves the intensity | strength of a weld metal, Furthermore, high melting point MnS is formed and the high temperature crack of a weld metal is also suppressed. If Mn is less than 1.8%, the Mn in the weld metal is insufficient, and the strength and toughness of the weld metal required for standing up position welding under high heat input and high pass temperature welding conditions can be obtained. Absent. On the other hand, if Mn exceeds 2.8%, the weld metal becomes brittle and toughness deteriorates. Therefore, Mn in the flux-cored wire component for welding is set to 1.8 to 2.8%.
[AlのAl2O3換算値およびAl2O3の合計:0.4〜2.3%、かつ、Al:0.2〜1.1%]
AlおよびAl2O3は、溶融プール内でAl2O3となって溶融スラグの粘性および凝固温度を調整し、立向上進姿勢溶接でのスラグ被包性およびビード形状を良好にする効果を有する。AlのAl2O3換算値およびAl2O3の合計が0.4%未満では、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接でスラグ被包性が悪く、ビード形状も不良となる。一方、AlのAl2O3換算値およびAl2O3の合計が2.3%を超えると、Al酸化物が溶接金属中に非金属介在物として残留し、溶接金属の靭性が劣化する。また、融合不良およびスラグ巻込みなどの溶接欠陥やメタル垂れが発生しやすくなる。したがって、溶接用フラックス入りワイヤ成分中のAlのAl2O3換算値およびAl2O3の合計は0.4〜2.3%とする。
[Total Al 2 O 3 conversion value of Al and Al 2 O 3 : 0.4 to 2.3% and Al: 0.2 to 1.1%]
Al and Al 2 O 3 is the effect of improving the slag encapsulated and bead shape in Al 2 O 3 and turned to adjust the viscosity and solidification temperature of the molten slag, vertical upward advance position welding in the molten pool Have. If the total of Al 2 O 3 converted value of Al and Al 2 O 3 is less than 0.4%, the slag encapsulation is poor in the standing posture advance welding under the welding conditions of large heat input and high pass temperature, The bead shape is also poor. On the other hand, if the total of Al 2 O 3 converted value of Al and Al 2 O 3 exceeds 2.3%, Al oxide remains as non-metallic inclusions in the weld metal and the toughness of the weld metal deteriorates. Also, welding defects such as poor fusion and slag entrainment and metal sag are likely to occur. Therefore, the total of Al 2 O 3 converted value of Al in the flux-cored wire component for welding and Al 2 O 3 is 0.4 to 2.3%.
また、Alは、Al単体での添加効果として、脱酸力が非常に強力であり、Si、Mnなどの他の脱酸剤より早く酸素を取り込むので、溶接金属中へのSiおよびMnなどの歩留まり率を上げて溶接金属の強度および靭性を十分に確保する効果がある。フラックス中のAlが0.2%未満では、その効果が得られず、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接では、微溶融金属中の酸素量が下がらず、溶接金属中のSi、Mnなどの歩留まりが下がり、必要な溶接金属の強度および靭性が確保できなくなる。一方、Alが1.1%を超えると、アークが粗くなり、スパッタ発生量が多くなる。したがって、溶接用フラックス入りワイヤ成分中のAlは0.2〜1.1%とする。 In addition, Al has a very strong deoxidizing power as an effect of addition of Al alone, and oxygen is taken in earlier than other deoxidizing agents such as Si and Mn. Therefore, such as Si and Mn in the weld metal. This has the effect of increasing the yield rate and sufficiently ensuring the strength and toughness of the weld metal. If the Al content in the flux is less than 0.2%, the effect cannot be obtained, and the amount of oxygen in the fine molten metal does not decrease in the vertical position welding under the welding conditions with high heat input and high interpass temperature. In addition, the yield of Si, Mn, etc. in the weld metal decreases, and the required weld metal strength and toughness cannot be secured. On the other hand, if Al exceeds 1.1%, the arc becomes rough and the amount of spatter generated increases. Therefore, Al in the flux-cored wire component for welding is 0.2 to 1.1%.
[B:0.002〜0.015%]
Bは、溶接金属中のミクロ組織の粒界フェライトの粗大化を抑制して溶接金属の靭性を向上する効果がある。Bが0.0020%未満では、この効果が得られず、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接で必要とする溶接金属の靭性が得られない。一方、Bが0.015%を超えると、低融点のBが粒界に偏析して高温割れが発生する。したがって、溶接用フラックス入りワイヤのBは0.002〜0.015%とする。
[B: 0.002 to 0.015%]
B has an effect of suppressing the coarsening of the grain boundary ferrite of the microstructure in the weld metal and improving the toughness of the weld metal. If B is less than 0.0020%, this effect cannot be obtained, and the toughness of the weld metal required for the standing improvement posture welding under the welding conditions of high heat input and high pass temperature cannot be obtained. On the other hand, if B exceeds 0.015%, the low melting point B segregates at the grain boundaries and high temperature cracking occurs. Therefore, B of the flux cored wire for welding is set to 0.002 to 0.015%.
次に、溶接用フラックス入りワイヤのフラックス(以下、フラックスという。)中の限定理由を述べる。 Next, the reason for limitation in the flux of the flux-cored wire for welding (hereinafter referred to as flux) will be described.
[Ti酸化物のTiO2換算値:5.5〜6.8%]
ルチール、チタンスラグ等のTi酸化物は、アーク安定剤であるとともに、ビード形状を良好にする効果を有する。また、溶融スラグの融点および粘性を上げるので、立向上進姿勢溶接でのメタル垂れを防止する。さらに、一部がTi酸化物として溶接金属に歩留り、溶接金属のミクロ組織を微細化して靭性を向上する効果も有する。Ti酸化物のTiO2換算値が5.5%未満では、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接でアークが不安定になり、スパッタ発生量が増加する。また、ビード形状も不良になり、メタル垂れが発生しやすくなる。さらに、溶接金属へのTi酸化物の歩留りが不足するため、溶接金属のミクロ組織が粗大化して靭性が劣化する。一方、Ti酸化物のTiO2換算値が6.8%を超えると、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接では、スラグが過多となりスラグ剥離性が不良となる。また、溶接金属へのTi酸化物の歩留りが過剰になり、非金属介在物が多くなって溶接金属の靭性が劣化する。したがって、フラックス中のTi酸化物のTiO2換算値は5.5〜6.8%とする。
[TiO 2 converted value of Ti oxides: 5.5 to 6.8%]
Ti oxides such as rutile and titanium slag are arc stabilizers and have the effect of improving the bead shape. In addition, since the melting point and viscosity of the molten slag are increased, metal sag is prevented in the vertical improvement welding. Furthermore, a part of the titanium oxide is retained in the weld metal, and the microstructure of the weld metal is refined to improve toughness. If the TiO 2 equivalent value of the Ti oxide is less than 5.5%, the arc becomes unstable and the amount of spatter increases due to the standing-up advanced position welding under the welding conditions of high heat input and high pass temperature. In addition, the bead shape becomes poor, and metal dripping is likely to occur. Furthermore, since the yield of Ti oxide on the weld metal is insufficient, the microstructure of the weld metal becomes coarse and the toughness deteriorates. On the other hand, if the TiO 2 equivalent value of the Ti oxide exceeds 6.8%, the slag will be excessive and the slag peelability will be poor in the standing posture advance welding under welding conditions of high heat input and high pass temperature. Become. Moreover, the yield of the Ti oxide to the weld metal becomes excessive, and nonmetallic inclusions increase, resulting in deterioration of the toughness of the weld metal. Therefore, the TiO 2 equivalent value of the Ti oxide in the flux is set to 5.5 to 6.8%.
[Si酸化物のSiO2換算値:0.4〜1.6%]
珪砂やジルコンサンド、珪酸ソーダ等のSi酸化物は、溶融スラグの粘性を高めてスラグ被包性を向上させてビード外観およびスラグ剥離性を向上する効果を有する。Si酸化物のSiO2換算値が0.4%未満では、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接で溶融スラグの粘性が低くなってスラグ被包性およびスラグ剥離性が不良となり、ビード形状も不良となる。一方、Si酸化物のSiO2換算値が1.6%を超えると、溶接金属のミクロ組織の硬化相生成が促進されて溶接金属の靭性が劣化する。したがって、フラックス中のSi酸化物のSiO2換算値は0.4〜1.6%とする。
[SiO 2 converted value of Si oxide: 0.4 to 1.6%]
Si oxides such as silica sand, zircon sand, and sodium silicate have the effect of increasing the viscosity of the molten slag to improve the slag encapsulation and improving the bead appearance and slag peelability. When the SiO 2 equivalent value of the Si oxide is less than 0.4%, the viscosity of the molten slag becomes low during the standing improvement welding under the welding conditions of high heat input and high-pass temperature, and the slag encapsulation and slag The peelability is poor and the bead shape is also poor. On the other hand, if the SiO 2 equivalent value of the Si oxide exceeds 1.6%, the formation of a hardened phase in the microstructure of the weld metal is promoted, and the toughness of the weld metal deteriorates. Therefore, the SiO 2 equivalent value of the Si oxide in the flux is 0.4 to 1.6%.
[Zr酸化物のZrO2換算値:0.1〜0.6%]
ジルコンサンド、酸化ジルコン等のZr酸化物は、溶融スラグの凝固温度を高くして立向上進姿勢溶接でのメタル垂れを防止する。Zr酸化物のZrO2換算値が0.1%未満では、大入熱および高パス間温度の溶接施工条件での立向上進姿勢溶接でメタル垂れが発生しやすくなる。一方、Zr酸化物のZrO2換算値が0.6%を超えると、スラグが緻密で固くなり、スラグ剥離性が不良となる。したがって、フラックス中のZr酸化物のZrO2換算値は0.1〜0.6%とする。
[ZrO 2 converted value of Zr oxide: 0.1 to 0.6%]
Zr oxides such as zircon sand and zircon oxide increase the solidification temperature of the molten slag and prevent metal dripping in the standing posture advance welding. If the ZrO 2 conversion value of the Zr oxide is less than 0.1%, metal dripping is likely to occur in the standing improvement posture welding under the welding conditions of large heat input and high interpass temperature. On the other hand, when the ZrO 2 conversion value of the Zr oxide exceeds 0.6%, the slag becomes dense and hard, and the slag peelability becomes poor. Therefore, the ZrO 2 conversion value of the Zr oxide in the flux is set to 0.1 to 0.6%.
[Mg:0.1〜0.3%]
Mgは、溶融プール内で強脱酸剤として作用し、溶接金属中の酸素量を低減して溶接金属の靭性を改善させる。特に、大入熱および高パス間温度の溶接施工条件では、溶接電流が高くワイヤ送給量も増加して溶融プールの酸素量も増えるので、強力な脱酸効果を有するMgの添加が必須となる。Mgが0.1%未満であると、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接では、溶融プール中に残留した酸素量が多くなり、溶接金属の靭性が劣化する。一方、Mgが0.3%を超えると、アークが粗くなってスパッタ発生量が多くなり、メタル垂れも発生しやすくなる。したがって、フラックス中のMgは0.1〜0.3%とする。
[Mg: 0.1-0.3%]
Mg acts as a strong deoxidizer in the molten pool, reducing the amount of oxygen in the weld metal and improving the toughness of the weld metal. In particular, under welding conditions with high heat input and high interpass temperature, the welding current is high, the wire feed rate is increased, and the amount of oxygen in the molten pool also increases, so it is essential to add Mg with a strong deoxidation effect. Become. When Mg is less than 0.1%, the amount of oxygen remaining in the molten pool increases and the toughness of the weld metal deteriorates in the welding with the improved posture of the welding conditions with high heat input and high interpass temperature. . On the other hand, if Mg exceeds 0.3%, the arc becomes rough, the amount of spatter generated increases, and metal dripping is likely to occur. Therefore, Mg in the flux is 0.1 to 0.3%.
[Na化合物のNa2O換算値およびK化合物のK2O換算値との合計:0.15〜0.30%]
カリ長石、珪酸ソーダや珪酸カリからなる水ガラスの固質成分、弗化ソーダや珪弗化カリ等の弗素化合物からのNa化合物およびK化合物は、アーク安定剤およびスラグ形成剤として作用する。Na化合物のNa2O換算値およびK化合物のK2O換算値との合計が0.15%未満であると、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接では、アークが不安定となり、スパッタ発生量が多くなる。一方、Na化合物のNa2O換算値およびK化合物のK2O換算値との合計が0.30%を超えると、スラグ剥離性が不良となり、メタル垂れが発生しやすくなる。したがって、フラックス中のNa化合物のNa2O換算値およびK化合物のK2O換算値との合計は0.15〜0.30%とする。
[Sum of the K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound: 0.15 to 0.30%]
Solid components of water glass made of potassium feldspar, sodium silicate and potassium silicate, and Na compounds and K compounds from fluorine compounds such as sodium fluoride and potassium silicofluoride act as arc stabilizers and slag forming agents. When the sum of the K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound is less than 0.15%, in the vertical upward advance position welding of welding conditions of temperature between the large heat input and high pass, The arc becomes unstable and the amount of spatter generated increases. On the other hand, if the total of the K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound exceeds 0.30%, the slag removability becomes poor, so the metal dripping is likely to occur. Therefore, the sum of K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound in the flux is set to from 0.15 to 0.30%.
[弗素化合物のF換算値:0.03〜0.10%]
弗化ソーダ、氷晶石、弗化アルミ、珪弗化カリなどの弗素化合物は、アークの指向性を高めて安定した溶融プールを形成するとともに、溶融スラグの粘性を下げてスラグ流動性を良好にする効果がある。弗素化合物のF換算値が0.03%未満では、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接では、アークが弱くなってアーク状態が不安定になり、スパッタ発生量が増加する。また、スラグ流動性が悪くなり、ビード形状が不良になる。一方、弗素化合物のF換算値が0.10%を超えると、アークが過剰に強くなり、スパッタ発生量が多くなる。また、溶融スラグの粘性が下がりすぎ、メタル垂れが発生しやすくなる。したがって、フラックス中の弗素化合物のF換算値は、0.03〜0.10%とする。
[F conversion value of fluorine compound: 0.03 to 0.10%]
Fluorine compounds such as sodium fluoride, cryolite, aluminum fluoride, and potassium silicofluoride increase the directivity of the arc to form a stable molten pool and reduce the viscosity of the molten slag to improve slag fluidity Has the effect of If the F-converted value of the fluorine compound is less than 0.03%, the welding process conditions of high heat input and high-pass temperature will be improved in the advanced posture welding, the arc becomes weak and the arc state becomes unstable, and the amount of spatter generated Will increase. Moreover, slag fluidity | liquidity worsens and a bead shape becomes bad. On the other hand, if the F-converted value of the fluorine compound exceeds 0.10%, the arc becomes excessively strong and the amount of spatter generated increases. In addition, the viscosity of the molten slag is too low, and metal dripping is likely to occur. Therefore, the F equivalent value of the fluorine compound in the flux is 0.03 to 0.10%.
[BiおよびBi酸化物のBi換算値の合計:0.005〜0.02%]
金属BiやBi酸化物などのBiは、スラグ剥離性を向上させる効果がある。BiおよびBi酸化物のBi換算値の合計が0.005%未満では、その効果が得られず、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接では、スラグ剥離性が不良になる。一方、BiおよびBi酸化物のBi換算値の合計が0.02%を超えると、溶接金属の靭性が劣化するとともに、高温割れが発生しやすくなる。したがって、フラックス中のBiおよびBi酸化物のBi換算値の合計は、0.005〜0.02%とする。
[Total of Bi and Bi oxide converted values: 0.005 to 0.02%]
Bi such as metal Bi or Bi oxide has an effect of improving slag removability. If the total of Bi and Bi oxides in terms of Bi is less than 0.005%, the effect cannot be obtained. breaking bad. On the other hand, if the total Bi converted value of Bi and Bi oxide exceeds 0.02%, the toughness of the weld metal deteriorates and high temperature cracking is likely to occur. Therefore, the total Bi converted value of Bi and Bi oxide in the flux is set to 0.005 to 0.02%.
以上、本発明の溶接用フラックス入りワイヤの成分組成の構成要件の限定理由を述べたが、残部は、Feおよび不可避不純物からなっている。Feは、鋼製外皮のFe、フラックスの鉄粉、Fe−Si、Fe−Mn、Fe−Si−Mn等のフェロアロイである鉄合金粉などからのFeで、鉄粉は溶着速度を高めるとともに溶接用フラックス入りワイヤの充填率調整の目的から適量添加することができる。不可避不純物は、P、Sなどの不可避に混入する不純物であり、耐高温割れ性の観点から、P:0.050%以下、S:0.05%以下が好ましい。 As mentioned above, although the reason for limitation of the constituent requirements of the component composition of the flux-cored wire for welding of the present invention has been described, the balance consists of Fe and inevitable impurities. Fe is Fe from steel outer shell Fe, iron powder of flux, iron alloy powder such as Fe-Si, Fe-Mn, Fe-Si-Mn, etc. Iron powder increases welding speed and welds An appropriate amount can be added for the purpose of adjusting the filling rate of the flux-cored wire. Inevitable impurities are impurities inevitably mixed in such as P and S. From the viewpoint of hot cracking resistance, P: 0.050% or less and S: 0.05% or less are preferable.
なお、溶接用フラックス入りワイヤは、鋼帯をパイプ状に成形して内部にフラックスを充填したもので、鋼製外皮の端部同士を溶接した継ぎ目の無いシームレスタイプと鋼製外皮の端部同士をかしめて繋げた継ぎ目のあるかしめタイプがあり、本発明は両方のタイプで適用可能である。建設現場等の現地溶接や高所、低温環境での溶接が多いため、低温割れ防止、予熱温度低減の理由から、耐吸湿性に優れて拡散性水素を低減することができるシームレスタイプであることが好ましく、さらに、ワイヤ送給性が良好でアークの安定性に優れたワイヤ表面に銅めっきを施した溶接用フラックス入りワイヤであることが好ましい。 In addition, the flux cored wire for welding is formed by forming a steel strip into a pipe shape and filling the inside with a flux. The seamless type in which the ends of the steel outer shell are welded together and the ends of the steel outer shell are connected to each other. There is a caulking type with a seam that is connected by caulking, and the present invention is applicable to both types. It is a seamless type that has excellent moisture absorption resistance and can reduce diffusible hydrogen for the reasons of low temperature cracking prevention and preheating temperature reduction because there are many on-site welding at construction sites, high places, and low temperature environments. Furthermore, it is preferable to be a flux-cored wire for welding in which copper is plated on a wire surface having good wire feedability and excellent arc stability.
また、溶接用フラックス入りワイヤのワイヤ径は1.2〜1.6mm、フラックスの充填率は高溶着性と生産性を考慮して11〜20%程度であることが好ましい。 The wire diameter of the flux-cored wire for welding is preferably 1.2 to 1.6 mm, and the filling rate of the flux is preferably about 11 to 20% in consideration of high weldability and productivity.
また、本発明の溶接用フラックス入りワイヤの溶接で使用するシールドガスはCO2ガスとすることが好ましい。 The shielding gas used for welding the flux-cored wire for welding according to the present invention is preferably CO 2 gas.
以下、本発明の効果を実施例により具体的に説明する。 Hereinafter, the effect of the present invention will be described in detail with reference to examples.
JIS G3141 SPHCの鋼製外皮(C:0.02%、Si:0.01%、Mn:0.40%、P:0.02%、S:0.01%)に、各種フラックスをフラックス充填率15%で充填し、表1に示す溶接用フラックス入りワイヤ成分(No.1〜24)でワイヤ径1.2mmまで縮径したフラックス入りワイヤを各種試作した。 JIS G3141 SPHC steel outer shell (C: 0.02%, Si: 0.01%, Mn: 0.40%, P: 0.02%, S: 0.01%) flux-filled Various types of flux-cored wires that were filled at a rate of 15% and reduced in diameter to a wire diameter of 1.2 mm with the flux-cored wire components for welding shown in Table 1 (Nos. 1 to 24) were prepared.
表1に示す各試作ワイヤを用い、立向上進姿勢ガスシールドアーク溶接でのアークの安定性、スパッタ発生量、メタル垂れ性、スラグ剥離性および耐高温割れ性などの溶接作業性および溶接金属の引張強さおよび靭性などの機械的性能の調査を行った。 Using each prototype wire shown in Table 1, welding workability such as arc stability, spatter generation, metal sag, slag peelability and hot cracking resistance in vertical improvement gas shielded arc welding and welding metal The mechanical properties such as tensile strength and toughness were investigated.
立向上進姿勢溶接での溶接作業性については、板厚12mmのJIS G3136 SN490B鋼をT字に組み、表2に示す溶接条件(W1〜W7)にて立向上進姿勢溶接を行い、アーク状態、スパッタ発生量、アークの安定性、メタル垂れの有無、スラグ被包性およびスラグ剥離性の良否、高温割れの有無について目視確認にて調査した。 As for welding workability in vertical improvement welding, JIS G3136 SN490B steel with a plate thickness of 12 mm is assembled in a T shape, vertical improvement welding is performed under the welding conditions (W1 to W7) shown in Table 2, and the arc state The amount of spatter generated, the stability of the arc, the presence or absence of metal sag, the quality of slag encapsulation and slag peelability, and the presence or absence of hot cracking were examined by visual confirmation.
立向上進姿勢溶接での機械的性質については、板厚20mmのJIS G3136 SN490B鋼を用い、開先角度45°、ルート間隔12mm、裏当付きの試験体にて、表2に示す溶接条件にて立向上進姿勢溶接を行い、溶接金属の板厚中央部から引張試験片(JIS Z2201 A0号)およびシャルピー衝撃試験片(JIS Z2202 4号)を採取して評価し、引張強さは550〜740MPa、シャルピー衝撃試験は試験温度0℃での3本の平均値が47J以上を合格とした。なお、融合不良やスラグ巻込みなどの溶接欠陥については、この溶接部に対し、JIS Z 3104に準拠してX線透過試験を行い、溶接欠陥の有無を調査した。それらの結果を表3にまとめて示す。なお、表3中に示すNo.は、表1に示すフラックス入りワイヤ成分のNo.を示している。 As for the mechanical properties in the vertical improvement welding, the welding conditions shown in Table 2 were used, using a JIS G3136 SN490B steel with a plate thickness of 20 mm, a groove angle of 45 °, a root interval of 12 mm, and a backed specimen. The test piece is subjected to vertical improvement welding, and a tensile test piece (JIS Z2201 A0) and a Charpy impact test piece (JIS Z22024 No. 4) are collected and evaluated from the center of the thickness of the weld metal, and the tensile strength is 550-500. In the 740 MPa, Charpy impact test, an average value of three at a test temperature of 0 ° C. was 47 J or more. For welding defects such as poor fusion and slag entrainment, an X-ray transmission test was conducted on the welded portion in accordance with JIS Z 3104 to investigate the presence or absence of welding defects. The results are summarized in Table 3. In addition, No. shown in Table 3 No. of the flux-cored wire component shown in Table 1. Is shown.
表3中試験No.1〜9が本発明例、No.10〜24は比較例である。 In Table 3, test no. 1-9 are examples of the present invention, No. 10-24 are comparative examples.
本発明例であるNo.1〜7は、用いたフラックス入りワイヤの鋼製外皮とフラックスの合計のC、Si、Mn、B量が適量で、フラックスのTiO2換算値、SiO2換算値、ZrO2換算値、AlのAl2O3換算値およびAl2O3換算値の合計、Al、Mg、Na2O換算値およびK2O換算値の合計、弗素化合物のF換算値、BiおよびBi酸化物のBi換算値の合計量が適量で、入熱量およびパス間温度も適正であるので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接において、アーク状態が良好でスパッタ発生量が少なく、スラグ被包性、スラグ剥離性およびビード形状が良好で、メタル垂れも発生せず、高温割れ、溶接欠陥も発生しなかった。また、溶接金属の引張強さおよび吸収エネルギーも良好であり、極めて満足な結果であった。なお、No.8および9は、溶接用フラックス入りワイヤのフラックス中のBiおよびBi酸化物が添加されていないので、スラグ剥離性がやや不良であったが、ビード形状は良好であり、製品としての品質上の問題はなかった。 No. which is an example of the present invention. 1 to 7 are the appropriate amounts of C, Si, Mn, and B of the steel sheath of the flux-cored wire and the flux used, and the TiO 2 converted value, SiO 2 converted value, ZrO 2 converted value of the flux, Total of Al 2 O 3 converted value and Al 2 O 3 converted value, Al, Mg, Na 2 O converted value and K 2 O converted value, Fluorine compound F converted value, Bi and Bi oxide Bi converted value The amount of heat input and the amount of heat input and the temperature between passes are also appropriate, so the welding conditions for large heat input and high pass temperature are improved. The slag encapsulation, slag peelability and bead shape were good, no metal sagging occurred, and no hot cracks or welding defects occurred. Also, the tensile strength and absorbed energy of the weld metal were good, and the result was extremely satisfactory. In addition, No. In Nos. 8 and 9, Bi and Bi oxides in the flux of the flux-cored wire for welding were not added, so the slag peelability was slightly poor, but the bead shape was good, and the quality as a product There was no problem.
比較例中No.10は、鋼製外皮とフラックスの合計のCが少ないので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接での溶接金属の引張強さが低かった。また、フラックス中のTiO2換算値が少ないので、アークが不安定でスパッタ発生量が多く、メタル垂れが発生し、ビード形状も不良で、溶接金属の吸収エネルギーも低かった。 No. in the comparative examples. In No. 10, since the total C of the steel outer shell and the flux was small, the tensile strength of the weld metal was low in the welding to improve the welding conditions of high heat input and high pass temperature. Further, since the converted value of TiO 2 in the flux was small, the arc was unstable, the amount of spatter was large, metal sagging occurred, the bead shape was poor, and the absorbed energy of the weld metal was low.
No.11は、鋼製外皮とフラックスの合計のCが多いので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接での溶接金属の引張強さが高く、吸収エネルギーが低く、高温割れが発生した。また、フラックス中のMgが多いので、アークが粗く、スパッタ発生量が多く、メタル垂れが発生した。 No. No. 11 has a large amount of C of the steel outer shell and the flux, so that the weld metal has a high tensile strength and a low absorbed energy in the advanced posture welding with high heat input and high pass temperature welding conditions. Hot cracking occurred. Moreover, since there was much Mg in a flux, the arc was rough, the spatter generation amount was large, and metal dripping occurred.
No.12は、フラックス中のAlのAl2O3換算値およびAl2O3の合計が少ないので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接でのスラグ被包性が悪く、ビード形状が不良であった。さらに、鋼製外皮とフラックスの合計のAlが少ないので、溶接金属の引張強さおよび吸収エネルギーが低かった。また、溶接時の入熱量が低いので、溶接効率が悪かった。 No. No. 12, since the total of Al 2 O 3 converted value of Al and Al 2 O 3 in the flux is small, the slag encapsulation performance in the advanced posture welding is improved in the welding conditions with high heat input and high interpass temperature. The bead shape was bad. Furthermore, since the total Al of the steel outer shell and the flux was small, the tensile strength and absorbed energy of the weld metal were low. In addition, since the heat input during welding was low, the welding efficiency was poor.
No.13は、鋼製外皮とフラックスの合計のSiが多いので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接での溶接金属の吸収エネルギーが低かった。また、フラックス中のZrO2換算値が多いので、スラグ剥離性が不良であった。さらに、フラックス中の弗素化合物のF換算値が少ないので、アーク状態が不安定でスパッタ発生量が多く、ビード形状も不良であった。 No. In No. 13, since the total amount of Si in the steel outer shell and the flux is large, the absorbed energy of the weld metal in the welding for improving the welding conditions of high heat input and high interpass temperature was low. Also, since there are many terms of ZrO 2 value in the flux, the slag removability was poor. Furthermore, since the F-converted value of the fluorine compound in the flux is small, the arc state is unstable, the amount of spatter generated is large, and the bead shape is poor.
No.14は、鋼製外皮とフラックスの合計のMnが少ないので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接での溶接金属の引張強さおよび吸収エネルギーが低かった。また、フラックス中のSiO2換算値が少ないので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接でのスラグ被包性およびスラグ剥離性が悪く、ビード形状も不良であった。 No. In No. 14, the total Mn of the steel outer shell and the flux was small, so that the tensile strength and the absorbed energy of the weld metal were low in the welding with the high heat input and the high-pass temperature welding process. In addition, since the SiO 2 equivalent value in the flux is small, the slag encapsulation and slag peelability in the advanced posture welding is poor, and the bead shape is also poor. It was.
No.15は、鋼製外皮とフラックスの合計のMnが多いので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接での溶接金属の吸収エネルギーが低かった。また、フラックス中のNa2O換算値およびK2O換算値の合計が少ないので、アーク状態が不安定でスパッタ発生量が多かった。 No. In No. 15, since the total amount of Mn of the steel outer shell and the flux is large, the absorbed energy of the weld metal in the welding for improving the welding conditions with high heat input and high interpass temperature was low. Further, since the total of Na 2 O converted value and K 2 O converted value in the flux was small, the arc state was unstable and the amount of spatter was large.
No.16は、鋼製外皮とフラックスの合計のBが多いので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接で高温割れが発生した。また、フラックス中のTiO2換算値が多いので、スラグ剥離性が不良で、溶接金属の吸収エネルギーが低かった。さらに、フラックス中の弗素化合物のF換算値が多いので、アークが強くてスパッタ発生量が多く、メタル垂れが発生した。 No. No. 16 had a total B of the steel outer shell and the flux, so that high-temperature cracking occurred in the welding with a high heat input and the high welding temperature under the high welding temperature. Also, since there are many terms of TiO 2 values in the flux, the slag removability is poor, was less absorbed energy of the weld metal. Furthermore, since the F-converted value of the fluorine compound in the flux is large, the arc is strong, the amount of spatter generated is large, and metal dripping occurs.
No.17は、フラックスのSiO2換算値が多いので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接で溶接金属の吸収エネルギーが低かった。また、フラックス中のZrO2換算値が少ないので、メタル垂れが発生した。 No. No. 17 had a large amount of flux converted to SiO 2 , and therefore, the absorbed energy of the weld metal was low in the welding with improved posture under large welding heat input and high pass temperature welding conditions. Moreover, since the ZrO 2 conversion value in the flux was small, metal sagging occurred.
No.18は、フラックス中のAlのAl2O3換算値およびAl2O3の合計が多いので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接でメタル垂れが発生し、スラグ巻込みが発生した。また、溶接金属の吸収エネルギーが低かった。また、鋼製外皮とフラックスの合計のAlが多いので、アークが粗く、スパッタ発生量が多かった。 No. 18 has a large amount of Al 2 O 3 equivalent value of Al in the flux and the total of Al 2 O 3 , so that metal dripping occurs in the vertical improvement welding of the welding conditions of large heat input and high pass temperature, Slag entrainment occurred. Moreover, the absorbed energy of the weld metal was low. Further, since the total amount of Al of the steel outer shell and the flux was large, the arc was rough and the amount of spatter was large.
No.19は、鋼製外皮とフラックスの合計のSiが少ないので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接で溶接金属の引張強さおよび吸収エネルギーが低かった。また、フラックス中のNa2O換算値およびK2O換算値の合計が多いので、スラグ剥離性が不良で、メタル垂れが発生した。 No. In No. 19, since the total amount of Si in the steel outer shell and the flux is small, the tensile strength and the absorbed energy of the weld metal were low in the welding with a high heat input and the high welding temperature under the high welding temperature. Further, since the sum of the terms of Na 2 O values and K 2 O conversion value of the flux is large, the slag removability is bad, metal sagging occurs.
No.20は、溶接時の入熱量が高いので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接で溶接金属の引張強さおよび吸収エネルギーが低かった。 No. No. 20 has a high heat input at the time of welding, so the tensile strength and the absorbed energy of the weld metal were low in the welding with a high heat input and the high welding temperature under the high welding temperature.
No.21は、溶接時のパス間温度が高いので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接で溶接金属の引張強さおよび吸収エネルギーが低かった。 No. No. 21 has a high inter-pass temperature at the time of welding, so that the tensile strength and absorbed energy of the weld metal were low in the welding to improve the welding conditions of large heat input and high inter-pass temperature.
No.22は、フラックス中のMgが少ないので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接で溶接金属の吸収エネルギーが低かった。また、フラックス中のBiおよびBi酸化物のBi換算値の合計が少ないので、スラグ剥離性が不良であった。 No. No. 22 had a small amount of Mg in the flux, and therefore, the absorbed energy of the weld metal was low in the welding with a high heat input and the high welding temperature under the high welding temperature. Moreover, since the total of Bi conversion values of Bi and Bi oxide in the flux was small, the slag peelability was poor.
No.23は、フラックス中のZrO2換算値が少ないので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接でメタル垂れが発生した。また、フラックス中のBiおよびBi酸化物のBi換算値の合計が多いので、高温割れが発生し、溶接金属の吸収エネルギーが低かった。 No. In No. 23, since the ZrO 2 equivalent value in the flux was small, metal sag occurred in the vertical improvement welding with high heat input and high pass temperature welding conditions. Moreover, since there were many sum of Bi conversion value of Bi and Bi oxide in a flux, the high temperature crack generate | occur | produced and the absorbed energy of the weld metal was low.
No.24は、鋼製外皮とフラックスの合計のBが少ないので、大入熱および高パス間温度の溶接施工条件の立向上進姿勢溶接で溶接金属の吸収エネルギーが低かった。 No. In No. 24, since the total B of the steel outer shell and the flux was small, the absorbed energy of the weld metal was low in the welding for improving the welding conditions of high heat input and high interpass temperature.
以上の通り、本発明によれば、軟鋼〜520MPa級高張力鋼に対し、高い入熱(入熱量20〜40kJ/cm)およびパス間温度(350℃以下)の溶接施工条件で立向上進姿勢でのガスシールドアーク溶接においても、良好な溶接作業性が得られ、溶接パス数の減少および各パス毎の冷却待ち時間の短縮が図れることによる高能率な溶接ができ、かつ、機械的性能が良好で高品質の溶接部を得ることができることが確認できた。 As described above, according to the present invention, with respect to mild steel to 520 MPa class high-strength steel, the standing posture is improved under welding conditions of high heat input (heat input 20 to 40 kJ / cm) and interpass temperature (350 ° C. or less). Even in gas shielded arc welding, high welding efficiency can be obtained, high efficiency welding can be achieved by reducing the number of welding passes and shortening the cooling waiting time for each pass, and mechanical performance is improved. It was confirmed that a good and high-quality weld can be obtained.
Claims (2)
鋼製外皮とフラックスの合計で、
C:0.02〜0.08%、
Si:0.3〜1.0%、
Mn:1.8〜2.8%、
AlのAl2O3換算値およびAl2O3の合計:0.4〜2.3%、かつ、Al:0.2〜1.1%、
B:0.002〜0.015%を含有し、
フラックスに、
Ti酸化物のTiO2換算値:5.5〜6.8%、
Si酸化物のSiO2換算値:0.4〜1.6%、
Zr酸化物のZrO2換算値:0.1〜0.6%、
Mg:0.1〜0.3%、
Na化合物のNa2O換算値およびK化合物のK2O換算値の合計:0.15〜0.30%、
弗素化合物のF換算値:0.03〜0.10%を含有し、
残部はFeおよび不可避不純物からなることを特徴とする入熱量20〜40kJ/cm、パス間温度350℃以下の溶接施工条件での立向上進溶接向けガスシールドアーク溶接用フラックス入りワイヤ。 In the flux-cored wire for gas shielded arc welding formed by filling the steel outer shell with flux,
The total of steel outer shell and flux,
C: 0.02 to 0.08%,
Si: 0.3 to 1.0%,
Mn: 1.8 to 2.8%
Al 2 O 3 conversion value of Al and Al 2 O 3 total: 0.4 to 2.3%, and Al: 0.2 to 1.1%,
B: contains 0.002 to 0.015%,
To the flux,
TiO 2 conversion value of Ti oxide: 5.5 to 6.8%,
SiO 2 conversion value of Si oxide: 0.4 to 1.6%,
ZrO 2 conversion value of Zr oxide: 0.1 to 0.6%,
Mg: 0.1 to 0.3%
Total K 2 O conversion value of terms of Na 2 O values and K compounds of Na compound: 0.15 to 0.30%,
F conversion value of fluorine compound: 0.03 to 0.10% contained,
A flux-cored wire for gas shielded arc welding for standing up welding under welding conditions with a heat input of 20-40 kJ / cm and a pass-to-pass temperature of 350 ° C. or less, characterized in that the balance consists of Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014086844A JP6084948B2 (en) | 2014-04-18 | 2014-04-18 | Flux-cored wire for gas shielded arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014086844A JP6084948B2 (en) | 2014-04-18 | 2014-04-18 | Flux-cored wire for gas shielded arc welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015205303A JP2015205303A (en) | 2015-11-19 |
JP6084948B2 true JP6084948B2 (en) | 2017-02-22 |
Family
ID=54602610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014086844A Active JP6084948B2 (en) | 2014-04-18 | 2014-04-18 | Flux-cored wire for gas shielded arc welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6084948B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6322096B2 (en) * | 2014-09-09 | 2018-05-09 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
JP6669613B2 (en) * | 2016-08-29 | 2020-03-18 | 日鉄溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
JP6951313B2 (en) * | 2018-01-16 | 2021-10-20 | 日鉄溶接工業株式会社 | Flux-filled wire for gas shielded arc welding |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61283493A (en) * | 1985-06-10 | 1986-12-13 | Daido Steel Co Ltd | Flux-cored wire for welding |
JPS61286089A (en) * | 1985-06-11 | 1986-12-16 | Daido Steel Co Ltd | Gas shielded arc welding method |
JPS6233093A (en) * | 1985-07-31 | 1987-02-13 | Daido Steel Co Ltd | Flux cored wire for welding |
JPS6233094A (en) * | 1985-07-31 | 1987-02-13 | Daido Steel Co Ltd | Flux cored wire for welding |
US4723061A (en) * | 1986-07-31 | 1988-02-02 | The Lincoln Electric Company | Gas shielded, flux cored, welding electrode |
JP4300153B2 (en) * | 2004-05-11 | 2009-07-22 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
JP4531617B2 (en) * | 2005-04-07 | 2010-08-25 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
JP2009148774A (en) * | 2007-12-19 | 2009-07-09 | Nippon Steel & Sumikin Welding Co Ltd | Rutile type flux cored wire for gas shielded arc welding |
JP5356142B2 (en) * | 2009-07-28 | 2013-12-04 | 日鐵住金溶接工業株式会社 | Gas shield arc welding method |
JP5824403B2 (en) * | 2012-04-04 | 2015-11-25 | 日鐵住金溶接工業株式会社 | Flux-cored wire for carbon dioxide shielded arc welding |
-
2014
- 2014-04-18 JP JP2014086844A patent/JP6084948B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015205303A (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5768547B2 (en) | High-strength steel flux cored wire for gas shielded arc welding | |
JP5359561B2 (en) | Flux-cored wire for high-tensile steel | |
JP6188621B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP2014113615A (en) | Flux-cored wire for carbon dioxide gas shielded arc welding | |
JP6033755B2 (en) | Flux-cored wire for Ar-CO2 mixed gas shielded arc welding | |
JP2013151001A (en) | Flux-cored wire for gas-shielded arc welding for weather-resistant steel | |
JP5356142B2 (en) | Gas shield arc welding method | |
JP5400472B2 (en) | Flux cored wire | |
JP5400461B2 (en) | Flux cored wire | |
JP2015217393A (en) | Flux-cored wire for carbon dioxide gas shielded arc welding | |
JP2012121051A (en) | Flux-cored wire for gas shielded arc welding | |
JP2018153853A (en) | Flux-cored wire for gas shield arc welding | |
JP2009248137A (en) | Flux cored wire for gas-shielded arc welding | |
JP5459083B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel | |
JP5314414B2 (en) | Flux cored wire | |
JP4300153B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6437419B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP5558406B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6669613B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6084948B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6322096B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6385879B2 (en) | Flux-cored wire for gas shielded arc welding | |
WO2016060208A1 (en) | Wire containing flux for gas shield arc welding | |
JP6599807B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
KR102156027B1 (en) | Flux cored wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6084948 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |