JP6068247B2 - Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material - Google Patents
Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material Download PDFInfo
- Publication number
- JP6068247B2 JP6068247B2 JP2013090102A JP2013090102A JP6068247B2 JP 6068247 B2 JP6068247 B2 JP 6068247B2 JP 2013090102 A JP2013090102 A JP 2013090102A JP 2013090102 A JP2013090102 A JP 2013090102A JP 6068247 B2 JP6068247 B2 JP 6068247B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lithium ion
- ion secondary
- secondary battery
- electrolyte lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007774 positive electrode material Substances 0.000 title claims description 124
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 90
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 89
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 88
- 239000000203 mixture Substances 0.000 claims description 63
- 229910052744 lithium Inorganic materials 0.000 claims description 38
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 30
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 24
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 24
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 238000000034 method Methods 0.000 description 43
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 39
- 150000001875 compounds Chemical class 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 17
- 125000004429 atom Chemical group 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 13
- 238000010828 elution Methods 0.000 description 13
- 239000010936 titanium Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 238000010304 firing Methods 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- -1 polyethylene Polymers 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 239000012752 auxiliary agent Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910018871 CoO 2 Inorganic materials 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012387 LiCo0.9Al0.1O2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000007350 electrophilic reaction Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 238000007344 nucleophilic reaction Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Description
本発明は、正極活物質にリチウム複合酸化物を用いる非水電解質リチウムイオン二次電池用正極材料、および、その正極材料を用いた非水電解質リチウムイオン二次電池に関する。 The present invention relates to a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery using a lithium composite oxide as a positive electrode active material, and a non-aqueous electrolyte lithium ion secondary battery using the positive electrode material.
近年、携帯電話、ノート型パソコンなどのポータブル電子機器に搭載されている非水電解質リチウムイオン二次電池には、より高い電圧での充電による高容量化が求められ、それに伴って、より高い安全性が要求されるようになっている。 In recent years, non-aqueous electrolyte lithium ion secondary batteries mounted on portable electronic devices such as mobile phones and laptop computers have been required to have higher capacities by charging at higher voltages, which has led to higher safety. Sex is required.
特開2009−212021号公報(特許文献1)には、一般組成式Li1+tCo1−x−y−zAlxMgyMzO2(ただし、MはZr、Ti、Cr、Fe、Ge、Sn、Ce、Hf、Y、Yb、Er、Nb、Mo、Mn、Ni、BおよびPよりなる群から選択される少なくとも1種の元素を表し、−0.05≦t≦0.1、0.001≦x≦0.015、0≦y≦1.5x、0.15y≦zである)で表されるリチウム含有コバルト酸化物を正極に用いることで、高温および高電圧での充放電サイクル寿命に優れ、安全性が高く、かつ高容量の非水電解質リチウムイオン二次電池を提供することが記載されている。 Japanese Unexamined Patent Application Publication No. 2009-212021 (Patent Document 1) discloses a general composition formula Li 1 + t Co 1-xyz Al x Mg y M z O 2 (where M is Zr, Ti, Cr, Fe, Ge). Represents at least one element selected from the group consisting of Sn, Ce, Hf, Y, Yb, Er, Nb, Mo, Mn, Ni, B, and P, −0.05 ≦ t ≦ 0.1, The lithium-containing cobalt oxide represented by 0.001 ≦ x ≦ 0.015, 0 ≦ y ≦ 1.5x, and 0.15y ≦ z) is used for the positive electrode, so that charging / discharging at high temperature and high voltage is possible. It is described that a non-aqueous electrolyte lithium ion secondary battery having excellent cycle life, high safety, and high capacity is provided.
しかし、特許文献1に記載されたリチウム含有コバルト酸化物を正極活物質として用いたリチウムイオン電池は、60℃以上の高温で4.5V以上(vs.Li/Li+)の高電圧で連続充電すると、電池特性が著しく低下することがわかった。これは、高電圧の連続充電によりCo溶出が促進されること、正極活物質の構造破壊が起こること、あるいは、負極表面でのCo析出による高抵抗化が起こることなどによるものと考えられる。
However, a lithium ion battery using a lithium-containing cobalt oxide described in
本発明の非水電解質リチウムイオン二次電池用正極材料は、一般組成式:Li The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery of the present invention has a general composition formula: Li 1+α1 + α CoCo 1−β−γ1-β-γ NiNi ββ MM γγ OO 2−δ2-δ (式中、Mは、Al, Mgのうち少なくとも一種の元素を表し、α、β、γ、およびδは、0.01≦α≦0.10, 0.01≦β≦0.05, 0.001≦γ≦0.02, 0≦δ≦0.01を満たすパラメータである)で表されるリチウム含有コバルト酸化物からなる非水電解質リチウムイオン二次電池用正極材料であって、非水電解質リチウムイオン二次電池用正極材料の粒子表面は、Li、Zr、Ti、Al,Ni、Mn、La、Zn、PおよびBからなる群から選択される少なくとも1種の被覆元素を含む酸化物により被覆されており、被覆元素の原子数は、酸化物がLiを含む場合には非水電解質リチウムイオン二次電池用正極材料が含むCoの原子数の50%以下であり、酸化物がLiを含まない場合には非水電解質リチウムイオン二次電池用正極材料が含むCo原子数の10%以下である。(In the formula, M represents at least one element of Al and Mg, and α, β, γ, and δ are 0.01 ≦ α ≦ 0.10, 0.01 ≦ β ≦ 0.05, 0. .001 ≦ γ ≦ 0.02, 0 ≦ δ ≦ 0.01), a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery, The particle surface of the positive electrode material for an electrolyte lithium ion secondary battery is an oxide containing at least one coating element selected from the group consisting of Li, Zr, Ti, Al, Ni, Mn, La, Zn, P and B When the oxide contains Li, the number of atoms of the covering element is 50% or less of the number of Co atoms contained in the positive electrode material for a nonaqueous electrolyte lithium ion secondary battery. Non-aqueous electrolyte lithium ion secondary when not containing 10% or less of Co atoms contained in the pond for a positive electrode material.
本発明によれば、放電容量が大きく、高温において高電圧での連続充電が可能な非水電解質リチウムイオン二次電池用正極材料を提供することができる。 According to the present invention, it is possible to provide a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery that has a large discharge capacity and can be continuously charged at a high voltage at a high temperature.
本発明に係る非水電解質リチウムイオン二次電池用正極材料は、
一般組成式:Li1+αCo1−β−γNiβMγO2−δ (1)
(式中、Mは、Al, Mgのうち少なくとも一種の元素を表し、0.01≦α≦0.10, 0.01≦β≦0.05, 0.001≦γ≦0.02, 0≦δ≦0.01である)で表されるリチウム含有コバルト酸化物である。
The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention is:
General composition formula: Li1 + [alpha] Co1- [ beta]-[gamma] Ni [ beta] M [ gamma] O2- [delta] (1)
(In the formula, M represents at least one element of Al and Mg, and 0.01 ≦ α ≦ 0.10, 0.01 ≦ β ≦ 0.05, 0.001 ≦ γ ≦ 0.02, 0. ≦ δ ≦ 0.01).
上記一般組成式(1)を満たす正極材料を用いることによって、放電容量が大きく、高温において高電圧での連続充電が可能な非水電解質リチウムイオン二次電池が得られる。 By using the positive electrode material satisfying the general composition formula (1), a non-aqueous electrolyte lithium ion secondary battery having a large discharge capacity and capable of continuous charging at a high voltage at a high temperature is obtained.
上記正極材料を正極活物質とした正極を作製するには、上記正極材料を、バインダ、導電助剤などを溶媒に分散させた正極合剤スラリーを調製し、この正極合剤スラリーを正極集電体の表面に塗布して正極合剤層を形成することにより行う。 In order to produce a positive electrode using the positive electrode material as a positive electrode active material, a positive electrode mixture slurry is prepared by dispersing the positive electrode material in a solvent such as a binder and a conductive additive, and the positive electrode mixture slurry is used as a positive electrode current collector. It is carried out by applying to the surface of the body to form a positive electrode mixture layer.
本発明に係る非水電解質リチウムイオン二次電池用正極材料は粒子状であり、その形状は略球形である。粒子の平均直径は、5μm以上20μm以下であることが好ましい。上記平均直径は、走査型電子顕微鏡により所定領域に存在する粒子の直径を測定し、それらの平均直径を算出することにより求めることができる。 The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention is in the form of particles, and the shape thereof is substantially spherical. The average diameter of the particles is preferably 5 μm or more and 20 μm or less. The average diameter can be obtained by measuring the diameter of particles present in a predetermined region with a scanning electron microscope and calculating the average diameter.
本発明に係る非水電解質リチウムイオン二次電池用正極材料は、Coの溶出を抑える観点から、非水電解質との界面を小さくする必要がある。そのためには、BET比表面積が小さい方が有利であるが、粒子のBET比表面積が小さすぎると、積層した際の密度が小さく、そのために電池容量が小さくなったり、高負荷における放電特性が低下したりするという問題が生じる。このため、BET比表面積Sは0.01≦S≦0.5 [m2/g]であることが好ましい。BET比表面積は、多分子層吸着の理論式であるBET式を用いて表面積を測定して求められる。具体的には、窒素吸着法による比表面積測定装置を用いてBET比表面積を求めた。 The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention needs to reduce the interface with the non-aqueous electrolyte from the viewpoint of suppressing the elution of Co. For this purpose, it is advantageous that the BET specific surface area is small, but if the BET specific surface area of the particles is too small, the density at the time of lamination will be small, so that the battery capacity will be small or the discharge characteristics at high load will be reduced. Problem arises. For this reason, it is preferable that the BET specific surface area S is 0.01 <= S <= 0.5 [m < 2 > / g]. The BET specific surface area can be obtained by measuring the surface area using the BET formula, which is a theoretical formula for multimolecular layer adsorption. Specifically, the BET specific surface area was determined using a specific surface area measuring device by a nitrogen adsorption method.
本発明に係る非水電解質リチウムイオン二次電池用正極材料を表す前記一般組成式(1)において、Liに関するαは、0.01≦α≦0.10であることが好ましい。αが0.01に満たない場合には、正極活物質粒子が小さくなり、粒子の直径は5μmを下回ってしまう。このような小さな粒子を用いて正極活物質の層を形成すると、その密度が小さいために、十分な電池容量が得られない。また、表面積は大きくなることから、Co溶出が起こり易くなる。一方、αが0.10を超える場合には酸素欠損が生じる。このため、低充電状態における電位が低下して、サイクル寿命が短くなる。さらに、正極活物質粒子表面のリチウムが多いために、このような正極活物質を用いて調製した正極合剤スラリーはゲル状となり、形成した正極合剤層の抵抗が高くなったり、電池反応の際にガスが発生したりする。 In the general composition formula (1) representing the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention, α relating to Li is preferably 0.01 ≦ α ≦ 0.10. When α is less than 0.01, the positive electrode active material particles are small, and the particle diameter is less than 5 μm. When the layer of the positive electrode active material is formed using such small particles, the density is small, and thus a sufficient battery capacity cannot be obtained. Moreover, since the surface area becomes large, Co elution is likely to occur. On the other hand, oxygen deficiency occurs when α exceeds 0.10. For this reason, the potential in the low charge state is lowered, and the cycle life is shortened. Furthermore, since there is a lot of lithium on the surface of the positive electrode active material particles, the positive electrode mixture slurry prepared using such a positive electrode active material becomes a gel, and the resistance of the formed positive electrode mixture layer increases, In some cases, gas is generated.
0.01≦α≦0.10の範囲は、適度にLiリッチであることを意味している。即ち、Coの一部の適量がLiで置き換えられた状態である。このような状態では、高電圧においてもLiが脱離するような構造の転移現象が抑制され、Coの溶出が防止される。Coの価数は、2.8以上かつ3.3以下であることが好ましい。Coの価数は、誘導結合プラズマ発光分析とヨード滴定から計算され、LiとCoの原子数比および酸素量を定量することによって得られる。 The range of 0.01 ≦ α ≦ 0.10 means that it is moderately Li-rich. That is, a suitable amount of Co is replaced with Li. In such a state, the transition phenomenon of the structure in which Li is desorbed even at a high voltage is suppressed, and Co elution is prevented. The valence of Co is preferably 2.8 or more and 3.3 or less. The Co valence is calculated from inductively coupled plasma emission spectrometry and iodometric titration, and is obtained by quantifying the atomic ratio of Li and Co and the amount of oxygen.
本発明に係る非水電解質リチウムイオン二次電池用正極材料を表す前記一般組成式において、Niに関するβは、0.01≦β≦0.05であることが好ましい。Niの添加はCo溶出を抑制する効果がある。Ni添加量の多少の増減による電池容量の変化は非常に小さいので、Niは、電池を高容量に維持しつつCo溶出を抑制する添加元素として好ましい。βが0.01に満たない場合には、Co溶出の抑制効果は十分でなく、一方、βが0.05を超えると、低充電状態での電位が低下するという問題が発生する。 In the general composition formula representing the positive electrode material for a nonaqueous electrolyte lithium ion secondary battery according to the present invention, β related to Ni is preferably 0.01 ≦ β ≦ 0.05. The addition of Ni has an effect of suppressing Co elution. Since the change in battery capacity due to some increase or decrease in the amount of Ni added is very small, Ni is preferable as an additive element that suppresses Co elution while maintaining the battery at a high capacity. When β is less than 0.01, the effect of suppressing Co elution is not sufficient. On the other hand, when β exceeds 0.05, a problem occurs in that the potential in a low charge state decreases.
本発明に係る非水電解質リチウムイオン二次電池用正極材料を表す前記一般組成式(1)において、Alおよび(または)Mgに関するγは、0.001≦γ≦0.02であることが好ましい。これらの元素の添加は、リチウム含有コバルト酸化物の構造を安定化させ、Coの溶出を抑制したり、耐熱性を向上させる効果がある。γが0.001に満たない場合にはこれらの効果は十分でなく、一方、γが0.02を超えると、リチウムコバルト酸化物の結晶格子が歪んで、Liの移動度が低下したり、電池の容量低下を引き起こしたりする。 In the general composition formula (1) representing the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention, γ related to Al and / or Mg is preferably 0.001 ≦ γ ≦ 0.02. . The addition of these elements has the effect of stabilizing the structure of the lithium-containing cobalt oxide, suppressing the elution of Co, and improving the heat resistance. When γ is less than 0.001, these effects are not sufficient. On the other hand, when γ exceeds 0.02, the crystal lattice of lithium cobalt oxide is distorted, and the mobility of Li decreases, It may cause a decrease in battery capacity.
なお、Mgを過剰に含有した場合には、充放電サイクルに伴ってMgが溶出して電池の寿命低下を招くという問題があるため、Mgの添加量は、正極材料が含むCoの原子数に対するMg原子数が0.01以下とすることがより好ましい。また、AlとMgを共に添加する場合には、正極材料が含むCoの原子数に対するAlの原子数は0.01以上かつ0.02以下、Mgの原子数は0.005以下であることがより好ましい。 In addition, when Mg is contained excessively, there is a problem that Mg is eluted with a charge / discharge cycle, leading to a decrease in battery life. Therefore, the amount of Mg added depends on the number of Co atoms contained in the positive electrode material. More preferably, the number of Mg atoms is 0.01 or less. When both Al and Mg are added, the number of Al atoms relative to the number of Co atoms in the positive electrode material is 0.01 or more and 0.02 or less, and the number of Mg atoms is 0.005 or less. More preferred.
本発明に係る非水電解質リチウムイオン二次電池用正極材料を表す前記一般組成式(1)において、酸素に関するδは、0≦δ≦0.01であることが好ましい。酸素の脱離による結晶構造の崩壊はCo溶出の一原因と考えられる。δが0.01以下であれば酸素欠損は十分に小さい。 In the general composition formula (1) representing the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention, δ relating to oxygen is preferably 0 ≦ δ ≦ 0.01. The collapse of the crystal structure due to the desorption of oxygen is considered to be one cause of Co elution. If δ is 0.01 or less, oxygen deficiency is sufficiently small.
本発明に係るリチウム含有コバルト酸化物は、
一般組成式:Li1+αCo1−β−γ−ηNiβMγM’ηO2−δ (2)
(式中、MはAl, Mgのうち少なくとも一種の元素を表し、M’はZr、Mo、V、Ti、Mn、Cr、Fe、Y、W、およびBからなる群より選択された少なくとも一種の元素を表し、0.01≦α≦0.10、 0.01≦β≦0.05、0.001≦γ≦0.02、 0.001≦η≦0.005、0≦δ≦0.01である)
で表されるリチウム含有コバルト酸化物としてもよい。
The lithium-containing cobalt oxide according to the present invention is
General composition formula: Li1 + [alpha] Co1- [ beta]-[gamma]-[eta] Ni [ beta] M [ gamma] M '[ eta] O2- [ delta] (2)
(Wherein M represents at least one element of Al and Mg, and M ′ represents at least one selected from the group consisting of Zr, Mo, V, Ti, Mn, Cr, Fe, Y, W, and B) 0.01 ≦ α ≦ 0.10, 0.01 ≦ β ≦ 0.05, 0.001 ≦ γ ≦ 0.02, 0.001 ≦ η ≦ 0.005, 0 ≦ δ ≦ 0 .01)
It is good also as lithium containing cobalt oxide represented by these.
これは、前記一般組成式(1)で表されるリチウム含有コバルト酸化物において、Coの一部を、Zr、Mo、V、Ti、Mn、Cr、Fe、Y、W、およびBよりなる群から選択される少なくとも一種の元素により置換することに相当している。 In the lithium-containing cobalt oxide represented by the general composition formula (1), a part of Co is a group consisting of Zr, Mo, V, Ti, Mn, Cr, Fe, Y, W, and B. This corresponds to substitution with at least one element selected from
上記一般組成式(2)を満たす正極材料を用いることによって、充放電サイクルによる劣化抑制効果の向上が期待できる。ただし、置換量が多すぎると電池容量が減少するため、ηは、0.001≦η≦0.005であることが好ましい。これは、Coの原子数の0.1%以上、かつ、0.5%以下に相当する。 By using the positive electrode material satisfying the general composition formula (2), it is possible to expect an improvement in the deterioration suppressing effect by the charge / discharge cycle. However, since the battery capacity decreases when the substitution amount is too large, η is preferably 0.001 ≦ η ≦ 0.005. This corresponds to 0.1% or more and 0.5% or less of the number of Co atoms.
本発明に係る非水電解質リチウムイオン二次電池用正極材料は、前記一般組成式(1)または(2)における酸素原子の一部が、F、SおよびPよりなる群から選択される少なくとも1種の元素で置換されていてもよい。この場合には、酸素の脱離による結晶構造の崩壊を抑制する効果がより向上する。ただし、置換量が多すぎると電池容量が減少するため、置換元素の原子数は、酸素の原子数の2.5%以下とすることが好ましい。 The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention has at least one oxygen atom in the general composition formula (1) or (2) selected from the group consisting of F, S and P. It may be substituted with a seed element. In this case, the effect of suppressing the collapse of the crystal structure due to the desorption of oxygen is further improved. However, since the battery capacity is reduced when the substitution amount is too large, the number of atoms of the substitution element is preferably 2.5% or less of the number of oxygen atoms.
本発明に係る非水電解質リチウムイオン二次電池用正極材料は、その表面に、Li、Zr、Ti、Al,Ni、Mn、La、Zn、PおよびBよりなる群から選択される少なくとも1種の元素を含む酸化物で被覆されていてもよい。この場合には、充放電サイクルによる劣化抑制効果が向上することに加えて、Co溶出抑制効果も向上する。ただし、上記被覆酸化物の量が多すぎると、抵抗が大きくなって電池容量が減少する。従って、被覆する酸化物に含まれる上記元素は、Liを含む場合はCoの原子数の50%以下、Liを含まない場合はCoの原子数の10%以下とすることが好ましい。 The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention has at least one selected from the group consisting of Li, Zr, Ti, Al, Ni, Mn, La, Zn, P and B on its surface. You may coat | cover with the oxide containing these elements. In this case, in addition to improving the deterioration suppressing effect due to the charge / discharge cycle, the Co elution suppressing effect is also improved. However, when there is too much quantity of the said covering oxide, resistance will become large and battery capacity will reduce. Therefore, the element contained in the oxide to be coated is preferably 50% or less of the number of Co atoms when Li is included, and 10% or less of the number of Co atoms when Li is not included.
<非水電解質リチウムイオン二次電池用正極材料の作製>
本発明に係る非水電解質リチウムイオン二次電池用正極材料は、例えば、Li化合物、Co化合物、Ni化合物、Al化合物、およびMg化合物などを適当な割合で混合した混合物粉末をペレット状に固め、焼成することにより作製できる。
<Preparation of cathode material for non-aqueous electrolyte lithium ion secondary battery>
The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention is obtained by, for example, solidifying a mixture powder in which Li compound, Co compound, Ni compound, Al compound, Mg compound and the like are mixed in an appropriate ratio into a pellet, It can be produced by firing.
Li化合物としてはLiOHやLi2CO3が好ましく、また、Co化合物、Ni化合物、Al化合物、およびMg化合物としては、これらの元素の水酸化物や酸化物などが好ましい。焼成温度は650〜1200℃であることが好ましく、焼成時間は5〜48時間であることが好ましい。焼成雰囲気は空気または酸素などの酸化雰囲気中であることが好ましい。 LiOH or Li 2 CO 3 is preferable as the Li compound, and hydroxides or oxides of these elements are preferable as the Co compound, Ni compound, Al compound, and Mg compound. The firing temperature is preferably 650 to 1200 ° C., and the firing time is preferably 5 to 48 hours. The firing atmosphere is preferably an oxidizing atmosphere such as air or oxygen.
本発明に係る非水電解質リチウムイオン二次電池用正極材料の表面に、Li、Zr、Ti、Al,Ni、Mn、La、Zn、PおよびBよりなる群から選択される少なくとも1種の元素を含む酸化物を被覆するには、例えば次の手順で行う。 At least one element selected from the group consisting of Li, Zr, Ti, Al, Ni, Mn, La, Zn, P and B on the surface of the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention For example, the following procedure is used to coat the oxide containing.
上記元素が溶解した水溶液中に、水酸化リチウムまたはアンモニア水を添加し、生成した共沈物を溶媒に分散させた処理液を調製する。この処理液中に非水電解質リチウムイオン二次電池用正極材料粉末を分散させた後、スプレードライヤーまたはエバポレータを使用して乾燥させて上記元素が表面に被覆された粉末を得る。この粉末を焼成することによって被覆層が形成された非水電解質リチウムイオン二次電池用正極材料が得られる。 Lithium hydroxide or aqueous ammonia is added to an aqueous solution in which the above elements are dissolved, and a treatment liquid is prepared by dispersing the produced coprecipitate in a solvent. After dispersing the positive electrode material powder for non-aqueous electrolyte lithium ion secondary battery in this treatment liquid, it is dried using a spray dryer or an evaporator to obtain a powder having the surface coated with the above elements. By firing this powder, a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery in which a coating layer is formed is obtained.
被覆を行うための他の方法としては、所望の元素のアルコキシドをアルコール溶媒に溶解させ、非水電解質リチウムイオン二次電池用正極材料に付着させる方法もある。 As another method for coating, there is a method in which an alkoxide of a desired element is dissolved in an alcohol solvent and adhered to a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery.
被覆を行う際の焼成温度は400〜850℃であることが好ましく、焼成時間は5〜24時間であることが好ましい。焼成雰囲気は空気または酸素などの酸化雰囲気中であることが好ましい。 The firing temperature at the time of coating is preferably 400 to 850 ° C., and the firing time is preferably 5 to 24 hours. The firing atmosphere is preferably an oxidizing atmosphere such as air or oxygen.
上記非水電解質リチウムイオン二次電池用正極材料を正極活物質とした正極を作製するには、上記正極材料を、バインダ、導電助剤などと混合して溶媒に分散させて正極合剤スラリーを調製し、この正極合剤スラリーを正極集電体の表面に塗布して正極合剤層を形成することにより行う。 In order to produce a positive electrode using the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery as a positive electrode active material, the positive electrode material is mixed with a binder, a conductive auxiliary agent, etc., and dispersed in a solvent to obtain a positive electrode mixture slurry. The positive electrode mixture slurry is prepared and applied to the surface of the positive electrode current collector to form a positive electrode mixture layer.
バインダとしては、非水電解質リチウムイオン二次電池内で化学的に安定なものであれば、熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよい。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体またはそのNa+イオン架橋体、エチレン−メタクリル酸共重合体またはそのNa+イオン架橋体、エチレン−アクリル酸メチル共重合体またはそのNa+イオン架橋体、エチレン−メタクリル酸メチル共重合体またはそのNa+イオン架橋体などが使用可能である。これらを単独で使用してもよく、また、2種以上を併用してもよい。これらの中では、非水電解質リチウムイオン二次電池での安定性や、特性への影響などを考慮すると、PVDFまたはアクリル系の材料が好ましい。 As the binder, any one of a thermoplastic resin and a thermosetting resin may be used as long as it is chemically stable in the nonaqueous electrolyte lithium ion secondary battery. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin) , Polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrif Oroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer or Na + ion thereof Cross-linked product, ethylene-methacrylic acid copolymer or its Na + ion cross-linked product, ethylene-methyl acrylate copolymer or its Na + ion cross-linked product, ethylene-methyl methacrylate copolymer or its Na + ion cross-linked product can be used It is. These may be used alone or in combination of two or more. Among these, PVDF or an acrylic material is preferable in consideration of stability in the nonaqueous electrolyte lithium ion secondary battery, influence on characteristics, and the like.
導電助剤としては、非水電解質リチウムイオン二次電池内で化学的に安定なものであれば、無機材料、有機材料のいずれでもよい。例えば、天然黒鉛や人造黒鉛などのグラファイト、単層または多層のカーボンナノチューブ、グラフェン、VGCF、アセチレンブラック、ケッチェンブラック(商品名)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、炭素繊維、金属繊維などの導電性繊維、アルミニウム粉などの金属粉末、フッ化炭素、酸化亜鉛、チタン酸カリウムなどからなる導電性ウィスカー、酸化チタンなどの導電性金属酸化物、ポリフェニレン誘導体などの有機導電性材料などが使用可能である。これらを単独で使用してもよく、また、2種以上を併用してもよい。これらの中では、導電性の高い黒鉛と、吸液性に優れたカーボンブラックが好ましい。 The conductive auxiliary agent may be either an inorganic material or an organic material as long as it is chemically stable in the nonaqueous electrolyte lithium ion secondary battery. For example, graphite such as natural graphite or artificial graphite, single- or multi-walled carbon nanotube, graphene, VGCF, acetylene black, ketjen black (trade name), carbon black such as channel black, furnace black, lamp black, thermal black, Carbon fiber, conductive fiber such as metal fiber, metal powder such as aluminum powder, conductive whisker made of carbon fluoride, zinc oxide, potassium titanate, etc., conductive metal oxide such as titanium oxide, organic such as polyphenylene derivatives A conductive material or the like can be used. These may be used alone or in combination of two or more. Among these, graphite having high conductivity and carbon black excellent in liquid absorption are preferable.
導電助剤の形態としては、例えば、粒子状のものの場合、1次粒子のみに制限されず、2次粒子(2次凝集体)やチェーンストラクチャーなどの集合体の形態を有するものも用いることができる。このような集合体の形態を有する導電助剤の場合、取り扱いがより容易であり、正極の生産性を高めることができる。 As the form of the conductive auxiliary agent, for example, in the case of a particulate form, it is not limited only to the primary particles, and those having the form of aggregates such as secondary particles (secondary aggregates) and chain structures may be used. it can. In the case of a conductive additive having such an aggregate form, it is easier to handle and the productivity of the positive electrode can be increased.
正極合剤層に占める正極活物質の質量は、85〜99%であることが好ましい。正極活物質の含有比率が85%より小さいと電池容量が小さくなり、逆に、99%より大きいと導電助剤の量が相対的に少なくなって正極の抵抗が高くなる。 The mass of the positive electrode active material in the positive electrode mixture layer is preferably 85 to 99%. When the content ratio of the positive electrode active material is less than 85%, the battery capacity is decreased. Conversely, when the content ratio is greater than 99%, the amount of the conductive auxiliary agent is relatively decreased, and the resistance of the positive electrode is increased.
正極合剤層に占めるバインダの質量は、0.2〜6%であることが好ましい。また、正極合剤層に占める導電助剤の質量は、0.5〜9%であることが好ましい。 The mass of the binder in the positive electrode mixture layer is preferably 0.2 to 6%. Moreover, it is preferable that the mass of the conductive support agent which occupies for a positive mix layer is 0.5 to 9%.
正極活物質としての本発明に係る非水電解質リチウムイオン二次電池用正極材料、バインダ、および導電助剤などを含む正極合剤を、N−メチル−2−ピロリドン(以下、NMPと記載)に分散させてスラリー状の合剤組成物を調製する。この合剤組成物を正極集電体の片面または両面に塗布した後、NMPを蒸発させ、さらにプレス処理を行って集電体表面に正極合剤層を形成する。プレス処理は、正極合剤層の厚みや密度を調節するためのもので、例えば、ロールプレス機や油圧プレス機を用いて行うことができる。このようにして正極は作製される。正極の作製方法は上記に限定されず、他の作製方法によってもよい。 A positive electrode mixture containing a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention as a positive electrode active material, a binder, a conductive auxiliary agent, and the like is used as N-methyl-2-pyrrolidone (hereinafter referred to as NMP). Disperse to prepare a slurry mixture composition. After this mixture composition is applied to one or both sides of the positive electrode current collector, NMP is evaporated, and a press treatment is performed to form a positive electrode mixture layer on the current collector surface. The press treatment is for adjusting the thickness and density of the positive electrode mixture layer, and can be performed using, for example, a roll press machine or a hydraulic press machine. In this way, the positive electrode is produced. The method for manufacturing the positive electrode is not limited to the above, and other manufacturing methods may be used.
正極集電体の材料は、非水電解質リチウムイオン二次電池において化学的に安定な電子伝導体であれば特に限定されない。例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、炭素、導電性樹脂などの他に、アルミニウム、アルミニウム合金、ステンレス鋼の表面に炭素層またはチタン層を形成した複合材などを用いることができる。上記材料の中では、軽量で導電性が高いことから、アルミニウムまたはアルミニウム合金が好ましい。正極集電体の材料としては、例えば、前記材料のフォイル、フィルム、シート、ネット、パンチングシート、ラス体、多孔質体、発泡体、繊維群の成形体なども使用できる。また、正極集電体の表面に、表面処理を施して凹凸を付けることもできる。正極集電体の厚みは特に限定されないが、1〜500μmが好ましい。 The material of the positive electrode current collector is not particularly limited as long as it is an electron conductor that is chemically stable in the nonaqueous electrolyte lithium ion secondary battery. For example, in addition to aluminum, aluminum alloy, stainless steel, nickel, titanium, carbon, conductive resin, etc., aluminum, aluminum alloy, a composite material in which a carbon layer or a titanium layer is formed on the surface of stainless steel, or the like can be used. . Among these materials, aluminum or aluminum alloy is preferable because it is lightweight and has high conductivity. As a material of the positive electrode current collector, for example, a foil, a film, a sheet, a net, a punching sheet, a lath body, a porous body, a foamed body, a molded body of a fiber group, or the like of the above materials can be used. Further, the surface of the positive electrode current collector can be roughened by surface treatment. Although the thickness of a positive electrode electrical power collector is not specifically limited, 1-500 micrometers is preferable.
集電体表面に正極合剤含有組成物を塗布する方法としては、スピンコーティング、ディッピング、スクリーン印刷などの各種の方法を用いることができる。 As a method for applying the positive electrode mixture-containing composition to the surface of the current collector, various methods such as spin coating, dipping, and screen printing can be used.
本発明に係る非水電解質リチウムイオン二次電池は、本発明に係る非水電解質リチウムイオン二次電池用正極材料を正極活物質とする正極を有する。正極以外の構成、構造については特に制限はない。 The nonaqueous electrolyte lithium ion secondary battery according to the present invention has a positive electrode using the positive electrode material for a nonaqueous electrolyte lithium ion secondary battery according to the present invention as a positive electrode active material. There are no particular restrictions on the configuration and structure other than the positive electrode.
本発明に係る非水電解質リチウムイオン二次電池用正極材料はCoO2(O1構造)への転移が起こりにくい。例えば、負極にリチウム金属を用い、正極に本発明に係る非水電解質リチウムイオン二次電池用正極材料を用いた非水電解質リチウムイオン二次電池に対して、室温において0.1C以下で5Vまで充電を行い、このときの正極の充電曲線を、電圧で微分して得られたdQ/dV曲線において、最も高電位側に現れるO1構造への相転移に起因するピークの電位は、4.64V以上となる。このことは、本発明に係る非水電解質リチウムイオン二次電池用正極材料がCoO2(O1構造)へ転移しにくいことを示している。 In the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention, the transition to CoO 2 (O1 structure) hardly occurs. For example, for a non-aqueous electrolyte lithium ion secondary battery using a lithium metal for the negative electrode and a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention for the positive electrode, up to 5 V at 0.1 C or less at room temperature In the dQ / dV curve obtained by performing charging and differentiating the charge curve of the positive electrode with voltage, the peak potential due to the phase transition to the O1 structure that appears on the highest potential side is 4.64V. That's it. This indicates that the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to the present invention is not easily transferred to CoO 2 (O1 structure).
<正極活物質の合成>
Li化合物としてLi2CO3、Co化合物としてCo3O4、Ni化合物としてNi(OH)2、Al化合物としてAl(OH)3を適当な混合割合で乳鉢に収容して混合した後、ペレット状に固め、酸素雰囲気中にて、1000℃で10時間熱処理を行った。熱処理を行ったペレットを乳鉢内で粒子の平均直径が15μmとなるように粉砕して、一般組成式Li1.03Co0.975Ni0.02Al0.005O2で表されるリチウム含有コバルト酸化物を合成した。なお、組成比は、ICP(Inductivity Coupled Plasma:誘導結合プラズマ発光分析)法により測定した。
<Synthesis of positive electrode active material>
Li 2 CO 3 as the Li compound, Co 3 O 4 as the Co compound, Ni (OH) 2 as the Ni compound, and Al (OH) 3 as the Al compound are accommodated in a mortar in an appropriate mixing ratio and mixed, and then pelletized And heat-treated at 1000 ° C. for 10 hours in an oxygen atmosphere. The pellets subjected to heat treatment were pulverized in a mortar so that the average diameter of the particles was 15 μm, and the lithium content represented by the general composition formula Li 1.03 Co 0.975 Ni 0.02 Al 0.005 O 2 Cobalt oxide was synthesized. The composition ratio was measured by ICP (Inductivity Coupled Plasma) method.
<正極の作製>
正極活物質として、上記組成:Li1.03Co0.975Ni0.02Al0.005O2のリチウム含有コバルト酸化物の粉末を、バインダとしてPVDFを含有したNMP溶液中に分散させて混合液を調製した。NMP溶液の質量に占めるPVDFの質量は10%である。また、上記組成のリチウム含有コバルト酸化物とNMP溶液の質量比は、95:5とした。この混合液に、導電助剤としてカーボンブラックを2.5質量部添加し、乳鉢内で混練し、さらにNMPを加えて粘度を調節して正極合剤スラリーを調製した。
<Preparation of positive electrode>
As a positive electrode active material, lithium-containing cobalt oxide powder having the above composition: Li 1.03 Co 0.975 Ni 0.02 Al 0.005 O 2 is dispersed and mixed in an NMP solution containing PVDF as a binder. A liquid was prepared. The mass of PVDF in the mass of the NMP solution is 10%. The mass ratio of the lithium-containing cobalt oxide having the above composition and the NMP solution was 95: 5. To this mixed solution, 2.5 parts by mass of carbon black as a conductive assistant was added, kneaded in a mortar, and NMP was added to adjust the viscosity to prepare a positive electrode mixture slurry.
正極合剤スラリーを、ベーカー式アプリケーターを用いて、ギャップ(隙間)を200μmに調整して、厚さ15μmのアルミニウム箔による正極集電体に塗布した後、80℃で1時間乾燥させて正極合剤層を形成した。正極合剤層が形成された正極集電体を、直径15mmの円盤状に加工した後、約30MPaの圧力でプレスし、さらに真空乾燥機にて100℃で20時間乾燥させた。このような工程により正極を作製した。 The positive electrode mixture slurry was applied to a positive electrode current collector made of aluminum foil having a thickness of 15 μm using a baker-type applicator, and then dried at 80 ° C. for 1 hour. An agent layer was formed. The positive electrode current collector on which the positive electrode mixture layer was formed was processed into a disk shape having a diameter of 15 mm, then pressed at a pressure of about 30 MPa, and further dried at 100 ° C. for 20 hours in a vacuum dryer. A positive electrode was produced by such a process.
<負極の作製>
所定の厚さの金属リチウム圧延板を直径16mmの円盤状に加工して負極を作製した。
<Production of negative electrode>
A metal lithium rolled plate having a predetermined thickness was processed into a disk shape having a diameter of 16 mm to produce a negative electrode.
<非水電解液>
体積比で1:2のエチレンカーボネートとジエチルカーボネートを混合した溶媒に、六フッ化リン酸リチウム(LiPF6)を1モル濃度(mol/l)となるように溶解させて非水電解液を調製した。
<Non-aqueous electrolyte>
A non-aqueous electrolyte is prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a molar concentration (mol / l) in a solvent in which ethylene carbonate and diethyl carbonate having a volume ratio of 1: 2 are mixed. did.
<電池の組立>
上記説明の正極、負極、および非水電解液を用いて、扁平形の電池を組み立てた。図1は、組み立てた非水電解質リチウムイオン二次電池1の断面を模式的に示したものである。組み立ては次のように行った。
<Battery assembly>
A flat battery was assembled using the positive electrode, negative electrode, and non-aqueous electrolyte described above. FIG. 1 schematically shows a cross-section of an assembled nonaqueous electrolyte lithium ion
ステンレススチール製の容器13の側面に絶縁リング8を挿入した後、負極4、セパレータ3、正極2の順番に積層し、さらに、非水電解液をセパレータ3に含侵させた。セパレータとしては、ポリプロピレン製の微多孔膜を用いた。正極2の上に、アルミニウム製の押さえ板5と板ばね6を順に重ね、絶縁パッキン9を介してステンレススチール製の蓋7を乗せ、絶縁スリーブ10を介して、ボルト12とナット11により締め付け、扁平型の電池を構成した。
After inserting the insulating ring 8 into the side surface of the
正極2は、押さえ板5と板ばね6を介して蓋7に電気的に接続され、負極4は、容器13を介してボルト12に電気的に接続されている。これにより、蓋7およびボルト12を端子として、電池内部から電気エネルギーを取り出せる。
The
実施例1で用いたAl(OH)3に代えてMg化合物としてMg(OH)2を用いたこと以外は実施例1と同様の手順で、正極活物質として一般組成式Li1.03Co0.95Ni0.04Mg0.01O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例2にかかる非水電解質リチウムイオン二次電池を作製した。 The general composition formula Li 1.03 Co 0 was used as the positive electrode active material in the same procedure as in Example 1 except that Mg (OH) 2 was used as the Mg compound instead of Al (OH) 3 used in Example 1. A lithium-containing cobalt oxide represented by .95 Ni 0.04 Mg 0.01 O 2 was synthesized. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 2 was produced in the same procedure as in Example 1 above.
実施例1と同様の手順で、正極活物質として一般組成式Li1.06Co0.95Ni0.04Al0.01O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例3にかかる非水電解質リチウムイオン二次電池を作製した。 A lithium-containing cobalt oxide represented by the general composition formula Li 1.06 Co 0.95 Ni 0.04 Al 0.01 O 2 was synthesized as a positive electrode active material in the same procedure as in Example 1. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 3 was produced in the same procedure as in Example 1.
実施例1で用いた化合物に加えて、Mg化合物としてMg(OH)2を用い、それ以外は実施例1と同様の手順で、正極活物質として一般組成式Li1.03Co0.95Ni0.035Al0.01Mg0.005O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例4にかかる非水電解質リチウムイオン二次電池を作製した。 In addition to the compound used in Example 1, Mg (OH) 2 was used as the Mg compound, and the other procedures were the same as in Example 1 except that the general composition formula Li 1.03 Co 0.95 Ni was used as the positive electrode active material. A lithium-containing cobalt oxide represented by 0.035 Al 0.01 Mg 0.005 O 2 was synthesized. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 4 was produced in the same procedure as in Example 1.
実施例1と同様の手順で、正極活物質として一般組成式Li1.03Co0.94Ni0.05Al0.01O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例5にかかる非水電解質リチウムイオン二次電池を作製した。 In the same procedure as in Example 1, a lithium-containing cobalt oxide represented by the general composition formula Li 1.03 Co 0.94 Ni 0.05 Al 0.01 O 2 was synthesized as a positive electrode active material. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 5 was fabricated in the same procedure as in Example 1 above.
実施例1で用いた化合物に加えて、Zr化合物としてZrO2を用い、それ以外は実施例1と同様の手順で、正極活物質として組成:Li1.06Co0.95Ni0.04Al0.005Zr0.005O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例6にかかる非水電解質リチウムイオン二次電池を作製した。 In addition to the compound used in Example 1, ZrO 2 was used as the Zr compound, and the other procedures were the same as in Example 1 except that the composition as the positive electrode active material: Li 1.06 Co 0.95 Ni 0.04 Al A lithium-containing cobalt oxide represented by 0.005 Zr 0.005 O 2 was synthesized. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 6 was produced in the same procedure as in Example 1.
実施例6と同様の手順で、正極活物質として組成:Li1.10Co0.97Ni0.02Al0.005Zr0.005O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例7にかかる非水電解質リチウムイオン二次電池を作製した。 A lithium-containing cobalt oxide represented by the composition: Li 1.10 Co 0.97 Ni 0.02 Al 0.005 Zr 0.005 O 2 was synthesized as a positive electrode active material in the same procedure as in Example 6. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 7 was fabricated in the same procedure as in Example 1 above.
実施例2で用いた化合物に加えて、Mn化合物としてMnCO3を用い、それ以外は実施例2と同様の手順で、一般組成式Li1.03Co0.95Ni0.04Mg0.005Mn0.005O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例8にかかる非水電解質リチウムイオン二次電池を作製した。 In addition to the compound used in Example 2, MnCO 3 was used as the Mn compound, and the other procedures were the same as in Example 2 except that general composition formula Li 1.03 Co 0.95 Ni 0.04 Mg 0.005 A lithium-containing cobalt oxide represented by Mn 0.005 O 2 was synthesized. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 8 was fabricated in the same procedure as in Example 1 above.
実施例2で用いた化合物に加えて、Ti化合物としてTiO2を用い、それ以外は実施例2と同様の手順で、一般組成式Li1.03Co0.95Ni0.04Mg0.005Ti0.005O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例9にかかる非水電解質リチウムイオン二次電池を作製した。 In addition to the compound used in Example 2, TiO 2 was used as the Ti compound, and the general composition formula Li 1.03 Co 0.95 Ni 0.04 Mg 0.005 was otherwise obtained in the same procedure as in Example 2. A lithium-containing cobalt oxide represented by Ti 0.005 O 2 was synthesized. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 9 was produced in the same procedure as in Example 1 above.
実施例1で用いた化合物に加えて、Mo化合物としてMoO3を用い、それ以外は実施例1と同様の手順で、一般組成式Li1.03Co0.95Ni0.04Al0.005Mo0.005O2で表されるリチウム含有コバルト酸化物を合成した。この正極活物質を用いて、上記実施例1と同様の手順で実施例10にかかる非水電解質リチウムイオン二次電池を作製した。 In addition to the compound used in Example 1, MoO 3 was used as the Mo compound, and the other procedures were the same as in Example 1, and the general composition formula Li 1.03 Co 0.95 Ni 0.04 Al 0.005 was used. A lithium-containing cobalt oxide represented by Mo 0.005 O 2 was synthesized. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 10 was produced in the same procedure as in Example 1 above.
実施例6で用いたAl(OH)3に代えて、Mg化合物としてMg化合物としてMg(OH)2を用いたこと以外は実施例6と同様の手順で、正極活物質として一般組成式Li1.01Co0.98Ni0.01Al0.005Zr0.005O2で表されるリチウム含有コバルト酸化物を合成した。次に、LiOH・OHとAl(NO3)3・9H2OとNi(NO3)2・6H2Oとの混合水溶液にアンモニア水を滴下し、水溶液のpHが10〜12の範囲となるように調整し、この水溶液をろ過した。ろ過した水溶液中に上記正極活物質を浸漬して撹拌し、その表面に、LiOH、Ni(OH)2、およびAl(OH)3の混合被膜を形成した。被膜を形成した正極活物質を80℃で乾燥させ、さらに650℃で5時間焼成した。このような工程により正極活物質表面に形成された被膜には、Li、Ni、およびAlが、それぞれCoに対する原子比率で、11%(11at%)、10%(10at%)、および1%(1at%)含有される。この正極活物質を用いて、実施例1と同様の手順で実施例11にかかる非水電解質リチウムイオン二次電池を作製した。 Instead of Al (OH) 3 used in Example 6, the same procedure as in Example 6 was used except that Mg (OH) 2 was used as the Mg compound as the Mg compound, and the general composition formula Li 1 was used as the positive electrode active material. A lithium-containing cobalt oxide represented by .01 Co 0.98 Ni 0.01 Al 0.005 Zr 0.005 O 2 was synthesized. Next, ammonia water is dropped into a mixed aqueous solution of LiOH.OH, Al (NO 3 ) 3 · 9H 2 O and Ni (NO 3 ) 2 · 6H 2 O, and the pH of the aqueous solution is in the range of 10-12. And the aqueous solution was filtered. The positive electrode active material was immersed in the filtered aqueous solution and stirred, and a mixed film of LiOH, Ni (OH) 2 , and Al (OH) 3 was formed on the surface. The positive electrode active material on which the film was formed was dried at 80 ° C., and further fired at 650 ° C. for 5 hours. In the film formed on the surface of the positive electrode active material by such a process, Li, Ni, and Al are 11% (11 at%), 10% (10 at%), and 1% (atomic ratio with respect to Co, respectively) 1 at%). Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 11 was produced in the same procedure as in Example 1.
実施例6と同様の手順で、正極活物質として一般組成式Li1.01Co0.98Ni0.01Al0.005Zr0.005O2で表されるリチウム含有コバルト酸化物を合成した。次に、LiOH・OHと(NH4)2HPO4との混合水溶液にアンモニア水を滴下し、水溶液のpHが10〜12の範囲となるように調整し、この水溶液をろ過した。ろ過した水溶液中に上記正極活物質を浸漬して撹拌し、その表面に、LiOH・OHと(NH4)2HPO4の混合被膜を形成した。被膜を形成した正極活物質を80℃で乾燥させ、さらに400℃で10時間焼成した。このような工程により正極活物質表面に形成された被膜には、LiとPが、それぞれCoに対する原子比率で、9at%と3at%含有される。この正極活物質を用いて、実施例1と同様の手順で実施例12にかかる非水電解質リチウムイオン二次電池を作製した。 A lithium-containing cobalt oxide represented by the general composition formula Li 1.01 Co 0.98 Ni 0.01 Al 0.005 Zr 0.005 O 2 was synthesized as a positive electrode active material in the same procedure as in Example 6. . Next, aqueous ammonia was added dropwise to a mixed aqueous solution of LiOH.OH and (NH 4 ) 2 HPO 4 to adjust the pH of the aqueous solution to be in the range of 10 to 12, and this aqueous solution was filtered. The positive electrode active material was immersed in the filtered aqueous solution and stirred, and a mixed film of LiOH.OH and (NH 4 ) 2 HPO 4 was formed on the surface. The positive electrode active material on which the film was formed was dried at 80 ° C. and further fired at 400 ° C. for 10 hours. The film formed on the surface of the positive electrode active material by such a process contains 9 at% and 3 at% of Li and P in an atomic ratio with respect to Co, respectively. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 12 was produced in the same procedure as in Example 1.
実施例6と同様の手順で、正極活物質として一般組成式Li1.03Co0.945Ni0.04Al0.01Zr0.005O2で表されるリチウム含有コバルト酸化物を合成した。次に、Zr(OC3H7)4を2-プロパノール溶媒中に上記正極活物質を浸漬して撹拌し、その表面に、Zr(OC3H7)4の被膜を形成した。被膜を形成した正極活物質を80℃で乾燥させ、さらに400℃で10時間焼成した。このような工程により正極活物質表面に形成された被膜には、ZrがCoに対する原子比率で2at%含有される。この正極活物質を用いて実施例1と同様の手順で実施例13にかかる非水電解質リチウムイオン二次電池を作製した。 In the same procedure as in Example 6, a lithium-containing cobalt oxide represented by the general composition formula Li 1.03 Co 0.945 Ni 0.04 Al 0.01 Zr 0.005 O 2 was synthesized as a positive electrode active material. . Next, Zr (OC 3 H 7 ) 4 was immersed in a 2-propanol solvent and stirred to form a Zr (OC 3 H 7 ) 4 coating on the surface. The positive electrode active material on which the film was formed was dried at 80 ° C. and further fired at 400 ° C. for 10 hours. The film formed on the surface of the positive electrode active material by such a process contains 2 at% Zr in atomic ratio to Co. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 13 was produced in the same procedure as in Example 1.
実施例6と同様の手順で、正極活物質として一般組成式Li1.03Co0.945Ni0.04Al0.01Zr0.005O2で表されるリチウム含有コバルト酸化物を合成した。次に、Al(NO3)3・9H2Oと(NH4)2HPO4との混合水溶液を撹拌しながらアンモニア水を滴下し、水溶液のpHが10〜12の範囲となるように調整した。この水溶液中に上記正極活物質を浸漬して撹拌し、その表面に、Al(NO3)3と(NH4)2HPO4との混合被膜を形成した。被膜を形成した正極活物質を80℃で乾燥させ、さらに400℃で10時間焼成した。このような工程により正極活物質表面に形成された被膜には、AlとPが、それぞれCoに対する原子比率で、1at%と1at%含有される。この正極活物質を用いて、実施例1と同様の手順で実施例14にかかる非水電解質リチウムイオン二次電池を作製した。 In the same procedure as in Example 6, a lithium-containing cobalt oxide represented by the general composition formula Li 1.03 Co 0.945 Ni 0.04 Al 0.01 Zr 0.005 O 2 was synthesized as a positive electrode active material. . Then, it was added dropwise Al (NO 3) 3 · 9H 2 O and (NH 4) ammonia water with stirring a mixed solution of 2 HPO 4, was adjusted to pH of the aqueous solution is in the range of 10 to 12 . The positive electrode active material was immersed in this aqueous solution and stirred, and a mixed film of Al (NO 3 ) 3 and (NH 4 ) 2 HPO 4 was formed on the surface. The positive electrode active material on which the film was formed was dried at 80 ° C. and further fired at 400 ° C. for 10 hours. The coating formed on the surface of the positive electrode active material by such a process contains Al and P in an atomic ratio of 1 at% and 1 at%, respectively. Using this positive electrode active material, a non-aqueous electrolyte lithium ion secondary battery according to Example 14 was produced in the same procedure as in Example 1.
実施例1〜14の正極活物質の組成、および正極活物質の表面を被覆した元素について、図2に一覧表示する。 The compositions of the positive electrode active materials of Examples 1 to 14 and the elements covering the surface of the positive electrode active material are listed in FIG.
正極活物質の組成を、図2に比較例1〜4に示した組成としたリチウム含有コバルト酸化物を調製した。各比較例の正極酸化物の一般組成式は通りである。比較例1はLi0.098CoO2、比較例2はLi1.01Co0.98Zr0.02O2、比較例3はLiCo0.9Al0.1O2、比較例4はLiCo0.98Ni0.02O2である。 A lithium-containing cobalt oxide having the composition of the positive electrode active material as shown in Comparative Examples 1 to 4 in FIG. 2 was prepared. The general composition formula of the positive electrode oxide of each comparative example is as follows. Comparative Example 1 is Li 0.098 CoO 2 , Comparative Example 2 is Li 1.01 Co 0.98 Zr 0.02 O 2 , Comparative Example 3 is LiCo 0.9 Al 0.1 O 2 , and Comparative Example 4 is LiCo 0.98 Ni 0.02 O 2 .
比較例4については、作製した正極活物質表面に次の手順でAlの被膜を形成した。即ち、Al(NO3)3・9H2O水溶液を撹拌しながらアンモニア水を滴下し、水溶液のpHが10〜12の範囲となるように調整した。この水溶液中に正極活物質を浸漬して、その表面に、Al(NO3)3の被膜を形成した。被膜を形成した正極活物質を80℃で乾燥させ、さらに650℃で5時間焼成した。このような工程により正極活物質表面にAlを形成した。 In Comparative Example 4, an Al film was formed on the surface of the produced positive electrode active material by the following procedure. That added dropwise aqueous ammonia with stirring Al (NO 3) 3 · 9H 2 O aqueous solution was adjusted to pH of the aqueous solution is in the range of 10-12. The positive electrode active material was immersed in this aqueous solution to form an Al (NO 3 ) 3 coating on the surface. The positive electrode active material on which the film was formed was dried at 80 ° C., and further fired at 650 ° C. for 5 hours. By such a process, Al was formed on the surface of the positive electrode active material.
これらの正極活物質を用いて、実施例1と同様の手順で正極を作製し、さらに、実施例1と同様の手順で比較例1〜4にかかる非水電解質リチウムイオン二次電池を作製した。 Using these positive electrode active materials, a positive electrode was produced in the same procedure as in Example 1, and further, non-aqueous electrolyte lithium ion secondary batteries according to Comparative Examples 1 to 4 were produced in the same procedure as in Example 1. .
<電池の評価>
実施例1〜14および比較例1〜4の各非水電解質リチウムイオン二次電池について、次の要領で放電容量と連続充電耐久時間を測定した。
<Battery evaluation>
About each nonaqueous electrolyte lithium ion secondary battery of Examples 1-14 and Comparative Examples 1-4, the discharge capacity and the continuous charge durable time were measured in the following way.
<放電容量の測定>
室温(25℃)にて、負荷率0.05Cの電流で電池電圧が4.45Vとなるまで定電流で充電を行い、その後、4.45Vの定電圧で電流が負荷率0.005Cになるまで充電した。充電終了後、1時間放置した。次に、負荷率0.05Cの電流で電池電圧が3.00Vとなるまで定電流で放電を行い、放電容量を測定した。その測定結果を図3に示す。
<Measurement of discharge capacity>
At room temperature (25 ° C.), charging is performed at a constant current until the battery voltage reaches 4.45 V at a current with a load factor of 0.05 C, and then the current becomes a load factor of 0.005 C at a constant voltage of 4.45 V Charged up to. The battery was left for 1 hour after charging. Next, the battery was discharged at a constant current at a load factor of 0.05 C until the battery voltage reached 3.00 V, and the discharge capacity was measured. The measurement results are shown in FIG.
<連続充電耐久時間の測定>
電池を60℃の恒温槽に30分間放置した後、60℃の環境を保ったまま、負荷率0.05Cの定電流で充電を開始し、電池電圧が4.5Vになるまで充電した。電流値が減衰した後、さらに4.5Vの定電圧で、負荷率が再び0.05Cとなるまで連続充電を行い、充電を開始した時点から再び0.05Cに到達する時点までの時間を連続充電耐久時間として測定した。その測定結果を図3に示す。
<Measurement of continuous charge endurance>
After the battery was left in a constant temperature bath at 60 ° C. for 30 minutes, charging was started at a constant current with a load factor of 0.05 C while maintaining the environment at 60 ° C., and the battery was charged until the battery voltage reached 4.5V. After the current value decays, the battery is continuously charged at a constant voltage of 4.5 V until the load factor becomes 0.05 C again, and the time from when charging is started until it reaches 0.05 C again is continued. It was measured as the charge endurance time. The measurement results are shown in FIG.
図3に示した結果から以下のことが分かる。実施例1〜14に係る非水電解質リチウムイオン二次電池では、4.45Vから3Vまでの定電流放電において170mAh/g以上の放電容量と300時間以上の連続充電耐久時間を両立されている。これに対して、比較例1〜4に係る非水電解質リチウムイオン二次電池では、170mAh/g以上の放電容量と300時間以上の連続充電耐久時間は両立できていない。 The following can be understood from the results shown in FIG. In the nonaqueous electrolyte lithium ion secondary batteries according to Examples 1 to 14, the discharge capacity of 170 mAh / g or more and the continuous charge durability time of 300 hours or more are compatible in constant current discharge from 4.45 V to 3 V. On the other hand, in the non-aqueous electrolyte lithium ion secondary batteries according to Comparative Examples 1 to 4, a discharge capacity of 170 mAh / g or more and a continuous charge durability time of 300 hours or more are not compatible.
比較例1においては、正極活物質にCo以外の遷移金属元素が含有されない。また、Liはわずかに欠損しているため、正極活物質粒子のサイズが小さく平均直径で3μm程度である。比表面積は大きいので、放電容量は高いものの、高温・高電圧下において正極活物質表面からのCo溶出がし易くなり、このために連続充電耐久時間が短くなったものと考えられる。 In Comparative Example 1, no transition metal element other than Co is contained in the positive electrode active material. Further, since Li is slightly deficient, the size of the positive electrode active material particles is small and the average diameter is about 3 μm. Although the specific surface area is large, the discharge capacity is high, but it is easy for Co to elute from the surface of the positive electrode active material under high temperature and high voltage, and this is considered to have shortened the continuous charge durability time.
比較例2においては、正極活物質にNiが含有されない。また、一般組成式中(1)または(2)のMに相当する遷移金属元素(Al, Mgのうち少なくとも一種の元素)も含有されない。さらに、Co原子数の2%がZrに置換されている。これらにより、活物質粒子のサイズが小さく平均直径が3μm程度である。正極活物質の比表面積は大きいものの、Zrがリチウム含有ジルコニウム酸化物を形成するため、放電容量が小さくなったものと考えられる。また、正極活物質の比表面積が大きいことで、高温・高電圧下において活物質表面からのCo溶出はし易く、そのため連続充電耐久時間が短くなったものと考えられる。 In Comparative Example 2, Ni is not contained in the positive electrode active material. Further, a transition metal element (at least one element of Al and Mg) corresponding to M in (1) or (2) is not contained in the general composition formula. Furthermore, 2% of the number of Co atoms is replaced by Zr. As a result, the size of the active material particles is small, and the average diameter is about 3 μm. Although the specific surface area of the positive electrode active material is large, it is considered that Zr forms a lithium-containing zirconium oxide, so that the discharge capacity is reduced. In addition, it is considered that the large specific surface area of the positive electrode active material facilitates the elution of Co from the active material surface under high temperature and high voltage, and thus the continuous charge durability time is shortened.
比較例3においては、正極活物質にNiが含有されない。また、一般組成式中(1)または(2)のMに相当する遷移金属元素としてAlが過剰に含有されている。これらにより、結晶構造は安定化して連続充電耐久時間は長くなったものの、結晶構造に大きく歪みが生じてLiの移動度が低下し、それにより放電容量が低下したものと考えられる。 In Comparative Example 3, the positive electrode active material does not contain Ni. Moreover, Al is excessively contained as a transition metal element corresponding to M in (1) or (2) in the general composition formula. As a result, although the crystal structure is stabilized and the continuous charge endurance time is lengthened, it is considered that the crystal structure is greatly distorted to lower the Li mobility, thereby reducing the discharge capacity.
比較例4においては、正極活物質に一般組成式中(1)または(2)のMに相当する遷移金属元素が含有されない。正極活物質表面には、Alの原子数がCo原子数の20at%となるようにAl酸化物が被覆されている。放電容量についても、また、連続充電耐久時間についても、共に実施例に比べて劣っている。なお、連続充電耐久時間についてはある程度の長さになった理由としては、被覆酸化物が正極活物質と電解液との接触を抑制したためと考えられる。ただし、この酸化物被覆は、電池反応の際のLiイオンの挿入脱離を阻害するため、放電容量は低下したものと考えられる。 In Comparative Example 4, the positive electrode active material does not contain a transition metal element corresponding to M in (1) or (2) in the general composition formula. The surface of the positive electrode active material is coated with an Al oxide so that the number of Al atoms is 20 at% of the number of Co atoms. Both the discharge capacity and the continuous charge endurance time are inferior to those of the examples. In addition, it is thought that the reason why the continuous charge durability time has reached a certain length is that the coating oxide suppresses the contact between the positive electrode active material and the electrolytic solution. However, this oxide coating inhibits the insertion and desorption of Li ions during the battery reaction, so it is considered that the discharge capacity is reduced.
実施例1〜14にかかる非水電解質リチウムイオン二次電池が、どのような理由で良好な結果が得られるかということの詳細は明確ではない。ただ、正極活物質としてのリチウム含有コバルト酸化物において、Co元素が、適量のNiおよびAlやMgなどの元素により置換されることで、60℃の高温において、4.5V以上の高電圧で連続充電した際でも構造相転移が抑制されるものと考えられる。また、正極活物質の表面が被覆されたものについては、上記の作用に加えて、電解液との求核・求電子反応が抑制される効果も相乗的に発揮されて、Co溶出にかかわる酸素の脱離が低減されるものと考えられる。 The details of why the nonaqueous electrolyte lithium ion secondary batteries according to Examples 1 to 14 can provide good results are not clear. However, in the lithium-containing cobalt oxide as the positive electrode active material, the Co element is replaced with an appropriate amount of Ni and an element such as Al or Mg, so that it continuously at a high voltage of 4.5 V or higher at a high temperature of 60 ° C. It is considered that the structural phase transition is suppressed even when charged. In addition to the above-mentioned action, the positive electrode active material whose surface is coated has a synergistic effect of suppressing nucleophilic / electrophilic reaction with the electrolytic solution, and oxygen involved in Co elution. It is considered that the detachment of is reduced.
以上記載したように、本発明の非水電解質リチウムイオン二次電池によれば、放電容量が大きく、高温における高電圧での連続充電が可能な非水電解質リチウムイオン二次電池を提供することができる。本発明にかかる非水電解質リチウムイオン二次電池正極電位がリチウム基準で4.4V以上になるまで充電した際のCo溶出抑制効果に優れる。加えてリチウムイオンの拡散を大きく阻害せず、実用レベルの充放電電流値での容量が確保されることがわかる。 As described above, according to the nonaqueous electrolyte lithium ion secondary battery of the present invention, it is possible to provide a nonaqueous electrolyte lithium ion secondary battery having a large discharge capacity and capable of continuous charging at a high voltage at a high temperature. it can. It is excellent in the Co elution suppression effect at the time of charging until the positive electrode potential of the nonaqueous electrolyte lithium ion secondary battery according to the present invention is 4.4 V or higher with respect to lithium. In addition, it can be seen that the capacity at a charge / discharge current value at a practical level is ensured without significantly inhibiting the diffusion of lithium ions.
なお、M’に関して、Zr、Mn、Ti、Mo以外の、V、Cr、Fe、Y、W、Bを用いても、同様の効果を上げることができる。また、これらの元素を適宜混合して用いることもできる。 Note that the same effect can be obtained by using V, Cr, Fe, Y, W, and B other than Zr, Mn, Ti, and Mo for M ′. Moreover, these elements can also be mixed and used suitably.
上記の通り、種々の実施の形態及び変形例について説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 As described above, various embodiments and modifications have been described, but the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
1 非水電解質リチウムイオン二次電池
2 正極
3 セパレータ
4 負極
5 押さえ板
6 板ばね
7 蓋
8 絶縁リング
9 絶縁パッキン
10 絶縁スリーブ
11 ナット
12 ボルト
13 容器
DESCRIPTION OF
Claims (7)
(式中、Mは、Al, Mgのうち少なくとも一種の元素を表し、α、β、γ、およびδは、0.01≦α≦0.10, 0.01≦β≦0.05, 0.001≦γ≦0.02, 0≦δ≦0.01を満たすパラメータである)で表されるリチウム含有コバルト酸化物からなる非水電解質リチウムイオン二次電池用正極材料であって、
前記非水電解質リチウムイオン二次電池用正極材料の粒子表面は、Li、Zr、Ti、Al,Ni、Mn、La、Zn、PおよびBからなる群から選択される少なくとも1種の被覆元素を含む酸化物により被覆されており、前記被覆元素の原子数は、前記酸化物がLiを含む場合には前記非水電解質リチウムイオン二次電池用正極材料が含むCoの原子数の50%以下であり、前記酸化物がLiを含まない場合には前記非水電解質リチウムイオン二次電池用正極材料が含むCo原子数の10%以下であることを特徴とする非水電解質リチウムイオン二次電池用正極材料。 General composition formula: Li 1 + α Co 1- β-γ Ni β M γ O 2-δ
(In the formula, M represents at least one element of Al and Mg, and α, β, γ, and δ are 0.01 ≦ α ≦ 0.10, 0.01 ≦ β ≦ 0.05, 0. .001 ≦ γ ≦ 0.02, 0 ≦ δ ≦ 0.01)), a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery,
The particle surface of the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery has at least one coating element selected from the group consisting of Li, Zr, Ti, Al, Ni, Mn, La, Zn, P and B. When the oxide contains Li, the number of atoms of the covering element is 50% or less of the number of Co atoms contained in the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery. And when the oxide does not contain Li, it is 10% or less of the number of Co atoms contained in the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery, for a non-aqueous electrolyte lithium ion secondary battery Positive electrode material.
前記一般組成式中のCoの一部をM’に置き換えて、
一般組成式:Li1+αCo1−β−γ−ηNiβMγM’ηO2−δ
(式中、M’はZr、Mo、V、Ti、Mn、Cr、Fe、Y、W、およびBからなる群より選択された少なくとも一種の元素を表わし、α、β、γ、δ、およびηは、0.01≦α≦0.10, 0.01≦β≦0.05, 0.001≦γ≦0.02, 0≦δ≦0.01、0.001≦η≦0.005を満たすパラメータである)
で表されるリチウム含有コバルト酸化物からなることを特徴とする非水電解質リチウムイオン二次電池用正極材料。 The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to claim 1,
Substituting M ′ for Co in the general composition formula,
General composition formula: Li1 + [alpha] Co1- [ beta]-[gamma]-[eta] Ni [ beta] M [ gamma] M '[ eta] O2- [ delta].
(Wherein M ′ represents at least one element selected from the group consisting of Zr, Mo, V, Ti, Mn, Cr, Fe, Y, W, and B, and α, β, γ, δ, and η is 0.01 ≦ α ≦ 0.10, 0.01 ≦ β ≦ 0.05, 0.001 ≦ γ ≦ 0.02, 0 ≦ δ ≦ 0.01, 0.001 ≦ η ≦ 0.005 Is a parameter that satisfies
A positive electrode material for a non-aqueous electrolyte lithium ion secondary battery, characterized by comprising a lithium-containing cobalt oxide represented by:
前記非水電解質リチウムイオン二次電池用正極材料の粒子の平均直径は、5μm以上、かつ、20μm以下であることを特徴とする非水電解質リチウムイオン二次電池用正極材料。 The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to claim 1 or 2 ,
The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery is characterized in that the average diameter of the particles of the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery is 5 μm or more and 20 μm or less.
前記MはMgを含み、前記非水電解質リチウムイオン二次電池用正極材料が含むCoの原子数に対するMgの原子数は0.01以下であることを特徴とする非水電解質リチウムイオン二次電池用正極材料。 In the positive electrode material for nonaqueous electrolyte lithium ion secondary batteries according to any one of claims 1 to 3 ,
The nonaqueous electrolyte lithium ion secondary battery, wherein M contains Mg, and the number of Mg atoms relative to the number of Co atoms contained in the positive electrode material for a nonaqueous electrolyte lithium ion secondary battery is 0.01 or less Positive electrode material.
前記MはAlとMgを共に含み、前記非水電解質リチウムイオン二次電池用正極材料が含むCoの原子数に対するAlの原子数は0.01以上かつ0.02以下であり、前記非水電解質リチウムイオン二次電池用正極材料が含むCoの原子数に対するMgの原子数比は0.005以下であることを特徴とする非水電解質リチウムイオン二次電池用正極材料。 In the positive electrode material for nonaqueous electrolyte lithium ion secondary batteries according to any one of claims 1 to 3 ,
The M includes both Al and Mg, and the number of Al atoms relative to the number of Co atoms contained in the positive electrode material for a non-aqueous electrolyte lithium ion secondary battery is 0.01 or more and 0.02 or less, and the non-aqueous electrolyte A positive electrode material for a non-aqueous electrolyte lithium ion secondary battery, wherein the atomic ratio of Mg to the number of Co atoms contained in the positive electrode material for a lithium ion secondary battery is 0.005 or less.
前記正極は、請求項1ないし5のいずれか一項に記載された非水電解質リチウムイオン二次電池用正極材料を含むことを特徴とする非水電解質リチウムイオン二次電池。 In a non-aqueous electrolyte lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The said positive electrode contains the positive electrode material for nonaqueous electrolyte lithium ion secondary batteries as described in any one of Claim 1 thru | or 5. The nonaqueous electrolyte lithium ion secondary battery characterized by the above-mentioned.
室温で0.1C以下の負荷率で5Vまで充電したときの正極の充電曲線を電圧で微分することによって得られるdQ/dV曲線の最も高電位に確認されるピークの電位が4.64V以上であることを特徴とする非水電解質リチウムイオン二次電池。
The nonaqueous electrolyte lithium ion secondary battery according to claim 6 ,
The peak potential confirmed to be the highest potential of the dQ / dV curve obtained by differentiating the charge curve of the positive electrode with voltage when charged to 5 V at a load factor of 0.1 C or less at room temperature is 4.64 V or more. A non-aqueous electrolyte lithium ion secondary battery, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013090102A JP6068247B2 (en) | 2013-04-23 | 2013-04-23 | Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013090102A JP6068247B2 (en) | 2013-04-23 | 2013-04-23 | Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014216077A JP2014216077A (en) | 2014-11-17 |
JP6068247B2 true JP6068247B2 (en) | 2017-01-25 |
Family
ID=51941688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013090102A Active JP6068247B2 (en) | 2013-04-23 | 2013-04-23 | Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6068247B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015163356A1 (en) * | 2014-04-22 | 2015-10-29 | 三菱化学株式会社 | Positive electrode active material for non-aqueous secondary cell, and non-aqueous secondary cell |
JP6353310B2 (en) * | 2014-07-30 | 2018-07-04 | マクセルホールディングス株式会社 | Nonaqueous electrolyte secondary battery |
JP6531388B2 (en) * | 2014-12-24 | 2019-06-19 | 住友金属鉱山株式会社 | Non-aqueous electrolyte secondary battery and method of evaluating gas generation amount in battery using the battery. |
JP6611438B2 (en) * | 2015-01-30 | 2019-11-27 | マクセルホールディングス株式会社 | Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
KR102091214B1 (en) | 2016-09-12 | 2020-03-19 | 주식회사 엘지화학 | Positive Electrode Active Material for Lithium Secondary Battery Comprising High-voltage Lithium Cobalt Oxide Particle and Method of Manufacturing the Same |
WO2023248053A1 (en) * | 2022-06-22 | 2023-12-28 | 株式会社半導体エネルギー研究所 | Secondary battery, positive electrode active material, and method for producing positive electrode active material |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4789295B2 (en) * | 1998-11-09 | 2011-10-12 | 株式会社Gsユアサ | Sealed battery |
JP2000195517A (en) * | 1998-12-28 | 2000-07-14 | Japan Storage Battery Co Ltd | Lithium secondary battery |
JP3982165B2 (en) * | 2000-10-05 | 2007-09-26 | ソニー株式会社 | Solid electrolyte battery |
JP4686852B2 (en) * | 2000-12-04 | 2011-05-25 | ソニー株式会社 | Non-aqueous electrolyte battery |
JP4333173B2 (en) * | 2003-03-24 | 2009-09-16 | 三菱化学株式会社 | Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same |
JP2008159560A (en) * | 2006-11-28 | 2008-07-10 | Sony Corp | Method of manufacturing positive electrode active material |
JP2009212021A (en) * | 2008-03-06 | 2009-09-17 | Hitachi Maxell Ltd | Electrode for electrochemical element, nonaqueous secondary battery, and battery system |
JP5029540B2 (en) * | 2008-09-01 | 2012-09-19 | ソニー株式会社 | Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery using the same |
WO2010029745A1 (en) * | 2008-09-10 | 2010-03-18 | 戸田工業株式会社 | Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCTION THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY |
JP2010073367A (en) * | 2008-09-16 | 2010-04-02 | Sony Corp | Nonaqueous electrolyte, and nonaqueous electrolyte battery |
-
2013
- 2013-04-23 JP JP2013090102A patent/JP6068247B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014216077A (en) | 2014-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6120765B2 (en) | Non-aqueous electrolyte secondary battery positive electrode material and method for producing the same, non-aqueous electrolyte secondary battery | |
JP6560917B2 (en) | Positive electrode material and non-aqueous electrolyte secondary battery using the positive electrode material | |
JP6611438B2 (en) | Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
EP2209152B1 (en) | Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods | |
JP6068247B2 (en) | Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material | |
JP5349700B2 (en) | Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the positive electrode | |
JP6724292B2 (en) | Positive electrode active material for non-aqueous secondary battery | |
JP6554780B2 (en) | Positive electrode composition for non-aqueous electrolyte secondary battery and method for producing the same | |
WO2006134851A1 (en) | Lithium ion secondary battery | |
JP2011181528A (en) | Secondary battery in which lithium ion mobility and battery capacity are improved | |
WO2012035648A1 (en) | Active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
CN103872311A (en) | Positive active material, positive electrode and rechargeable lithium battery including same | |
JP2017139168A (en) | Positive electrode for nonaqueous electrolyte secondary battery | |
JP2020092090A (en) | Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery | |
JP2008251480A (en) | Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous secondary battery using it | |
JP2021048137A (en) | Cathode active material for lithium secondary battery | |
WO2016017074A1 (en) | Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same | |
JP2007234350A (en) | Nonaqueous secondary battery | |
KR20210077071A (en) | (Positive electrode material for lithium secondary battery and method for preparing the same | |
JP5607322B2 (en) | Coated positive electrode active material, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery | |
CN107155381B (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same | |
JP2013020863A (en) | Method for producing positive electrode active material for nonaqueous electrolyte secondary battery | |
CN103872310A (en) | Positive active material for rechargeable lithium battery | |
JP2021131933A (en) | Positive electrode material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery | |
WO2015059779A1 (en) | Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6068247 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |