JP5400472B2 - Flux cored wire - Google Patents
Flux cored wire Download PDFInfo
- Publication number
- JP5400472B2 JP5400472B2 JP2009122360A JP2009122360A JP5400472B2 JP 5400472 B2 JP5400472 B2 JP 5400472B2 JP 2009122360 A JP2009122360 A JP 2009122360A JP 2009122360 A JP2009122360 A JP 2009122360A JP 5400472 B2 JP5400472 B2 JP 5400472B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- mass
- wire
- welding
- flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
Description
本発明は、軟鋼、高張力鋼などからなる鋼板のガスシールドアーク溶接に適用されるフラックス入りワイヤに関するものである。 The present invention relates to a flux-cored wire applied to gas shielded arc welding of a steel plate made of mild steel, high-tensile steel, or the like.
従来、鋼板のガスシールドアーク溶接に適用されるフラックス入りワイヤには、以下のような構成を備えたものが提案されている。例えば、特許文献1では、ワイヤ全質量に対して質量%で、所定量のTiO2、SiO2、ZrO2、CaO、Na2O、K2O、F、C、Si、Mn、Al、Mg、P、S、B、Biを含有し、残部がFeおよび不可避的不純物からなり、かつ、Na2O+K2O、Mn/Si、Al+Mgが所定量であるガスシールドアーク溶接用フラックス入りワイヤが提案されている。 Conventionally, a flux-cored wire applied to gas shielded arc welding of a steel sheet has been proposed with the following configuration. For example, in Patent Document 1, a predetermined amount of TiO 2 , SiO 2 , ZrO 2 , CaO, Na 2 O, K 2 O, F, C, Si, Mn, Al, Mg in mass% with respect to the total mass of the wire. , P, S, B, contains Bi, the balance being Fe and unavoidable impurities, and, Na 2 O + K 2 O , Mn / Si, Al + Mg flux-cored wire for gas shielded arc welding is a predetermined amount proposed Has been.
しかしながら、特許文献1に記載されたワイヤは、Tiを含有せず、また、Mnの含有量も少量であるため、鋼板の片面突合せ継手溶接において、初層溶接部で高温割れが発生するという問題がある。また、ワイヤがAl2O3を含有しないため、水平すみ肉溶接でのビード形状が悪かったり、立向上進溶接でビード垂れが発生したりする等の全姿勢溶接における溶接作業性が劣るという問題がある。さらに、ワイヤのMn量およびB量が少量であるため、溶接金属の機械的性質(靭性)が劣るという問題もある。 However, since the wire described in Patent Document 1 does not contain Ti and the content of Mn is also small, there is a problem that high-temperature cracking occurs in the first-layer welded portion in single-sided butt joint welding of steel plates. There is. In addition, since the wire does not contain Al 2 O 3 , there is a problem that welding workability in all-position welding is inferior, such as poor bead shape in horizontal fillet welding or bead sagging in standing improvement welding. There is. Furthermore, since the amount of Mn and B of the wire is small, there is a problem that the mechanical properties (toughness) of the weld metal are inferior.
本発明は、前記課題に鑑みてなされたもので、耐高温割れ性、溶接作業性および溶接金属の機械的性質に優れたフラックス入りワイヤを提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a flux-cored wire excellent in hot crack resistance, welding workability and mechanical properties of a weld metal.
前記課題を解決するために、本発明に係るフラックス入りワイヤは、鋼製外皮内にフラックスが充填されたフラックス入りワイヤであって、ワイヤ全質量に対するフラックス充填率が10〜25質量%であり、ワイヤ全質量に対して、C:0.03〜0.08質量%、Si(ワイヤに含有される全てのSi源から算出されるSi量の総和):0.10〜1.00質量%、Mn(ワイヤに含有される全てのMn源から算出されるMn量の総和):2.4〜3.7質量%、Ti:0.15〜1.00質量%、TiO2:5.0〜8.0質量%、Al:0.20〜0.50質量%、Al2O3:0.05〜0.50質量%、B:0.003〜0.020質量%、Mg:0.3〜1.0質量%を含有し、残部がFeおよび不可避的不純物からなり、かつ、(4×Ti+10×Al−3×Si)≧1.0の関係式を満足し、前記関係式において、(Ti)は前記ワイヤに含有される前記Tiおよび前記TiO2のうちの前記Tiのみから算出されるTi量、(Al)は前記ワイヤに含有される前記Alおよび前記Al 2 O 3 のうちの前記Alのみから算出されるAl量である構成とする。 In order to solve the above-mentioned problem, the flux-cored wire according to the present invention is a flux-cored wire in which a flux is filled in a steel outer sheath, and the flux filling rate with respect to the total mass of the wire is 10 to 25% by mass, C: 0.03 to 0.08% by mass with respect to the total mass of the wire, Si (total amount of Si calculated from all Si sources contained in the wire): 0.10 to 1.00% by mass, Mn (total amount of Mn calculated from all Mn sources contained in the wire): 2.4 to 3.7% by mass, Ti: 0.15 to 1.00% by mass, TiO 2 : 5.0 to 8.0 mass%, Al: 0.20 to 0.50 wt%, Al 2 O 3: 0.05~0.50 wt%, B: .003 to .020 wt%, Mg: 0.3 -1.0% by mass, with the balance being Fe and inevitable impurities And satisfying the (4 × Ti + 10 × Al -3 × Si) ≧ 1.0 relational expression, in the relational expression (Ti) is the one of said Ti and said TiO 2 is contained in the prior Symbol wire Ti amount calculated from Ti alone, a structure is an Al amount calculated from the Al only one of the (Al) is the Al and the Al 2 O 3 contained in the wire.
かかる構成によれば、ワイヤ全質量に対するフラックス充填率が所定量であって、ワイヤ全質量に対して、所定量のC、Si、Mn、Ti、TiO2、Al、Al2O3、BおよびMgを含有することによって、溶接の際、スパッタ発生、ヒューム発生が抑制され、スラグ剥離性が改善されると共に、溶接継手(溶接金属)の機械的性質が向上し、かつ、初層溶接部における高温割れが抑制される。また、Ti量、Al量およびSi量とが、所定の関係を満足する、すなわち、(4×Ti+10×Al−3×Si)≧1.0を満足することによって、溶接時にTiが脱酸反応に寄与し、溶接金属中に生成する介在物の組成を核生成促進に効果的なTi系酸化物組成に制御できる。その結果、溶接金属の凝固組織を微細化でき、高温割れの抑制作用が向上する。 According to this configuration, the flux filling rate with respect to the total mass of the wire is a predetermined amount, and the predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 , B and the total mass of the wire By containing Mg, spattering and fume generation are suppressed during welding, slag peelability is improved, the mechanical properties of the welded joint (welded metal) are improved, and in the first layer weld zone Hot cracking is suppressed. Further, when the Ti amount, the Al amount, and the Si amount satisfy a predetermined relationship, that is, (4 × Ti + 10 × Al−3 × Si) ≧ 1.0, Ti is deoxidized during welding. It is possible to control the composition of inclusions generated in the weld metal to a Ti-based oxide composition effective for promoting nucleation. As a result, the solidification structure of the weld metal can be refined, and the action of suppressing hot cracking is improved.
また、請求項2に係るフラックス入りワイヤは、ワイヤ全質量に対して、希土類化合物の1種または2種以上を、希土類元素換算値で0.5質量%以下含有する構成とする。
In addition, the flux-cored wire according to
かかる構成によれば、ワイヤ全質量に対して、所定量の希土類化合物の1種または2種以上をさらに含有することによって、Tiの溶接金属への歩留まりが向上し、溶接金属中に生成する介在物の組成を核生成促進に効果的なTi系酸化物組成に制御できる。その結果、溶接金属の凝固組織を微細化でき、高温割れの抑制作用がさらに向上する。 According to this configuration, the yield of Ti to the weld metal is improved by further containing one or more of a predetermined amount of the rare earth compound with respect to the total mass of the wire, and the intermediate formed in the weld metal. The composition of the product can be controlled to a Ti-based oxide composition effective for promoting nucleation. As a result, the solidified structure of the weld metal can be refined, and the action of suppressing high temperature cracking is further improved.
請求項1に係るフラックス入りワイヤによれば、フラックス充填率が所定量であって、所定量のC、Si、Mn、Ti、TiO2、Al、Al2O3、B、Mgを含有し、かつ、フラックス入りワイヤに含まれるTi量、Al量およびSi量とが所定の関係を満足することによって、片面突合せ継手溶接の初層溶接部における耐高温割れ性が優れると共に、全姿勢溶接における溶接作業性(ビード外観を含む)および溶接金属の機械的特性が優れたものとなる。その結果、品質の優れた溶接製品を提供することができる。 According to the flux-cored wire according to claim 1, the flux filling rate is a predetermined amount, and contains a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 , B, Mg, In addition, the amount of Ti, Al, and Si contained in the flux-cored wire satisfy the predetermined relationship, so that the high-temperature crack resistance in the first layer welded portion of the single-sided butt joint welding is excellent, and welding in all-position welding Workability (including bead appearance) and mechanical properties of the weld metal are excellent. As a result, it is possible to provide a welded product with excellent quality.
請求項2に係るフラックス入りワイヤによれば、所定量の希土類化合物の1種または2種以上をさらに含有することによって、片面突合せ継手溶接の初層溶接部における耐高温割れ性が優れると共に、全姿勢溶接における溶接作業性(ビード外観を含む)および溶接金属の機械的特性がより優れたものとなる。その結果、より品質の優れた溶接製品を提供することができる。
According to the flux cored wire according to
本発明に係るフラックス入りワイヤについて詳細に説明する。図1(a)〜(d)は、フラックス入りワイヤの構成を示す断面図である。
図1(a)〜(d)に示すように、フラックス入りワイヤ(以下、ワイヤと称す)1は、筒状に形成された鋼製外皮2と、その筒内に充填されたフラックス3とからなる。また、ワイヤ1は、図1(a)に示すような継目のない鋼製外皮2の筒内にフラックス3が充填されたシームレスタイプ、図1(b)〜(d)に示すような継目4のある鋼製外皮2の筒内にフラックス3が充填されたシームタイプのいずれの形態でもよい。
The flux cored wire according to the present invention will be described in detail. Fig.1 (a)-(d) is sectional drawing which shows the structure of a flux cored wire.
As shown in FIGS. 1A to 1D, a flux-cored wire (hereinafter referred to as a wire) 1 includes a steel
そして、ワイヤ1は、フラックス充填率が所定量であって、所定量のC、Si、Mn、Ti、TiO2、Al、Al2O3、B、Mgおよび希土類化合物を含有し、残部がFeおよび不可避的不純物からなり、かつ、Ti量、Al量およびSi量とが所定の関係を満足する(具体的には、(4×Ti+10×Al−3×Si)が所定値以上である)。 The wire 1 has a predetermined amount of flux filling and contains a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 , B, Mg, and a rare earth compound, with the balance being Fe. In addition, it consists of inevitable impurities, and the Ti amount, Al amount, and Si amount satisfy a predetermined relationship (specifically, (4 × Ti + 10 × Al−3 × Si) is a predetermined value or more).
以下に、ワイヤ成分(フラックス充填率および成分量)の数値範囲を、その限定理由と共に記載する。フラックス充填率は、鋼製外皮2内に充填されるフラックス3の質量を、ワイヤ1(鋼製外皮2+フラックス3)の全質量に対する割合で規定する。また、成分量は、鋼製外皮2とフラックス3における成分量の総和で表し、ワイヤ1(鋼製外皮2+フラックス3)に含まれる各成分の質量を、ワイヤ1の全質量に対する割合で規定する。なお、ワイヤ1を構成する成分のうち、C、Si、Mn、Ti、TiO2、Al、Al2O3、B、Mgおよび希土類化合物は、鋼製外皮2から添加するか、フラックス3から添加するかは特に問わず、鋼製外皮2およびフラックス3の少なくとも一方に添加されていればよい。
Below, the numerical range of a wire component (flux filling rate and component amount) is described with the reason for limitation. The flux filling rate defines the mass of the
(フラックス充填率:10〜25質量%)
フラックス充填率が10質量%未満では、アークの安定性が悪くなり、スパッタ発生量が増加し、溶接作業性が低下する。また、フラックス充填率が25質量%を超えると、ワイヤ1の断線等が発生し、生産性が著しく劣化する。
(Flux filling ratio: 10 to 25% by mass)
When the flux filling rate is less than 10% by mass, the arc stability is deteriorated, the amount of spatter generated is increased, and the welding workability is lowered. On the other hand, when the flux filling rate exceeds 25% by mass, the wire 1 is disconnected and the productivity is remarkably deteriorated.
(C:0.03〜0.08質量%)
Cは、溶接部の焼入れ性を確保するために添加する。C量が0.03質量%未満の場合、焼入れ性不足により、溶接部の強度(引張強さ)、靭性(吸収エネルギー)が不足する。また、低C量により溶接部(初層溶接部)に高温割れが発生する。C量が0.08質量%を超えると、溶接時のスパッタ発生量またはヒューム発生量が増加し、溶接作業性が低下する。また、被溶接材である鋼材のC量が多い場合、溶接部(溶接金属)のC量が多くなる。そして、Cが包晶反応を起こす領域になると、溶接部(初層溶接部)に高温割れが発生しやすくなる。なお、C源としては、例えば、鋼製外皮、Fe−Mn等の合金粉、鉄粉等を用いる。
(C: 0.03-0.08 mass%)
C is added to ensure the hardenability of the weld. When the amount of C is less than 0.03% by mass, the strength (tensile strength) and toughness (absorbed energy) of the welded portion are insufficient due to insufficient hardenability. Moreover, a hot crack occurs in the welded portion (first layer welded portion) due to the low C content. If the amount of C exceeds 0.08% by mass, the amount of spatter generated during fusing or the amount of fume generated increases and welding workability decreases. Moreover, when there is much C amount of the steel materials which are to-be-welded materials, C amount of a welding part (welded metal) will increase. And when C becomes the area | region which raise | generates a peritectic reaction, it will become easy to generate | occur | produce a high temperature crack in a welding part (first layer welding part). As the C source, for example, steel outer skin, alloy powder such as Fe-Mn, iron powder, or the like is used.
(Si:0.10〜1.00質量%)
Siは、溶接部の延性確保、ビード形状維持のために添加する。Si量が0.10質量%未満では、溶接部の延性(伸び)不足となる。また、ビード形状が悪くなり、特に、立向上進溶接でビードが垂れ、溶接作業性が低下する。Si量が1.00質量%を超えると、溶接部(初層溶接部)に高温割れが発生する。ここで、Si量とは、ワイヤ1に含有される全てのSi源から算出されるSi量の総和である。なお、Si源としては、例えば、鋼製外皮、Fe−Si、Fe−Si−Mn等の合金、K2SiF6等のフッ化物、ジルコンサンド、珪砂、長石等の酸化物を用いる。
(Si: 0.10 to 1.00% by mass)
Si is added to ensure the ductility of the weld and maintain the bead shape. When the amount of Si is less than 0.10% by mass, the ductility (elongation) of the weld is insufficient. In addition, the bead shape is deteriorated. In particular, the bead hangs down in the vertical improvement welding, and the welding workability is lowered. When the amount of Si exceeds 1.00% by mass, hot cracking occurs in the welded part (first layer welded part). Here, the Si amount is the sum of the Si amounts calculated from all the Si sources contained in the wire 1. As the Si source, for example, a steel outer shell, an alloy such as Fe—Si or Fe—Si—Mn, a fluoride such as K 2 SiF 6 , an oxide such as zircon sand, silica sand, or feldspar is used.
(Mn:2.4〜3.7質量%)
Mnは、溶接部の焼入れ性確保のために添加する。Mn量が2.4質量%未満では、溶接部の焼入れ性が不足し、靭性が低下する。また、不可避的不純物として含有されるSと結合して得られるMnS量も少なくなるため、MnSによる高温割れの抑制作用が小さくなり、溶接部(初層溶接部)に高温割れが発生する。Mn量が3.7質量%を超えると、溶接部の強度が過多となり、靭性不足となる。また、溶接部に低温割れが発生する。ここで、Mn量とは、ワイヤ1に含有される全てのMn源から算出されるMn量の総和である。なお、Mn源としては、例えば、鋼製外皮、Mn金属粉、Fe−Mn、Fe−Si−Mn等の合金を用いる。
(Mn: 2.4 to 3.7% by mass)
Mn is added to ensure the hardenability of the weld. If the amount of Mn is less than 2.4% by mass, the hardenability of the welded portion is insufficient and the toughness is lowered. Moreover, since the amount of MnS obtained by combining with S contained as an unavoidable impurity is also reduced, the action of suppressing high-temperature cracking by MnS is reduced, and high-temperature cracking occurs in the welded portion (first layer welded portion). If the amount of Mn exceeds 3.7% by mass, the strength of the weld becomes excessive and the toughness becomes insufficient. In addition, cold cracks occur in the weld. Here, the amount of Mn is the total amount of Mn calculated from all the Mn sources contained in the wire 1. As the Mn source, for example, an alloy such as a steel outer shell, Mn metal powder, Fe—Mn, Fe—Si—Mn, or the like is used.
(Ti:0.15〜1.00質量%、好ましくは0.20〜1.00質量%)
Ti(金属Ti)は、溶接部(初層溶接部)の耐高温割れ性を改善するために添加する。Ti(金属Ti)は溶接時に脱酸反応に寄与し、溶接金属中の介在物をTi系酸化物組成に制御でき、その結果、溶接継手(溶接金属)の凝固組織を微細にでき、溶接部(初層溶接部)の高温割れ抑制作用が改善される。Ti量(金属Ti)が0.15質量%未満では、溶接部(初層溶接部)に高温割れが発生する。Ti量(金属Ti)が1.00質量%を超えると、溶接金属再熱部が硬くて脆いベイナイト、マルテンサイトになりやすく、靭性が低下する。また、溶接時のスパッタ発生量が多くなり、溶接作業性が低下する。なお、Ti源としては、例えば、鋼製外皮、Fe−Ti等の合金粉を用いる。
(Ti: 0.15-1.00 mass%, preferably 0.20-1.00 mass%)
Ti (metal Ti) is added in order to improve the hot crack resistance of the weld zone (first layer weld zone). Ti (metal Ti) contributes to the deoxidation reaction during welding, and inclusions in the weld metal can be controlled to a Ti-based oxide composition. As a result, the solidification structure of the welded joint (welded metal) can be made fine, and the weld zone The effect of suppressing the high temperature cracking of the (first layer weld) is improved. If the amount of Ti (metal Ti) is less than 0.15% by mass, hot cracking occurs in the welded portion (first layer welded portion). When the amount of Ti (metal Ti) exceeds 1.00% by mass, the weld metal reheated portion tends to be hard and brittle bainite and martensite, and the toughness decreases. In addition, the amount of spatter generated during welding increases and welding workability decreases. As the Ti source, for example, an alloy powder such as a steel outer shell or Fe—Ti is used.
(TiO2:5.0〜8.0質量%)
TiO2(Ti酸化物)は、全姿勢溶接性を確保するために添加する。TiO2量(Ti酸化物)が5.0質量%未満では、立向上進溶接でビードが垂れ、溶接作業性が低下する。TiO2量(Ti酸化物)が8.0質量%を超えると、溶接時のスラグ剥離性が劣化し、溶接作業性が低下する。また、フラックス3のかさ比重が小さくなり、生産性が劣化する。なお、TiO2源としては、例えば、ルチール等を用いる。
(TiO 2: 5.0 to 8.0 wt%)
TiO 2 (Ti oxide) is added to ensure all-position weldability. When the amount of TiO 2 (Ti oxide) is less than 5.0% by mass, the bead drips during the vertical improvement welding, and the workability of welding is lowered. When the amount of TiO 2 (Ti oxide) exceeds 8.0% by mass, the slag removability at the time of welding deteriorates and the welding workability decreases. Further, the bulk specific gravity of the
(Al:0.20〜0.50質量%、好ましくは0.20〜0.40質量%)
Alは強脱酸剤であり、溶接継手(溶接金属)中に生成する介在物から、Alに比べ脱酸力の弱いSiからなるSiO2を還元し、介在物の組成を核生成促進に効果的なTi系酸化物組成の介在物に制御できる。その結果、溶接金属の凝固組織を微細にできる。さらに、溶接金属の酸素量を低下させ、Mnの歩留まりが安定し、溶接部(初層溶接部)の高温割れ抑制作用が改善し、靭性も安定化する。Al量が0.20質量%未満では、脱酸が十分でなく、溶接部(初層溶接部)に高温割れが発生する。また、靭性も低下する。Al量が0.50質量%を超えると、溶接時のスパッタ発生量が多くなり、溶接作業性が低下する。なお、Al源としては、例えば、鋼製外皮、Al金属粉、Fe−Al、Al−Mg等の合金粉を用いる。
(Al: 0.20 to 0.50 mass%, preferably 0.20 to 0.40 mass%)
Al is a strong deoxidizer, and it reduces SiO 2 made of Si, which has a weaker deoxidation power than Al, from inclusions formed in welded joints (welded metal), and the composition of inclusions is effective in promoting nucleation. It is possible to control the inclusion of a typical Ti-based oxide composition. As a result, the solidification structure of the weld metal can be made fine. Furthermore, the oxygen content of the weld metal is reduced, the yield of Mn is stabilized, the hot cracking suppressing action of the welded part (first layer welded part) is improved, and the toughness is also stabilized. When the amount of Al is less than 0.20% by mass, deoxidation is not sufficient, and hot cracking occurs in the welded portion (first layer welded portion). Also, toughness is reduced. If the Al amount exceeds 0.50% by mass, the amount of spatter generated during welding increases and welding workability decreases. As the Al source, for example, steel outer sheath, Al metal powder, Fe-Al, Al-Mg alloy powder or the like is used.
(Al2O3:0.05〜0.50質量%、好ましくは0.05〜0.40質量%)
Al2O3は、水平すみ肉姿勢でのビード形状、立向上進姿勢でのビードの垂れ防止のために添加する。Al2O3量が0.05質量%未満では、水平すみ肉溶接でのビード形状(なじみ)が悪く、また、立向上進溶接でビード垂れが発生し、溶接作業性が低下する。Al2O3量が0.50質量%を超えると、溶接時のスラグ剥離性が劣化し、溶接作業性が低下する。なお、Al2O3源としては、例えば、アルミナや長石等の複合酸化物を用いる。
(Al 2 O 3: 0.05~0.50 wt%, preferably from 0.05 to 0.40 wt%)
Al 2 O 3 is added to prevent the bead from drooping in the horizontal fillet posture and in the standing improvement posture. If the amount of Al 2 O 3 is less than 0.05% by mass, the bead shape (familiarity) in horizontal fillet welding is poor, and bead sagging occurs in vertical improvement welding, resulting in poor welding workability. When the amount of Al 2 O 3 exceeds 0.50% by mass, the slag removability at the time of welding is deteriorated and the welding workability is lowered. As the Al 2 O 3 source, for example, a complex oxide such as alumina or feldspar is used.
(B:0.003〜0.020質量%)
Bのうち、溶存Bはγ粒界に偏析し、初析フェライトの生成を抑制する効果があり、溶接金属の靭性改善に有効である。B量が0.003質量%未満では、大部分のBがBNとして窒化物に固定化され、初析フェライトの生成を抑制する効果が無く、靭性改善効果が得られない。B量が0.020質量%を超えると、溶接金属の高温割れが発生しやすくなる。なお、B源としては、例えば、Fe−B、アトマイズB等の合金を用いる。
(B: 0.003-0.020 mass%)
Among B, dissolved B segregates at the γ grain boundary and has the effect of suppressing the formation of proeutectoid ferrite, which is effective in improving the toughness of the weld metal. When the amount of B is less than 0.003 mass%, most of B is fixed to nitride as BN, there is no effect of suppressing the formation of proeutectoid ferrite, and the effect of improving toughness cannot be obtained. If the amount of B exceeds 0.020% by mass, hot cracking of the weld metal tends to occur. As the B source, for example, an alloy such as Fe-B or atomized B is used.
(Mg:0.3〜1.0質量%)
Mgは強脱酸剤であり、溶接金属の酸素量を低下させ、Mnの歩留まりが安定し、高温割れ抑制作用が改善し、靭性も安定化する。Mg量が0.3質量%未満では、脱酸が十分でなく、溶接部(初層溶接部)に高温割れが発生する。また、靭性も低下する。Mg量が1.0質量%を超えると、スパッタ発生量が多くなる。その他、Mgを添加することでTiの溶接金属への歩留りが向上し、実質的なTiの使用量低減を可能とする。また、Tiの溶接金属への歩留りが向上し、溶接金属中の介在物を核生成促進に効果的なTi系酸化物組成に制御することが可能となる。なお、Mg源としては、例えば、金属Mg、Al−Mg、Fe−Si−Mg等の金属粉、合金粉を用いる。
(Mg: 0.3-1.0% by mass)
Mg is a strong deoxidizer, which reduces the oxygen content of the weld metal, stabilizes the yield of Mn, improves the hot cracking suppression effect, and stabilizes toughness. If the amount of Mg is less than 0.3% by mass, deoxidation is not sufficient, and hot cracks occur in the welded portion (first layer welded portion). Also, toughness is reduced. When the amount of Mg exceeds 1.0% by mass, the amount of spatter generated increases. In addition, by adding Mg, the yield of Ti to the weld metal is improved, and the amount of Ti used can be substantially reduced. Further, the yield of Ti to the weld metal is improved, and inclusions in the weld metal can be controlled to a Ti-based oxide composition effective for promoting nucleation. As the Mg source, for example, metal powder such as metal Mg, Al—Mg, Fe—Si—Mg, or alloy powder is used.
((4×Ti+10×Al−3×Si)≧1.0)
ワイヤ1に含まれるTi量(金属Ti)を所定範囲内に制御することで、溶接時にTi(金属Ti)が脱酸反応に寄与し、溶接継手(溶接金属)中に生成する介在物の組成を核生成促進に効果的なTi系酸化物組成の介在物に制御できる。その結果、溶接金属の凝固組織を微細にでき、高温割れ抑制作用を著しく改善できるものである。また、核生成促進に効果的なTi系酸化物には、介在物融点を下げるSiO2を含有しないことが好ましい。さらに、Alは強脱酸剤であり、Alに比べ脱酸力の弱いSiからなるSiO2を還元し、介在物の組成を核生成促進に効果的なTi系酸化物組成の介在物に制御する効果がある。そのため、ワイヤ1に含まれるTi量(金属Ti)、Al量およびSi量の関係で規定することで、Ti系酸化物組成を凝固組織微細化により効果的な組成に制御可能となり、溶接金属の凝固組織を高温割れ抑制作用の改善において好ましいものに制御可能となる。
((4 × Ti + 10 × Al-3 × Si) ≧ 1.0)
By controlling the amount of Ti (metal Ti) contained in the wire 1 within a predetermined range, Ti (metal Ti) contributes to the deoxidation reaction during welding, and the composition of inclusions generated in the welded joint (welded metal) Can be controlled to be inclusions of a Ti-based oxide composition effective for promoting nucleation. As a result, the solidification structure of the weld metal can be made fine, and the hot cracking suppressing effect can be remarkably improved. Further, it is preferable that the Ti-based oxide effective for promoting nucleation does not contain SiO 2 that lowers the melting point of inclusions. Furthermore, Al is a strong deoxidizer, which reduces SiO 2 composed of Si, which has a weaker deoxidizing power than Al, and controls the inclusion composition to be an inclusion of a Ti-based oxide composition that is effective in promoting nucleation. There is an effect to. Therefore, by defining the relationship between the amount of Ti contained in the wire 1 (metal Ti), the amount of Al, and the amount of Si, the Ti-based oxide composition can be controlled to an effective composition by refining the solidified structure, and the weld metal It becomes possible to control the solidified structure to be preferable in improving the hot cracking suppression effect.
(4×Ti+10×Al−3×Si)<1.0であると、溶接継手の凝固組織が微細化しない。したがって、(4×Ti+10×Al−3×Si)≧1.0、である。なお、計算式(4×Ti+10×Al−3×Si)は、ワイヤ1に含まれるTi量を所定範囲内に制御するために、経験的・実験的に得られた式である。
ここで、(Ti)は、ワイヤ1に含有される前記Tiおよび前記TiO2のうちの前記Ti(金属Ti)のみから算出されるTi量で、ワイヤ1に含有された前記TiO2(Ti酸化物)から算出(換算)されるTi量は含まない。
また、(Si)とは、ワイヤ1に含有される前記Si源の全てから算出されるSi量の総和である。なお、前記SiO2は、Si源として用いられる、例えば、ジルコンサンド、珪砂、長石等の酸化物に含まれる。
If (4 × Ti + 10 × Al−3 × Si) <1.0, the solidified structure of the welded joint is not refined. Therefore, (4 × Ti + 10 × Al−3 × Si) ≧ 1.0. The calculation formula (4 × Ti + 10 × Al−3 × Si) is an equation obtained experimentally and experimentally in order to control the amount of Ti contained in the wire 1 within a predetermined range.
Here, (Ti) is a Ti amount calculated only from the Ti (metal Ti) of the Ti and the TiO 2 contained in the wire 1, and the TiO 2 (Ti oxidation) contained in the wire 1. The amount of Ti calculated (converted) from the product) is not included.
Further, (Si) is the total amount of Si calculated from all the Si sources contained in the wire 1. The SiO 2 is used as an Si source, for example, oxides such as zircon sand, silica sand, and feldspar.
(Fe)
残部のFeは、鋼製外皮2を構成するFe、および/または、フラックス3に添加されている鉄粉、合金粉のFeに相当する。
(不可避的不純物)
残部の不可避的不純物としては、S、P、Ni、O、Zr等が挙げられ、本発明の効果を妨げない範囲で含有することが許容される。S量、P量、Ni量、O量、Zr量は、それぞれ、0.050質量%以下が好ましく、鋼製外皮2とフラックス3における各成分量の総和である。
(Fe)
The remaining Fe corresponds to Fe constituting the steel
(Inevitable impurities)
The remaining inevitable impurities include S, P, Ni, O, Zr and the like, and it is allowed to be contained within a range that does not hinder the effects of the present invention. The amount of S, amount of P, amount of Ni, amount of O, and amount of Zr are each preferably 0.050% by mass or less, and are the total amount of each component in the steel
なお、鋼製外皮2およびフラックス3は、ワイヤ作製時に前記ワイヤ成分(成分量)が前記範囲内になるように、鋼製外皮2およびフラックス3の各成分(各成分量)を選択する。
また、ワイヤ1の表面にCu鍍金を施すことも可能であり、ワイヤ全質量に対し、0.35質量%以下のCuを含有してもよい。
In addition, as for the steel
Moreover, it is also possible to give Cu plating to the surface of the wire 1, and you may contain 0.35 mass% or less Cu with respect to the total mass of a wire.
(希土類化合物:希土類元素換算値で0.5質量%以下)
希土類元素は強脱酸剤であり、適正量の添加であればTiの溶接金属への歩留りが向上し、実質的なTi使用量低減を可能とする。また、Tiの溶接金属への歩留りが向上し、溶接金属中の介在物を核生成促進に効果的なTi系酸化物組成に制御が可能となり、溶接部(初層溶接部)の耐高温割れ性がさらに改善される。しかし、その含有量が希土類元素換算値で0.5質量%を超えるとスパッタ発生量が多くなり、アークが不安定となりビード外観が不良となる。
(Rare earth compounds: 0.5% by mass or less in terms of rare earth elements)
The rare earth element is a strong deoxidizer, and if it is added in an appropriate amount, the yield of Ti to the weld metal is improved, and the amount of Ti used can be substantially reduced. In addition, the yield of Ti to the weld metal is improved, and inclusions in the weld metal can be controlled to an effective Ti-based oxide composition for promoting nucleation, and the hot cracking resistance of the weld (first layer weld) is improved. The sex is further improved. However, if the content exceeds 0.5% by mass in terms of rare earth elements, the amount of spatter generated increases, the arc becomes unstable, and the bead appearance becomes poor.
本発明における希土類元素とは、Sc、Yおよび原子番号57(La)乃至71(Lu)の元素のことをいう。また、希土類化合物とは、希土類元素の酸化物(Nd2O3、La2O3、Y2O3、CeO3、Ce2O3、Sc2O3等の単体の酸化物やこれらの複合酸化物およびモナザイト、バストネサイト、アラナイト、セライト、ゼノタイム、ガドリナイト等の希土類酸化物の鉱石を含む)、弗化物(CeF3、LnF3、PmF3、SmF3、GdF3、TbF3等)および合金(希土類元素−Fe、希土類元素−Fe−B、希土類元素−Fe−Co、希土類元素−Fe−Si、希土類元素−Ca−Si等)、ミッシュメタルをいう。
The rare earth element in the present invention refers to an element having Sc, Y and atomic number 57 (La) to 71 (Lu). The rare earth compound is an oxide of a rare earth element (Nd 2 O 3 , La 2 O 3 , Y 2 O 3 , CeO 3 , Ce 2 O 3 , Sc 2 O 3, or a simple oxide or a composite thereof. oxides and monazite, bastnaesite, Aranaito, including celite, xenotime, ore rare earth oxide such as Gadorinaito),
本発明に係るフラックス入りワイヤについて、本発明の要件を満足する実施例と、本発明の要件を満足しない比較例とを比較して具体的に説明する。
鋼製外皮(鋼は、C:0.03質量%、Si:0.02質量%、Mn:0.25質量%、P:0.010質量%、S:0.007質量%を含有し、残部Feおよび不可避的不純物からなるものを使用)の内側にフラックスを充填して、表1、表2に示すワイヤ成分からなるワイヤ径1.2mmの図1(b)に示すワイヤ1(実施例:No.1〜25、比較例:No.26〜49)を作製した。
The flux-cored wire according to the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
Steel outer shell (steel contains C: 0.03 mass%, Si: 0.02 mass%, Mn: 0.25 mass%, P: 0.010 mass%, S: 0.007 mass%, Wire 1 shown in FIG. 1 (b) having a wire diameter of 1.2 mm made of wire components shown in Tables 1 and 2 is filled inside with a flux inside the balance Fe and unavoidable impurities). : No. 1-25, Comparative Example: No. 26-49).
なお、ワイヤ成分は、以下の測定方法で測定、算出した。
C量は、「赤外線吸収法」によって測定した。Si量、Mn量、B量、Mg量および希土類化合物量(希土類元素量)は、ワイヤ全量を溶解し「ICP発光分光分析法」によって測定した。なお、希土類化合物としてはミッシュメタルを用い、希土類元素(Ce、La)を測定した。
The wire component was measured and calculated by the following measurement method.
The amount of C was measured by the “infrared absorption method”. The amount of Si, the amount of Mn, the amount of B, the amount of Mg, and the amount of rare earth compound (rare earth element amount) were measured by “ICP emission spectroscopy” after dissolving the entire amount of wire. Note that misch metal was used as the rare earth compound, and rare earth elements (Ce, La) were measured.
TiO2量(TiO2等として存在し、Fe−Ti等は含まない)は、「酸分解法」により測定される。酸分解法に使用する溶媒は王水を用い、ワイヤ全量を溶解した。これにより、ワイヤ1に含まれるTi源(Fe−Ti等)は王水へ溶解するが、TiO2源(TiO2等)は王水に対し不溶なため、溶け残る。この溶液を、フィルター(ろ紙は5Cの目の細かさ)を用いてろ過し、フィルターごと残渣をニッケル製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(水酸化ナトリウムと過酸化ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18質量%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のTi濃度を「ICP発光分光分析法」で測定した。このTi濃度をTiO2量に換算し、TiO2量を算出した。 The amount of TiO 2 (present as TiO 2 or the like but not including Fe—Ti or the like) is measured by the “acid decomposition method”. As a solvent used in the acid decomposition method, aqua regia was used, and the entire amount of the wire was dissolved. Thus, although Ti source contained in the wire 1 (Fe-Ti, etc.) is dissolved in aqua regia, TiO 2 source (TiO 2, etc.) because it insoluble in aqua regia, melt remains. This solution was filtered using a filter (the filter paper has a fineness of 5C). The residue together with the filter was transferred to a nickel crucible and heated with a gas burner to be incinerated. Next, an alkali flux (mixture of sodium hydroxide and sodium peroxide) was added and heated again with a gas burner to melt the residue. Next, 18 mass% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask and further diluted with pure water to obtain an analysis solution. The Ti concentration in the analysis solution was measured by “ICP emission spectroscopy”. And converting the Ti concentration in the TiO 2 amount was calculated amount of TiO 2.
Ti量(Fe−Ti等として存在し、TiO2等は含まない)は、「酸分解法」によりワイヤ全量を王水へ溶解して、不溶であったTiO2源(TiO2等)をろ過し、その溶液をワイヤ1に含まれるTi源(Fe−Ti等)とし得ることで、「ICP発光分光分析法」を用い、Ti量(Fe−Ti等)として存在を求めた。 Ti amount (existing as Fe-Ti etc., not including TiO 2 etc.) is obtained by dissolving the whole amount of wire in aqua regia by “acid decomposition method” and filtering the insoluble TiO 2 source (TiO 2 etc.). Then, by using the solution as a Ti source (Fe—Ti or the like) contained in the wire 1, the presence of the Ti amount (Fe—Ti or the like) was determined using “ICP emission spectroscopy”.
Al2O3量(アルミナや長石等の複合酸化物として存在し、Al金属粉等の合金粉は含まない)は、「酸分解法」により測定される。酸分解法に使用する溶媒は王水を用い、ワイヤ全量を溶解した。これにより、ワイヤ1に含まれるAl源(Al金属粉等の合金粉)は王水へ溶解するが、Al2O3源(アルミナや長石等の複合酸化物)は王水に対し不溶なため、溶け残る。この溶液を、フィルター(ろ紙は5Cの目の細かさ)を用いてろ過し、フィルターごと残渣をニッケル製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(水酸化ナトリウムと過酸化ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18質量%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のAl濃度を「ICP発光分光分析法」で測定した。このAl濃度をAl2O3量に換算し、Al2O3量を算出した。 The amount of Al 2 O 3 (present as a composite oxide such as alumina and feldspar, and does not include alloy powder such as Al metal powder) is measured by the “acid decomposition method”. As a solvent used in the acid decomposition method, aqua regia was used, and the entire amount of the wire was dissolved. As a result, the Al source (alloy powder such as Al metal powder) contained in the wire 1 is dissolved in aqua regia, but the Al 2 O 3 source (a composite oxide such as alumina and feldspar) is insoluble in aqua regia. , It remains undissolved. This solution was filtered using a filter (the filter paper has a fineness of 5C). The residue together with the filter was transferred to a nickel crucible and heated with a gas burner to be incinerated. Next, an alkali flux (mixture of sodium hydroxide and sodium peroxide) was added and heated again with a gas burner to melt the residue. Next, 18 mass% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask and further diluted with pure water to obtain an analysis solution. The Al concentration in the analysis solution was measured by “ICP emission spectroscopy”. And converting the Al concentration in the amount of Al 2 O 3, it was calculated the amount of Al 2 O 3.
Al量(Al金属粉等の合金粉として存在し、アルミナや長石等の複合酸化物は含まない)は、「酸分解法」によりワイヤ全量を王水へ溶解して、不溶であったAl2O3源(アルミナや長石等の複合酸化物)をろ過し、その溶液をワイヤ1に含まれるAl源(Al金属粉等の合金粉)とし得ることで、「ICP発光分光分析法」を用い、Al量(Al金属粉等の合金粉)として存在を求めた。 (Present as an alloy powder such as Al metal powder, composite oxide of alumina and feldspar and the like are not included) Al amount, by dissolving the wire the total amount to aqua regia by "acid decomposition method", Al 2 was insoluble By filtering the O 3 source (composite oxide such as alumina and feldspar) and using the solution as the Al source (alloy powder such as Al metal powder) contained in the wire 1, the “ICP emission spectroscopy” is used. The presence of Al was determined as an Al amount (alloy powder such as Al metal powder).
作製されたワイヤ1を用いて、以下に示す方法で、耐高温割れ性、機械的性質(引張強さ、吸収エネルギー)、溶接作業性について評価した。その評価結果に基づいて、実施例および比較例のワイヤ1の総合評価を行った。 Using the produced wire 1, hot crack resistance, mechanical properties (tensile strength, absorbed energy), and welding workability were evaluated by the following methods. Based on the evaluation result, comprehensive evaluation of the wire 1 of an Example and a comparative example was performed.
(耐高温割れ性)
JIS G3106 SM400B鋼(C:0.12質量%、Si:0.2質量%、Mn:1.1質量%、P:0.008質量%、S:0.003質量%を含有し、残部Feおよび不可避的不純物)からなる溶接母材を、表3に示す溶接条件で片面溶接(下向突合せ溶接)した。
(High temperature crack resistance)
JIS G3106 SM400B steel (C: 0.12% by mass, Si: 0.2% by mass, Mn: 1.1% by mass, P: 0.008% by mass, S: 0.003% by mass, balance Fe And a welding base material composed of unavoidable impurities) was subjected to single-sided welding (downward butt welding) under the welding conditions shown in Table 3.
図2は、耐高温割れ性の評価に使用する溶接母材の開先形状を示す断面図である。図2に示すように、溶接母材11はV形状の開先を有し、このV形状の開先の裏面には、セラミック製の耐火物12およびアルミニウムテープ13等からなる裏当て材が配置されている。そして、開先角度を35°として、裏当て材が配置されている部分のルート間隔を4mmとした。
FIG. 2 is a cross-sectional view showing a groove shape of a weld base material used for evaluation of hot crack resistance. As shown in FIG. 2, the
溶接終了後、初層溶接部(クレータ部を除く)について、X線透過試験(JIS Z 3104)にて、内部割れの有無を確認し、割れ発生部分のトータル長さを測定し、割れ率を算出した。ここで、割れ率は、割れ率W=(割れ発生部分のトータル長さ)/(初層溶接部長さ(クレータ部を除く))×100により算出される。その割れ率で耐高温割れ性を評価した。その結果を表4、表5に示す。 After welding, the first layer welded part (excluding the crater part) is checked for the presence of internal cracks in the X-ray transmission test (JIS Z 3104), the total length of the cracked part is measured, and the crack rate is determined. Calculated. Here, the cracking rate is calculated by the cracking rate W = (total length of cracked portion) / (first layer welded portion length (excluding crater portion)) × 100. The hot crack resistance was evaluated based on the crack rate. The results are shown in Tables 4 and 5.
なお、評価基準は、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率0%かつ溶接電流280Aで割れ率0%のとき「極めて優れている:◎◎」、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率0%かつ溶接電流280Aで5%以下のとき「より優れている:◎」、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率5%以下かつ溶接電流280Aで割れ率5%超〜10%以下のとき「優れている:○〜◎」、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率5%超かつ溶接電流280Aで割れ率10%超のとき「良好である:○」、溶接電流240Aで割れ有りかつ溶接電流260Aで割れ有りかつ溶接電流280Aで割れ有りのとき「劣っている:×」とした。 The evaluation criteria were “Excellent: ◎◎” when the cracking rate was 0% at a welding current of 240A, the cracking rate of 0% at a welding current of 260A, and the cracking rate of 0% at a welding current of 280A. When it is 0%, the cracking rate is 0% at a welding current 260A, and the welding current 280A is 5% or less, “Better”: ◎, the cracking rate is 0% at a welding current 240A, the cracking rate is 5% or less at a welding current 260A, and welding When the current cracking rate is more than 5% to 10% or less at a current of 280A, it is “excellent: ○ ˜ ◎”, the cracking rate is 0% at a welding current of 240A, the cracking rate is greater than 5% at a welding current of 260A, When it exceeded%, it was judged as “Inferior: X”, when cracked at welding current 240A, cracked at welding current 260A, and cracked at welding current 280A.
(機械的性質)
JIS Z3313に準じて、引張強さ、0℃吸収エネルギー(靭性)について評価した。その結果を表4、表5に示す。
なお、引張強さの評価基準は、490MPa以上640MPa以下のとき「優れている:○」、490MPa未満または640MPa超のとき「劣っている:×」とした。また、0℃吸収エネルギーの評価基準は、60J以上のとき「優れている:○」、60J未満のとき「劣っている:×」とした。さらに、JIS Z3313に準じて、伸びを評価する場合には、その評価基準は、22%以上のとき「優れている:○」、22%未満のとき「劣っている:×」とした。
(mechanical nature)
In accordance with JIS Z3313, tensile strength and 0 ° C. absorbed energy (toughness) were evaluated. The results are shown in Tables 4 and 5.
The evaluation standard of tensile strength was “excellent: ◯” when 490 MPa or more and 640 MPa or less, and “poor: x” when less than 490 MPa or more than 640 MPa. In addition, the evaluation standard of the 0 ° C. absorbed energy was “excellent: ○” when it was 60 J or more, and “inferior: ×” when it was less than 60 J. Furthermore, when evaluating elongation according to JIS Z3313, the evaluation criterion was “excellent: ◯” when 22% or more, and “inferior: ×” when less than 22%.
(溶接作業性)
耐高温割れ性と同様の溶接母材を使用して、下向すみ肉溶接、水平すみ肉溶接、立向上進すみ肉溶接、立向下進すみ肉溶接の4種の溶接を行い、作業性を官能評価した。ここで、下向すみ肉溶接試験、水平すみ肉溶接試験および立向下進すみ肉溶接試験の溶接条件は、前記耐高温割れ性と同様とした(表3参照)。立向上進すみ肉溶接試験の溶接条件は、溶接電流200〜220A、アーク電圧24〜27Vとした。その結果を表4、表5に示す。
なお、評価基準は、スパッタ発生、ヒューム発生、ビード垂れ、ビード外観等の溶接不良が発生しないとき「優れている:○」、溶接不良が発生したとき「劣っている:×」とした。
(Welding workability)
Using weld base material similar to hot cracking resistance, 4 types of welding, vertical fillet welding, horizontal fillet welding, vertical improvement fillet welding, vertical down fillet welding, are performed. Sensory evaluation. Here, the welding conditions of the downward fillet welding test, the horizontal fillet welding test, and the vertical downward fillet welding test were the same as those of the hot crack resistance (see Table 3). The welding conditions for the vertical improvement fillet welding test were a welding current of 200 to 220 A and an arc voltage of 24 to 27V. The results are shown in Tables 4 and 5.
The evaluation criteria were “excellent: ◯” when no welding failure such as spatter generation, fume generation, bead sagging, and bead appearance occurred, and “inferior: x” when welding failure occurred.
(総合評価)
総合評価の評価基準は、前記評価項目のうち、耐高温割れ性が「◎◎または◎」かつ機械的性質および溶接作業性が「○」のとき「より一層優れている:◎」、耐高温割れ性が「○〜◎」かつ機械的性質および溶接作業性が「○」のとき「優れている:○〜◎」、耐高温割れ性が「○」かつ機械的性質および溶接作業性が「○」のとき「良好である:○」、前記評価項目の少なくとも1つが「×」のとき「劣っている:×」とした。
その結果を表4、表5に示す。
(Comprehensive evaluation)
The evaluation criteria for the comprehensive evaluation are, among the evaluation items described above, when the hot crack resistance is “◎◎ or ◎” and the mechanical properties and welding workability are “◯”, “much better: ◎”, high temperature resistance When the cracking property is “◯ to ◎” and the mechanical properties and welding workability are “◯”, “Excellent: ○ to ◎”, the hot cracking resistance is “○”, and the mechanical properties and welding workability are “ When it was “good”, “good: good”, and when at least one of the evaluation items was “x”, it was “poor: good”.
The results are shown in Tables 4 and 5.
表1、表4に示すように、実施例(No.1〜25)は、全てのワイヤ成分が本発明の範囲を満足するため、耐高温割れ性、機械的性質および溶接作業性の全てにおいて、優れ(または良好で)、総合評価においても、優れていた(または良好であった)。 As shown in Tables 1 and 4, in Examples (Nos. 1 to 25), all the wire components satisfy the scope of the present invention. Therefore, in all of hot crack resistance, mechanical properties and welding workability. Excellent (or good), and excellent (or good) in the overall evaluation.
表2、表5に示すように、比較例(No.26)は、C量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.27)は、C量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.28)は、Si量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。
比較例(No.29)は、Si量が上限値を超えるため、耐高温割れ性に劣り、総合評価も劣っていた。
As shown in Tables 2 and 5, the comparative example (No. 26) was inferior in hot cracking resistance and mechanical properties and inferior in overall evaluation because the C content was less than the lower limit. In the comparative example (No. 27), the C amount exceeded the upper limit value, so that the welding workability was inferior and the overall evaluation was also inferior. In Comparative Example (No. 28), since the Si amount was less than the lower limit, the welding workability was inferior and the overall evaluation was also inferior.
The comparative example (No. 29) was inferior in hot cracking resistance and inferior in overall evaluation because the Si amount exceeded the upper limit.
比較例(No.30)は、Mn量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.31)は、Mn量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。比較例(No.32)は、Ti量が下限値未満であるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.33)は、Ti量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。 Since the amount of Mn was less than a lower limit, the comparative example (No. 30) was inferior in hot cracking resistance and mechanical properties, and was inferior in overall evaluation. Since the amount of Mn exceeded an upper limit, the comparative example (No. 31) was inferior in mechanical properties and welding workability, and was inferior in overall evaluation. In Comparative Example (No. 32), the amount of Ti was less than the lower limit value, so the hot crack resistance was poor and the overall evaluation was also poor. In Comparative Example (No. 33), since the Ti amount exceeded the upper limit, the mechanical properties and welding workability were inferior, and the overall evaluation was also inferior.
比較例(No.34)は、TiO2量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.35)は、TiO2量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.36)は、Al量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.37)は、Al量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。 In Comparative Example (No. 34), since the amount of TiO 2 was less than the lower limit value, the welding workability was poor and the overall evaluation was also poor. Comparative Example (No.35), since the amount of TiO 2 exceeds the upper limit, poor weldability, was inferior overall rating. The comparative example (No. 36) was inferior in hot cracking resistance and mechanical properties because the Al content was less than the lower limit, and the overall evaluation was also inferior. In Comparative Example (No. 37), since the Al amount exceeded the upper limit, the welding workability was inferior and the overall evaluation was also inferior.
比較例(No.38)は、Al2O3量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.39)は、Al2O3量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.40)は、B量が下限値未満であるため、機械的性質に劣り、総合評価も劣っていた。比較例(No.41)は、B量が上限値を超えるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.42、No.43、No.44)は、ワイヤ1に含まれるTi量(金属Ti)とワイヤ1に含まれるAl量と、ワイヤ1に含まれるSi量との関係(4×Ti+10×Al−3×Si)が下限値未満であるため、耐高温割れ性に劣り、総合評価も劣っていた。 Since the amount of Al 2 O 3 was less than the lower limit value in the comparative example (No. 38), the welding workability was inferior and the overall evaluation was also inferior. The comparative example (No. 39) was inferior in welding workability and inferior in overall evaluation because the amount of Al 2 O 3 exceeded the upper limit. Since the amount of B was less than a lower limit, the comparative example (No. 40) was inferior in mechanical properties and inferior in overall evaluation. The comparative example (No. 41) was inferior in hot cracking resistance and inferior in overall evaluation because the B amount exceeded the upper limit. In the comparative examples (No. 42, No. 43, No. 44), the relationship between the Ti amount (metal Ti) contained in the wire 1, the Al amount contained in the wire 1, and the Si amount contained in the wire 1 (4 (XTi + 10xAl-3xSi) is less than the lower limit value, so the hot cracking resistance is poor and the overall evaluation is also poor.
比較例(No.45)は、フラックス充填率が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.46)は、フラックス充填率が上限値を超えるため、ワイヤ生産中に断線が発生し、総合評価としては劣っていた。比較例(No.47)は、Mg量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.48)は、Mg量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.49)は、希土類化合物量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。 Since the comparative example (No. 45) has a flux filling rate less than the lower limit value, the welding workability is poor and the overall evaluation is also poor. In the comparative example (No. 46), since the flux filling rate exceeded the upper limit, disconnection occurred during wire production, and the overall evaluation was inferior. In Comparative Example (No. 47), the amount of Mg was less than the lower limit value, so the hot crack resistance and mechanical properties were inferior, and the overall evaluation was also inferior. In Comparative Example (No. 48), the amount of Mg exceeded the upper limit value, so that welding workability was inferior and overall evaluation was also inferior. In Comparative Example (No. 49), the amount of rare earth compound exceeded the upper limit value, so that welding workability was poor and overall evaluation was poor.
以上の結果から、実施例(No.1〜25)は、比較例(No.26〜49)と比べて、フラックス入りワイヤ1として優れていることが確認された。 From the above results, it was confirmed that the example (No. 1 to 25) is superior as the flux-cored wire 1 as compared with the comparative example (No. 26 to 49).
1 フラックス入りワイヤ(ワイヤ)
2 鋼製外皮
3 フラックス
4 継目
11 溶接母材
12 耐火物
13 アルミニウムテープ
1 Flux-cored wire (wire)
2 Steel
Claims (2)
ワイヤ全質量に対するフラックス充填率が10〜25質量%であり、
ワイヤ全質量に対して、
C:0.03〜0.08質量%、
Si(ワイヤに含有される全てのSi源から算出されるSi量の総和):0.10〜1.00質量%、
Mn(ワイヤに含有される全てのMn源から算出されるMn量の総和):2.4〜3.7質量%、
Ti:0.15〜1.00質量%、
TiO2:5.0〜8.0質量%、
Al:0.20〜0.50質量%、
Al2O3:0.05〜0.50質量%、
B:0.003〜0.020質量%、
Mg:0.3〜1.0質量%
を含有し、残部がFeおよび不可避的不純物からなり、
かつ、(4×Ti+10×Al−3×Si)≧1.0の関係式を満足し、前記関係式において、(Ti)は前記ワイヤに含有される前記Tiおよび前記TiO2のうちの前記Tiのみから算出されるTi量、(Al)は前記ワイヤに含有される前記Alおよび前記Al 2 O 3 のうちの前記Alのみから算出されるAl量であることを特徴とするフラックス入りワイヤ。 A flux-cored wire with a flux filled in a steel outer sheath,
The flux filling rate with respect to the total mass of the wire is 10 to 25% by mass,
For the total mass of the wire
C: 0.03-0.08 mass%,
Si (total amount of Si calculated from all Si sources contained in the wire): 0.10 to 1.00% by mass,
Mn (total amount of Mn calculated from all Mn sources contained in the wire): 2.4 to 3.7% by mass,
Ti: 0.15-1.00 mass%,
TiO 2: 5.0 to 8.0 wt%,
Al: 0.20 to 0.50 mass%,
Al 2 O 3: 0.05~0.50 wt%,
B: 0.003-0.020 mass%,
Mg: 0.3-1.0 mass%
And the balance consists of Fe and inevitable impurities,
And satisfying the (4 × Ti + 10 × Al -3 × Si) ≧ 1.0 relational expression, in the relational expression (Ti) is the one of said Ti and said TiO 2 is contained in the prior Symbol wire Ti amount calculated from Ti alone, (Al) is a flux cored wire which is a Al amount calculated from the Al only one of the Al and the Al 2 O 3 contained in the wire.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009122360A JP5400472B2 (en) | 2009-05-20 | 2009-05-20 | Flux cored wire |
CN201010176119.6A CN101890597B (en) | 2009-05-20 | 2010-05-05 | Flux cored wire |
KR20100046684A KR101148277B1 (en) | 2009-05-20 | 2010-05-19 | Flux cored wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009122360A JP5400472B2 (en) | 2009-05-20 | 2009-05-20 | Flux cored wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010269335A JP2010269335A (en) | 2010-12-02 |
JP5400472B2 true JP5400472B2 (en) | 2014-01-29 |
Family
ID=43100026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009122360A Expired - Fee Related JP5400472B2 (en) | 2009-05-20 | 2009-05-20 | Flux cored wire |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5400472B2 (en) |
KR (1) | KR101148277B1 (en) |
CN (1) | CN101890597B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5438663B2 (en) * | 2010-12-01 | 2014-03-12 | 株式会社神戸製鋼所 | Flux cored wire |
JP5438664B2 (en) * | 2010-12-01 | 2014-03-12 | 株式会社神戸製鋼所 | Flux cored wire |
JP2012118387A (en) | 2010-12-02 | 2012-06-21 | Sony Corp | Identification label, method of producing identification label, and method of checking identification label |
KR101220618B1 (en) | 2010-12-27 | 2013-01-10 | 주식회사 포스코 | Flux cored arc weld wire having excellent workability and low-temperature toughness in weld metal joint and weld metal joint using the same |
KR101286500B1 (en) * | 2011-10-27 | 2013-07-16 | 현대종합금속 주식회사 | Titania based flux cored wire for gas shielded arc welding |
US10421160B2 (en) * | 2013-03-11 | 2019-09-24 | The Esab Group, Inc. | Alloying composition for self-shielded FCAW wires with low diffusible hydrogen and high Charpy V-notch impact toughness |
JP6040133B2 (en) * | 2013-10-03 | 2016-12-07 | 株式会社神戸製鋼所 | Gas shield arc welding method |
JP6669613B2 (en) * | 2016-08-29 | 2020-03-18 | 日鉄溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
JP7247079B2 (en) * | 2019-12-09 | 2023-03-28 | 日鉄溶接工業株式会社 | Flux-cored wire for gas-shielded arc welding |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61283493A (en) * | 1985-06-10 | 1986-12-13 | Daido Steel Co Ltd | Flux-cored wire for welding |
JPS63273594A (en) * | 1987-04-30 | 1988-11-10 | Nippon Steel Corp | Flux cored wire for gas shielding arc welding |
JPH06258672A (en) * | 1993-03-09 | 1994-09-16 | Toshiba Corp | Optical shutter |
CN1117902A (en) * | 1994-08-30 | 1996-03-06 | 天津大学 | Titanium-type gas shielded flux-cored welding stick |
JPH09201697A (en) * | 1996-01-26 | 1997-08-05 | Nippon Steel Weld Prod & Eng Co Ltd | Flux cored wire for gas shielded arc welding |
KR100497180B1 (en) * | 2000-07-04 | 2005-06-23 | 현대종합금속 주식회사 | Titania based flux cored wire having excellent hot crack resistance |
CN1304161C (en) * | 2004-12-23 | 2007-03-14 | 北京工业大学 | High-hardness, wearable, self-protecting metal cored surfacing welding wire |
JP5005309B2 (en) * | 2006-10-02 | 2012-08-22 | 株式会社神戸製鋼所 | Gas shielded arc welding flux cored wire for high strength steel |
JP4776508B2 (en) * | 2006-11-20 | 2011-09-21 | 株式会社神戸製鋼所 | Flux-cored wire for electrogas arc welding |
JP5179073B2 (en) * | 2007-03-08 | 2013-04-10 | 日鐵住金溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
JP5165322B2 (en) * | 2007-09-28 | 2013-03-21 | Jfeスチール株式会社 | Flux-cored wire for electrogas arc welding |
CN101310913B (en) * | 2008-07-01 | 2010-10-13 | 山东大学 | Flux-cored steel belt containing steel wire for surfacing and preparation method thereof |
-
2009
- 2009-05-20 JP JP2009122360A patent/JP5400472B2/en not_active Expired - Fee Related
-
2010
- 2010-05-05 CN CN201010176119.6A patent/CN101890597B/en not_active Expired - Fee Related
- 2010-05-19 KR KR20100046684A patent/KR101148277B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101148277B1 (en) | 2012-05-21 |
CN101890597B (en) | 2014-12-03 |
CN101890597A (en) | 2010-11-24 |
JP2010269335A (en) | 2010-12-02 |
KR20100125188A (en) | 2010-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5416605B2 (en) | Flux cored wire | |
JP5400472B2 (en) | Flux cored wire | |
JP5400461B2 (en) | Flux cored wire | |
JP5438663B2 (en) | Flux cored wire | |
JP5242665B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP5314339B2 (en) | Flux cored wire | |
JP2014113615A (en) | Flux-cored wire for carbon dioxide gas shielded arc welding | |
JP5314414B2 (en) | Flux cored wire | |
JP5438664B2 (en) | Flux cored wire | |
JP2015217393A (en) | Flux-cored wire for carbon dioxide gas shielded arc welding | |
JP5459083B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel | |
JP5558406B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6599807B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP6084948B2 (en) | Flux-cored wire for gas shielded arc welding | |
WO2020217963A1 (en) | Ni-BASED ALLOY FLUX-CORED WIRE | |
JP6726008B2 (en) | Flux-cored wire for gas shield arc welding | |
JP5351641B2 (en) | Flux cored wire | |
JP2019171473A (en) | Flux-cored wire | |
JP5244035B2 (en) | Weld metal | |
JP3824973B2 (en) | Flux-cored wire for titania arc welding | |
JP5457301B2 (en) | Flux-cored wire for gas shielded arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131025 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5400472 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |