WO2015163356A1 - Positive electrode active material for non-aqueous secondary cell, and non-aqueous secondary cell - Google Patents
Positive electrode active material for non-aqueous secondary cell, and non-aqueous secondary cell Download PDFInfo
- Publication number
- WO2015163356A1 WO2015163356A1 PCT/JP2015/062212 JP2015062212W WO2015163356A1 WO 2015163356 A1 WO2015163356 A1 WO 2015163356A1 JP 2015062212 W JP2015062212 W JP 2015062212W WO 2015163356 A1 WO2015163356 A1 WO 2015163356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- secondary battery
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a positive electrode active material for a non-aqueous secondary battery and a non-aqueous secondary battery.
- Non-aqueous secondary batteries such as lithium ion secondary batteries, which have a higher energy density than nickel-cadmium batteries and nickel-hydrogen batteries, have attracted attention as a means that can meet this demand.
- a transition metal composite oxide that can mainly store and release lithium ions is used for the positive electrode, and a material that can mainly store and release lithium ions is used for the negative electrode.
- Typical examples of the transition metal in the transition metal composite oxide include cobalt, nickel, manganese, iron and the like.
- the negative electrode active material used for the negative electrode include carbonaceous materials such as natural graphite, artificial graphite, and amorphous carbon; metals that can achieve high capacity, metals and alloys using tin, and the like. .
- electrolytes such as LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 (CF 2 ) 3 SO 3 , ethylene carbonate, propylene carbonate
- electrolytes such as LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 (CF 2 ) 3 SO 3 , ethylene carbonate, propylene carbonate
- Non-aqueous electrolyte solution dissolved in a mixed solvent of a high dielectric constant solvent such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
- one of the methods for improving the positive electrode active material is the addition of trace elements.
- surface treatment technology can be cited as another positive electrode active material improvement technique.
- a layer of a compound containing a metal element such as a metal oxide is formed on the surface of the positive electrode active material. Since this layer acts as a protective layer, in a battery using a positive electrode active material that has been subjected to surface treatment, a decrease in battery capacity and an increase in positive electrode resistance after cycle charge / discharge are reduced.
- Non-Patent Document 1 As an example of the improvement of the positive electrode active material as described above, in Non-Patent Document 1, ZrO 2 is used on the surface of the positive electrode active material having a composition of LiNi 0.33 Mn 0.33 Co 0.33 O 2. It is disclosed to form a protective layer of metal oxide. In the same document, it is reported that the battery characteristics can be improved by forming the protective layer.
- Patent Document 1 by adding AlO (OH) and Al (OH) 3 in the surface treatment layer of the positive electrode active material, excellent life characteristics and high discharge potential characteristics are imparted to a battery to which this is applied. It is stated that you can.
- Patent Document 2 by covering the particle surface of the positive electrode active material made of Li, Al, Co, and Ni with a compound containing Al, a region in which the concentration of Al continuously decreases from the particle surface toward the inside is disclosed. Producing technology has been proposed. This document states that this improves the thermal stability of the positive electrode active material.
- Patent Document 3 discloses that a positive active material containing Ni, Co, and Mn is subjected to water treatment, brought into contact with an aqueous solution of a zirconium compound, and then heated at 600 to 1000 ° C. It has been reported that a positive electrode active material having discharge cycle durability can be obtained.
- Patent Document 4 describes that the cycle characteristics are improved by coating the surface of the positive electrode with a metal oxide.
- JP 2009-218217 A Japanese Patent Laid-Open No. 2001-196063 JP 2011-187174 A JP-A-8-236114
- Non-patent Document 1 and Patent Document 4 the crystal structure of the positive electrode active material cannot be stabilized only by forming a protective layer on the surface of the positive electrode active material. Therefore, the improvement of the battery characteristics is limited, especially when the battery is used / stored in high temperature or high pressure environment, the oxidative decomposition of the electrolyte on the positive electrode surface cannot be sufficiently suppressed, and the metal elution occurs on the positive electrode surface. Can happen.
- Patent Document 2 it is necessary to add a large amount of Al to the positive electrode active material in order to further coat Al on the surface of the positive electrode active material containing Al. It is known that when Al is added, Li desorption and insertion characteristics in the positive electrode active material deteriorate. Therefore, in the technique of Patent Document 2, there is a problem that the capacity reduction of the positive electrode active material becomes large.
- Patent Document 3 since heat treatment is performed at a high temperature, Zr penetrates into the positive electrode active material, and the Zr concentration in the vicinity of the surface is diluted. Therefore, the improvement of battery characteristics is limited.
- the first object of the present invention is to provide a non-aqueous secondary battery in which the increase in positive electrode resistance after cycle charge / discharge is suppressed and the decrease in battery capacity is small. It is to provide a positive electrode active material for a non-aqueous secondary battery, and a non-aqueous secondary battery using the positive electrode active material for a non-aqueous secondary battery.
- the second object of the present invention is to provide a non-aqueous secondary battery having excellent storage characteristics in a high temperature and high voltage environment.
- the present inventors have formed the above first problem by forming a region containing a predetermined amount of Zr in the vicinity of the surface of the positive electrode active material having a core having a specific composition. The inventors have found that this can be solved and have reached the present invention.
- the present inventors in a non-aqueous secondary battery, the positive electrode active material in the positive electrode has Zr and a predetermined functional group on the particle surface, and the non-aqueous electrolyte solution is The inventors have found that the second problem can be solved by adopting a configuration containing a predetermined compound, and have reached the present invention.
- the gist of the present invention 1 for solving the first problem resides in a positive electrode active material for a non-aqueous secondary battery that satisfies the following conditions (1) to (3).
- M is Mn and / or Al.
- a Zr-containing region containing all of Zr, Ni, Co, and M exists at a depth of 0.1 to 100 nm from the active material surface.
- the molar ratio of Zr to (Zr + Ni + Co + M) in the Zr-containing region is 1.5 to 30%.
- Another aspect of the present invention is a nonaqueous solution comprising a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material for a nonaqueous secondary battery. It exists in the positive electrode for secondary batteries.
- Another aspect of the present invention is a nonaqueous secondary battery including a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte, wherein the positive electrode is used for the nonaqueous secondary battery of the present invention. It exists in the non-aqueous secondary battery which is a positive electrode.
- the gist of the present invention 2 for solving the second problem is a non-aqueous secondary battery comprising at least a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte, wherein the positive electrode Zr and at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group are present on the particle surface of the active material, and the non-aqueous electrolyte is carbon-carbon unsaturated.
- a cyclic carbonate having a bond an isocyanate compound or a condensate thereof, a fluorinated oxo acid salt, a nitrile compound, an aromatic compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, and an oxalate salt.
- Sections obtained from the positive electrode prepared in Example 1-1 were observed with a transmission electron microscope (TEM), and the results of elemental composition analysis with energy dispersive X-ray spectroscopy (EDS) at regular intervals are shown.
- Sections obtained from the positive electrode prepared in Comparative Example 1-1 were observed with a transmission electron microscope (TEM), and the results of analyzing the elemental composition with energy dispersive X-ray spectroscopy (EDS) at regular intervals are shown.
- the result of having performed charging / discharging 3 times about the nonaqueous secondary battery obtained using the positive electrode obtained by the reference examples 1 and 2, and analyzing the positive electrode in a battery by XPS after that is shown.
- the positive electrode active material for a non-aqueous secondary battery of the present invention 1 (hereinafter, also simply referred to as “the positive electrode active material of the present invention 1”) will be described.
- the positive electrode active material satisfies the predetermined conditions (1) to (3) as described above.
- the positive electrode active material has a specific composition as a positive electrode active material core, and there is a region containing Zr and all elements constituting the specific composition of the positive electrode active material core in the vicinity of the surface of the active material.
- the amount of Zr in the region is in a predetermined range.
- the conditions (1) to (3) will be described in order.
- the positive electrode active material core is a lithium compound having a structure capable of desorbing and inserting Li ions, including Ni, Co and M (M is Mn and / or Al)">
- the positive electrode active material core constituting the positive electrode active material for a non-aqueous secondary battery of the present invention 1 can desorb and insert Li ions containing Ni, Co and M (M is Mn and / or Al). It is a lithium compound having a simple structure.
- Examples of the structure of the lithium compound include a spinel structure capable of three-dimensional diffusion and a layered structure capable of two-dimensional diffusion of lithium ions.
- Specific examples of lithium compounds that can have such a structure include LiNi 1-xy Co x Mn y O 2 , LiNi 1-xy Co x Al y O 2 , LiNi 1- xy z Co x Mn y Al z O 2 and the like. x, y and z will be described below.
- the element composition of the positive electrode active material core is Li x Ni 1-yz- ⁇ Co y Al z M ′ ⁇ O 2 (M ′ is other than Li, Ni, Co, Al) It is preferable that it is one or more elements.
- the value of x is usually 0.9 or more, preferably 0.92 or more, more preferably 0.95 or more, usually 1.1 or less, preferably 1.09 or less, more preferably 1.08 or less. is there.
- the value of y is greater than 0, preferably 0.08 or more, more preferably 0.1 or more, usually 0.4 or less, preferably 0.3 or less, more preferably 0.25 or less.
- the value of z is larger than 0, preferably 0.02 or more, more preferably 0.03 or more, usually 0.5 or less, preferably 0.25 or less, more preferably 0.1 or less.
- ⁇ is usually 0 or more, preferably 0.001 or more, more preferably 0.002 or more, usually 0.01 or less, preferably 0.007 or less, more preferably 0.005 or less.
- M ′ is two or more elements, ⁇ represents the sum of the compositions of the elements included in M ′.
- non-aqueous secondary battery of the present invention 1 a non-aqueous secondary battery obtained by using the positive electrode active material of the present invention 1 (hereinafter, also simply referred to as “non-aqueous secondary battery of the present invention 1”).
- a positive electrode active material excellent in thermal stability can be obtained without impairing the battery capacity.
- x, y, z, and ⁇ are 0.9 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.5, and 0 ⁇ ⁇ ⁇ 0.01. preferable.
- the element composition of the positive electrode active material core is Li x Ni 1-yz- ⁇ Co y Mn z M ′ ⁇ O 2 (where M ′ is other than Li, Ni, Co, Mn). It is preferably one or more elements.
- the value of x is usually 0.9 or more, preferably 0.92 or more, more preferably 0.95 or more, usually 1.1 or less, preferably 1.09 or less, more preferably 1.08 or less. is there.
- the value of y is greater than 0, preferably 0.05 or more, more preferably 0.08 or more, usually 0.4 or less, preferably 0.37 or less, more preferably 0.35 or less.
- the value of z is greater than 0, preferably 0.1 or more, more preferably 0.2 or more, usually 0.5 or less, preferably 0.45 or less, more preferably 0.4 or less.
- ⁇ is usually 0 or more, preferably 0.001 or more, more preferably 0.002 or more, usually 0.01 or less, preferably 0.007 or less, more preferably 0.005 or less.
- M ′ is two or more elements, ⁇ represents the sum of the compositions of the elements included in M ′.
- the positive electrode active material can be produced at a low raw material cost without impairing the battery life of the nonaqueous secondary battery of the first invention.
- x, y, z, and ⁇ are 0.9 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.5, and 0 ⁇ ⁇ ⁇ 0.01. preferable.
- the atomic ratio of the oxygen amount is described as 2 for convenience, but there may be some non-stoichiometry.
- x in the said composition formula is a preparation composition in the manufacture stage of a lithium compound. Usually, batteries on the market are aged after the batteries are assembled. For this reason, the amount of Li in the positive electrode active material may be reduced with charge and discharge. In that case, x may be measured as a numerical value in the range of 0.45 or more and 2 or less when discharged to 3 V in composition analysis.
- element M ′ As described above, one or more elements M ′ other than Ni, Co, and M (M is Mn and / or Al) may be introduced into the positive electrode active material core.
- element M ′ B, Na, Mg, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sb, Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, N, F, S, Cl, Br, I, As, Ge, P, Pb, Sb, Si and Sn can be mentioned.
- These elements M ′ may be incorporated into the crystal structure of the positive electrode active material core, or may not be incorporated into the crystal structure of the positive electrode active material core, and may be incorporated into the active material particle surface, crystal grain boundaries, or the like. It may be unevenly distributed as a compound.
- the positive electrode active material of the present invention 1 is a region containing all of Zr, Ni, Co, and M (M is Mn and / or Al) at a depth of 0.1 to 100 nm from the surface of the positive electrode active material (containing Zr) Area).
- the phrase “having a Zr-containing region in the depth portion” means that there is a portion where Zr, Ni, Co, and M can be detected simultaneously at a depth of 0.1 to 100 nm from the surface of the positive electrode active material.
- FIG. 1 showing the result of elemental analysis of Example 1-1 to be described later, since all the peaks of Zr, Ni, Co, and Mn can be confirmed at a depth of 5 nm from the surface of the positive electrode active material, FIG. It can be said that this positive electrode active material has a Zr-containing region at a depth of 5 nm from the surface of the positive electrode active material.
- a peak can be confirmed means that there is a peak having a molar ratio of each element amount to the total element amount of 1.5% or more.
- an extremely small peak having a molar ratio of 1.0% is not regarded as a peak when determining whether it corresponds to a Zr-containing region.
- a state in which a plurality of arbitrary depths are selected in a region included in a depth of 0.1 to 100 nm from the surface of the positive electrode active material, and Zr, Ni, Co, and M detected at each arbitrary depth are combined. If only Zr, Ni, Co and M can be said to exist, it does not mean that the Zr-containing region in the present invention exists. For example, when a Zr peak is confirmed only at a depth of 5 nm from the surface of the positive electrode active material and Ni, Co, and Mn peaks are confirmed only at a depth of 10 nm from the surface of the positive electrode active material, a Zr-containing region exists. It can be said that it is not.
- One of the deterioration forms of the positive electrode active material in the battery is known to be a change in crystal structure caused by the diffusion of Ni or Co constituting the positive electrode active material in the crystal structure of the positive electrode active material. It has been found that the crystal structure changes particularly easily in the vicinity of the surface of the positive electrode active material. Since this crystal structure change induces an increase in positive electrode resistance in the battery, it is a big problem in improving battery characteristics.
- the present invention by forming a Zr-containing region containing all of Zr, Ni, Co and M in the vicinity of the surface of the positive electrode active material, the diffusion of Ni and Co in the crystal structure is inhibited. It is considered that the change in the crystal structure can be suppressed, and as a result, the increase in positive electrode resistance after cycle charge / discharge is suppressed.
- the adverse effect on the capacity of the non-aqueous secondary battery using the positive electrode active material is small as compared with the case where Zr is added to the entire positive electrode active material.
- the adverse effect on the battery capacity can be kept small compared to the case where a similar region is formed using other elements such as Al.
- the Zr ion can enter the crystal site occupied by the Li ion in the positive electrode active material without requiring a large amount of energy, and is stably Zr, Ni, A region containing all of Co and M is formed.
- the distortion of the crystal structure in this region is reduced, and the characteristics relating to the desorption and insertion of Li ions are not greatly impaired, so that it is considered that the battery capacity deterioration due to cycle charge / discharge can be suppressed to a small level.
- the Zr-containing region may be only one or a plurality of regions may exist at a depth of 0.1 to 100 nm from the surface of the positive electrode active material.
- the presence of a plurality of regions means that, for example, all of Zr, Ni, Co, and M are contained in a portion having a depth of 5 to 10 nm, and at least one of these is not contained in a portion having a depth of 10 to 15 nm. , And at a depth of 15-20 nm, these are all contained.
- the depth from the surface of the positive electrode active material where the Zr-containing region is formed is a portion of 0.1 to 100 nm as described above, preferably a portion of 0.2 to 70 nm, and more preferably 0.3 to It is a part of 60 nm.
- the depth at which the Zr-containing region is formed is shallow, the effect of suppressing the change in the crystal structure of the positive electrode active material is reduced, and when the depth is deep, the battery capacity is greatly deteriorated.
- the depth at which the Zr-containing region exists can be measured, for example, by the following method. That is, a slice is prepared using a focused ion beam (FIB) from a positive electrode manufactured by applying a slurry containing a positive electrode active material to a current collector. The section is observed with a transmission electron microscope (TEM). The elemental composition is analyzed by energy dispersive X-ray spectroscopy (EDS) at regular intervals from the observed surface portion of the positive electrode active material toward the inside.
- FIB focused ion beam
- TEM transmission electron microscope
- EDS energy dispersive X-ray spectroscopy
- the Zr-containing region is a region in which the molar ratios of the element amounts of Zr, Ni, Co, and M to the total element amount are all 1.5% or more.
- the molar ratio of Zr to (Zr + Ni + Co + M) in the Zr-containing region is 1.5 to 30%”>
- the molar ratio of Zr to the total of four (Zr + Ni + Co + M) elements is 1.5-30. %.
- the molar ratio is preferably 1.6 to 30%, more preferably 1.8 to 20%, and further preferably 2 to 15%.
- the molar ratio of Zr is small, the effect of suppressing the crystal structure change of the positive electrode active material becomes small (although it is not called a Zr-containing region if it is less than 1.5%).
- the molar ratio of Zr is large, the battery capacity is greatly deteriorated due to cycle charge / discharge, and the Zr-containing region causes a large positive electrode resistance.
- the molar ratio of Zr to (Zr + Ni + Co + M) should be small.
- the molar ratio is usually 1.2% or less, preferably 1% or less, particularly preferably 0.8% or less. If the molar ratio of Zr in the deep part is larger than this range, the battery capacity may be deteriorated.
- the molar ratio of Zr in the Zr-containing region is obtained as an average value of the molar ratio of Zr to (Zr + Ni + Co + M) at each measurement point in the Zr-containing region (existing over a certain depth range) measured by the above method. Can do.
- the positive electrode active material of the present invention 1 satisfies the conditions (1) to (3) described above.
- the positive electrode active material preferably satisfies at least one of the characteristics described below.
- the volume-based average particle diameter of the positive electrode active material of the present invention 1 is a volume-based average particle diameter (median diameter) obtained by a laser diffraction / scattering method, and is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. It is preferably 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less.
- volume-based average particle size is below the above range, it may be difficult to control the liquidity of the slurry applied to the positive electrode current collector when the positive electrode is manufactured. Moreover, when it exceeds the said range, there exists a possibility that positive electrode resistance may increase in a battery.
- the volume-based average particle size as follows.
- the positive electrode active material is dispersed in a 0.2% by mass aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant.
- the obtained dispersion is measured using a laser diffraction / scattering particle size distribution analyzer (for example, LA-700 manufactured by Horiba, Ltd.).
- the median diameter determined by the measurement is defined as the volume-based average particle diameter of the positive electrode active material of the first invention.
- BET specific surface area of the positive electrode active material of the present invention 1 is a measured specific surface area using the BET method is usually 0.01 m 2 ⁇ g -1 or more, 0.05 m 2 ⁇ g -1 or more, 0 .1m 2 ⁇ g -1 or more, and also generally not more than 10 m 2 ⁇ g -1, preferably from 5 m 2 ⁇ g -1 or less, more preferably 3m 2 ⁇ g -1 or less.
- the lithium acceptability may deteriorate during charging when used as a positive electrode material, and battery stability may be reduced.
- the reactivity with the non-aqueous electrolyte may increase when used as the positive electrode material. In this case, gas generation increases and a preferable nonaqueous secondary battery may not be obtained.
- the measurement of the specific surface area by the BET method is performed using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken). Specifically, after the sample was preliminarily dried at 350 ° C. for 15 minutes under a nitrogen flow, a nitrogen-helium mixed gas that was accurately adjusted so that the value of the relative pressure of nitrogen with respect to atmospheric pressure was 0.3 was obtained. The specific surface area is measured by the nitrogen adsorption BET one-point method using the gas flow method.
- a surface area meter for example, a fully automatic surface area measuring device manufactured by Okura Riken
- the tap density of the positive electrode active material of the present invention 1 is usually 0.1 g ⁇ cm ⁇ 3 or more, preferably 0.5 g ⁇ cm ⁇ 3 or more, more preferably 0.7 g ⁇ cm ⁇ 3 or more, and 1 g ⁇ cm. particularly preferably 3 or more, and is preferably 5 g ⁇ cm -3 or less, 4g ⁇ cm -3 and more preferably less, 3.5 g ⁇ cm -3 or less are particularly preferred.
- the packing density is difficult to increase when used as a positive electrode, and a high-capacity non-aqueous secondary battery may not be obtained.
- gap between the particles in an electrode will decrease, the electroconductivity between particles will not be ensured, and a favorable battery characteristic may not be acquired.
- the tap density is measured as follows.
- the sample is passed through a sieve having an opening of 300 ⁇ m, and the sample is dropped into a 20 cm 3 tapping cell to fill the sample up to the upper end surface of the cell. Thereafter, tapping with a stroke length of 10 mm is performed 1000 times using a powder density measuring instrument (for example, tap denser manufactured by Seishin Enterprise Co., Ltd.), and the tap density is calculated from the sample volume and the sample mass at that time.
- a powder density measuring instrument for example, tap denser manufactured by Seishin Enterprise Co., Ltd.
- the positive electrode active material of the present invention 1 can be produced through two processing steps. That is, Mixing the positive electrode active material core and the Zr-containing surface treatment material in a dispersion medium under appropriate conditions to form a bond between the Zr-containing surface treatment material and the surface of the positive electrode active material core; and A step of allowing Zr bonded to the surface of the positive electrode active material core to penetrate into the vicinity of the surface of the positive electrode active material core by performing heat treatment under a specific temperature condition; It is.
- each step will be described.
- the positive electrode active material core is not particularly limited as long as it is a lithium compound that becomes the positive electrode active material core described above.
- a lithium compound can be obtained by a production method described in, for example, Japanese Patent Application Laid-Open Nos. 2010-92848 and 2001-196063.
- the Zr surface treatment material is not particularly limited as long as it is a compound containing Zr.
- the material is a compound that is activated under specific conditions, such as addition of a catalyst or a reaction initiator, stimulation by light or heat, in order to efficiently form a bond with the surface of the positive electrode active material core. Is preferred.
- such compounds include Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OCH (CH 3 ) 2 ) 4 , Zr (OC 4 H 10 ) 4 , ZrCl 4. Etc.
- the mixing amount of the Zr-containing surface treatment material is usually 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0.07 parts by mass or more, usually 3 parts by mass with respect to 100 parts by mass of the positive electrode active material core. Part or less, preferably 2 parts by weight or less, more preferably 1.5 parts by weight or less. If it is the said range, since the increase suppression effect of the positive electrode resistance after cycle charging / discharging by surface treatment will be acquired, without causing the fall of battery capacity, it is preferable.
- the dispersion medium for mixing the positive electrode active material core and the Zr-containing surface treatment material is not particularly limited as long as it has an affinity for the positive electrode active material core and can dissolve the Zr-containing surface treatment material.
- Specific examples of such a dispersion medium include water, methanol, ethanol, propanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, acetone and the like.
- the mixing amount of the dispersion medium is usually 20 parts by mass or more, preferably 30 parts by mass or more, more preferably 40 parts by mass or more, usually 200 parts by mass or less, preferably 180 parts by mass or less with respect to 100 parts by mass of the positive electrode active material core. More preferably, it is 150 parts by mass or less. If it is the said range, since a Zr containing surface treatment material and the surface of a positive electrode active material core can be formed uniformly, without making manufacturing cost high, it is preferable.
- the dispersion medium preferably contains a catalyst for activating the Zr-containing surface treatment material, and water is particularly preferable in terms of high activation ability.
- the addition amount of the catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material core. If the amount of catalyst added is small, bond formation between the surface of the positive electrode active material core and the Zr-containing surface treatment material does not proceed sufficiently. Moreover, when there is too much catalyst addition amount, there exists a possibility that Zr containing surface treatment material may raise
- the temperature at that time is preferably 30 to 100 ° C., and 40 to 80 ° C. is particularly preferable from the viewpoint of processing efficiency.
- the mixing time of the positive electrode active material core and the Zr-containing surface treatment material is preferably 5 minutes to 3 hours, more preferably 20 minutes to 2 hours, and particularly preferably 30 to 90 minutes. If the mixing time is too short, bond formation between the positive electrode active material core surface and the Zr-containing surface treatment material may not proceed sufficiently. On the other hand, if the mixing time is too long, Li is liberated from the positive electrode active material core, which may cause deterioration of the positive electrode active material core.
- Step of allowing Zr bonded to the surface of the positive electrode active material core to penetrate into the vicinity of the surface of the positive electrode active material core by heat treatment under specific temperature conditions After mixing the positive electrode active material core and the Zr-containing surface treatment material, heat treatment is performed under specific temperature conditions in order to infiltrate Zr from the surface of the positive electrode active material core and form a Zr-containing region.
- the temperature at that time is preferably more than 100 ° C. and less than 500 ° C., particularly preferably 110 ° C. or more and less than 450 ° C. If the temperature is too low, the Zr-containing ratio in the portion that becomes the Zr-containing region may be insufficient. On the other hand, when the temperature is too high, the penetration of Zr into the positive electrode active material core proceeds excessively, and the battery capacity may be deteriorated.
- the temperature is 600 ° C. or higher, the penetration of Zr into the positive electrode active material is promoted, and the amount of Zr near the surface becomes insufficient. As a result, a positive electrode active material that satisfies the gist of the present invention cannot be obtained.
- the heat treatment time is preferably 30 minutes to 10 hours, more preferably 45 minutes to 8 hours, and particularly preferably 1 to 7 hours. If the heat treatment time is too short, the Zr-containing ratio in the portion that becomes the Zr-containing region may be insufficient, and if it is too long, the production cost may be too high.
- the heat treatment may be performed under reduced pressure conditions, or after preliminarily performing the treatment under reduced pressure conditions, the main treatment may be performed at a higher temperature.
- preliminarily heat at a temperature not lower than 105 ° C. and not higher than 150 ° C., preferably not lower than 110 ° C. and not higher than 140 ° C.
- the time for preliminary heating under reduced pressure is usually 1 to 10 hours, preferably 2 to 9 hours.
- the atmosphere in the furnace during the heat treatment may be air, or the oxygen partial pressure may be higher than that of air.
- the positive electrode of the present invention 1 includes a positive electrode current collector and a positive electrode active material layer including the positive electrode active material of the present invention 1 formed on the positive electrode current collector.
- the positive electrode active material layer is usually prepared by dry mixing a positive electrode active material (which is the positive electrode active material of the present invention 1), a binder, and a conductive material and a thickener used as necessary. It is produced by pressure-bonding a sheet shape to a positive electrode current collector. Alternatively, these materials are dissolved or dispersed in a liquid medium to form a slurry, and the slurry is applied to the positive electrode current collector and dried.
- the positive electrode current collector is usually formed of a metal material such as aluminum, stainless steel, nickel plating, titanium, or tantalum, or a carbon material such as carbon cloth or carbon paper.
- a metal material such as aluminum, stainless steel, nickel plating, titanium, or tantalum
- a carbon material such as carbon cloth or carbon paper.
- As the shape of the positive electrode current collector in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc. A carbon thin film, a carbon cylinder, etc. are mentioned. In addition, you may form a thin film suitably in mesh shape.
- the positive electrode current collector When a thin film is used as the positive electrode current collector, its thickness is arbitrary, but a range of usually 1 ⁇ m or more and 100 ⁇ m or less is suitable. If it is thinner than the above range, the strength required for the current collector may be insufficient. On the other hand, if it is thicker than the above range, the handleability may be impaired.
- the binder used for producing the positive electrode active material layer those conventionally used for producing the positive electrode active material layer can be used without any particular limitation.
- the binder may be any material that is stable with respect to the liquid medium used at the time of manufacturing the positive electrode.
- polyethylene polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, resin polymers such as nitrocellulose, Rubber polymers such as SBR (styrene butadiene rubber), NBR (acrylonitrile butadiene rubber), fluorine rubber, isoprene rubber, butadiene rubber, ethylene propylene rubber, Styrene / butadiene / styrene block copolymer and hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer, styrene / isoprene styrene block copolymer and the like
- Thermoplastic elastomeric polymers such as hydrogenated products
- Soft resinous polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene /
- these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
- the ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more and 80% by mass or less. If the ratio of the binder is low, the positive electrode active material cannot be sufficiently retained, and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if the ratio is high, battery capacity and conductivity may be reduced.
- the positive electrode active material layer usually contains a conductive material in order to increase conductivity.
- a conductive material includes metal materials such as copper and nickel, graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and carbon materials such as amorphous carbon such as needle coke. be able to.
- these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
- the proportion of the conductive material in the positive electrode active material layer is usually 0.01% by mass or more and 50% by mass or less. If the ratio of the conductive material is low, the conductivity may be insufficient. Conversely, when the ratio is high, the battery capacity may decrease.
- ⁇ Thickener> When an aqueous solvent is used for the slurry used for forming the positive electrode active material layer, it is preferable to form a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR).
- a thickener is usually used to adjust the viscosity of the slurry.
- Specific examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
- the proportion of the thickener in the positive electrode active material layer is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more. Moreover, it is added so that it may become normally 5 mass% or less, Preferably it is 3 mass% or less, More preferably, it is the range of 2 mass% or less. When it is in the above range, good coatability can be obtained, and a decrease in battery capacity and an increase in resistance can be suppressed.
- the liquid medium for forming the slurry it is possible to dissolve or disperse the positive electrode active material of the present invention 1, which is a positive electrode forming material, the binder, and the conductive material and thickener used as necessary.
- the type of the solvent there are no particular restrictions on the type of the solvent.
- an aqueous solvent or an organic solvent may be used as the liquid medium.
- aqueous solvent examples include water and alcohol.
- organic solvents include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF) Toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
- the content ratio of the positive electrode active material of the present invention 1 in the positive electrode active material layer is usually 10% by mass or more and 99.9% by mass or less. If the proportion of the active material in the positive electrode active material layer is too large, the strength of the positive electrode tends to be insufficient, and if it is too small, the capacity may be insufficient.
- the thickness of the positive electrode active material layer is usually about 10 to 200 ⁇ m.
- the electrode density after pressing of the positive electrode is usually 2.2 g / cm 3 or more and 4.2 g / cm 3 or less.
- the positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material of the first invention.
- the temperature at the time of roller press may be room temperature, and may be heated if it is below the thermal decomposition temperature of the said binder.
- the positive electrode for a non-aqueous secondary battery of the first invention can be prepared.
- Non-aqueous secondary battery ⁇ Battery configuration>
- the nonaqueous secondary battery (nonaqueous secondary battery of the present invention 1) obtained by using the positive electrode of the present invention 1 generally has a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and nonaqueous electrolysis. It has liquid.
- the positive electrode is as described above.
- the configuration of the negative electrode, the separator and the outer case that are usually provided in the non-aqueous secondary battery, and the configuration of the electrode group are the same as the corresponding configurations of the non-aqueous secondary battery of the present invention 2 described later.
- the nonaqueous electrolytic solution will be described.
- Non-aqueous electrolyte As the non-aqueous electrolyte in the non-aqueous secondary battery of the present invention 1, a non-aqueous electrolyte conventionally used in non-aqueous secondary batteries can be used without particular limitation.
- the nonaqueous electrolytic solution usually contains a known electrolyte, an organic solvent, and an additive.
- a lithium salt is usually used as the electrolyte.
- the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiTaF 6 , LiWF 7 , lithium tungstates, lithium carboxylates, sulfonic acid lithium salts, lithium imide salts, lithium metide salts, lithium oxalates.
- Latoborate salts, lithium oxalatophosphate salts, fluorine-containing organic lithium salts and the like can be mentioned. These lithium salts may be used alone or in combination of two or more.
- Organic solvent examples include cyclic carbonates having no fluorine atom, chain carbonates, cyclic and chain carboxylic acid esters, ether compounds, and sulfone compounds. These organic solvents may be used alone or in combination of two or more.
- additives examples include a cyclic carbonate having a fluorine atom, a cyclic carbonate having a carbon-carbon unsaturated bond, a cyclic sulfonate ester, a compound having an isocyanate group, and a compound having a cyano group. These additives may be used alone or in combination of two or more.
- the nonaqueous secondary battery of the first aspect of the present invention includes the positive electrode for the nonaqueous secondary battery of the first aspect of the present invention obtained by using the positive electrode active material for the nonaqueous secondary battery of the first aspect of the present invention.
- the positive electrode active material has a specific composition and has a Zr-containing region.
- the non-aqueous secondary battery of the second aspect of the present invention includes at least a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte.
- Zr and at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group are present on the particle surface of the positive electrode active material.
- the non-aqueous electrolyte includes a cyclic carbonate having a carbon-carbon unsaturated bond, an isocyanate compound or a condensate thereof, a fluorinated oxoacid salt, a nitrile compound, an aromatic compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, And at least one compound selected from the group consisting of oxalate salts (hereinafter also referred to as “specific additives”).
- the non-aqueous secondary battery of the present invention 2 has an effect of solving the second problem is not clear, but the following mechanism is presumed as the reason. That is, it is considered that the Zr-containing layer on the surface of the positive electrode active material, which will be described later, reacts with the specific additive in the non-aqueous electrolyte prior to the positive electrode active material. Hereinafter, each structure of the non-aqueous secondary battery of this invention 2 is demonstrated.
- the positive electrode active material used in the nonaqueous secondary battery of the present invention 2 is characterized in that Zr is present on the particle surface.
- a Zr-containing layer containing Zr is formed on the particle surface.
- the positive electrode active material has a lithium transition metal oxide having a structure capable of desorbing and inserting Li ions as a core particle.
- the transition metal in the lithium transition metal oxide include at least one selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe).
- the structure of the lithium transition metal oxide examples include a spinel structure, a layered structure, and an olivine structure.
- the lithium transition metal oxide which can take a structure like a following formula is preferable from the point which can make the energy density of a non-aqueous secondary battery high.
- M ′′ represents at least two elements selected from the group consisting of lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn).
- A represents Li, Ni, Co, and Mn.
- A is an element other than, for example, A, B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru for improving battery performance.
- Rh, Pd Ag, In, Sb, Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb, Lu, Bi, N, F, S, Cl, Br, I, As, Ge, P, Pb, Sb, Si, and Sn.
- the composition formula of the lithium transition metal oxide is a composition at the production stage of the lithium transition metal oxide, and the amount of Li in the positive electrode active material or the charge / discharge of the nonaqueous secondary battery of the second aspect of the invention is as follows. The amount of oxygen may be impaired.
- the positive electrode active material used for the non-aqueous secondary battery of the present invention 2 has a Zr-containing layer containing Zr on the particle surface.
- the Zr-containing layer is provided on at least a part of the surface of the lithium transition metal oxide serving as the core particle of the positive electrode active material, and has an element or composition ratio different from that of the lithium transition metal oxide serving as the core particle.
- the Zr-containing layer may exist in a form having a concentration change of constituent elements from the surface of the lithium transition metal oxide serving as the core particle toward the inside, or on the surface of the lithium transition metal oxide serving as the core particle. It may be scattered. Note that the Zr-containing layer may have nano-sized pores.
- a non-aqueous secondary battery with better battery characteristics can be obtained than when Zr is added to the entire positive electrode active material.
- the reason why such an effect is obtained is unknown, but the following is estimated as the reason.
- the concentration of Zr ions is high near the surface of the lithium transition metal oxide. Since Zr ions have a great effect of suppressing the oxidation reaction between the positive electrode and the electrolyte, it is considered that a non-aqueous secondary battery with good battery characteristics can be obtained by using the positive electrode active material.
- the thickness of the Zr-containing layer is usually from 0.1 to 100 nm, preferably from 0.2 to 70 nm, more preferably from 0.3 to 60 nm. If the thickness of the Zr-containing layer is too small, the effect of suppressing physical contact between the lithium transition metal oxide and the electrolytic solution may be reduced. If the thickness is too large, the movement of lithium ions becomes slow, which may increase the resistance of the positive electrode.
- the presence or absence of the Zr-containing layer can be determined by the following method, for example. That is, analysis is performed by X-ray photoelectron spectroscopy (XPS) using a positive electrode produced by applying a positive electrode active material to a current collector or a positive electrode after charge / discharge as a sample. When a peak in the vicinity of 182 eV attributed to Zr is observed from the surface of the positive electrode, this means that a Zr-containing layer exists.
- XPS X-ray photoelectron spectroscopy
- the molar ratio of Zr in the portion where Zr exists is usually 1.5 to 30%.
- the change in the crystal structure of the positive electrode active material can be suppressed to prevent an increase in positive electrode resistance, and the battery capacity does not deteriorate.
- the positive electrode active material has at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group on the particle surface. Since the positive electrode active material has such a predetermined surface functional group, the reactivity with the electrolytic solution is high, and in this reaction, resistance increase and volume expansion of the nonaqueous secondary battery are unlikely to occur. Such surface functional groups are present in the lithium transition metal oxide and / or Zr-containing layer in the vicinity of the surface of the positive electrode active material.
- the carbon number of the compound derived from the surface functional group that can be confirmed by thermal desorption-GC / MS analysis is usually 1 or more, preferably 3 or more, usually 20 or less, preferably 10 or less. Within this range, excessive gas generation due to side reactions in the battery can be suppressed without reducing the reactivity with the non-aqueous electrolyte.
- Specific examples of the compound include 1-propanol, 2-propanol, 2-methyl-1-propanol, 1-phenyl-2-methyl-2-propanol, 3-phenyl-1-propanol, propanal, 2-methylprop And compounds such as panal and 3-phenyl-2-methylpropanal.
- the positive electrode active material in the non-aqueous secondary battery of the present invention 2 described above preferably satisfies at least one of the characteristics described below.
- the positive electrode active material may be primary particles or secondary particles composed of primary particles.
- the volume-based average particle diameter of the positive electrode active material is a volume-based average particle diameter (median diameter) determined by a laser diffraction / scattering method, and is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, Usually, it is 100 micrometers or less, 50 micrometers or less are preferable, 40 micrometers or less are more preferable, and 30 micrometers or less are still more preferable.
- volume-based average particle size is below the above range, it may be difficult to control the liquidity of the slurry applied to the positive electrode current collector when the positive electrode is manufactured. Moreover, when it exceeds the said range, positive electrode resistance may increase in a battery.
- a positive electrode active material is dispersed in a 0.2% by mass aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and this is used as a sample for a laser diffraction / scattering particle size distribution analyzer (for example, , Using a Horiba LA-920).
- the median diameter determined by the measurement is defined as the volume-based average particle diameter of the positive electrode active material.
- BET specific surface area of the positive electrode active material is usually 0.01 m 2 ⁇ g -1 or more, preferably 0.05 m 2 ⁇ g -1 or more, 0.1 m 2 ⁇ g -1 or more, and also generally not more than 10 m 2 ⁇ g -1, preferably from 5 m 2 ⁇ g -1 or less, more preferably 3m 2 ⁇ g -1 or less.
- the lithium acceptability may deteriorate during charging when used as a positive electrode material, and therefore battery performance may be reduced.
- the reactivity with the non-aqueous electrolyte increases, gas generation increases, and a preferred non-aqueous secondary battery may not be obtained.
- the measurement of the specific surface area by the BET method is performed using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken). After pre-drying the sample for 15 minutes at 150 ° C. under a nitrogen flow, using a nitrogen helium mixed gas that was accurately adjusted so that the relative pressure of nitrogen with respect to atmospheric pressure was 0.3, The specific surface area is measured by the nitrogen adsorption BET one-point method by the flow method.
- a surface area meter for example, a fully automatic surface area measuring device manufactured by Okura Riken
- the tap density of the positive electrode active material is usually 0.5 g ⁇ cm ⁇ 3 or more, preferably 1.0 g ⁇ cm ⁇ 3 or more, more preferably 1.5 g ⁇ cm ⁇ 3 or more, and 2 g ⁇ cm ⁇ 3 or more. Particularly preferred. If the tap density is below the above range, the packing density is difficult to increase when used as a positive electrode, and a high-capacity non-aqueous secondary battery may not be obtained.
- the tap density is measured as follows. The sample passed through a sieve having an opening of 150 ⁇ m is dropped into a 20 cm 3 tapping cell to fill the sample up to the upper end surface of the cell. Thereafter, tapping with a stroke length of 10 mm is performed 1000 times using a powder density measuring instrument (for example, tap denser manufactured by Seishin Enterprise Co., Ltd.), and the tap density is calculated from the sample volume and the sample mass at that time.
- a powder density measuring instrument for example, tap denser manufactured by Seishin Enterprise Co., Ltd.
- the positive electrode active material may be obtained by any manufacturing method as long as it does not depart from the gist of the present invention.
- the positive electrode active material can be manufactured through two processing steps. That is, A step of forming a bond between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material by mixing the raw material positive electrode active material serving as a nucleus and the Zr-containing surface treatment material in a dispersion medium under appropriate conditions ( Stage 1), and In this step, the dispersion medium is removed by heat treatment under a specific temperature condition, and the bond between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material is strengthened (step 2).
- Stage 1 A step of forming a bond between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material by mixing the raw material positive electrode active material serving as a nucleus and the Zr-containing surface treatment material in a dispersion medium under appropriate conditions
- the dispersion medium is removed by heat treatment under a specific temperature condition, and the bond between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material is strengthened (step 2).
- the raw material positive electrode active material is not particularly limited as long as it is a lithium transition metal oxide.
- the lithium transition metal oxide can be obtained, for example, by a production method described in JP 2010-92848 A, JP 2001-196063 A, or the like.
- the Zr surface treatment material is not particularly limited as long as it is a compound containing Zr.
- the material may be a compound that is activated under specific conditions such as addition of a catalyst or reaction initiator, stimulation by light or heat, etc. in order to efficiently form a bond with the surface of the raw material positive electrode active material.
- Specific examples of such compounds include Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OCH (CH 3 ) 2 ) 4 , Zr (OC 4 H 10 ) 4 , ZrCl 4 and the like. Is mentioned.
- the mixing amount of the Zr-containing surface treatment material is usually 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0.07 parts by mass or more, usually 3 parts by mass with respect to 100 parts by mass of the raw material positive electrode active material. Part or less, preferably 2 parts by weight or less, more preferably 1.5 parts by weight or less. If it is the said range, since the increase suppression effect of the positive electrode resistance by surface treatment is acquired, without causing the fall of battery capacity, it is preferable.
- the dispersion medium for mixing the raw material positive electrode active material and the Zr-containing surface treatment material is not particularly limited as long as it has an affinity for the raw material positive electrode active material and can dissolve the Zr-containing surface treatment material.
- examples of such a dispersion medium include water, methanol, ethanol, propanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and acetone.
- the mixing amount of the dispersion medium is usually 20 parts by mass or more, preferably 30 parts by mass or more, more preferably 40 parts by mass or more, usually 200 parts by mass or less, preferably 180 parts by mass or less with respect to 100 parts by mass of the raw material positive electrode active material. More preferably, it is 150 parts by mass or less. If it is the said range, since a bond can be uniformly formed between the Zr containing surface treatment material and the surface of a raw material positive electrode active material, without raising manufacturing cost, it is preferable.
- the dispersion medium preferably contains a catalyst for activating the Zr-containing surface treatment material, and water is particularly preferable in terms of high activation ability.
- the addition amount of the catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the raw material positive electrode active material.
- the catalyst content is low, bond formation between the surface of the raw material positive electrode active material and the Zr-containing surface treatment material does not proceed sufficiently.
- the content is too large, the Zr-containing surface treatment material may cause self-association. Note that when the dispersion medium is water, the water functions as both the dispersion medium and the catalyst.
- the temperature at that time is preferably 30 to 100 ° C., and 40 to 80 ° C. is particularly preferable from the viewpoint of processing efficiency.
- the mixing time of the raw material positive electrode active material and the Zr-containing surface treatment material is preferably 5 minutes to 3 hours, more preferably 20 minutes to 2 hours, and particularly preferably 30 to 90 minutes. If the mixing time is too short, bond formation between the surface of the raw material positive electrode active material and the Zr-containing surface treatment material may not proceed sufficiently. On the other hand, if the mixing time is too long, Li may be liberated from the raw material positive electrode active material and the resulting positive electrode active material may be deteriorated.
- Step 2 After mixing the core positive electrode active material and the Zr-containing surface treatment material, in Step 2, the dispersion medium is removed and the bond between the Zr-containing surface treatment material and the surface of the positive electrode active material is strengthened. In order to achieve this, heat treatment is performed under specific temperature conditions.
- the temperature of the heat treatment is preferably more than 80 ° C. and less than 500 ° C., particularly preferably 100 ° C. or more and less than 400 ° C. If the temperature is too low, the dispersion medium may not be sufficiently removed, or the bonding between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material may be insufficient. On the other hand, if the temperature is too high, Zr permeates into the raw material positive electrode active material, which may cause deterioration of battery capacity.
- the heat treatment time is preferably 30 minutes to 10 hours, more preferably 45 minutes to 8 hours, and particularly preferably 1 to 7 hours. If the heat treatment time is too short, there is a risk that the dispersion medium may not remain or be bonded as described above. On the other hand, if the heat treatment is too long, the production cost may be too high.
- the heat treatment may be performed under reduced pressure conditions, or after preliminarily performing the treatment under reduced pressure conditions, the main treatment may be performed at a higher temperature.
- this stage 2 it is particularly preferable to preheat at a temperature of usually 105 ° C. to 150 ° C., preferably 110 ° C. to 140 ° C. under reduced pressure.
- the time for preliminary heating under reduced pressure is usually 1 to 10 hours, preferably 2 to 9 hours.
- the atmosphere in the furnace during the heat treatment may be air, or the oxygen partial pressure may be higher than that of air.
- the positive electrode for a non-aqueous secondary battery used in the non-aqueous secondary battery according to the second aspect of the present invention is obtained by forming a positive electrode active material layer containing a positive electrode active material and a binder described above on a current collector. It is.
- the configuration of the positive electrode in the nonaqueous secondary battery of the present invention 2 is the same as that of the present invention 1 except that the positive electrode active material having the Zr-containing layer and the surface functional group described above is used as the positive electrode active material in the positive electrode active material layer. This is the same as the positive electrode for a non-aqueous secondary battery in the non-aqueous secondary battery.
- Nonaqueous electrolytes used in the production of the nonaqueous secondary battery of the present invention 2 include cyclic carbonates having a carbon-carbon unsaturated bond, isocyanate compounds or condensates thereof, fluorinated oxoacid salts, nitrile compounds, aromatics There is no particular limitation as long as it contains at least one compound (specific additive) selected from the group consisting of a group compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, and an oxalate salt.
- electrolyte and the organic solvent are respectively the same as the electrolyte and the organic solvent constituting the nonaqueous electrolytic solution in the nonaqueous secondary battery of the first aspect described above.
- the non-aqueous secondary battery of the present invention 2 includes the positive electrode active material having the Zr-containing layer and the surface functional group described above and the non-aqueous electrolyte containing a specific additive. Due to such a configuration, even when stored in a high temperature and high voltage environment, the non-aqueous secondary battery has a small increase in volume and resistivity.
- the specific additive will be described in order.
- the cyclic carbonate having a carbon-carbon unsaturated bond (hereinafter sometimes referred to as “unsaturated cyclic carbonate”) is a cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond.
- unsaturated cyclic carbonate is a cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond.
- Arbitrary unsaturated carbonates can be used.
- the cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate.
- unsaturated cyclic carbonates examples include vinylene carbonates, aromatic carbonates, ethylene carbonates substituted with a substituent having a carbon-carbon double bond or carbon-carbon triple bond, phenyl carbonates, vinyl carbonates, allyl carbonates, Catechol carbonates etc. are mentioned.
- vinylene carbonates examples include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, 4,5-divinyl vinylene carbonate, allyl vinylene carbonate, 4,5-diallyl vinylene carbonate, 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-fluoro-5-vinyl vinylene carbonate, 4-allyl-5 A fluoro vinylene carbonate etc. are mentioned.
- ethylene carbonates substituted with a substituent having the aromatic ring or carbon-carbon double bond or carbon-carbon triple bond include vinyl ethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5 -Vinylethylene carbonate, 4-allyl-5-vinylethylene carbonate, ethynylethylene carbonate, 4,5-diethynylethylene carbonate, 4-methyl-5-ethynylethylene carbonate, 4-vinyl-5-ethynylethylene carbonate, 4- Allyl-5-ethynylethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl-5-phenylethylene carbonate, allylethylene carbonate Boneto, 4,5 diallyl carbonate, 4-methyl-5-allyl carbonate and the like.
- preferable unsaturated cyclic carbonates include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate, 4,5-diallyl vinylene.
- vinylene carbonate, vinyl ethylene carbonate, and ethynyl ethylene carbonate are more preferable because they form a particularly stable interface protective film, and vinylene carbonate and vinyl ethylene carbonate are particularly preferable.
- the molecular weight of the unsaturated cyclic carbonate is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired.
- the molecular weight is preferably 80 or more, more preferably 85 or more, and preferably 250 or less, more preferably 150 or less. If it is this range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to a non-aqueous electrolyte, and the effect of this invention will fully be expressed easily.
- the production method of the unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method. It is also commercially available.
- Unsaturated cyclic carbonates may be used alone or in combination of two or more in any combination and ratio. Moreover, the compounding quantity of unsaturated cyclic carbonate is not restrict
- the content of the unsaturated cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass with respect to the entire non-aqueous electrolyte (100% by mass). % Or more, preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 4% by mass or less, and particularly preferably 3% by mass or less.
- the effect of the nonaqueous secondary battery of the present invention 2 can be fully enjoyed. Specifically, it is easy to avoid a situation where the high-temperature storage characteristics of the battery are reduced, the amount of gas generated is increased, and the discharge capacity retention rate is reduced. Furthermore, if the content is within the above range, the non-aqueous secondary battery can also exhibit sufficient cycle characteristics.
- the isocyanate compound is not particularly limited as long as it is a compound having an isocyanate group in the molecule. Compounds having at least two isocyanate groups are preferred.
- isocyanate compound examples include, for example, methyl isocyanate, ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, tertiary butyl isocyanate, pentyl isocyanate hexyl isocyanate, cyclohexyl isocyanate, vinyl isocyanate, allyl isocyanate, ethynyl isocyanate, propynyl isocyanate, Monoisocyanate compounds such as phenyl isocyanate and fluorophenyl isocyanate; Monomethylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, de
- An isocyanate compound or a condensate thereof may be used alone or in combination of two or more in any combination and ratio.
- the content of the isocyanate compound or the condensate thereof in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably based on the whole nonaqueous electrolytic solution (100% by mass). Is 0.1% by mass or more, more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
- the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, etc. of the battery are improved.
- a fluorinated oxoacid salt is used in the non-aqueous electrolyte in order to form a film on the negative electrode surface of the battery and achieve a long battery life. It is effective.
- fluorinated oxoacid salts include fluorine-substituted phosphates, fluorine-substituted carboxylates, fluorine-substituted sulfonates, and fluorine-substituted sulfates.
- the counter cation of the fluorinated oxoacid salt is not particularly limited, but lithium, sodium, potassium, magnesium, calcium, and NR 3 R 4 R 5 R 6 (wherein R 3 to R 6 are each independently As an example, ammonium represented by a hydrogen atom or an organic group having 1 to 12 carbon atoms can be given.
- the organic group having 1 to 12 carbon atoms represented by R 3 to R 6 of ammonium is not particularly limited.
- the organic group may be substituted with a halogen atom, a halogen atom or an alkyl group.
- examples thereof include an cycloalkyl group which may be substituted, an aryl group which may be substituted with a halogen atom or an alkyl group, and a nitrogen atom-containing heterocyclic group which may have a substituent.
- R 3 to R 6 are each independently preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or a nitrogen atom-containing heterocyclic group.
- lithium is most preferable among the above counter cations from the viewpoint of lithium electrodeposition resistance and oxidation resistance of the non-aqueous electrolyte.
- fluorine-substituted phosphates examples include monofluorophosphate and difluorophosphate. Specific examples thereof include lithium monofluorophosphate, sodium monofluorophosphate, potassium monofluorophosphate, lithium difluorophosphate, sodium difluorophosphate, potassium difluorophosphate and the like. Among these, lithium monofluorophosphate and lithium difluorophosphate are preferable, and lithium difluorophosphate is more preferable.
- fluorine-substituted carboxylates examples include fluoroformate, monofluoroacetate, difluoroacetate and trifluoroacetate. Specific examples thereof include lithium fluoroformate, lithium monofluoroacetate, lithium difluoroacetate, and lithium trifluoroacetate.
- fluorine-substituted sulfonates examples include fluorosulfonate, trifluoromethanesulfonate, and pentafluoroethanesulfonate. Specific examples thereof include lithium fluorosulfonate, lithium trifluoromethanesulfonate, and lithium pentafluoroethanesulfonate.
- fluorine-substituted sulfates examples include trifluoromethyl sulfate and pentafluoroethyl sulfate. Specific examples thereof include lithium trifluoromethyl sulfate and lithium pentafluoroethyl sulfate.
- preferred fluorinated oxoacid salts are lithium fluorosulfonate, lithium trifluoromethanesulfonate, lithium monofluorophosphate, and lithium difluorophosphate. This is because a stable interface protective film is formed.
- the fluorinated oxoacid salts may be used alone or in combination of two or more in any combination and ratio.
- the blending amount of the fluorinated oxoacid salt is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass or more in 100% by mass of the non-aqueous electrolyte. Moreover, it is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
- the battery is likely to exhibit a sufficient cycle characteristic improving effect. In addition, it is easy to avoid a situation in which the high-temperature storage characteristics are reduced, the amount of gas generated is increased, and the discharge capacity maintenance rate is reduced.
- the nitrile compound is not particularly limited as long as it is a compound having a nitrile group in the molecule. Compounds having at least two nitrile groups are preferred.
- nitrile compounds include, for example, Acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, lauronitrile, 2-methylbutyronitrile, trimethylacetonitrile, hexanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, acrylonitrile, methacrylonitrile Crotononitrile, 3-methylcrotononitrile, 2-methyl-2-butenenitryl, 2-pentenenitrile, 2-methyl-2-pentenenitrile, 3-methyl-2-pentenenitrile, 2-hexenenitrile, Fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, 2-fluoropropionitrile, 3-fluoropropionitrile, 2,2-difluoropropionitrile, 2,3-diph Oropropionitrile, 3,3-difluoropro
- succinonitrile, glutaronitrile, adiponitrile, pimonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, fumaronitrile, 3,9-bis (2-cyanoethyl) -2,4,8,10-tetra A compound having two nitrile groups such as oxaspiro [5,5] undecane is more preferable, More preferred are succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, suberonitrile, azeronitrile, and sebaconitrile.
- a nitrile compound may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
- the content of the nitrile compound in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass relative to the whole nonaqueous electrolytic solution (100% by mass). It is at least mass%, more preferably at least 0.3 mass%, and usually at most 10 mass%, preferably at most 5 mass%, more preferably at most 3 mass%.
- the aromatic compound is not particularly limited as long as it is a compound having an aromatic group.
- aromatic hydrocarbons such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; Methyl phenyl carbonate, ethyl phenyl carbonate, n-propyl phenyl carbonate, i-propyl phenyl carbonate, n-butyl phenyl carbonate, i-butyl phenyl carbonate, sec-butyl phenyl carbonate, t-butyl phenyl carbonate, n-pentyl phenyl carbonate, Examples thereof include aromatic carbonates such as t-amylphenyl carbonate, (1,1-dimethylbutyl
- preferred aromatic compounds are t-butylbenzene, t-amylbenzene, methylphenyl carbonate, ethylphenyl carbonate, n-propylphenyl carbonate, n-butylphenyl carbonate, and diphenyl carbonate. This is because when these are used, side reactions at the positive electrode are suppressed because there is no active benzyl hydrogen.
- An aromatic compound may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
- the content of the aromatic compound in the non-aqueous electrolyte is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.001% by mass or more with respect to the whole non-aqueous electrolyte (100% by mass). 1% by mass or more, still more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
- the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, etc. of the battery are improved.
- the phosphonate compound is not particularly limited, and specifically, trimethylphosphonoformate, Methyl diethylphosphonoformate, Methyldipropylphosphonoformate, Methyldibutylphosphonoformate, Triethylphosphonoformate, Ethyldimethylphosphonoformate, Ethyldipropylphosphonoformate, Ethyldibutylphosphonoformate, Tripropylphosphonoformate, Propyldimethylphosphonoformate, Propyl diethylphosphonoformate, Propyldibutylphosphonoformate, Tributylphosphonoformate, Butyldimethylphosphonoformate, Butyl diethylphosphonoformate, Butyl dipropyl phosphonoformate, Methylbis (2,2,2-trifluoroethyl) phosphonoformate, Ethylbis (2,2,2-triflu
- preferred phosphonate compounds are trimethylphosphonoacetate, Methyl diethylphosphonoacetate, Methyldipropylphosphonoacetate, Methyldibutylphosphonoacetate, Triethylphosphonoacetate, Ethyldimethylphosphonoacetate, Ethyldipropylphosphonoacetate, Ethyl dibutylphosphonoacetate, Tripropylphosphonoacetate, Propyldimethylphosphonoacetate, Propyl diethylphosphonoacetate, Propyl dibutyl phosphonoacetate, Tributylphosphonoacetate, Butyldimethylphosphonoacetate, Butyl diethylphosphonoacetate, Butyl dipropyl phosphonoacetate, Methylbis (2,2,2-trifluoroethyl) phosphonoacetate, Ethyl bis (2,2,2-trifluoroethyl)
- a phosphonic acid ester compound may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
- the content of the phosphonic acid ester compound in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0, relative to the entire nonaqueous electrolytic solution (100% by mass). 0.1% by mass or more, still more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
- the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, etc. of the battery are improved.
- halogen-containing cyclic carbonate examples include cyclic carbonates having fluorine atoms (hereinafter sometimes referred to as “fluorinated cyclic carbonates”).
- fluorinated cyclic carbonates is not particularly limited as long as it is a cyclic carbonate having a fluorine atom.
- fluorinated cyclic carbonate examples include fluorinated cyclic carbonates having a C 2-6 alkylene group, and derivatives thereof. Specific examples include fluorinated ethylene carbonate and derivatives thereof. Examples of the derivatives of fluorinated ethylene carbonate include fluorinated ethylene carbonate substituted with an alkyl group (eg, an alkyl group having 1 to 4 carbon atoms). Of these, ethylene carbonate having 1 to 8 fluorine atoms and derivatives thereof are preferred.
- fluorinated cyclic carbonate Monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4-fluoro-5-methyl Ethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (trifluoromethyl) -ethylene carbonate, 4- (fluoro Methyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethylethylene Boneto, 4,4-difluoro-5,5-dimethylethylene carbonate.
- halogen-containing cyclic carbonates described above may be used alone or in combination of two or more in any combination and ratio.
- the content of the halogen-containing cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass with respect to the entire non-aqueous electrolyte (100% by mass). Above, still more preferably 0.5% by mass or more, particularly preferably 1% by mass or more, most preferably 2% by mass or more, preferably 10% by mass or less, more preferably 7% by mass or less, More preferably, it is 5 mass% or less.
- oxalate salt There is no restriction
- the oxalate salt include bis (oxalate) boric acid, difluoro (oxalate) borate, tris (oxalate) phosphate, difluoro (bisoxalate) phosphate, tetrafluoro (oxalate) phosphate, and the like. .
- the counter cation of the oxalate salt is not particularly limited, and examples thereof include lithium, sodium, and potassium. Among the counter cations, lithium is most preferable from the viewpoint of the lithium electrodeposition resistance and oxidation resistance of the non-aqueous electrolyte.
- Lithium bis (oxalate) borate Lithium difluoro (oxalate) borate, Tris (oxalate) lithium phosphate, Difluoro (bisoxalate) lithium phosphate, Tetrafluoro (oxalate) lithium phosphate, Potassium bis (oxalate) borate, Potassium difluoro (oxalate) borate, Tris (oxalate) potassium phosphate, Difluoro (bisoxalate) potassium phosphate, Tetrafluoro (oxalate) potassium phosphate, Sodium bis (oxalate) borate, Sodium difluoro (oxalate) borate, Tris (oxalate) sodium phosphate, Difluoro (bisoxalate) sodium phosphate, An example is sodium tetrafluoro (oxalate) phosphate.
- preferred oxalate salts include Lithium bis (oxalate) borate, Lithium difluoro (oxalate) borate, Tris (oxalate) lithium phosphate, Difluoro (bisoxalate) lithium phosphate, Tetrafluoro (oxalate) lithium phosphate is more preferably used from the viewpoint of lithium electrodeposition resistance.
- the oxalate salt may be used alone or in combination of two or more in any combination and ratio.
- the content of the oxalate salt in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass with respect to the entire nonaqueous electrolytic solution (100% by mass). % By mass or more, still more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
- the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, etc. of the battery are improved.
- the specific additive described above has a preferable content in the non-aqueous electrolyte in each type.
- the content of the specific additive in the non-aqueous electrolyte is preferably 0.001% by mass or more and 10% by mass or less with respect to the entire non-aqueous electrolyte (100% by mass).
- the effect of each added specific additive can be enjoyed.
- any specific additive will not be mix
- additives other than specific additives In the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention 2, other additives may be appropriately used in addition to the specific additive depending on the purpose. Examples of other additives include cyclic sulfonic acid esters shown below and other additives.
- the cyclic sulfonate ester is not particularly limited as long as it is a sulfonate ester having a cyclic structure.
- cyclic sulfonate ester examples include, for example, 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, and 3-fluoro-1,3-propane.
- the cyclic sulfonic acid ester one kind may be used alone, and two kinds or more may be used in optional combination and ratio.
- the content of the cyclic sulfonic acid ester in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0, relative to the entire nonaqueous electrolytic solution (100% by mass). 0.1% by mass or more, more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
- additives Other known additives can be added to the non-aqueous electrolyte.
- Other additives include Carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; Succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride, And carboxylic anhydrides such as 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride;
- Spiro compounds such as 2,4,8,10-tetraoxaspiro [5.5] undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane; Ethylene sulfite, methyl fluorosulfonate, ethyl fluorosulfonate, methyl methanesulfonate, ethyl methanesulfonate, busulfan, sulfolene, diphenylsulfone, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide, vinyl Methyl sulfonate, ethyl vinyl sulfonate, allyl vinyl sulfonate, propargyl vinyl sulfonate, methyl allyl sulfonate, ethyl allyl sulfonate, allyl sulfonate, proparg
- Nitrogen-containing compounds such as 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide; Trimethyl phosphite, triethyl phosphite, triphenyl phosphite, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, dimethyl methylphosphonate, diethyl ethylphosphonate, dimethyl vinylphosphonate, diethyl vinylphosphonate, diethylphospho Phosphorus-containing compounds such as ethyl vinegar, methyl dimethylphosphinate, ethyl diethylphosphinate, trimethylphosphine oxide, triethylphosphine oxide; Hydrocarbon compounds such as heptane, octane, nonane, decane, cycloheptane; Fluorine-containing
- the content of other additives in the nonaqueous electrolytic solution is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired.
- the content is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more with respect to the entire non-aqueous electrolyte (100% by mass).
- it is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less. If it is this range, the effect of other additives will be fully exhibited easily, and it will be easy to avoid the situation where battery characteristics, such as a high load discharge characteristic, fall.
- the non-aqueous electrolyte used in the non-aqueous secondary battery of the second aspect described above includes those present inside the non-aqueous secondary battery.
- Non-aqueous secondary battery prepared by separately synthesizing components of non-aqueous electrolyte such as electrolyte and organic solvent, preparing non-aqueous electrolyte from substantially isolated one, and separately assembling by the method described below
- it is a non-aqueous electrolyte solution in a non-aqueous secondary battery obtained by pouring the solution into the inside.
- the components of the non-aqueous electrolyte are individually put in the non-aqueous secondary battery and mixed in the battery to obtain the same composition as the non-aqueous electrolyte.
- the compound constituting the non-aqueous electrolyte is generated in the non-aqueous secondary battery to obtain the same composition as the non-aqueous electrolyte.
- the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention 2 contains an essential component (specific additive) such as a cyclic carbonate having a carbon-carbon unsaturated bond as described above, and a cyclic sulfonic acid Esters and other additives may optionally be included.
- the electrolytic solution preferably contains Zr or a Zr compound from the viewpoint of suppressing gas generation in the battery and reducing resistance. Examples of the Zr compound include (Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OCH (CH 3 ) 2 ) 4 , Zr (OC 4 H 10 ) 4 , ZrCl 4 and the like. These oxides are mentioned.
- Zr in the non-aqueous electrolyte may be added to the non-aqueous electrolyte from the outside. Further, the non-aqueous electrolyte initially does not contain Zr, but the non-aqueous secondary battery was manufactured and charged and discharged, and as a result of the Zr contained in the electrode being melted, the non-aqueous electrolyte that contained Zr was obtained. It may be an electrolytic solution.
- non-aqueous electrolyte containing Zr or a compound of Zr is also one of the inventions disclosed in the present specification, and by using this, an increase in positive electrode resistance after cycle charge / discharge and battery capacity can be improved. It is possible to manufacture a non-aqueous secondary battery in which the decrease is suppressed and the storage characteristics are excellent in a high temperature and high voltage environment.
- the nonaqueous secondary battery has a conventionally known configuration except that the nonaqueous secondary battery includes a nonaqueous electrolytic solution containing Zr or a compound of Zr. That is, the non-aqueous secondary battery includes a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte.
- Nonaqueous Secondary Battery of Invention 1 and Nonaqueous Secondary Battery of Invention 2 As the nonaqueous secondary battery of the present invention 1 obtained using the positive electrode active material for the nonaqueous secondary battery of the present invention 1, a lithium secondary battery is particularly suitable. Moreover, the non-aqueous secondary battery of this invention 2 can also be utilized suitably as a lithium secondary battery.
- the battery configuration of these non-aqueous secondary batteries hereinafter collectively referred to as “non-aqueous secondary battery of the present invention” will be described.
- the non-aqueous secondary battery of the present invention can adopt a known structure.
- the negative electrode capable of occluding and releasing ions for example, lithium ions
- the non-aqueous secondary battery of the present inventions 1 and 2 are used.
- a positive electrode containing a predetermined positive electrode active material in a battery and a non-aqueous electrolyte are provided.
- the negative electrode can be produced by any known method as long as the effects of the present invention are not significantly impaired.
- a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. are added to a negative electrode active material to form a slurry, which is applied to a current collector, dried, and then pressed to collect current.
- a negative electrode having a negative electrode active material layer on the body can be formed.
- the binder (binder), the thickener, and the conductive material the same materials as those used for forming the positive electrode can be used.
- a method of forming a thin film layer (negative electrode active material layer) containing the negative electrode active material by a technique such as vapor deposition, sputtering, or plating is also used.
- the negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples thereof include carbonaceous materials, alloy-based materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.
- Examples of the carbonaceous material include (1) natural graphite, (2) artificial graphite, (3) amorphous carbon, (4) carbon-coated graphite, (5) graphite-coated graphite, and (6) resin-coated graphite. It is done.
- the carbonaceous materials (1) to (6) may be used alone or in combination of two or more in any combination and ratio.
- the ratio of natural graphite to the total carbonaceous material is 50% by mass or more.
- the alloy material used as the negative electrode active material is lithium simple substance, single metal and alloy forming lithium alloy, or oxides, carbides, nitrides, silicides, sulfides thereof as long as lithium can be occluded / released. Or any of compounds, such as a phosphide, may be sufficient.
- the single metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / metalloid elements (that is, excluding carbon), more preferably single metals of aluminum, silicon and tin and their atoms.
- An alloy or compound containing These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
- the lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium. From the viewpoint of high current density charge / discharge characteristics, a material containing titanium and lithium is preferable, a lithium-containing composite metal composite oxide material containing titanium is more preferable, and a composite oxide of lithium and titanium is more preferable. That is, it is particularly preferable to use a lithium titanium composite oxide having a spinel structure as the negative electrode active material because the output resistance of the nonaqueous secondary battery of the present invention is greatly reduced.
- the current collector for holding the negative electrode active material As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the current collector for the negative electrode include those formed of a metal material such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. As the material, copper is particularly preferable from the viewpoint of ease of processing and cost.
- a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit.
- the material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired.
- a separator made of a material that is stable with respect to the non-aqueous electrolyte, that is, a resin, glass fiber, an inorganic substance, or the like is preferable.
- the electrode group may have either a laminated structure in which the positive electrode and the negative electrode are interposed via the separator, or a structure in which the positive electrode and the negative electrode are wound in a spiral shape via the separator.
- the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
- the battery capacity decreases. Further, if the above range is exceeded, the void space is small, and the battery becomes hot and the member expands or the vapor pressure of the liquid component of the electrolyte increases. As a result, the internal pressure of the battery rises, and various characteristics such as charge / discharge repetition performance and high-temperature storage as the battery deteriorate. Furthermore, a gas release valve that releases the internal pressure to the outside may operate.
- the material of the outer case is not particularly limited as long as it is stable with respect to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
- Examples of the exterior case using the laminate film include a case in which a resin-sealed structure is formed by heat-sealing resin layers. In order to improve sealing performance, a resin different from the resin used for the laminate film may be interposed between the resin layers.
- the shape of the exterior body is also arbitrary. Examples of the shape include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large size.
- Example and Comparative Examples for Invention 1 First, the Example and comparative example regarding the positive electrode active material for non-aqueous secondary batteries of this invention 1, the positive electrode for non-aqueous secondary batteries, and a non-aqueous secondary battery are shown.
- Example 1-1 Preparation of positive electrode active material 1> 50 parts by mass of propanol was added to 100 parts by mass of the positive electrode active material core having an elemental composition of LiNi 0.33 Co 0.33 Mn 0.33 O 2 . 2 parts by mass of zirconium (IV) tetrapropoxide dissolved in 17 parts by mass of propanol was added and stirred. Thereafter, 0.7 parts by mass of water and 16 parts by mass of propanol were added dropwise to the resulting reaction mixture, and the mixture was further stirred for 1 hour while heating at 60 ° C. The powder obtained by removing the solvent was heated at 120 ° C. under reduced pressure for 5 hours. Thereafter, heat treatment was performed at a temperature of 400 ° C. for 3 hours in an air-fired furnace, whereby a positive electrode active material 1 was obtained.
- PVdF polyvinylidene fluoride
- Graphite powder as the negative electrode active material aqueous dispersion of sodium carboxymethylcellulose as the thickener (concentration of 1% by mass of sodium carboxymethylcellulose), aqueous dispersion of styrene butadiene rubber as the binder (concentration of styrene butadiene rubber of 50% by mass) Were prepared and mixed with a disperser to form a slurry. This slurry was uniformly applied to one side of a 10 ⁇ m thick copper foil, dried, and then pressed to prepare a negative electrode.
- each component was mix
- blended in the case of slurry preparation so that it might become a mass ratio of natural graphite: Carboxymethylcellulose sodium: styrene butadiene rubber 98: 1: 1 in the negative electrode after drying.
- Non-aqueous electrolyte a solution obtained by dissolving LiPF 6 as an electrolyte at a rate of 1 mol / L in a mixed solvent composed of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate (mixing volume ratio 3: 4: 3) is used. It was.
- the positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, and the positive electrode to prepare a battery element.
- This battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 ⁇ m) were covered with a resin layer while projecting positive and negative terminals. Thereafter, a non-aqueous electrolyte was poured into the bag and vacuum sealed to produce a sheet-like non-aqueous secondary battery.
- the nonaqueous secondary battery was charged to a voltage of 4.1 V over 12 hours at 25 ° C. in a state where the nonaqueous secondary battery was pressed between glass plates, and then a constant current discharge was performed to 3.0 V. Furthermore, after carrying out constant current charge to 4.2V over 3 hours or more, operation which carries out constant current discharge to 3.0V was performed twice. Then, after carrying out constant current charge to 4.5V over 3 hours or more, operation which carries out constant current discharge to 3.0V was performed twice. The capacity at the time of the second discharge at this time was defined as “reference capacity”.
- 1C represents a current value for discharging the reference capacity of the battery in one hour, and for example, 0.2C represents a current value of 1/5 thereof.
- the impedance measurement was performed on the nonaqueous secondary battery charged to a voltage of 3.8 V under the conditions of a temperature of 25 ° C., a voltage amplitude of 10 mV, and a frequency range of 20000 to 0.02 Hz. From the obtained impedance measurement results, the measurement frequency and the imaginary part of the complex impedance were plotted. The maximum value in the region of 100 to 1 Hz was set as an “index of initial positive electrode resistance” of the nonaqueous secondary battery.
- the non-aqueous secondary battery was charged at a constant current to 4.5 V at a current value of 1 C, and further charged at a constant voltage until the current value reached 0.1 C. Then, constant current discharge was performed to 3.0V at 1C. The above charging / discharging process was made into 1 cycle, and 50 cycles of charging / discharging was implemented.
- the Zr-containing region was determined as a region containing all Ni, Co, Mn, and Zr in a molar ratio of 1.5% or more.
- the molar ratio of Zr to (Zr + Ni + Co + M) was measured as the average value of the Zr content ratio at each measurement point in the region.
- the positive electrode active material 1 of Example 1-1 has Zr and the constituent metal elements (Ni, Co, Mn) of the positive electrode active material core at a depth of 0.8 to 8 nm from the surface of the positive electrode active material. It has a Zr containing region. In this region, the molar ratio of Zr to (Zr + Ni + Co + Mn) is 15%, but the molar ratio of Zr at a depth exceeding 8 nm deeper than the Zr-containing region and up to 80 nm is 0.1%.
- Example 1-2 A positive electrode active material 2 was prepared by performing the same operation as in Example 1-1 except that the heat treatment at a temperature of 400 ° C. was not performed, and a battery was manufactured and evaluated by performing the same operation as in Example 1-1. did.
- Example 1-3 38 parts by mass of propanol was added to 100 parts by mass of the positive electrode active material core having an element composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 . To this, 0.6 parts by mass of zirconium (IV) tetrapropoxide dissolved in 6 parts by mass of propanol was added and stirred. Thereafter, a mixture of 0.5 part by mass of water and 12 parts by mass of propanol was added dropwise to the reaction mixture, followed by further stirring for 1 hour while heating at 60 ° C. The powder obtained by distilling off the solvent was heated at 120 ° C. under reduced pressure for 8 hours to obtain a positive electrode active material 3.
- zirconium (IV) tetrapropoxide dissolved in 6 parts by mass of propanol was added and stirred. Thereafter, a mixture of 0.5 part by mass of water and 12 parts by mass of propanol was added dropwise to the reaction mixture, followed by further stirring for 1 hour while heating at 60 ° C. The powder obtained by distill
- Example 1-1 except that 85 parts by mass of the positive electrode active material 1 was changed to 95 parts by mass of the positive electrode active material 3, acetylene black was changed to 3 parts by mass, and PVdF was changed to 2 parts by mass. The same operation was performed to produce a positive electrode.
- a non-aqueous secondary battery produced using the positive electrode active material 3 is charged to a voltage of 4.2 V over 5 hours at 25 ° C. in a state where the non-aqueous secondary battery is sandwiched between glass plates and pressurized.
- the operation of discharging current was performed 4 times.
- the capacity at the time of the fourth discharge at this time was defined as “reference capacity”.
- the non-aqueous secondary battery charged to 4.1 V was allowed to stand at 60 ° C. for 12 hours.
- the battery discharged to 3.0 V was recharged to 3.7 V, and impedance measurement was performed under the conditions of a temperature of ⁇ 10 ° C., a voltage amplitude of 10 mV, and a frequency range of 20000 to 0.02 Hz. From the obtained impedance measurement results, the measurement frequency and the imaginary part of the complex impedance were plotted. The maximum value in the region of 100 to 1 Hz was taken as “an index of initial positive electrode resistance”.
- the discharge was performed at a current value of 0.2 C, and the capacity at the time of discharge after 100 cycles when the capacity at the time of the first discharge was assumed to be 100. It was defined as “capacity index after cycle charge / discharge”.
- the battery after 50 cycles was subjected to impedance measurement in the same manner as the measurement of the initial positive electrode resistance index to obtain the positive electrode resistance index.
- the value of the positive electrode resistance index after 50 cycles when the “initial positive electrode resistance index” was 100 was defined as “the relative resistance value of the positive electrode after cycle charge / discharge”.
- Example 1-1 85 parts by mass of the positive electrode active material 4 having an elemental composition of LiNi 0.33 Co 0.33 Mn 0.33 O 2 , 5 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) 10 as a binder A part by mass was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to a 15 ⁇ m thick aluminum foil, dried, and then pressed to produce a positive electrode. Using this positive electrode, a non-aqueous secondary battery was produced and evaluated in the same manner as in Example 1-1.
- PVdF polyvinylidene fluoride
- Example 1-1 the Zr-containing region of the positive electrode active material 4 was evaluated in the same manner as in Example 1-1. The results are shown in FIG. Since Zr was not detected, Zr is not plotted in FIG. From FIG. 2, it can be seen that the positive electrode active material 4 of Comparative Example 1-1 that has not been surface-treated does not have a Zr-containing region near the surface of the active material.
- a positive electrode was produced in the same manner as in Comparative Example 1-1 except that the positive electrode active material 5 was used as the positive electrode active material. Using this positive electrode, a non-aqueous secondary battery was produced and evaluated in the same manner as in Example 1-1.
- a positive electrode active material 6 having an elemental composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 3 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) 2 as a binder
- a part by mass was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to a 15 ⁇ m thick aluminum foil, dried, and then pressed to produce a positive electrode.
- PVdF polyvinylidene fluoride
- Example 1-4 A positive electrode active material 7 was produced in the same manner as in Example 1-3, except that zirconium (IV) tetrapropoxide was changed to aluminum (III) isopropoxide. Using this positive electrode active material 7, the same operation as in Example 1-3 was performed to produce and evaluate a nonaqueous secondary battery. However, the relative resistance value of the positive electrode after cycle charge / discharge is not obtained.
- a positive electrode active material 8 was produced in the same manner as in Example 1-1 except that the heat treatment temperature in the firing furnace was 800 ° C. Using this positive electrode active material 8, a non-aqueous secondary battery was fabricated and evaluated in the same manner as in Example 1-1.
- Example 1-1 and Comparative Example 1-2 In the non-aqueous secondary battery (Example 1-1) manufactured using the positive electrode active material of the first invention, a Zr-containing region exists in the vicinity of the surface of the positive electrode active material.
- the positive electrode active material manufactured in Comparative Example 1-2 has a ZrO 2 coating layer, but does not have a region containing both Zr and the constituent metal elements (Ni, Co, Mn) of the positive electrode active material core.
- the non-aqueous secondary battery of Example 1-1 and the non-aqueous secondary battery of Comparative Example 1-2 are compared, the increase in resistance after cycle charge / discharge is greatly suppressed in the former. .
- Example 1-3 and Comparative Example 1-4 in the nonaqueous secondary battery (Example 1-3) manufactured using the positive electrode active material of the present invention 1, instead of the Zr-containing surface treatment material, Al The battery capacity after cycle charge / discharge is higher than that in the non-aqueous secondary battery (Comparative Example 1-4) manufactured using the positive electrode active material subjected to the same surface treatment using the surface treatment material containing It can be seen that the decrease is suppressed.
- Example 1-1 From Example 1-1 and Comparative Example 1-5, in the battery manufactured using the positive electrode active material of the present invention 1 (Example 1-1), the heat treatment temperature at the time of manufacture was high, and the vicinity of the surface of the active material was high. It can be seen that the relative resistance value after cycle charge / discharge is suppressed smaller than in the non-aqueous secondary battery (Comparative Example 1-5) manufactured using the positive electrode active material having an insufficient amount of Zr.
- Examples and Comparative Examples for Invention 2 Next, the Example and comparative example regarding the non-aqueous secondary battery of this invention 2 are shown.
- thermal desorption-GC / MS analysis The details of thermal desorption-GC / MS analysis are as follows. 10 mg of the sample was heat-treated at 300 ° C. for 5 minutes, and the generated gas was extracted under a He stream, and trapped on the column using liquefied nitrogen. The trapped collection was analyzed.
- a nonaqueous secondary battery was produced in the same manner as in Example 1-1, and was charged and discharged three times. Thereafter, the positive electrode is taken out from the battery, and the result of analyzing the positive electrode by X-ray photoelectron spectroscopy (XPS) is shown in FIG.
- XPS X-ray photoelectron spectroscopy
- the XPS evaluation conditions are as follows.
- the positive electrode was sampled in a glove box in an Ar atmosphere.
- a positive electrode was introduced into a measuring apparatus (PCA, ESCA5700ci) without being exposed to the atmosphere.
- X-rays were Al K ⁇ (1486.7 eV), acceleration voltage 14 kV, 350 W, using an electron neutralizing gun, and the take-off angle was set to 65 °.
- the measurement area was 800 ⁇ m ⁇ of the electrode.
- the positive electrode was subjected to solvent washing before measurement, and then attached to a carbon tape as a sample for measurement.
- Example 1-1 Using the obtained positive electrode, a nonaqueous secondary battery was produced in the same manner as in Example 1-1, and was charged and discharged three times. Thereafter, the positive electrode was taken out from the battery, and the positive electrode was analyzed by XPS. The results are shown in FIG.
- impedance measurement of the positive electrode was performed under the conditions of a temperature of ⁇ 10 ° C., a voltage amplitude of 10 mV, and a frequency region of 100,000 to 0.001 Hz. From the obtained impedance measurement results, the measurement frequency and the imaginary part of the complex impedance were plotted. The maximum value in the region of 10 to 0.005 Hz was used as an index of the initial positive electrode resistance (referred to as “initial resistance ( ⁇ / cell)”).
- the battery after storage was discharged to 2.5 V at 25 ° C. (“Remaining capacity: discharge capacity after storage”) and then constant-current charging to 4.2 V (“Recovery capacity: charge capacity after storage”)
- the obtained battery was immersed in an ethanol bath at room temperature and its volume was measured (referred to as “volume after storage (mL / cell)”).
- impedance measurement of the positive electrode was performed under the conditions of a temperature of ⁇ 10 ° C., a voltage amplitude of 10 mV, and a frequency region of 100,000 to 0.001 Hz. From the obtained impedance measurement results, the measurement frequency and the imaginary part of the complex impedance were plotted. The maximum value in the region of 10 to 0.005 Hz was used as an index of positive electrode resistance after storage (referred to as “resistance after storage ( ⁇ / cell)”).
- the volume change rate (%) is the volume change (mL / cell) after storage of Reference Example 1 for Examples 2-1 to 2-4 below, and Reference Example 2 for Comparative Examples 2-1 to 2-4 below.
- the volume change after storage of (mL / cell) was calculated as a standard (100%).
- Initial resistivity (%) initial resistance of Example or Comparative Example / initial resistance of Reference Example 1 or 2 ⁇ 100
- Resistivity after storage (%) Resistance after storage in Examples or Comparative Examples / Resistance after storage in Reference Example 1 or 2 ⁇ 100 * Regarding the resistivity, the positive electrode resistance of the example is divided by the positive electrode resistance of Reference Example 1, and the positive electrode resistance of the comparative example is divided by the positive electrode resistance of Reference Example 2.
- Example 2-1 In Reference Example 1, a non-aqueous secondary battery was produced and evaluated in the same manner as Reference Example 1 except that a non-aqueous electrolyte solution added with vinylene carbonate to a content of 0.5% by mass was used.
- Example 2-2 In Reference Example 1, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolytic solution in which hexamethylene diisocyanate was added to a content of 0.5 part by mass was used.
- Example 2-3 In Reference Example 1, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolytic solution in which lithium difluorophosphate was added to a content of 0.5% by mass was used. .
- Example 2-4 A nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolyte solution in which adiponitrile was added to a content of 0.5% by mass was used in Reference Example 1.
- Reference Example 1 As shown in Table 3, when Reference Example 1 (with Zr on the surface of the positive electrode active material) and Reference Example 2 (without Zr on the surface of the positive electrode active material) were compared, Reference Example 1 had a higher temperature and higher voltage environment than Reference Example 2. It can be seen that the resistance value after storage below is low. However, this still does not have sufficient battery performance.
- Example 2-1 to Example 2-4 in the positive electrode having a Zr-containing layer (Reference Example 1), a specific additive is further added to the non-aqueous electrolyte so that a high temperature and high voltage can be obtained.
- a non-aqueous secondary battery having low resistance and low volume change could be obtained.
- Comparative Examples 2-1 to 2-4 even with a positive electrode that does not have a Zr-containing layer, the volume after storage can be generally reduced by adding an additive to the electrolyte, It was found that the resistance after storage was high.
- Example 2-1 to Example 2-4 use a positive electrode having a Zr-containing layer and to which a predetermined specific additive is added.
- Comparative Examples 2-1 to 2 -4 is obtained by using a positive electrode having no Zr-containing layer and adding the same specific additive as in the example having the same number. When the same numbers are compared, the following can be understood.
- Example 2-1 and Comparative Example 2-1 When vinylene carbonate is added (Example 2-1 and Comparative Example 2-1), the volume change rate is increased in the comparative example, whereas the volume change rate is reduced in the example. . Although the initial resistivity and the resistivity after storage are decreased in the examples and comparative examples (except for the initial resistivity in comparative example 2-1), the degree of the decrease is larger in the examples.
- Example 2-5 In Reference Example 1, a non-aqueous electrolyte was used in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution containing 2-propynyl-2- (diethoxyphosphoryl) acetate added to a content of 0.5% by mass was used. A secondary battery was fabricated and evaluated.
- Example 2-6 A non-aqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with t-amylbenzene in a content of 0.5% by mass was used in Reference Example 1. .
- Example 2-7 In Reference Example 1, a non-aqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with monofluoroethylene carbonate to a content of 0.5% by mass was used. .
- Example 2-8 In Reference Example 1, a non-aqueous secondary battery was prepared in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with a difluoro (bisoxalate) lithium phosphate content of 0.5% by mass was used. Prepared and evaluated.
- Table 5 below shows the evaluation results of the batteries obtained in Reference Example 1 and Examples 2-5 to 2-8.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
The first problem to be addressed by the present invention is to provide, with regards to a non-aqueous secondary cell, a positive electrode active material for a non-aqueous secondary cell that yields a non-aqueous secondary cell in which any increase in positive electrode resistance after cycle charge/discharge is minimized and any decrease in cell capacity is reduced, and a non-aqueous secondary cell in which the positive electrode active material for a non-aqueous secondary cell is used. The present invention pertains to a positive electrode active material for a non-aqueous secondary cell satisfying the following conditions (1)-(3). (1) A positive electrode active material core is a lithium compound having a structure that contains Ni, Co, and M (where M is Mn and/or Al) and into/from which Li ions can be inserted and extracted. (2) A Zr-containing region containing all of Zr, Ni, Co, and M is present in a portion located at a depth of 0.1-100 nm from the active material surface. (3) The molar ratio of Zr in relation to (Zr+Ni+Co+M) in the Zr-containing region is 1.5-30%.
Description
本発明は、非水二次電池用正極活物質及び非水二次電池に関するものである。
The present invention relates to a positive electrode active material for a non-aqueous secondary battery and a non-aqueous secondary battery.
スマートフォン、タブレット端末及びノートブックコンピュータ等の携帯用情報電子機器;電気自動車;及び電動工具などにおいて技術が急速に進歩し、またそれらの供給も増大している。これに伴い、それらの主電源やバックアップ電源に用いられる電池に対する要求性能が高くなっている。この要求にこたえ得るものとして、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高い、リチウムイオン二次電池等の非水二次電池が注目されている。
Technology is rapidly advancing in portable information electronic devices such as smartphones, tablet terminals and notebook computers; electric vehicles; and power tools, and their supply is also increasing. Along with this, the required performance for the batteries used for these main power supplies and backup power supplies is increasing. Non-aqueous secondary batteries such as lithium ion secondary batteries, which have a higher energy density than nickel-cadmium batteries and nickel-hydrogen batteries, have attracted attention as a means that can meet this demand.
通常、リチウムイオン二次電池においては、正極には主にリチウムイオンを吸蔵・放出することができる遷移金属複合酸化物、負極には主にリチウムイオンを吸蔵・放出することができる材料が用いられている。前記遷移金属複合酸化物における遷移金属の代表例としてはコバルト、ニッケル、マンガン、鉄等が挙げられる。前記負極に使用される負極活物質としては、天然黒鉛、人造黒鉛、非晶質炭素等の炭素質材料;高容量化を達成し得るシリコンや、スズ等を用いた金属及び合金、が挙げられる。
Usually, in a lithium ion secondary battery, a transition metal composite oxide that can mainly store and release lithium ions is used for the positive electrode, and a material that can mainly store and release lithium ions is used for the negative electrode. ing. Typical examples of the transition metal in the transition metal composite oxide include cobalt, nickel, manganese, iron and the like. Examples of the negative electrode active material used for the negative electrode include carbonaceous materials such as natural graphite, artificial graphite, and amorphous carbon; metals that can achieve high capacity, metals and alloys using tin, and the like. .
また、リチウムイオン二次電池の電解液の代表例としては、LiPF6、LiBF4、LiN(CF3SO2)2、LiCF3(CF2)3SO3等の電解質を、エチレンカーボネート、プロピレンカーボネート等の高誘電率溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の低粘度溶媒との混合溶媒に溶解させた非水電解液が挙げられる。
Moreover, as a typical example of the electrolyte solution of a lithium ion secondary battery, electrolytes such as LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 (CF 2 ) 3 SO 3 , ethylene carbonate, propylene carbonate Non-aqueous electrolyte solution dissolved in a mixed solvent of a high dielectric constant solvent such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
このようなリチウムイオン二次電池は、活性の高い正極と負極を使用しているため、電極と電解液との副反応により、充放電容量が低下したり、ガス発生が増加したり、抵抗が増大することが知られている。これらは、電池寿命の短縮につながる。
Since such a lithium ion secondary battery uses a positive electrode and a negative electrode with high activity, a side reaction between the electrode and the electrolytic solution causes a decrease in charge / discharge capacity, an increase in gas generation, and a resistance. It is known to increase. These lead to shortened battery life.
特に高温又は高電圧で使用・保存する場合には、前記副反応による電解液の酸化分解の問題が大きくなる。そこで、電池特性を改良するために、非水二次電池の各構成要素について、種々の検討がなされている。
Especially when used / stored at high temperature or high voltage, the problem of oxidative decomposition of the electrolytic solution due to the side reaction becomes large. Therefore, various studies have been made on each component of the non-aqueous secondary battery in order to improve battery characteristics.
例えば、正極活物質の改良手法の一つとして、微量元素の添加がある。正極活物質に対して、AlやZrなど、主構成元素とは異なる元素を微量添加して活物質の結晶構造を安定化することによって、電池内における正極活物質の劣化を大幅に抑制することができる。
For example, one of the methods for improving the positive electrode active material is the addition of trace elements. Significantly suppress the deterioration of the positive electrode active material in the battery by stabilizing the crystal structure of the active material by adding a small amount of an element different from the main constituent element such as Al or Zr to the positive electrode active material Can do.
また、別の正極活物質の改良手法として、表面処理技術が挙げられる。表面処理技術においては、正極活物質の表面に、例えば金属酸化物等の金属元素を含む化合物の層を形成させる。この層が保護層として作用するために、表面処理を施された正極活物質を用いた電池においては、サイクル充放電後の電池容量の減少や正極抵抗の増加が低減される。
Also, surface treatment technology can be cited as another positive electrode active material improvement technique. In the surface treatment technique, a layer of a compound containing a metal element such as a metal oxide is formed on the surface of the positive electrode active material. Since this layer acts as a protective layer, in a battery using a positive electrode active material that has been subjected to surface treatment, a decrease in battery capacity and an increase in positive electrode resistance after cycle charge / discharge are reduced.
上記のような正極活物質の改良の例として、非特許文献1では、LiNi0.33Mn0.33Co0.33O2の組成を持つ正極活物質の表面に、ZrO2をはじめとする金属酸化物の保護層を形成することが開示されている。同文献では、前記保護層の形成により、電池特性を改良することができると報告されている。
As an example of the improvement of the positive electrode active material as described above, in Non-Patent Document 1, ZrO 2 is used on the surface of the positive electrode active material having a composition of LiNi 0.33 Mn 0.33 Co 0.33 O 2. It is disclosed to form a protective layer of metal oxide. In the same document, it is reported that the battery characteristics can be improved by forming the protective layer.
特許文献1には、正極活物質の表面処理層中に、AlO(OH)、Al(OH)3を含有させることによって、これを適用した電池に、優れた寿命特性と高い放電電位特性を付与することができると記載されている。
In Patent Document 1, by adding AlO (OH) and Al (OH) 3 in the surface treatment layer of the positive electrode active material, excellent life characteristics and high discharge potential characteristics are imparted to a battery to which this is applied. It is stated that you can.
特許文献2では、Li、Al、Co、Niからなる正極活物質の粒子表面を、Alを含む化合物で被覆することによって、Alの濃度が粒子表面から内部に向かって連続的に減少する領域を作り出す技術が提案されている。同文献には、これにより正極活物質の熱安定性が向上する旨が述べられている。
In Patent Document 2, by covering the particle surface of the positive electrode active material made of Li, Al, Co, and Ni with a compound containing Al, a region in which the concentration of Al continuously decreases from the particle surface toward the inside is disclosed. Producing technology has been proposed. This document states that this improves the thermal stability of the positive electrode active material.
特許文献3には、Ni、Co、Mnを含有する正極活物質に水処理を施した後に、ジルコニウム化合物の水溶液を接触させ、その後600~1000℃で加熱することによって、低い遊離アルカリ量と充放電サイクル耐久性を持つ正極活物質を得られることが報告されている。
Patent Document 3 discloses that a positive active material containing Ni, Co, and Mn is subjected to water treatment, brought into contact with an aqueous solution of a zirconium compound, and then heated at 600 to 1000 ° C. It has been reported that a positive electrode active material having discharge cycle durability can be obtained.
特許文献4には、正極の表面を金属酸化物で被覆することにより、サイクル特性が改善すると記載されている。
Patent Document 4 describes that the cycle characteristics are improved by coating the surface of the positive electrode with a metal oxide.
しかしながら、非特許文献1、特許文献1及び特許文献4においては、正極活物質表面に保護層を形成するのみで、正極活物質の結晶構造の安定化は得られない。そのため、電池特性の改良は限定的であり、特に高温や高圧環境で電池を使用・保存した場合には、正極表面での電解液の酸化分解を十分に抑制できず、正極表面で金属溶出が起こり得る。
However, in Non-patent Document 1, Patent Document 1 and Patent Document 4, the crystal structure of the positive electrode active material cannot be stabilized only by forming a protective layer on the surface of the positive electrode active material. Therefore, the improvement of the battery characteristics is limited, especially when the battery is used / stored in high temperature or high pressure environment, the oxidative decomposition of the electrolyte on the positive electrode surface cannot be sufficiently suppressed, and the metal elution occurs on the positive electrode surface. Can happen.
また、特許文献2においては、Alを含む正極活物質の表面に、さらにAlを被覆するため、正極活物質にAlを多く添加する必要がある。Alを添加すると正極活物質におけるLiの脱離、挿入特性が低下することが知られている。そのため、特許文献2の技術では、正極活物質の容量低下が大きくなってしまうという課題がある。
Further, in Patent Document 2, it is necessary to add a large amount of Al to the positive electrode active material in order to further coat Al on the surface of the positive electrode active material containing Al. It is known that when Al is added, Li desorption and insertion characteristics in the positive electrode active material deteriorate. Therefore, in the technique of Patent Document 2, there is a problem that the capacity reduction of the positive electrode active material becomes large.
特許文献3においては、高い温度で加熱処理を行うために、Zrが正極活物質内部にまで浸透し、表面近傍のZr濃度が希釈されてしまう。そのため、電池特性の改良は限定的である。
In Patent Document 3, since heat treatment is performed at a high temperature, Zr penetrates into the positive electrode active material, and the Zr concentration in the vicinity of the surface is diluted. Therefore, the improvement of battery characteristics is limited.
以上の従来技術の問題点に関し、本発明の第一の課題は、非水二次電池において、サイクル充放電後における正極抵抗の増加が抑制され、電池容量の低下も小さい非水二次電池を与える非水二次電池用正極活物質と、この非水二次電池用正極活物質を用いた非水二次電池を提供することである。
Regarding the above problems of the prior art, the first object of the present invention is to provide a non-aqueous secondary battery in which the increase in positive electrode resistance after cycle charge / discharge is suppressed and the decrease in battery capacity is small. It is to provide a positive electrode active material for a non-aqueous secondary battery, and a non-aqueous secondary battery using the positive electrode active material for a non-aqueous secondary battery.
また本発明の第二の課題は、高温且つ高電圧環境下での保存特性が優れた非水二次電池を提供することである。
The second object of the present invention is to provide a non-aqueous secondary battery having excellent storage characteristics in a high temperature and high voltage environment.
本発明者等は、上記課題について鋭意研究を重ねた結果、特定の組成のコアを有する正極活物質の表面近傍に、Zrを所定量含有する領域を形成することによって、上記第一の課題を解決できることを見出し、本発明に到達した。
As a result of intensive studies on the above problems, the present inventors have formed the above first problem by forming a region containing a predetermined amount of Zr in the vicinity of the surface of the positive electrode active material having a core having a specific composition. The inventors have found that this can be solved and have reached the present invention.
また、第二の課題に関しては、本発明者等は、非水二次電池において、正極における正極活物質が、その粒子表面にZr及び所定の官能基を有し、かつ、非水電解液が所定の化合物を含有する構成とすることで、前記第二の課題を解決できることを見出し、本発明に到達した。
Further, regarding the second problem, the present inventors, in a non-aqueous secondary battery, the positive electrode active material in the positive electrode has Zr and a predetermined functional group on the particle surface, and the non-aqueous electrolyte solution is The inventors have found that the second problem can be solved by adopting a configuration containing a predetermined compound, and have reached the present invention.
即ち、第一の課題を解決する本発明1の要旨は、以下の(1)~(3)の条件を満たす非水二次電池用正極活物質に存する。
(1)正極活物質コアがNi、Co及びM(MはMn及び/又はAl)を含む、Liイオンを脱離、挿入することが可能な構造を有するリチウム化合物である。
(2)活物質表面から0.1~100nmの深度の部分に、Zr、Ni、Co及びMを全て含有するZr含有領域が存在する。
(3)前記Zr含有領域における、(Zr+Ni+Co+M)に対するZrのモル比が1.5~30%である。 That is, the gist of the present invention 1 for solving the first problem resides in a positive electrode active material for a non-aqueous secondary battery that satisfies the following conditions (1) to (3).
(1) A lithium compound having a structure capable of desorbing and inserting Li ions, wherein the positive electrode active material core includes Ni, Co, and M (M is Mn and / or Al).
(2) A Zr-containing region containing all of Zr, Ni, Co, and M exists at a depth of 0.1 to 100 nm from the active material surface.
(3) The molar ratio of Zr to (Zr + Ni + Co + M) in the Zr-containing region is 1.5 to 30%.
(1)正極活物質コアがNi、Co及びM(MはMn及び/又はAl)を含む、Liイオンを脱離、挿入することが可能な構造を有するリチウム化合物である。
(2)活物質表面から0.1~100nmの深度の部分に、Zr、Ni、Co及びMを全て含有するZr含有領域が存在する。
(3)前記Zr含有領域における、(Zr+Ni+Co+M)に対するZrのモル比が1.5~30%である。 That is, the gist of the present invention 1 for solving the first problem resides in a positive electrode active material for a non-aqueous secondary battery that satisfies the following conditions (1) to (3).
(1) A lithium compound having a structure capable of desorbing and inserting Li ions, wherein the positive electrode active material core includes Ni, Co, and M (M is Mn and / or Al).
(2) A Zr-containing region containing all of Zr, Ni, Co, and M exists at a depth of 0.1 to 100 nm from the active material surface.
(3) The molar ratio of Zr to (Zr + Ni + Co + M) in the Zr-containing region is 1.5 to 30%.
また、本発明の他の要旨は、正極集電体と、該正極集電体上に形成された、上記の非水二次電池用正極活物質を含む正極活物質層とを含む、非水二次電池用正極に存する。
Another aspect of the present invention is a nonaqueous solution comprising a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material for a nonaqueous secondary battery. It exists in the positive electrode for secondary batteries.
また、本発明の他の要旨は、リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水電解液を含む非水二次電池であって、前記正極が本発明の非水二次電池用正極である、非水二次電池に存する。
Another aspect of the present invention is a nonaqueous secondary battery including a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte, wherein the positive electrode is used for the nonaqueous secondary battery of the present invention. It exists in the non-aqueous secondary battery which is a positive electrode.
さらに、第二の課題を解決する本発明2の要旨は、正極活物質を有する正極、負極活物質を有する負極及び非水電解液から少なくとも構成される非水二次電池であって、前記正極活物質の粒子表面に、Zr、並びに、ヒドロキシル基、アルデヒド基、アルコキシ基、及びカルボキシル基からなる群より選ばれる少なくとも1種の基が存在し、前記非水電解液が、炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物を含有する、非水二次電池に存する。
Further, the gist of the present invention 2 for solving the second problem is a non-aqueous secondary battery comprising at least a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte, wherein the positive electrode Zr and at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group are present on the particle surface of the active material, and the non-aqueous electrolyte is carbon-carbon unsaturated. At least one compound selected from the group consisting of a cyclic carbonate having a bond, an isocyanate compound or a condensate thereof, a fluorinated oxo acid salt, a nitrile compound, an aromatic compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, and an oxalate salt. In a non-aqueous secondary battery.
本発明の非水二次電池用正極活物質によれば、サイクル充放電を経ても、正極活物質の劣化が少なく、正極抵抗の増加が抑制され、電池容量の低下も小さい非水二次電池を提供することができる。
According to the positive electrode active material for a non-aqueous secondary battery of the present invention, a non-aqueous secondary battery in which deterioration of the positive electrode active material is small, increase in positive electrode resistance is suppressed, and decrease in battery capacity is small even after cycle charge / discharge. Can be provided.
また、本発明によれば、高温且つ高電圧環境下での保存特性が優れた非水二次電池を提供することができる。
Further, according to the present invention, it is possible to provide a non-aqueous secondary battery having excellent storage characteristics in a high temperature and high voltage environment.
以下に、本発明の実施の形態を詳細に説明するが、以下に記載する構成の説明は、本発明の実施の形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容には限定されない。
Hereinafter, embodiments of the present invention will be described in detail, but the description of the configuration described below is an example (representative example) of the embodiments of the present invention, and the present invention does not exceed the gist thereof. It is not limited to these contents.
以下では、まず第一の課題を解決する本発明1の非水二次電池用正極活物質について説明し、次に、第二の課題を解決する本発明2の非水二次電池について説明する。
Below, the positive electrode active material for nonaqueous secondary batteries of the present invention 1 that solves the first problem will be described first, and then the nonaqueous secondary battery of the present invention 2 that solves the second problem will be described. .
[本発明1の非水二次電池用正極活物質]
まず、本発明1の非水二次電池用正極活物質(以下、単に「本発明1の正極活物質」ともいう)について説明する。当該正極活物質は、上記の通り(1)~(3)の所定の条件を満たす。これを要約すると、前記正極活物質は、正極活物質コアとして特定組成を持ち、活物質の表面近傍に、Zrと前記正極活物質コアの特定組成を構成するすべての元素を含有する領域が存在し、かつ当該領域におけるZrの量が所定の範囲にある。以下、これら(1)~(3)の条件について順に説明する。 [Positive Electrode Active Material for Nonaqueous Secondary Battery of Invention 1]
First, the positive electrode active material for a non-aqueous secondary battery of the present invention 1 (hereinafter, also simply referred to as “the positive electrode active material of the present invention 1”) will be described. The positive electrode active material satisfies the predetermined conditions (1) to (3) as described above. In summary, the positive electrode active material has a specific composition as a positive electrode active material core, and there is a region containing Zr and all elements constituting the specific composition of the positive electrode active material core in the vicinity of the surface of the active material. In addition, the amount of Zr in the region is in a predetermined range. Hereinafter, the conditions (1) to (3) will be described in order.
まず、本発明1の非水二次電池用正極活物質(以下、単に「本発明1の正極活物質」ともいう)について説明する。当該正極活物質は、上記の通り(1)~(3)の所定の条件を満たす。これを要約すると、前記正極活物質は、正極活物質コアとして特定組成を持ち、活物質の表面近傍に、Zrと前記正極活物質コアの特定組成を構成するすべての元素を含有する領域が存在し、かつ当該領域におけるZrの量が所定の範囲にある。以下、これら(1)~(3)の条件について順に説明する。 [Positive Electrode Active Material for Nonaqueous Secondary Battery of Invention 1]
First, the positive electrode active material for a non-aqueous secondary battery of the present invention 1 (hereinafter, also simply referred to as “the positive electrode active material of the present invention 1”) will be described. The positive electrode active material satisfies the predetermined conditions (1) to (3) as described above. In summary, the positive electrode active material has a specific composition as a positive electrode active material core, and there is a region containing Zr and all elements constituting the specific composition of the positive electrode active material core in the vicinity of the surface of the active material. In addition, the amount of Zr in the region is in a predetermined range. Hereinafter, the conditions (1) to (3) will be described in order.
<「(1)正極活物質コアがNi、Co及びM(MはMn及び/又はAl)を含む、Liイオンを脱離、挿入することが可能な構造を有するリチウム化合物である。」について>
本発明1の非水二次電池用正極活物質を構成する正極活物質コアは、Ni、Co及びM(MはMn及び/又はAl)を含む、Liイオンを脱離、挿入することが可能な構造を有するリチウム化合物である。 <"(1) The positive electrode active material core is a lithium compound having a structure capable of desorbing and inserting Li ions, including Ni, Co and M (M is Mn and / or Al)">
The positive electrode active material core constituting the positive electrode active material for a non-aqueous secondary battery of the present invention 1 can desorb and insert Li ions containing Ni, Co and M (M is Mn and / or Al). It is a lithium compound having a simple structure.
本発明1の非水二次電池用正極活物質を構成する正極活物質コアは、Ni、Co及びM(MはMn及び/又はAl)を含む、Liイオンを脱離、挿入することが可能な構造を有するリチウム化合物である。 <"(1) The positive electrode active material core is a lithium compound having a structure capable of desorbing and inserting Li ions, including Ni, Co and M (M is Mn and / or Al)">
The positive electrode active material core constituting the positive electrode active material for a non-aqueous secondary battery of the present invention 1 can desorb and insert Li ions containing Ni, Co and M (M is Mn and / or Al). It is a lithium compound having a simple structure.
前記リチウム化合物の構造としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造が挙げられる。このような構造をとることができるリチウム化合物の具体例としては、LiNi1-x-yCoxMnyO2、LiNi1-x-yCoxAlyO2、LiNi1-x-y-zCoxMnyAlzO2などが挙げられる。x、y及びzについては下記にて説明する。
Examples of the structure of the lithium compound include a spinel structure capable of three-dimensional diffusion and a layered structure capable of two-dimensional diffusion of lithium ions. Specific examples of lithium compounds that can have such a structure include LiNi 1-xy Co x Mn y O 2 , LiNi 1-xy Co x Al y O 2 , LiNi 1- xy z Co x Mn y Al z O 2 and the like. x, y and z will be described below.
電池容量の大きさの観点からは、正極活物質コアの元素組成は、LixNi1-y-z-αCoyAlzM’αO2(M’はLi、Ni、Co、Al以外の1種以上の元素である)であることが好ましい。
From the viewpoint of the size of the battery capacity, the element composition of the positive electrode active material core is Li x Ni 1-yz-α Co y Al z M ′ α O 2 (M ′ is other than Li, Ni, Co, Al) It is preferable that it is one or more elements.
上記式において、xの値は通常0.9以上、好ましくは0.92以上、より好ましくは0.95以上、通常1.1以下、好ましくは1.09以下、より好ましくは1.08以下である。
yの値は0より大きく、好ましくは0.08以上、より好ましくは0.1以上、通常0.4以下、好ましくは0.3以下、より好ましくは0.25以下である。
zの値は0より大きく、好ましくは0.02以上、より好ましくは0.03以上、通常0.5以下、好ましくは0.25以下、より好ましくは0.1以下である。
αの値は通常0以上、好ましくは0.001以上、より好ましくは0.002以上、通常0.01以下、好ましくは0.007以下、より好ましくは0.005以下である。なお、M’が2種以上の元素である場合、αはM’に含まれる元素の組成の和を表す。 In the above formula, the value of x is usually 0.9 or more, preferably 0.92 or more, more preferably 0.95 or more, usually 1.1 or less, preferably 1.09 or less, more preferably 1.08 or less. is there.
The value of y is greater than 0, preferably 0.08 or more, more preferably 0.1 or more, usually 0.4 or less, preferably 0.3 or less, more preferably 0.25 or less.
The value of z is larger than 0, preferably 0.02 or more, more preferably 0.03 or more, usually 0.5 or less, preferably 0.25 or less, more preferably 0.1 or less.
The value of α is usually 0 or more, preferably 0.001 or more, more preferably 0.002 or more, usually 0.01 or less, preferably 0.007 or less, more preferably 0.005 or less. When M ′ is two or more elements, α represents the sum of the compositions of the elements included in M ′.
yの値は0より大きく、好ましくは0.08以上、より好ましくは0.1以上、通常0.4以下、好ましくは0.3以下、より好ましくは0.25以下である。
zの値は0より大きく、好ましくは0.02以上、より好ましくは0.03以上、通常0.5以下、好ましくは0.25以下、より好ましくは0.1以下である。
αの値は通常0以上、好ましくは0.001以上、より好ましくは0.002以上、通常0.01以下、好ましくは0.007以下、より好ましくは0.005以下である。なお、M’が2種以上の元素である場合、αはM’に含まれる元素の組成の和を表す。 In the above formula, the value of x is usually 0.9 or more, preferably 0.92 or more, more preferably 0.95 or more, usually 1.1 or less, preferably 1.09 or less, more preferably 1.08 or less. is there.
The value of y is greater than 0, preferably 0.08 or more, more preferably 0.1 or more, usually 0.4 or less, preferably 0.3 or less, more preferably 0.25 or less.
The value of z is larger than 0, preferably 0.02 or more, more preferably 0.03 or more, usually 0.5 or less, preferably 0.25 or less, more preferably 0.1 or less.
The value of α is usually 0 or more, preferably 0.001 or more, more preferably 0.002 or more, usually 0.01 or less, preferably 0.007 or less, more preferably 0.005 or less. When M ′ is two or more elements, α represents the sum of the compositions of the elements included in M ′.
x、y、z及びαがこの範囲であれば、本発明1の正極活物質を使用して得られる非水二次電池(以下、単に「本発明1の非水二次電池」ともいう)の電池容量を損なうことなく、熱安定性に優れた正極活物質が得られる。
If x, y, z and α are within this range, a non-aqueous secondary battery obtained by using the positive electrode active material of the present invention 1 (hereinafter, also simply referred to as “non-aqueous secondary battery of the present invention 1”). A positive electrode active material excellent in thermal stability can be obtained without impairing the battery capacity.
以上から、x、y、z及びαについては、0.9≦x≦1.1、0<y≦0.4、0<z≦0.5、0≦α≦0.01であることが好ましい。
From the above, x, y, z, and α are 0.9 ≦ x ≦ 1.1, 0 <y ≦ 0.4, 0 <z ≦ 0.5, and 0 ≦ α ≦ 0.01. preferable.
また、電池寿命の観点からは、正極活物質コアの元素組成は、LixNi1-y-z-αCoyMnzM’αO2(M’はLi、Ni、Co、Mn以外の1種以上の元素である)であることが好ましい。
From the viewpoint of battery life, the element composition of the positive electrode active material core is Li x Ni 1-yz-α Co y Mn z M ′ α O 2 (where M ′ is other than Li, Ni, Co, Mn). It is preferably one or more elements.
上記式において、xの値は通常0.9以上、好ましくは0.92以上、より好ましくは0.95以上、通常1.1以下、好ましくは1.09以下、より好ましくは1.08以下である。
yの値は0より大きく、好ましくは0.05以上、より好ましくは0.08以上、通常0.4以下、好ましくは0.37以下、より好ましくは0.35以下である。
zの値は0より大きく、好ましくは0.1以上、より好ましくは0.2以上、通常0.5以下、好ましくは0.45以下、より好ましくは0.4以下である。
αの値は通常0以上、好ましくは0.001以上、より好ましくは0.002以上、通常0.01以下、好ましくは0.007以下、より好ましくは0.005以下である。なお、M’が2種以上の元素である場合、αはM’に含まれる元素の組成の和を表す。 In the above formula, the value of x is usually 0.9 or more, preferably 0.92 or more, more preferably 0.95 or more, usually 1.1 or less, preferably 1.09 or less, more preferably 1.08 or less. is there.
The value of y is greater than 0, preferably 0.05 or more, more preferably 0.08 or more, usually 0.4 or less, preferably 0.37 or less, more preferably 0.35 or less.
The value of z is greater than 0, preferably 0.1 or more, more preferably 0.2 or more, usually 0.5 or less, preferably 0.45 or less, more preferably 0.4 or less.
The value of α is usually 0 or more, preferably 0.001 or more, more preferably 0.002 or more, usually 0.01 or less, preferably 0.007 or less, more preferably 0.005 or less. When M ′ is two or more elements, α represents the sum of the compositions of the elements included in M ′.
yの値は0より大きく、好ましくは0.05以上、より好ましくは0.08以上、通常0.4以下、好ましくは0.37以下、より好ましくは0.35以下である。
zの値は0より大きく、好ましくは0.1以上、より好ましくは0.2以上、通常0.5以下、好ましくは0.45以下、より好ましくは0.4以下である。
αの値は通常0以上、好ましくは0.001以上、より好ましくは0.002以上、通常0.01以下、好ましくは0.007以下、より好ましくは0.005以下である。なお、M’が2種以上の元素である場合、αはM’に含まれる元素の組成の和を表す。 In the above formula, the value of x is usually 0.9 or more, preferably 0.92 or more, more preferably 0.95 or more, usually 1.1 or less, preferably 1.09 or less, more preferably 1.08 or less. is there.
The value of y is greater than 0, preferably 0.05 or more, more preferably 0.08 or more, usually 0.4 or less, preferably 0.37 or less, more preferably 0.35 or less.
The value of z is greater than 0, preferably 0.1 or more, more preferably 0.2 or more, usually 0.5 or less, preferably 0.45 or less, more preferably 0.4 or less.
The value of α is usually 0 or more, preferably 0.001 or more, more preferably 0.002 or more, usually 0.01 or less, preferably 0.007 or less, more preferably 0.005 or less. When M ′ is two or more elements, α represents the sum of the compositions of the elements included in M ′.
この範囲であれば、本発明1の非水二次電池の電池寿命を損なうことなく、低い原料コストで正極活物質を製造することができる。
Within this range, the positive electrode active material can be produced at a low raw material cost without impairing the battery life of the nonaqueous secondary battery of the first invention.
以上から、x、y、z及びαについては、0.9≦x≦1.1、0<y≦0.4、0<z≦0.5、0≦α≦0.01であることが好ましい。
From the above, x, y, z, and α are 0.9 ≦ x ≦ 1.1, 0 <y ≦ 0.4, 0 <z ≦ 0.5, and 0 ≦ α ≦ 0.01. preferable.
なお、前記正極活物質コアの組成式においては、酸素量の原子比は便宜上2と記載しているが、多少の不定比性があってもよい。また、前記組成式中のxは、リチウム化合物の製造段階での仕込み組成である。通常、市場に出回る電池は、電池を組み立てた後に、エージングを行っている。そのため、充放電に伴い、正極活物質中のLi量は減損している場合がある。その場合、組成分析上、3Vまで放電した場合のxが0.45以上、2以下の範囲の数値として測定されることがある。
In the composition formula of the positive electrode active material core, the atomic ratio of the oxygen amount is described as 2 for convenience, but there may be some non-stoichiometry. Moreover, x in the said composition formula is a preparation composition in the manufacture stage of a lithium compound. Usually, batteries on the market are aged after the batteries are assembled. For this reason, the amount of Li in the positive electrode active material may be reduced with charge and discharge. In that case, x may be measured as a numerical value in the range of 0.45 or more and 2 or less when discharged to 3 V in composition analysis.
(元素M’)
上記の通り正極活物質コアには、Ni、Co及びM(MはMn及び/又はAl)以外の元素M’が1種以上導入されてもよい。元素M’としては、B,Na,Mg,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,SiおよびSnが挙げられる。 (Element M ')
As described above, one or more elements M ′ other than Ni, Co, and M (M is Mn and / or Al) may be introduced into the positive electrode active material core. As the element M ′, B, Na, Mg, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sb, Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, N, F, S, Cl, Br, I, As, Ge, P, Pb, Sb, Si and Sn can be mentioned.
上記の通り正極活物質コアには、Ni、Co及びM(MはMn及び/又はAl)以外の元素M’が1種以上導入されてもよい。元素M’としては、B,Na,Mg,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,SiおよびSnが挙げられる。 (Element M ')
As described above, one or more elements M ′ other than Ni, Co, and M (M is Mn and / or Al) may be introduced into the positive electrode active material core. As the element M ′, B, Na, Mg, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sb, Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, N, F, S, Cl, Br, I, As, Ge, P, Pb, Sb, Si and Sn can be mentioned.
これらの元素M’は、正極活物質コアの結晶構造内に取り込まれていてもよく、あるいは、正極活物質コアの結晶構造内に取り込まれず、活物質の粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
These elements M ′ may be incorporated into the crystal structure of the positive electrode active material core, or may not be incorporated into the crystal structure of the positive electrode active material core, and may be incorporated into the active material particle surface, crystal grain boundaries, or the like. It may be unevenly distributed as a compound.
<「(2)活物質表面から0.1~100nmの深度の部分に、Zr、Ni、Co及びMを全て含有するZr含有領域が存在する。」について>
本発明1の正極活物質は、正極活物質の表面から0.1~100nmの深度の部分に、Zr、Ni、Co及びM(MはMn及び/又はAl)を全て含有する領域(Zr含有領域)を持つ。 <Regarding “(2) A Zr-containing region containing all of Zr, Ni, Co, and M is present at a depth of 0.1 to 100 nm from the active material surface”>
The positive electrode active material of the present invention 1 is a region containing all of Zr, Ni, Co, and M (M is Mn and / or Al) at a depth of 0.1 to 100 nm from the surface of the positive electrode active material (containing Zr) Area).
本発明1の正極活物質は、正極活物質の表面から0.1~100nmの深度の部分に、Zr、Ni、Co及びM(MはMn及び/又はAl)を全て含有する領域(Zr含有領域)を持つ。 <Regarding “(2) A Zr-containing region containing all of Zr, Ni, Co, and M is present at a depth of 0.1 to 100 nm from the active material surface”>
The positive electrode active material of the present invention 1 is a region containing all of Zr, Ni, Co, and M (M is Mn and / or Al) at a depth of 0.1 to 100 nm from the surface of the positive electrode active material (containing Zr) Area).
本発明において、前記深度の部分においてZr含有領域を持つとは、正極活物質の表面から0.1~100nmの深度の部分に、Zr、Ni、Co及びMが同時に検出できる部分が存在することであると定義する。例えば、後述する実施例1-1の元素分析結果を示す図1では、正極活物質表面から5nmの深度の部分において、Zr、Ni、Co及びMnのそれぞれのピークが全て確認できるため、図1の正極活物質は、正極活物質表面から5nmの深度の部分にZr含有領域を持つといえる。
In the present invention, the phrase “having a Zr-containing region in the depth portion” means that there is a portion where Zr, Ni, Co, and M can be detected simultaneously at a depth of 0.1 to 100 nm from the surface of the positive electrode active material. Is defined as For example, in FIG. 1 showing the result of elemental analysis of Example 1-1 to be described later, since all the peaks of Zr, Ni, Co, and Mn can be confirmed at a depth of 5 nm from the surface of the positive electrode active material, FIG. It can be said that this positive electrode active material has a Zr-containing region at a depth of 5 nm from the surface of the positive electrode active material.
なお、Zr含有領域について、「ピークが確認できる」とは、それぞれの元素量の、全体元素量に対するモル比が1.5%以上であるピークが存在する、という意味である。例えばモル比が1.0%であるような極めて小さいピークは、Zr含有領域に該当するかを判断する際には、ピークとはみなさない。
In the Zr-containing region, “a peak can be confirmed” means that there is a peak having a molar ratio of each element amount to the total element amount of 1.5% or more. For example, an extremely small peak having a molar ratio of 1.0% is not regarded as a peak when determining whether it corresponds to a Zr-containing region.
また、正極活物質の表面から0.1~100nmの深度に包含される領域で任意の深度を複数選択し、その各任意の深度においてそれぞれ検出されるZr、Ni、Co及びMを組み合わせた状態でのみ、Zr、Ni、Co及びMがすべて存在するといえる場合、それは本発明におけるZr含有領域が存在するとは言わない。例えば、正極活物質表面から5nmの深度でのみZrのピークが確認され、正極活物質表面から10nmの深度でのみNi,Co及びMnのピークがそれぞれ確認される場合は、Zr含有領域は存在していないといえる。
In addition, a state in which a plurality of arbitrary depths are selected in a region included in a depth of 0.1 to 100 nm from the surface of the positive electrode active material, and Zr, Ni, Co, and M detected at each arbitrary depth are combined. If only Zr, Ni, Co and M can be said to exist, it does not mean that the Zr-containing region in the present invention exists. For example, when a Zr peak is confirmed only at a depth of 5 nm from the surface of the positive electrode active material and Ni, Co, and Mn peaks are confirmed only at a depth of 10 nm from the surface of the positive electrode active material, a Zr-containing region exists. It can be said that it is not.
本発明1においては、Zr含有領域を持つ正極活物質を利用することによって、本発明1の非水二次電池内における、サイクル充放電後の正極抵抗の増加を極めて効率よく抑制することが可能である。この理由としては、以下の機構が想定される。
In the present invention 1, by using a positive electrode active material having a Zr-containing region, it is possible to extremely effectively suppress an increase in positive electrode resistance after cycle charge / discharge in the nonaqueous secondary battery of the present invention 1. It is. The following mechanism is assumed as this reason.
電池内における正極活物質の劣化形態の一つとして、正極活物質を構成するNiやCoが、正極活物質の結晶構造内において拡散していくことを要因とする結晶構造の変化が知られており、正極活物質の表面近傍においては、結晶構造の変化が特に生じやすいことが分かっている。この結晶構造変化は、電池内における正極抵抗の増加を誘起するため、電池特性改良における大きな課題となっている。本発明1では、正極活物質の表面近傍にZr、Ni、Co及びMを全て含有するZr含有領域を形成することによって、結晶構造内におけるNiやCoの拡散が阻害されるため、正極活物質の結晶構造変化が抑制でき、その結果として、サイクル充放電後の正極抵抗の増加が抑制されると考えられる。
One of the deterioration forms of the positive electrode active material in the battery is known to be a change in crystal structure caused by the diffusion of Ni or Co constituting the positive electrode active material in the crystal structure of the positive electrode active material. It has been found that the crystal structure changes particularly easily in the vicinity of the surface of the positive electrode active material. Since this crystal structure change induces an increase in positive electrode resistance in the battery, it is a big problem in improving battery characteristics. In the present invention 1, by forming a Zr-containing region containing all of Zr, Ni, Co and M in the vicinity of the surface of the positive electrode active material, the diffusion of Ni and Co in the crystal structure is inhibited. It is considered that the change in the crystal structure can be suppressed, and as a result, the increase in positive electrode resistance after cycle charge / discharge is suppressed.
また、正極活物質の表面近傍にZr含有領域を形成すると、Zrを正極活物質全体に添加する場合に比べて、当該正極活物質を用いた非水二次電池の容量に与える悪影響が小さい。また、Alなどの他の元素を用いて同様の領域を形成した場合と比べても電池容量に与える悪影響は小さく抑えられる。このような効果が得られる詳細な理由は不明であるが、当該理由として、以下の機構が推定される。
Further, when the Zr-containing region is formed in the vicinity of the surface of the positive electrode active material, the adverse effect on the capacity of the non-aqueous secondary battery using the positive electrode active material is small as compared with the case where Zr is added to the entire positive electrode active material. In addition, the adverse effect on the battery capacity can be kept small compared to the case where a similar region is formed using other elements such as Al. Although the detailed reason for obtaining such an effect is unknown, the following mechanism is presumed as the reason.
すなわち、Zrのイオンは、Liのイオンとイオン半径が非常に近いために、正極活物質内においてLiイオンが占める結晶サイトに大きなエネルギーを要することなく入り込むことができ、安定的にZr、Ni、Co及びMが全て含有される領域を形成する。結果として、この領域における結晶構造の歪みが小さくなり、Liイオンの脱離、挿入に関わる特性が大きく損なわれないために、サイクル充放電による電池容量の劣化が小さく抑えられると考えられる。
In other words, since the ion radius of Zr is very close to the ion of Li, the Zr ion can enter the crystal site occupied by the Li ion in the positive electrode active material without requiring a large amount of energy, and is stably Zr, Ni, A region containing all of Co and M is formed. As a result, the distortion of the crystal structure in this region is reduced, and the characteristics relating to the desorption and insertion of Li ions are not greatly impaired, so that it is considered that the battery capacity deterioration due to cycle charge / discharge can be suppressed to a small level.
Zr含有領域は、正極活物質の表面から0.1~100nmの深度の部分において、一つのみでもよいし、複数の領域が存在してもよい。なお、複数の領域が存在するとは、例えば、5~10nmの深度の部分において、Zr、Ni、Co及びMが全て含有され、10~15nmの深度の部分では、これらの少なくとも一つが含有されず、そして15~20nmの深度の部分では、これらが全て含有される、という場合である。
The Zr-containing region may be only one or a plurality of regions may exist at a depth of 0.1 to 100 nm from the surface of the positive electrode active material. The presence of a plurality of regions means that, for example, all of Zr, Ni, Co, and M are contained in a portion having a depth of 5 to 10 nm, and at least one of these is not contained in a portion having a depth of 10 to 15 nm. , And at a depth of 15-20 nm, these are all contained.
Zr含有領域が形成される正極活物質表面からの深度は、前記の通り0.1~100nmの部分であるが、好ましくは0.2~70nmの部分であり、さらに好ましくは、0.3~60nmの部分である。Zr含有領域が形成される深度が浅いと、正極活物質の結晶構造変化を抑制する効果が小さくなり、深度が深いと、電池容量の大きな劣化を招く。
The depth from the surface of the positive electrode active material where the Zr-containing region is formed is a portion of 0.1 to 100 nm as described above, preferably a portion of 0.2 to 70 nm, and more preferably 0.3 to It is a part of 60 nm. When the depth at which the Zr-containing region is formed is shallow, the effect of suppressing the change in the crystal structure of the positive electrode active material is reduced, and when the depth is deep, the battery capacity is greatly deteriorated.
なお、Zr含有領域が存在する深度は、例えば、以下の方法で測定することができる。すなわち、正極活物質を含むスラリーを集電体に塗布して製造した正極から、集束イオンビーム(FIB)を用いて切片を作製する。この切片を透過型電子顕微鏡(TEM)によって観察する。観察された正極活物質の表面部分から内部方向に向かって、一定間隔毎にエネルギー分散X線分光法(EDS)によって元素組成を分析する。このとき、正極活物質の表面近傍において、正極活物質コアの構成元素の少なくとも1種が初めて検出される点を正極活物質の表面とし、深度はその点からの距離として測定できる。Zr含有領域とは、前述の通り、Zr、Ni,Co及びMそれぞれの元素量の、全体元素量に対するモル比が全て1.5%以上である領域である。
Note that the depth at which the Zr-containing region exists can be measured, for example, by the following method. That is, a slice is prepared using a focused ion beam (FIB) from a positive electrode manufactured by applying a slurry containing a positive electrode active material to a current collector. The section is observed with a transmission electron microscope (TEM). The elemental composition is analyzed by energy dispersive X-ray spectroscopy (EDS) at regular intervals from the observed surface portion of the positive electrode active material toward the inside. At this time, in the vicinity of the surface of the positive electrode active material, the point at which at least one of the constituent elements of the positive electrode active material core is detected for the first time is taken as the surface of the positive electrode active material, and the depth can be measured as the distance from that point. As described above, the Zr-containing region is a region in which the molar ratios of the element amounts of Zr, Ni, Co, and M to the total element amount are all 1.5% or more.
<「(3)Zr含有領域における、(Zr+Ni+Co+M)に対するZrのモル比が1.5~30%である。」について>
本発明1の正極活物質において、Zr含有領域における、(Zr+Ni+Co+M)の4つ(MがMn及びAlである場合には5つ)の元素の合計に対するZrのモル比は、1.5~30%である。当該モル比は好ましくは1.6~30%、より好ましくは1.8~20%、さらに好ましくは2~15%である。Zrのモル比が小さいと、(1.5%未満ではZr含有領域と呼ばないが)正極活物質の結晶構造変化を抑制する効果が小さくなる。また、Zrのモル比が大きいと、サイクル充放電により、電池容量の大きな劣化を招き、さらにZr含有領域が大きな正極抵抗を生じてしまう。 <Regarding “(3) The molar ratio of Zr to (Zr + Ni + Co + M) in the Zr-containing region is 1.5 to 30%”>
In the positive electrode active material of the present invention 1, in the Zr-containing region, the molar ratio of Zr to the total of four (Zr + Ni + Co + M) elements (5 when M is Mn and Al) is 1.5-30. %. The molar ratio is preferably 1.6 to 30%, more preferably 1.8 to 20%, and further preferably 2 to 15%. When the molar ratio of Zr is small, the effect of suppressing the crystal structure change of the positive electrode active material becomes small (although it is not called a Zr-containing region if it is less than 1.5%). On the other hand, when the molar ratio of Zr is large, the battery capacity is greatly deteriorated due to cycle charge / discharge, and the Zr-containing region causes a large positive electrode resistance.
本発明1の正極活物質において、Zr含有領域における、(Zr+Ni+Co+M)の4つ(MがMn及びAlである場合には5つ)の元素の合計に対するZrのモル比は、1.5~30%である。当該モル比は好ましくは1.6~30%、より好ましくは1.8~20%、さらに好ましくは2~15%である。Zrのモル比が小さいと、(1.5%未満ではZr含有領域と呼ばないが)正極活物質の結晶構造変化を抑制する効果が小さくなる。また、Zrのモル比が大きいと、サイクル充放電により、電池容量の大きな劣化を招き、さらにZr含有領域が大きな正極抵抗を生じてしまう。 <Regarding “(3) The molar ratio of Zr to (Zr + Ni + Co + M) in the Zr-containing region is 1.5 to 30%”>
In the positive electrode active material of the present invention 1, in the Zr-containing region, the molar ratio of Zr to the total of four (Zr + Ni + Co + M) elements (5 when M is Mn and Al) is 1.5-30. %. The molar ratio is preferably 1.6 to 30%, more preferably 1.8 to 20%, and further preferably 2 to 15%. When the molar ratio of Zr is small, the effect of suppressing the crystal structure change of the positive electrode active material becomes small (although it is not called a Zr-containing region if it is less than 1.5%). On the other hand, when the molar ratio of Zr is large, the battery capacity is greatly deteriorated due to cycle charge / discharge, and the Zr-containing region causes a large positive electrode resistance.
また、表面より最も離れた、Zr含有領域が存在する部分より深い部分においては、Zrの(Zr+Ni+Co+M)に対するモル比は小さい方がよい。前記モル比は、通常1.2%以下、好ましくは1%以下、特に好ましくは0.8%以下である。前記の深い部分におけるZrのモル比がこの範囲より大きいと、電池容量の劣化を招く恐れがある。
Also, in the portion farthest from the surface and deeper than the portion where the Zr-containing region exists, the molar ratio of Zr to (Zr + Ni + Co + M) should be small. The molar ratio is usually 1.2% or less, preferably 1% or less, particularly preferably 0.8% or less. If the molar ratio of Zr in the deep part is larger than this range, the battery capacity may be deteriorated.
また、Zr含有領域におけるZrのモル比は、上記方法によって測定されたZr含有領域(一定の深度範囲にわたって存在する)の、測定点ごとにおけるZrの(Zr+Ni+Co+M)に対するモル比の平均値として求めることができる。
Further, the molar ratio of Zr in the Zr-containing region is obtained as an average value of the molar ratio of Zr to (Zr + Ni + Co + M) at each measurement point in the Zr-containing region (existing over a certain depth range) measured by the above method. Can do.
本発明1の正極活物質は、以上説明した(1)~(3)の条件を満たす。当該正極活物質は、以下に説明する特性の少なくとも一つを満たすことが好ましい。
The positive electrode active material of the present invention 1 satisfies the conditions (1) to (3) described above. The positive electrode active material preferably satisfies at least one of the characteristics described below.
(体積基準平均粒径)
本発明1の正極活物質の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましい。 (Volume-based average particle size)
The volume-based average particle diameter of the positive electrode active material of the present invention 1 is a volume-based average particle diameter (median diameter) obtained by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, and more preferably 5 μm or more. It is preferably 100 μm or less, preferably 50 μm or less, more preferably 40 μm or less, and even more preferably 30 μm or less.
本発明1の正極活物質の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましい。 (Volume-based average particle size)
The volume-based average particle diameter of the positive electrode active material of the present invention 1 is a volume-based average particle diameter (median diameter) obtained by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, and more preferably 5 μm or more. It is preferably 100 μm or less, preferably 50 μm or less, more preferably 40 μm or less, and even more preferably 30 μm or less.
体積基準平均粒径が上記範囲を下回ると、正極を製造する際に、正極集電体に塗布するためのスラリーの液性制御が困難となる場合がある。また、上記範囲を上回ると、電池内において正極抵抗が増加するおそれがある。
If the volume-based average particle size is below the above range, it may be difficult to control the liquidity of the slurry applied to the positive electrode current collector when the positive electrode is manufactured. Moreover, when it exceeds the said range, there exists a possibility that positive electrode resistance may increase in a battery.
体積基準平均粒径の測定は、以下のようにして行う。界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に正極活物質を分散させる。得られた分散液を、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA-700)を用いて測定する。該測定で求められるメジアン径を、本発明1の正極活物質の体積基準平均粒径と定義する。
Measure the volume-based average particle size as follows. The positive electrode active material is dispersed in a 0.2% by mass aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant. The obtained dispersion is measured using a laser diffraction / scattering particle size distribution analyzer (for example, LA-700 manufactured by Horiba, Ltd.). The median diameter determined by the measurement is defined as the volume-based average particle diameter of the positive electrode active material of the first invention.
(BET比表面積)
本発明1の正極活物質のBET比表面積は、BET法を用いて測定した比表面積で、通常0.01m2・g-1以上であり、0.05m2・g-1以上が好ましく、0.1m2・g-1以上がさらに好ましく、また、通常10m2・g-1以下であり、5m2・g-1以下が好ましく、3m2・g-1以下がさらに好ましい。 (BET specific surface area)
BET specific surface area of the positive electrode active material of the present invention 1 is a measured specific surface area using the BET method is usually 0.01 m 2 · g -1 or more, 0.05 m 2 · g -1 or more, 0 .1m 2 · g -1 or more, and also generally not more than 10 m 2 · g -1, preferably from 5 m 2 · g -1 or less, more preferably 3m 2 · g -1 or less.
本発明1の正極活物質のBET比表面積は、BET法を用いて測定した比表面積で、通常0.01m2・g-1以上であり、0.05m2・g-1以上が好ましく、0.1m2・g-1以上がさらに好ましく、また、通常10m2・g-1以下であり、5m2・g-1以下が好ましく、3m2・g-1以下がさらに好ましい。 (BET specific surface area)
BET specific surface area of the positive electrode active material of the present invention 1 is a measured specific surface area using the BET method is usually 0.01 m 2 · g -1 or more, 0.05 m 2 · g -1 or more, 0 .1m 2 · g -1 or more, and also generally not more than 10 m 2 · g -1, preferably from 5 m 2 · g -1 or less, more preferably 3m 2 · g -1 or less.
BET比表面積がこの範囲を下回ると、正極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなる場合があり、電池安定性が低下する可能性がある。一方、この範囲を上回ると、正極材料として用いた時に非水電解液との反応性が増加することがある。この場合には、ガス発生が増加し、好ましい非水二次電池が得られない場合がある。
If the BET specific surface area is less than this range, the lithium acceptability may deteriorate during charging when used as a positive electrode material, and battery stability may be reduced. On the other hand, if it exceeds this range, the reactivity with the non-aqueous electrolyte may increase when used as the positive electrode material. In this case, gas generation increases and a preferable nonaqueous secondary battery may not be obtained.
BET法による比表面積の測定は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて行う。具体的には、試料に対して窒素流通下350℃で15分間予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって比表面積の測定を行なう。
The measurement of the specific surface area by the BET method is performed using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken). Specifically, after the sample was preliminarily dried at 350 ° C. for 15 minutes under a nitrogen flow, a nitrogen-helium mixed gas that was accurately adjusted so that the value of the relative pressure of nitrogen with respect to atmospheric pressure was 0.3 was obtained. The specific surface area is measured by the nitrogen adsorption BET one-point method using the gas flow method.
(タップ密度)
本発明1の正極活物質のタップ密度は、通常0.1g・cm-3以上であり、0.5g・cm-3以上が好ましく、0.7g・cm-3以上がさらに好ましく、1g・cm-3以上が特に好ましく、また、5g・cm-3以下が好ましく、4g・cm-3以下がさらに好ましく、3.5g・cm-3以下が特に好ましい。 (Tap density)
The tap density of the positive electrode active material of the present invention 1 is usually 0.1 g · cm −3 or more, preferably 0.5 g · cm −3 or more, more preferably 0.7 g · cm −3 or more, and 1 g · cm. particularly preferably 3 or more, and is preferably 5 g · cm -3 or less, 4g · cm -3 and more preferably less, 3.5 g · cm -3 or less are particularly preferred.
本発明1の正極活物質のタップ密度は、通常0.1g・cm-3以上であり、0.5g・cm-3以上が好ましく、0.7g・cm-3以上がさらに好ましく、1g・cm-3以上が特に好ましく、また、5g・cm-3以下が好ましく、4g・cm-3以下がさらに好ましく、3.5g・cm-3以下が特に好ましい。 (Tap density)
The tap density of the positive electrode active material of the present invention 1 is usually 0.1 g · cm −3 or more, preferably 0.5 g · cm −3 or more, more preferably 0.7 g · cm −3 or more, and 1 g · cm. particularly preferably 3 or more, and is preferably 5 g · cm -3 or less, 4g · cm -3 and more preferably less, 3.5 g · cm -3 or less are particularly preferred.
タップ密度が上記範囲を下回ると、正極として用いた場合に充填密度が上がり難く、高容量の非水二次電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり、粒子間の導電性が確保されず、好ましい電池特性が得られない場合がある。
If the tap density is below the above range, the packing density is difficult to increase when used as a positive electrode, and a high-capacity non-aqueous secondary battery may not be obtained. Moreover, when it exceeds the said range, the space | gap between the particles in an electrode will decrease, the electroconductivity between particles will not be ensured, and a favorable battery characteristic may not be acquired.
タップ密度の測定は、以下のようにして行う。試料を目開き300μmの篩を通過させて、20cm3のタッピングセルに試料を落下させてセルの上端面まで試料を満たす。その後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の試料の体積と試料の質量からタップ密度を算出する。
The tap density is measured as follows. The sample is passed through a sieve having an opening of 300 μm, and the sample is dropped into a 20 cm 3 tapping cell to fill the sample up to the upper end surface of the cell. Thereafter, tapping with a stroke length of 10 mm is performed 1000 times using a powder density measuring instrument (for example, tap denser manufactured by Seishin Enterprise Co., Ltd.), and the tap density is calculated from the sample volume and the sample mass at that time.
〔本発明1の正極活物質の製造方法〕
以下に本発明1の非水二次電池用正極活物質の製造方法の一例を説明するが、本発明1の要旨を逸脱しない正極活物質が得られる限り、どのような製造方法によって前記正極活物質を製造してもよい。 [Method for Producing Cathode Active Material of Invention 1]
Hereinafter, an example of a method for producing a positive electrode active material for a non-aqueous secondary battery of the present invention 1 will be described. As long as a positive electrode active material that does not depart from the gist of the present invention 1 can be obtained, any production method can be used to produce the positive electrode active material. A substance may be produced.
以下に本発明1の非水二次電池用正極活物質の製造方法の一例を説明するが、本発明1の要旨を逸脱しない正極活物質が得られる限り、どのような製造方法によって前記正極活物質を製造してもよい。 [Method for Producing Cathode Active Material of Invention 1]
Hereinafter, an example of a method for producing a positive electrode active material for a non-aqueous secondary battery of the present invention 1 will be described. As long as a positive electrode active material that does not depart from the gist of the present invention 1 can be obtained, any production method can be used to produce the positive electrode active material. A substance may be produced.
本発明1の正極活物質は、二つの処理段階を経て製造することができる。すなわち、
正極活物質コアとZr含有表面処理材料を、分散媒中において適切な条件の下で混合し、Zr含有表面処理材料と正極活物質コアの表面との間に結合を形成する段階、及び、
特定の温度条件において熱処理することによって、正極活物質コア表面に結合したZrを正極活物質コアの表面近傍に浸透させる段階、
である。以下、各段階について説明する。 The positive electrode active material of the present invention 1 can be produced through two processing steps. That is,
Mixing the positive electrode active material core and the Zr-containing surface treatment material in a dispersion medium under appropriate conditions to form a bond between the Zr-containing surface treatment material and the surface of the positive electrode active material core; and
A step of allowing Zr bonded to the surface of the positive electrode active material core to penetrate into the vicinity of the surface of the positive electrode active material core by performing heat treatment under a specific temperature condition;
It is. Hereinafter, each step will be described.
正極活物質コアとZr含有表面処理材料を、分散媒中において適切な条件の下で混合し、Zr含有表面処理材料と正極活物質コアの表面との間に結合を形成する段階、及び、
特定の温度条件において熱処理することによって、正極活物質コア表面に結合したZrを正極活物質コアの表面近傍に浸透させる段階、
である。以下、各段階について説明する。 The positive electrode active material of the present invention 1 can be produced through two processing steps. That is,
Mixing the positive electrode active material core and the Zr-containing surface treatment material in a dispersion medium under appropriate conditions to form a bond between the Zr-containing surface treatment material and the surface of the positive electrode active material core; and
A step of allowing Zr bonded to the surface of the positive electrode active material core to penetrate into the vicinity of the surface of the positive electrode active material core by performing heat treatment under a specific temperature condition;
It is. Hereinafter, each step will be described.
<正極活物質コアとZr含有表面処理材料を、分散媒中において適切な条件の下で混合し、Zr含有表面処理材料と正極活物質コアの表面との間に結合を形成する段階>
正極活物質コアとしては、上述した正極活物質コアとなるリチウム化合物であれば特に制限はない。そのようなリチウム化合物は、例えば特開2010-92848号公報、特開2001-196063号公報などに記載の製造方法により得ることができる。 <Positive electrode active material core and Zr-containing surface treatment material are mixed in a dispersion medium under appropriate conditions to form a bond between the Zr-containing surface treatment material and the surface of the positive electrode active material core>
The positive electrode active material core is not particularly limited as long as it is a lithium compound that becomes the positive electrode active material core described above. Such a lithium compound can be obtained by a production method described in, for example, Japanese Patent Application Laid-Open Nos. 2010-92848 and 2001-196063.
正極活物質コアとしては、上述した正極活物質コアとなるリチウム化合物であれば特に制限はない。そのようなリチウム化合物は、例えば特開2010-92848号公報、特開2001-196063号公報などに記載の製造方法により得ることができる。 <Positive electrode active material core and Zr-containing surface treatment material are mixed in a dispersion medium under appropriate conditions to form a bond between the Zr-containing surface treatment material and the surface of the positive electrode active material core>
The positive electrode active material core is not particularly limited as long as it is a lithium compound that becomes the positive electrode active material core described above. Such a lithium compound can be obtained by a production method described in, for example, Japanese Patent Application Laid-Open Nos. 2010-92848 and 2001-196063.
Zr表面処理材料としては、Zrを含有した化合物ならば特に制限はない。前記材料は、正極活物質コアの表面との間に効率よく結合を形成するために、触媒や反応開始剤の添加、光や熱による刺激など、特定の条件下において活性化する化合物であることが好ましい。そのような化合物として具体的には、Zr(OC2H5)4、Zr(OC3H7)4、Zr(OCH(CH3)2)4、Zr(OC4H10)4、ZrCl4等が挙げられる。
The Zr surface treatment material is not particularly limited as long as it is a compound containing Zr. The material is a compound that is activated under specific conditions, such as addition of a catalyst or a reaction initiator, stimulation by light or heat, in order to efficiently form a bond with the surface of the positive electrode active material core. Is preferred. Specifically, such compounds include Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OCH (CH 3 ) 2 ) 4 , Zr (OC 4 H 10 ) 4 , ZrCl 4. Etc.
Zr含有表面処理材料の混合量は、正極活物質コア100質量部に対し、通常0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.07質量部以上、通常3質量部以下、好ましくは2質量部以下、より好ましくは1.5質量部以下である。上記範囲であれば、電池容量の低下を招くことなく、表面処理による、サイクル充放電後の正極抵抗の増加抑制効果が得られるため好ましい。
The mixing amount of the Zr-containing surface treatment material is usually 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0.07 parts by mass or more, usually 3 parts by mass with respect to 100 parts by mass of the positive electrode active material core. Part or less, preferably 2 parts by weight or less, more preferably 1.5 parts by weight or less. If it is the said range, since the increase suppression effect of the positive electrode resistance after cycle charging / discharging by surface treatment will be acquired, without causing the fall of battery capacity, it is preferable.
正極活物質コアとZr含有表面処理材料を混合するための分散媒としては、正極活物質コアに親和性があり、Zr含有表面処理材料を溶解させることのできるものであれば、特に制限されない。そのような分散媒の具体例としては、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、アセトンなどが挙げられる。
The dispersion medium for mixing the positive electrode active material core and the Zr-containing surface treatment material is not particularly limited as long as it has an affinity for the positive electrode active material core and can dissolve the Zr-containing surface treatment material. Specific examples of such a dispersion medium include water, methanol, ethanol, propanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, acetone and the like.
分散媒の混合量は、正極活物質コア100質量部に対し、通常20質量部以上、好ましくは30質量部以上、より好ましくは40質量部以上、通常200質量部以下、好ましくは180質量部以下、より好ましくは150質量部以下である。上記範囲であれば、製造コストを高くすることなく、均一にZr含有表面処理材料と正極活物質コアの表面との間に結合を形成することができるため好ましい。
The mixing amount of the dispersion medium is usually 20 parts by mass or more, preferably 30 parts by mass or more, more preferably 40 parts by mass or more, usually 200 parts by mass or less, preferably 180 parts by mass or less with respect to 100 parts by mass of the positive electrode active material core. More preferably, it is 150 parts by mass or less. If it is the said range, since a Zr containing surface treatment material and the surface of a positive electrode active material core can be formed uniformly, without making manufacturing cost high, it is preferable.
また分散媒には、Zr含有表面処理材料を活性化させる触媒が含まれていることが好ましく、活性化能力の高さという点においては水が特に好ましい。触媒の添加量は、正極活物質コア100質量部に対し、0.1~20質量部が好ましく、0.3~10質量部がより好ましく、0.5~5質量部が特に好ましい。触媒添加量が少ないと正極活物質コアの表面とZr含有表面処理材料との間の結合形成が十分に進まない。また触媒添加量が多すぎると、Zr含有表面処理材料が自己会合を起こしてしまうおそれがある。なお、分散媒が水である場合には、水は分散媒及び触媒の両方として機能する。
The dispersion medium preferably contains a catalyst for activating the Zr-containing surface treatment material, and water is particularly preferable in terms of high activation ability. The addition amount of the catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material core. If the amount of catalyst added is small, bond formation between the surface of the positive electrode active material core and the Zr-containing surface treatment material does not proceed sufficiently. Moreover, when there is too much catalyst addition amount, there exists a possibility that Zr containing surface treatment material may raise | generate self-association. Note that when the dispersion medium is water, the water functions as both the dispersion medium and the catalyst.
正極活物質コアとZr含有表面処理材料の混合過程においては、Zr含有表面処理材料を十分活性化し、かつ、正極活物質コア表面とZr含有表面処理材料の間の結合形成を促進するために、加温することが好ましい。その際の温度としては、30~100℃が好ましく、処理効率の観点からは、40~80℃が特に好ましい。
In the mixing process of the positive electrode active material core and the Zr-containing surface treatment material, in order to sufficiently activate the Zr-containing surface treatment material and promote bond formation between the positive electrode active material core surface and the Zr-containing surface treatment material, It is preferable to heat. The temperature at that time is preferably 30 to 100 ° C., and 40 to 80 ° C. is particularly preferable from the viewpoint of processing efficiency.
正極活物質コアとZr含有表面処理材料の混合時間については、5分~3時間が好ましく、20分~2時間がより好ましく、30~90分が特に好ましい。混合時間が短すぎると正極活物質コア表面とZr含有表面処理材料との間の結合形成が十分に進まないおそれがある。一方混合時間が長すぎると、正極活物質コアからLiが遊離し、正極活物質コアの劣化を招くおそれがある。
The mixing time of the positive electrode active material core and the Zr-containing surface treatment material is preferably 5 minutes to 3 hours, more preferably 20 minutes to 2 hours, and particularly preferably 30 to 90 minutes. If the mixing time is too short, bond formation between the positive electrode active material core surface and the Zr-containing surface treatment material may not proceed sufficiently. On the other hand, if the mixing time is too long, Li is liberated from the positive electrode active material core, which may cause deterioration of the positive electrode active material core.
<特定の温度条件において熱処理することによって、正極活物質コア表面に結合したZrを正極活物質コアの表面近傍に浸透させる段階>
正極活物質コアとZr含有表面処理材料を混合した後には、正極活物質コア表面からZrを浸透させて、Zr含有領域を形成するために、特定の温度条件において熱処理を行う。その際の温度は、100℃を超え500℃未満であることが好ましく、110℃以上450℃未満であることが特に好ましい。温度が低すぎると、Zr含有領域となる部分におけるZr含有比率が不十分となるおそれがある。一方温度が高すぎると、Zrの正極活物質コア内部への浸透が過度に進み、電池容量の劣化が生じるおそれがある。 <Step of allowing Zr bonded to the surface of the positive electrode active material core to penetrate into the vicinity of the surface of the positive electrode active material core by heat treatment under specific temperature conditions>
After mixing the positive electrode active material core and the Zr-containing surface treatment material, heat treatment is performed under specific temperature conditions in order to infiltrate Zr from the surface of the positive electrode active material core and form a Zr-containing region. The temperature at that time is preferably more than 100 ° C. and less than 500 ° C., particularly preferably 110 ° C. or more and less than 450 ° C. If the temperature is too low, the Zr-containing ratio in the portion that becomes the Zr-containing region may be insufficient. On the other hand, when the temperature is too high, the penetration of Zr into the positive electrode active material core proceeds excessively, and the battery capacity may be deteriorated.
正極活物質コアとZr含有表面処理材料を混合した後には、正極活物質コア表面からZrを浸透させて、Zr含有領域を形成するために、特定の温度条件において熱処理を行う。その際の温度は、100℃を超え500℃未満であることが好ましく、110℃以上450℃未満であることが特に好ましい。温度が低すぎると、Zr含有領域となる部分におけるZr含有比率が不十分となるおそれがある。一方温度が高すぎると、Zrの正極活物質コア内部への浸透が過度に進み、電池容量の劣化が生じるおそれがある。 <Step of allowing Zr bonded to the surface of the positive electrode active material core to penetrate into the vicinity of the surface of the positive electrode active material core by heat treatment under specific temperature conditions>
After mixing the positive electrode active material core and the Zr-containing surface treatment material, heat treatment is performed under specific temperature conditions in order to infiltrate Zr from the surface of the positive electrode active material core and form a Zr-containing region. The temperature at that time is preferably more than 100 ° C. and less than 500 ° C., particularly preferably 110 ° C. or more and less than 450 ° C. If the temperature is too low, the Zr-containing ratio in the portion that becomes the Zr-containing region may be insufficient. On the other hand, when the temperature is too high, the penetration of Zr into the positive electrode active material core proceeds excessively, and the battery capacity may be deteriorated.
特に温度が600℃以上であると、Zrの正極活物質内部への浸透が促進され、表面近傍のZr量が不十分となる。結果として、本発明の要旨を満たす正極活物質が得られない。
Particularly when the temperature is 600 ° C. or higher, the penetration of Zr into the positive electrode active material is promoted, and the amount of Zr near the surface becomes insufficient. As a result, a positive electrode active material that satisfies the gist of the present invention cannot be obtained.
前記熱処理の時間は、30分~10時間が好ましく、45分~8時間がより好ましく、1~7時間が特に好ましい。熱処理の時間が短すぎるとZr含有領域となる部分におけるZr含有比率が不十分となるおそれがあり、長すぎると製造コストが高くなりすぎるおそれがある。
The heat treatment time is preferably 30 minutes to 10 hours, more preferably 45 minutes to 8 hours, and particularly preferably 1 to 7 hours. If the heat treatment time is too short, the Zr-containing ratio in the portion that becomes the Zr-containing region may be insufficient, and if it is too long, the production cost may be too high.
なお、上記熱処理は、減圧条件で行ってもよいし、予備的に減圧条件で処理を行った後、さらに高い温度において本処理を行ってもよい。
Note that the heat treatment may be performed under reduced pressure conditions, or after preliminarily performing the treatment under reduced pressure conditions, the main treatment may be performed at a higher temperature.
本段階においては、予備的に減圧下で通常105℃以上150℃以下、好ましくは110℃以上140℃以下で加温することが、特に好ましい。また、予備的に減圧下で加温する時間は、通常1~10時間、好ましくは2~9時間である。また、熱処理時の炉内の雰囲気は、空気でもよいし、酸素分圧を空気より高くしてもよい。
In this stage, it is particularly preferable to preliminarily heat at a temperature not lower than 105 ° C. and not higher than 150 ° C., preferably not lower than 110 ° C. and not higher than 140 ° C. The time for preliminary heating under reduced pressure is usually 1 to 10 hours, preferably 2 to 9 hours. The atmosphere in the furnace during the heat treatment may be air, or the oxygen partial pressure may be higher than that of air.
〔本発明1の非水二次電池用正極〕
本発明1の非水二次電池用正極活物質を使用して、非水二次電池用正極(以下、単に「本発明1の正極」ともいう)を製造することができる。本発明1の正極は、正極集電体と、該正極集電体上に形成された、本発明1の正極活物質を含む正極活物質層とを備えている。 [Positive electrode for non-aqueous secondary battery of the present invention 1]
Using the positive electrode active material for a non-aqueous secondary battery of the present invention 1, a positive electrode for a non-aqueous secondary battery (hereinafter also simply referred to as “the positive electrode of the present invention 1”) can be produced. The positive electrode of the present invention 1 includes a positive electrode current collector and a positive electrode active material layer including the positive electrode active material of the present invention 1 formed on the positive electrode current collector.
本発明1の非水二次電池用正極活物質を使用して、非水二次電池用正極(以下、単に「本発明1の正極」ともいう)を製造することができる。本発明1の正極は、正極集電体と、該正極集電体上に形成された、本発明1の正極活物質を含む正極活物質層とを備えている。 [Positive electrode for non-aqueous secondary battery of the present invention 1]
Using the positive electrode active material for a non-aqueous secondary battery of the present invention 1, a positive electrode for a non-aqueous secondary battery (hereinafter also simply referred to as “the positive electrode of the present invention 1”) can be produced. The positive electrode of the present invention 1 includes a positive electrode current collector and a positive electrode active material layer including the positive electrode active material of the present invention 1 formed on the positive electrode current collector.
正極活物質層は、通常、正極活物質(本発明1の正極活物質である)と結着剤と、更に必要に応じて用いられる導電材及び増粘剤等とを、乾式で混合してシート状にしたものを正極集電体に圧着することで作製される。また、これらの材料を液体媒体中に溶解又は分散させてスラリー状にして、当該スラリーを正極集電体に塗布、乾燥することによっても作成される。
The positive electrode active material layer is usually prepared by dry mixing a positive electrode active material (which is the positive electrode active material of the present invention 1), a binder, and a conductive material and a thickener used as necessary. It is produced by pressure-bonding a sheet shape to a positive electrode current collector. Alternatively, these materials are dissolved or dispersed in a liquid medium to form a slurry, and the slurry is applied to the positive electrode current collector and dried.
前記正極集電体は、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料で形成されている。また、正極集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。なお、薄膜は適宜メッシュ状に形成してもよい。
The positive electrode current collector is usually formed of a metal material such as aluminum, stainless steel, nickel plating, titanium, or tantalum, or a carbon material such as carbon cloth or carbon paper. As the shape of the positive electrode current collector, in the case of a metal material, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc. A carbon thin film, a carbon cylinder, etc. are mentioned. In addition, you may form a thin film suitably in mesh shape.
正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、100μm以下の範囲が好適である。上記範囲よりも薄いと、集電体として必要な強度が不足する可能性がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる可能性がある。
When a thin film is used as the positive electrode current collector, its thickness is arbitrary, but a range of usually 1 μm or more and 100 μm or less is suitable. If it is thinner than the above range, the strength required for the current collector may be insufficient. On the other hand, if it is thicker than the above range, the handleability may be impaired.
正極活物質層の製造に用いる結着剤としては、従来正極活物質層の製造に使用されているものが特に限定なく使用可能である。塗布法で活物質層を作製する場合は、結着剤は、正極製造時に用いる液体媒体に対して安定な材料であればよい。
As the binder used for producing the positive electrode active material layer, those conventionally used for producing the positive electrode active material layer can be used without any particular limitation. When the active material layer is produced by a coating method, the binder may be any material that is stable with respect to the liquid medium used at the time of manufacturing the positive electrode.
その具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、
SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、
スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、
シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、
アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。 Specific examples thereof include polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, resin polymers such as nitrocellulose,
Rubber polymers such as SBR (styrene butadiene rubber), NBR (acrylonitrile butadiene rubber), fluorine rubber, isoprene rubber, butadiene rubber, ethylene propylene rubber,
Styrene / butadiene / styrene block copolymer and hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer, styrene / isoprene styrene block copolymer and the like Thermoplastic elastomeric polymers such as hydrogenated products,
Soft resinous polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer,
Fluoropolymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer,
Examples thereof include a polymer composition having ion conductivity of alkali metal ions (particularly lithium ions).
SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、
スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、
シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子、
ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、
アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。 Specific examples thereof include polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, resin polymers such as nitrocellulose,
Rubber polymers such as SBR (styrene butadiene rubber), NBR (acrylonitrile butadiene rubber), fluorine rubber, isoprene rubber, butadiene rubber, ethylene propylene rubber,
Styrene / butadiene / styrene block copolymer and hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer, styrene / isoprene styrene block copolymer and the like Thermoplastic elastomeric polymers such as hydrogenated products,
Soft resinous polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer,
Fluoropolymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer,
Examples thereof include a polymer composition having ion conductivity of alkali metal ions (particularly lithium ions).
なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
正極活物質層中の結着剤の割合は、通常0.1質量%以上、80質量%以下である。結着剤の割合が低いと、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させる可能性がある。一方、前記割合が高いと、電池容量や導電性の低下につながる可能性がある。
The ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more and 80% by mass or less. If the ratio of the binder is low, the positive electrode active material cannot be sufficiently retained, and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if the ratio is high, battery capacity and conductivity may be reduced.
正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類に特に制限はない。導電材の具体例としては、銅、ニッケル等の金属材料や、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料などを挙げることができる。
The positive electrode active material layer usually contains a conductive material in order to increase conductivity. There are no particular restrictions on the type. Specific examples of the conductive material include metal materials such as copper and nickel, graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and carbon materials such as amorphous carbon such as needle coke. be able to.
なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。正極活物質層中の導電材の割合は、通常0.01質量%以上、50質量%以下である。導電材の割合が低いと導電性が不十分になることがある。逆に前記割合が高いと電池容量が低下することがある。
In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios. The proportion of the conductive material in the positive electrode active material layer is usually 0.01% by mass or more and 50% by mass or less. If the ratio of the conductive material is low, the conductivity may be insufficient. Conversely, when the ratio is high, the battery capacity may decrease.
<増粘剤>
正極活物質層の形成に使用するスラリーに水系溶媒を用いる場合、増粘剤と、スチレン-ブタジエンゴム(SBR)等のラテックスを用いてスラリー化することが好ましい。増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤として具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。 <Thickener>
When an aqueous solvent is used for the slurry used for forming the positive electrode active material layer, it is preferable to form a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). A thickener is usually used to adjust the viscosity of the slurry. Specific examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
正極活物質層の形成に使用するスラリーに水系溶媒を用いる場合、増粘剤と、スチレン-ブタジエンゴム(SBR)等のラテックスを用いてスラリー化することが好ましい。増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤として具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。 <Thickener>
When an aqueous solvent is used for the slurry used for forming the positive electrode active material layer, it is preferable to form a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). A thickener is usually used to adjust the viscosity of the slurry. Specific examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
さらに増粘剤を添加する場合には、正極活物質層中における増粘剤の割合が、通常0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲となるように添加する。上記範囲であると、良好な塗布性が得られるとともに、電池容量の低下や抵抗の増大を抑制することができる。
When a thickener is further added, the proportion of the thickener in the positive electrode active material layer is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more. Moreover, it is added so that it may become normally 5 mass% or less, Preferably it is 3 mass% or less, More preferably, it is the range of 2 mass% or less. When it is in the above range, good coatability can be obtained, and a decrease in battery capacity and an increase in resistance can be suppressed.
スラリーを形成するための液体媒体としては、正極形成材料である本発明1の正極活物質、結着剤、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はない。前記液体媒体として、水系溶媒と有機系溶媒のどちらを用いてもよい。
As the liquid medium for forming the slurry, it is possible to dissolve or disperse the positive electrode active material of the present invention 1, which is a positive electrode forming material, the binder, and the conductive material and thickener used as necessary. There are no particular restrictions on the type of the solvent. As the liquid medium, either an aqueous solvent or an organic solvent may be used.
水系溶媒の例としては水、アルコールなどが挙げられる。
有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。 Examples of the aqueous solvent include water and alcohol.
Examples of organic solvents include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF) Toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。 Examples of the aqueous solvent include water and alcohol.
Examples of organic solvents include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran (THF) Toluene, acetone, dimethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
正極活物質層中の本発明1の正極活物質の含有割合は、通常10質量%以上、99.9質量%以下である。正極活物質層中の前記活物質の割合が多すぎると正極の強度が不足する傾向にあり、少なすぎると容量の面で不十分となることがある。
The content ratio of the positive electrode active material of the present invention 1 in the positive electrode active material layer is usually 10% by mass or more and 99.9% by mass or less. If the proportion of the active material in the positive electrode active material layer is too large, the strength of the positive electrode tends to be insufficient, and if it is too small, the capacity may be insufficient.
また、正極活物質層の厚さは、通常10~200μm程度である。
正極のプレス後の電極密度は、通常、2.2g/cm3以上、4.2g/cm3以下である。 The thickness of the positive electrode active material layer is usually about 10 to 200 μm.
The electrode density after pressing of the positive electrode is usually 2.2 g / cm 3 or more and 4.2 g / cm 3 or less.
正極のプレス後の電極密度は、通常、2.2g/cm3以上、4.2g/cm3以下である。 The thickness of the positive electrode active material layer is usually about 10 to 200 μm.
The electrode density after pressing of the positive electrode is usually 2.2 g / cm 3 or more and 4.2 g / cm 3 or less.
なお、塗布、乾燥によって得られた正極活物質層は、本発明1の正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。なお、ローラープレス時の温度は室温でもよいし、上記結着剤の熱分解温度以下であれば、熱をかけてもよい。
The positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material of the first invention. In addition, the temperature at the time of roller press may be room temperature, and may be heated if it is below the thermal decomposition temperature of the said binder.
かくして、本発明1の非水二次電池用正極が調製できる。
Thus, the positive electrode for a non-aqueous secondary battery of the first invention can be prepared.
〔非水二次電池〕
<電池構成>
以上説明した、本発明1の非水二次電池用正極を使用することで、サイクル充放電後においても正極抵抗の増加が抑制され、電池容量の低下も小さい非水二次電池を製造することができる。ここで、本発明1の正極を使用して得られた非水二次電池(本発明1の非水二次電池)は一般に、リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水電解液を備えている。 [Non-aqueous secondary battery]
<Battery configuration>
By using the positive electrode for a non-aqueous secondary battery according to the first aspect described above, an increase in positive electrode resistance is suppressed even after cycle charge / discharge, and a non-aqueous secondary battery with a small decrease in battery capacity is manufactured. Can do. Here, the nonaqueous secondary battery (nonaqueous secondary battery of the present invention 1) obtained by using the positive electrode of the present invention 1 generally has a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and nonaqueous electrolysis. It has liquid.
<電池構成>
以上説明した、本発明1の非水二次電池用正極を使用することで、サイクル充放電後においても正極抵抗の増加が抑制され、電池容量の低下も小さい非水二次電池を製造することができる。ここで、本発明1の正極を使用して得られた非水二次電池(本発明1の非水二次電池)は一般に、リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水電解液を備えている。 [Non-aqueous secondary battery]
<Battery configuration>
By using the positive electrode for a non-aqueous secondary battery according to the first aspect described above, an increase in positive electrode resistance is suppressed even after cycle charge / discharge, and a non-aqueous secondary battery with a small decrease in battery capacity is manufactured. Can do. Here, the nonaqueous secondary battery (nonaqueous secondary battery of the present invention 1) obtained by using the positive electrode of the present invention 1 generally has a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and nonaqueous electrolysis. It has liquid.
これらのうち、正極については上記で説明した通りである。前記負極、並びに非水二次電池が通常備えるセパレータや外装ケースの構成、また、電極群の構成は、後述する本発明2の非水二次電池の、対応する構成と同様である。以下、非水電解液について説明する。
Of these, the positive electrode is as described above. The configuration of the negative electrode, the separator and the outer case that are usually provided in the non-aqueous secondary battery, and the configuration of the electrode group are the same as the corresponding configurations of the non-aqueous secondary battery of the present invention 2 described later. Hereinafter, the nonaqueous electrolytic solution will be described.
<非水電解液>
本発明1の非水二次電池における非水電解液としては、従来非水二次電池に使用されている非水電解液を、特に制限なく使用できる。非水電解液は、通常公知の電解質、有機溶媒、及び添加剤を含有している。 <Non-aqueous electrolyte>
As the non-aqueous electrolyte in the non-aqueous secondary battery of the present invention 1, a non-aqueous electrolyte conventionally used in non-aqueous secondary batteries can be used without particular limitation. The nonaqueous electrolytic solution usually contains a known electrolyte, an organic solvent, and an additive.
本発明1の非水二次電池における非水電解液としては、従来非水二次電池に使用されている非水電解液を、特に制限なく使用できる。非水電解液は、通常公知の電解質、有機溶媒、及び添加剤を含有している。 <Non-aqueous electrolyte>
As the non-aqueous electrolyte in the non-aqueous secondary battery of the present invention 1, a non-aqueous electrolyte conventionally used in non-aqueous secondary batteries can be used without particular limitation. The nonaqueous electrolytic solution usually contains a known electrolyte, an organic solvent, and an additive.
(電解質)
前記電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、LiPF6、LiBF4、LiClO4、LiAlF4、LiSbF6、LiTaF6、LiWF7、タングステン酸リチウム類、カルボン酸リチウム塩類、スルホン酸リチウム塩類、リチウムイミド塩類、リチウムメチド塩類、リチウムオキサラトボレート塩類、リチウムオキサラトフォスフェート塩類、含フッ素有機リチウム塩類等が挙げられる。これらのリチウム塩は単独で用いても、2種以上を併用してもよい。 (Electrolytes)
As the electrolyte, a lithium salt is usually used. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiTaF 6 , LiWF 7 , lithium tungstates, lithium carboxylates, sulfonic acid lithium salts, lithium imide salts, lithium metide salts, lithium oxalates. Latoborate salts, lithium oxalatophosphate salts, fluorine-containing organic lithium salts and the like can be mentioned. These lithium salts may be used alone or in combination of two or more.
前記電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、LiPF6、LiBF4、LiClO4、LiAlF4、LiSbF6、LiTaF6、LiWF7、タングステン酸リチウム類、カルボン酸リチウム塩類、スルホン酸リチウム塩類、リチウムイミド塩類、リチウムメチド塩類、リチウムオキサラトボレート塩類、リチウムオキサラトフォスフェート塩類、含フッ素有機リチウム塩類等が挙げられる。これらのリチウム塩は単独で用いても、2種以上を併用してもよい。 (Electrolytes)
As the electrolyte, a lithium salt is usually used. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiTaF 6 , LiWF 7 , lithium tungstates, lithium carboxylates, sulfonic acid lithium salts, lithium imide salts, lithium metide salts, lithium oxalates. Latoborate salts, lithium oxalatophosphate salts, fluorine-containing organic lithium salts and the like can be mentioned. These lithium salts may be used alone or in combination of two or more.
(有機溶媒)
前記有機溶媒としては、フッ素原子を有していない環状カーボネート、鎖状カーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、並びにスルホン系化合物等が挙げられる。これらの有機溶媒は単独で用いても、2種以上を併用してもよい。 (Organic solvent)
Examples of the organic solvent include cyclic carbonates having no fluorine atom, chain carbonates, cyclic and chain carboxylic acid esters, ether compounds, and sulfone compounds. These organic solvents may be used alone or in combination of two or more.
前記有機溶媒としては、フッ素原子を有していない環状カーボネート、鎖状カーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、並びにスルホン系化合物等が挙げられる。これらの有機溶媒は単独で用いても、2種以上を併用してもよい。 (Organic solvent)
Examples of the organic solvent include cyclic carbonates having no fluorine atom, chain carbonates, cyclic and chain carboxylic acid esters, ether compounds, and sulfone compounds. These organic solvents may be used alone or in combination of two or more.
(添加剤)
前記添加剤としては、フッ素原子を有する環状カーボネート、炭素-炭素不飽和結合を有する環状カーボネート、環状スルホン酸エステル、イソシアネート基を有する化合物およびシアノ基を有する化合物等が挙げられる。これらの添加剤は単独で用いても、2種以上を併用してもよい。 (Additive)
Examples of the additive include a cyclic carbonate having a fluorine atom, a cyclic carbonate having a carbon-carbon unsaturated bond, a cyclic sulfonate ester, a compound having an isocyanate group, and a compound having a cyano group. These additives may be used alone or in combination of two or more.
前記添加剤としては、フッ素原子を有する環状カーボネート、炭素-炭素不飽和結合を有する環状カーボネート、環状スルホン酸エステル、イソシアネート基を有する化合物およびシアノ基を有する化合物等が挙げられる。これらの添加剤は単独で用いても、2種以上を併用してもよい。 (Additive)
Examples of the additive include a cyclic carbonate having a fluorine atom, a cyclic carbonate having a carbon-carbon unsaturated bond, a cyclic sulfonate ester, a compound having an isocyanate group, and a compound having a cyano group. These additives may be used alone or in combination of two or more.
さらに、後述する本発明2の非水二次電池における非水系電解液において説明する、各種の特定添加剤や、特定添加剤以外の添加剤も、採用可能である。
Furthermore, various specific additives and additives other than the specific additives described in the non-aqueous electrolyte solution in the non-aqueous secondary battery of the present invention 2 described later can also be employed.
以上説明した通り、本発明1の非水二次電池は、本発明1の非水二次電池用正極活物質を使用して得られた本発明1の非水二次電池用正極を備えている。前記正極活物質は、正極活物質コアが特定の組成からなり、Zr含有領域を有している。これらの構成により、本発明1の非水二次電池をサイクル充放電に付しても、正極抵抗の増加が抑制され、電池容量の低下も抑制されている。
As described above, the nonaqueous secondary battery of the first aspect of the present invention includes the positive electrode for the nonaqueous secondary battery of the first aspect of the present invention obtained by using the positive electrode active material for the nonaqueous secondary battery of the first aspect of the present invention. Yes. In the positive electrode active material, the positive electrode active material core has a specific composition and has a Zr-containing region. With these configurations, even if the nonaqueous secondary battery of the first aspect of the present invention is subjected to cycle charge / discharge, an increase in positive electrode resistance is suppressed and a decrease in battery capacity is also suppressed.
次に、以下では、第二の課題を解決する、本発明2の非水二次電池について説明する。
Next, the non-aqueous secondary battery of the present invention 2 that solves the second problem will be described below.
[本発明2の非水二次電池]
本発明2の非水二次電池非水二次電池は、正極活物質を有する正極、負極活物質を有する負極及び非水電解液から少なくとも構成される。前記正極活物質の粒子表面には、Zr、並びに、ヒドロキシル基、アルデヒド基、アルコキシ基、及びカルボキシル基からなる群より選ばれる少なくとも1種の基が存在する。また、前記非水電解液は、炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物(以下、「特定添加剤」ともいう)を含有する。 [Nonaqueous Secondary Battery of Invention 2]
The non-aqueous secondary battery of the second aspect of the present invention includes at least a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte. Zr and at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group are present on the particle surface of the positive electrode active material. The non-aqueous electrolyte includes a cyclic carbonate having a carbon-carbon unsaturated bond, an isocyanate compound or a condensate thereof, a fluorinated oxoacid salt, a nitrile compound, an aromatic compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, And at least one compound selected from the group consisting of oxalate salts (hereinafter also referred to as “specific additives”).
本発明2の非水二次電池非水二次電池は、正極活物質を有する正極、負極活物質を有する負極及び非水電解液から少なくとも構成される。前記正極活物質の粒子表面には、Zr、並びに、ヒドロキシル基、アルデヒド基、アルコキシ基、及びカルボキシル基からなる群より選ばれる少なくとも1種の基が存在する。また、前記非水電解液は、炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物(以下、「特定添加剤」ともいう)を含有する。 [Nonaqueous Secondary Battery of Invention 2]
The non-aqueous secondary battery of the second aspect of the present invention includes at least a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte. Zr and at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group are present on the particle surface of the positive electrode active material. The non-aqueous electrolyte includes a cyclic carbonate having a carbon-carbon unsaturated bond, an isocyanate compound or a condensate thereof, a fluorinated oxoacid salt, a nitrile compound, an aromatic compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, And at least one compound selected from the group consisting of oxalate salts (hereinafter also referred to as “specific additives”).
本発明2の非水二次電池が第二の課題を解決する効果を奏する理由は明らかとなっていないが、当該理由として、以下の機構が推定される。すなわち、後述する、正極活物質表面のZr含有層が、正極活物質より先に、上記非水電解液中の特定添加剤と反応するためであると考えられる。以下、本発明2の非水二次電池の各構成について説明する。
The reason why the non-aqueous secondary battery of the present invention 2 has an effect of solving the second problem is not clear, but the following mechanism is presumed as the reason. That is, it is considered that the Zr-containing layer on the surface of the positive electrode active material, which will be described later, reacts with the specific additive in the non-aqueous electrolyte prior to the positive electrode active material. Hereinafter, each structure of the non-aqueous secondary battery of this invention 2 is demonstrated.
〔正極活物質〕
本発明2の非水二次電池に使用される正極活物質は、その粒子表面においてZrが存在することを特徴とする。前記粒子表面においては、Zrを含有するZr含有層が形成されている。 [Positive electrode active material]
The positive electrode active material used in the nonaqueous secondary battery of the present invention 2 is characterized in that Zr is present on the particle surface. A Zr-containing layer containing Zr is formed on the particle surface.
本発明2の非水二次電池に使用される正極活物質は、その粒子表面においてZrが存在することを特徴とする。前記粒子表面においては、Zrを含有するZr含有層が形成されている。 [Positive electrode active material]
The positive electrode active material used in the nonaqueous secondary battery of the present invention 2 is characterized in that Zr is present on the particle surface. A Zr-containing layer containing Zr is formed on the particle surface.
正極活物質は、Liイオンを脱離、挿入することが可能な構造を有するリチウム遷移金属酸化物を核粒子とするものである。前記リチウム遷移金属酸化物における遷移金属としては、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、からなる群のうちの少なくとも1種が挙げられる。
The positive electrode active material has a lithium transition metal oxide having a structure capable of desorbing and inserting Li ions as a core particle. Examples of the transition metal in the lithium transition metal oxide include at least one selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe).
前記リチウム遷移金属酸化物の構造としては、スピネル構造や、層状構造や、オリビン構造などが挙げられる。中でも、下記式のような構造をとることができるリチウム遷移金属酸化物が、非水二次電池のエネルギー密度を高くできる点から好ましい。
Examples of the structure of the lithium transition metal oxide include a spinel structure, a layered structure, and an olivine structure. Especially, the lithium transition metal oxide which can take a structure like a following formula is preferable from the point which can make the energy density of a non-aqueous secondary battery high.
LisM”1-tAtO2 (1)
(式中、M”はリチウム(Li)、ニッケル(Ni)、コバルト(Co)、及びマンガン(Mn)からなる群より選ばれる少なくとも2種の元素を表す。AはLi、Ni、Co及びMn以外の元素であり、Aは例えば、電池性能向上のために、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,Si及びSnから選択される。 Li s M ″ 1- t At O 2 (1)
(In the formula, M ″ represents at least two elements selected from the group consisting of lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn). A represents Li, Ni, Co, and Mn. A is an element other than, for example, A, B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru for improving battery performance. , Rh, Pd, Ag, In, Sb, Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb, Lu, Bi, N, F, S, Cl, Br, I, As, Ge, P, Pb, Sb, Si, and Sn.
(式中、M”はリチウム(Li)、ニッケル(Ni)、コバルト(Co)、及びマンガン(Mn)からなる群より選ばれる少なくとも2種の元素を表す。AはLi、Ni、Co及びMn以外の元素であり、Aは例えば、電池性能向上のために、B,Na,Mg,Al,K,Ca,Ti,V,Cr,Fe,Cu,Zn,Sr,Y,Zr,Nb,Ru,Rh,Pd,Ag,In,Sb,Te,Ba,Ta,Mo,W,Re,Os,Ir,Pt,Au,Pb,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Bi,N,F,S,Cl,Br,I,As,Ge,P,Pb,Sb,Si及びSnから選択される。 Li s M ″ 1- t At O 2 (1)
(In the formula, M ″ represents at least two elements selected from the group consisting of lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn). A represents Li, Ni, Co, and Mn. A is an element other than, for example, A, B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru for improving battery performance. , Rh, Pd, Ag, In, Sb, Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy , Ho, Er, Tm, Yb, Lu, Bi, N, F, S, Cl, Br, I, As, Ge, P, Pb, Sb, Si, and Sn.
上記式において、電池容量の大きさの観点から、通常0.8≦s≦1.3、0≦t≦0.2、好ましくは、0.9≦s≦1.2、0≦t≦0.1の範囲内である。なお、前記リチウム遷移金属酸化物の組成式は、リチウム遷移金属酸化物の製造段階での組成であり、本発明2の非水二次電池の充放電に伴い、正極活物質中のLi量又は酸素量は減損している場合がある。
In the above formula, from the viewpoint of the battery capacity, 0.8 ≦ s ≦ 1.3, 0 ≦ t ≦ 0.2, preferably 0.9 ≦ s ≦ 1.2, 0 ≦ t ≦ 0 Within the range of .1. The composition formula of the lithium transition metal oxide is a composition at the production stage of the lithium transition metal oxide, and the amount of Li in the positive electrode active material or the charge / discharge of the nonaqueous secondary battery of the second aspect of the invention is as follows. The amount of oxygen may be impaired.
<Zr含有層>
本発明2の非水二次電池に使用される正極活物質は、その粒子表面に、Zrを含有する、Zr含有層を有している。Zr含有層は、正極活物質の核粒子となるリチウム遷移金属酸化物の表面の少なくとも一部に設けられたものであり、核粒子となるリチウム遷移金属酸化物とは異なる元素または組成比を有するものである。Zr含有層は、核粒子となるリチウム遷移金属酸化物の表面から内部に向かって構成元素の濃度変化を有するかたちで存在していてもよいし、核粒子となるリチウム遷移金属酸化物の表面に点在していてもよい。なお、Zr含有層はナノサイズの細孔を有していてもよい。 <Zr-containing layer>
The positive electrode active material used for the non-aqueous secondary battery of the present invention 2 has a Zr-containing layer containing Zr on the particle surface. The Zr-containing layer is provided on at least a part of the surface of the lithium transition metal oxide serving as the core particle of the positive electrode active material, and has an element or composition ratio different from that of the lithium transition metal oxide serving as the core particle. Is. The Zr-containing layer may exist in a form having a concentration change of constituent elements from the surface of the lithium transition metal oxide serving as the core particle toward the inside, or on the surface of the lithium transition metal oxide serving as the core particle. It may be scattered. Note that the Zr-containing layer may have nano-sized pores.
本発明2の非水二次電池に使用される正極活物質は、その粒子表面に、Zrを含有する、Zr含有層を有している。Zr含有層は、正極活物質の核粒子となるリチウム遷移金属酸化物の表面の少なくとも一部に設けられたものであり、核粒子となるリチウム遷移金属酸化物とは異なる元素または組成比を有するものである。Zr含有層は、核粒子となるリチウム遷移金属酸化物の表面から内部に向かって構成元素の濃度変化を有するかたちで存在していてもよいし、核粒子となるリチウム遷移金属酸化物の表面に点在していてもよい。なお、Zr含有層はナノサイズの細孔を有していてもよい。 <Zr-containing layer>
The positive electrode active material used for the non-aqueous secondary battery of the present invention 2 has a Zr-containing layer containing Zr on the particle surface. The Zr-containing layer is provided on at least a part of the surface of the lithium transition metal oxide serving as the core particle of the positive electrode active material, and has an element or composition ratio different from that of the lithium transition metal oxide serving as the core particle. Is. The Zr-containing layer may exist in a form having a concentration change of constituent elements from the surface of the lithium transition metal oxide serving as the core particle toward the inside, or on the surface of the lithium transition metal oxide serving as the core particle. It may be scattered. Note that the Zr-containing layer may have nano-sized pores.
正極活物質の表面にZr含有層を形成すると、Zrを正極活物質の全体に添加する場合に比べて、電池特性が良い非水二次電池が得られる。このような効果が得られる理由は不明であるが、当該理由として以下が推定される。Zr含有層が存在すると、リチウム遷移金属酸化物の表面付近においてZrイオンの濃度が高い。そしてZrイオンは正極と電解液との酸化反応を抑える効果が大きいため、前記正極活物質を使用することで、電池特性が良い非水二次電池が得られると考えられる。
When a Zr-containing layer is formed on the surface of the positive electrode active material, a non-aqueous secondary battery with better battery characteristics can be obtained than when Zr is added to the entire positive electrode active material. The reason why such an effect is obtained is unknown, but the following is estimated as the reason. When the Zr-containing layer is present, the concentration of Zr ions is high near the surface of the lithium transition metal oxide. Since Zr ions have a great effect of suppressing the oxidation reaction between the positive electrode and the electrolyte, it is considered that a non-aqueous secondary battery with good battery characteristics can be obtained by using the positive electrode active material.
Zr含有層の厚みは、通常0.1~100nm、好ましくは0.2~70nm、さらに好ましくは、0.3~60nmである。Zr含有層の厚みが小さすぎると、リチウム遷移金属酸化物と電解液との物理的な接触を抑える効果が小さくなる場合がある。前記厚みが大きすぎると、リチウムイオンの移動が遅くなるため、正極の抵抗増加を招く可能性がある。
The thickness of the Zr-containing layer is usually from 0.1 to 100 nm, preferably from 0.2 to 70 nm, more preferably from 0.3 to 60 nm. If the thickness of the Zr-containing layer is too small, the effect of suppressing physical contact between the lithium transition metal oxide and the electrolytic solution may be reduced. If the thickness is too large, the movement of lithium ions becomes slow, which may increase the resistance of the positive electrode.
なお、本発明においてZr含有層の有無は、例えば、以下の方法で判定することができる。すなわち、正極活物質を集電体に塗布して製造した正極、若しくは、充放電後の正極を試料として、X線光電子分光分析法(XPS)にて分析する。正極の表面からZrに帰属する182eV付近のピークを観測した場合には、Zr含有層が存在するということである。
In the present invention, the presence or absence of the Zr-containing layer can be determined by the following method, for example. That is, analysis is performed by X-ray photoelectron spectroscopy (XPS) using a positive electrode produced by applying a positive electrode active material to a current collector or a positive electrode after charge / discharge as a sample. When a peak in the vicinity of 182 eV attributed to Zr is observed from the surface of the positive electrode, this means that a Zr-containing layer exists.
Zrが存在する部分、つまり正極活物質の粒子表面に存在するZr含有層におけるZrの、当該部分に存在する全遷移金属中のモル比は、通常1.5~30%である。前記モル比がこの範囲にあると、正極活物質の結晶構造変化を抑制して正極抵抗の増加を抑制することができ、また、電池容量が劣化しない。
The molar ratio of Zr in the portion where Zr exists, that is, Zr in the Zr-containing layer existing on the particle surface of the positive electrode active material in all transition metals present in the portion is usually 1.5 to 30%. When the molar ratio is within this range, the change in the crystal structure of the positive electrode active material can be suppressed to prevent an increase in positive electrode resistance, and the battery capacity does not deteriorate.
<表面官能基>
また、前記正極活物質は、その粒子表面に、ヒドロキシル基、アルデヒド基、アルコキシ基、及びカルボキシル基からなる群より選ばれる少なくとも1種の基を有している。このような所定の表面官能基を有しているため、前記正極活物質は、電解液との反応性が高く、この反応では、非水二次電池の抵抗増加や体積膨張が起こりにくい。そしてこのような表面官能基は、正極活物質表面近傍のリチウム遷移金属酸化物および/又はZr含有層中に存在する。 <Surface functional group>
The positive electrode active material has at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group on the particle surface. Since the positive electrode active material has such a predetermined surface functional group, the reactivity with the electrolytic solution is high, and in this reaction, resistance increase and volume expansion of the nonaqueous secondary battery are unlikely to occur. Such surface functional groups are present in the lithium transition metal oxide and / or Zr-containing layer in the vicinity of the surface of the positive electrode active material.
また、前記正極活物質は、その粒子表面に、ヒドロキシル基、アルデヒド基、アルコキシ基、及びカルボキシル基からなる群より選ばれる少なくとも1種の基を有している。このような所定の表面官能基を有しているため、前記正極活物質は、電解液との反応性が高く、この反応では、非水二次電池の抵抗増加や体積膨張が起こりにくい。そしてこのような表面官能基は、正極活物質表面近傍のリチウム遷移金属酸化物および/又はZr含有層中に存在する。 <Surface functional group>
The positive electrode active material has at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group on the particle surface. Since the positive electrode active material has such a predetermined surface functional group, the reactivity with the electrolytic solution is high, and in this reaction, resistance increase and volume expansion of the nonaqueous secondary battery are unlikely to occur. Such surface functional groups are present in the lithium transition metal oxide and / or Zr-containing layer in the vicinity of the surface of the positive electrode active material.
なお、これらの表面官能基の存在は、熱脱着-GC/MS分析で確認できる。具体的には、熱脱着により生じた、表面官能基に由来する所定の化合物を、GC/MS分析で検出することができる。
The presence of these surface functional groups can be confirmed by thermal desorption-GC / MS analysis. Specifically, a predetermined compound derived from a surface functional group generated by thermal desorption can be detected by GC / MS analysis.
熱脱着-GC/MS分析で確認できる表面官能基由来の化合物の炭素数は、通常1以上、好ましくは3以上、通常20以下、好ましくは10以下である。この範囲であれば非水電解液との反応性を落とすことなく、電池内での副反応による余分なガス発生を抑えることができる。前記化合物の具体例として、1-プロパノール、2-プロパノール、2-メチル-1-プロパノール、1-フェニル-2-メチル-2-プロパノール、3-フェニル-1-プロパノール、プロパナール、2-メチルプロパナール、3-フェニル-2-メチルプロパナールといった化合物が挙げられる。
The carbon number of the compound derived from the surface functional group that can be confirmed by thermal desorption-GC / MS analysis is usually 1 or more, preferably 3 or more, usually 20 or less, preferably 10 or less. Within this range, excessive gas generation due to side reactions in the battery can be suppressed without reducing the reactivity with the non-aqueous electrolyte. Specific examples of the compound include 1-propanol, 2-propanol, 2-methyl-1-propanol, 1-phenyl-2-methyl-2-propanol, 3-phenyl-1-propanol, propanal, 2-methylprop And compounds such as panal and 3-phenyl-2-methylpropanal.
以上説明した、本発明2の非水二次電池における正極活物質は、以下に説明する特性の少なくとも一つを満たすことが好ましい。
The positive electrode active material in the non-aqueous secondary battery of the present invention 2 described above preferably satisfies at least one of the characteristics described below.
(体積基準平均粒径)
前記正極活物質は一次粒子でもよく、一次粒子からなる二次粒子でもよい。正極活物質の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましい。 (Volume-based average particle size)
The positive electrode active material may be primary particles or secondary particles composed of primary particles. The volume-based average particle diameter of the positive electrode active material is a volume-based average particle diameter (median diameter) determined by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, Usually, it is 100 micrometers or less, 50 micrometers or less are preferable, 40 micrometers or less are more preferable, and 30 micrometers or less are still more preferable.
前記正極活物質は一次粒子でもよく、一次粒子からなる二次粒子でもよい。正極活物質の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましい。 (Volume-based average particle size)
The positive electrode active material may be primary particles or secondary particles composed of primary particles. The volume-based average particle diameter of the positive electrode active material is a volume-based average particle diameter (median diameter) determined by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, Usually, it is 100 micrometers or less, 50 micrometers or less are preferable, 40 micrometers or less are more preferable, and 30 micrometers or less are still more preferable.
体積基準平均粒径が上記範囲を下回ると、正極を製造する際に、正極集電体に塗布するためのスラリーの液性制御が困難となる場合がある。また、上記範囲を上回ると、電池内において正極抵抗が増加する場合がある。
If the volume-based average particle size is below the above range, it may be difficult to control the liquidity of the slurry applied to the positive electrode current collector when the positive electrode is manufactured. Moreover, when it exceeds the said range, positive electrode resistance may increase in a battery.
体積基準平均粒径の測定は、以下のようにして行う。界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に正極活物質を分散させて、これを試料として、レーザー回折・散乱式粒度分布計(例えば、堀場製作所社製LA-920)を用いて測定する。該測定で求められるメジアン径を、正極活物質の体積基準平均粒径と定義する。
Measure the volume-based average particle size as follows. A positive electrode active material is dispersed in a 0.2% by mass aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and this is used as a sample for a laser diffraction / scattering particle size distribution analyzer (for example, , Using a Horiba LA-920). The median diameter determined by the measurement is defined as the volume-based average particle diameter of the positive electrode active material.
(BET比表面積)
正極活物質のBET比表面積は、BET法を用いて測定した比表面積で、通常0.01m2・g-1以上であり、0.05m2・g-1以上が好ましく、0.1m2・g-1以上がさらに好ましく、また、通常10m2・g-1以下であり、5m2・g-1以下が好ましく、3m2・g-1以下がさらに好ましい。 (BET specific surface area)
BET specific surface area of the positive electrode active material, with the measured specific surface area using the BET method is usually 0.01 m 2 · g -1 or more, preferably 0.05 m 2 · g -1 or more, 0.1 m 2 · g -1 or more, and also generally not more than 10 m 2 · g -1, preferably from 5 m 2 · g -1 or less, more preferably 3m 2 · g -1 or less.
正極活物質のBET比表面積は、BET法を用いて測定した比表面積で、通常0.01m2・g-1以上であり、0.05m2・g-1以上が好ましく、0.1m2・g-1以上がさらに好ましく、また、通常10m2・g-1以下であり、5m2・g-1以下が好ましく、3m2・g-1以下がさらに好ましい。 (BET specific surface area)
BET specific surface area of the positive electrode active material, with the measured specific surface area using the BET method is usually 0.01 m 2 · g -1 or more, preferably 0.05 m 2 · g -1 or more, 0.1 m 2 · g -1 or more, and also generally not more than 10 m 2 · g -1, preferably from 5 m 2 · g -1 or less, more preferably 3m 2 · g -1 or less.
BET比表面積がこの範囲を下回ると、正極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなることがあり、そのため電池性能が低下する可能性がある。一方、この範囲を上回ると、正極材料として用いた時に非水電解液との反応性が増加し、ガス発生が多くなり、好ましい非水二次電池が得られない場合がある。
If the BET specific surface area is less than this range, the lithium acceptability may deteriorate during charging when used as a positive electrode material, and therefore battery performance may be reduced. On the other hand, if it exceeds this range, when used as a positive electrode material, the reactivity with the non-aqueous electrolyte increases, gas generation increases, and a preferred non-aqueous secondary battery may not be obtained.
BET法による比表面積の測定は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて行う。試料に対して窒素流通下150℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって、比表面積の測定を行なう。
The measurement of the specific surface area by the BET method is performed using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken). After pre-drying the sample for 15 minutes at 150 ° C. under a nitrogen flow, using a nitrogen helium mixed gas that was accurately adjusted so that the relative pressure of nitrogen with respect to atmospheric pressure was 0.3, The specific surface area is measured by the nitrogen adsorption BET one-point method by the flow method.
(タップ密度)
正極活物質のタップ密度は、通常0.5g・cm-3以上であり、1.0g・cm-3以上が好ましく、1.5g・cm-3以上がさらに好ましく、2g・cm-3以上が特に好ましい。タップ密度が、上記範囲を下回ると、正極として用いた場合に充填密度が上がり難く、高容量の非水二次電池を得ることができない場合がある。 (Tap density)
The tap density of the positive electrode active material is usually 0.5 g · cm −3 or more, preferably 1.0 g · cm −3 or more, more preferably 1.5 g · cm −3 or more, and 2 g · cm −3 or more. Particularly preferred. If the tap density is below the above range, the packing density is difficult to increase when used as a positive electrode, and a high-capacity non-aqueous secondary battery may not be obtained.
正極活物質のタップ密度は、通常0.5g・cm-3以上であり、1.0g・cm-3以上が好ましく、1.5g・cm-3以上がさらに好ましく、2g・cm-3以上が特に好ましい。タップ密度が、上記範囲を下回ると、正極として用いた場合に充填密度が上がり難く、高容量の非水二次電池を得ることができない場合がある。 (Tap density)
The tap density of the positive electrode active material is usually 0.5 g · cm −3 or more, preferably 1.0 g · cm −3 or more, more preferably 1.5 g · cm −3 or more, and 2 g · cm −3 or more. Particularly preferred. If the tap density is below the above range, the packing density is difficult to increase when used as a positive electrode, and a high-capacity non-aqueous secondary battery may not be obtained.
タップ密度の測定は、以下のようにして行う。目開き150μmの篩を通過させた試料を、20cm3のタッピングセルに落下させて前記セルの上端面まで試料を満たす。その後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の試料の体積と試料の質量からタップ密度を算出する。
The tap density is measured as follows. The sample passed through a sieve having an opening of 150 μm is dropped into a 20 cm 3 tapping cell to fill the sample up to the upper end surface of the cell. Thereafter, tapping with a stroke length of 10 mm is performed 1000 times using a powder density measuring instrument (for example, tap denser manufactured by Seishin Enterprise Co., Ltd.), and the tap density is calculated from the sample volume and the sample mass at that time.
<Zr含有層及び表面官能基を有する正極活物質の製造方法>
次に、本発明2の非水二次電池に使用される、Zr含有層及び所定の表面官能基を有する正極活物質の製造方法の一例を説明する。なお、当該正極活物質は、本発明の要旨を逸脱しない限り、どのような製造方法によって得てもよい。 <Method for producing positive electrode active material having Zr-containing layer and surface functional group>
Next, an example of a method for producing a positive electrode active material having a Zr-containing layer and a predetermined surface functional group, which is used in the nonaqueous secondary battery of the present invention 2, will be described. The positive electrode active material may be obtained by any manufacturing method as long as it does not depart from the gist of the present invention.
次に、本発明2の非水二次電池に使用される、Zr含有層及び所定の表面官能基を有する正極活物質の製造方法の一例を説明する。なお、当該正極活物質は、本発明の要旨を逸脱しない限り、どのような製造方法によって得てもよい。 <Method for producing positive electrode active material having Zr-containing layer and surface functional group>
Next, an example of a method for producing a positive electrode active material having a Zr-containing layer and a predetermined surface functional group, which is used in the nonaqueous secondary battery of the present invention 2, will be described. The positive electrode active material may be obtained by any manufacturing method as long as it does not depart from the gist of the present invention.
前記正極活物質は、二つの処理段階を経て製造することができる。すなわち、
核となる原料正極活物質とZr含有表面処理材料を、分散媒中において適切な条件の下で混合し、Zr含有表面処理材料と原料正極活物質の表面との間に結合を形成する段階(段階1)、並びに、
特定の温度条件において熱処理することによって分散媒の除去、及び、Zr含有表面処理材料と原料正極活物質の表面との間の結合を強化する段階(段階2)である。以下、各段階について説明する。 The positive electrode active material can be manufactured through two processing steps. That is,
A step of forming a bond between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material by mixing the raw material positive electrode active material serving as a nucleus and the Zr-containing surface treatment material in a dispersion medium under appropriate conditions ( Stage 1), and
In this step, the dispersion medium is removed by heat treatment under a specific temperature condition, and the bond between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material is strengthened (step 2). Hereinafter, each step will be described.
核となる原料正極活物質とZr含有表面処理材料を、分散媒中において適切な条件の下で混合し、Zr含有表面処理材料と原料正極活物質の表面との間に結合を形成する段階(段階1)、並びに、
特定の温度条件において熱処理することによって分散媒の除去、及び、Zr含有表面処理材料と原料正極活物質の表面との間の結合を強化する段階(段階2)である。以下、各段階について説明する。 The positive electrode active material can be manufactured through two processing steps. That is,
A step of forming a bond between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material by mixing the raw material positive electrode active material serving as a nucleus and the Zr-containing surface treatment material in a dispersion medium under appropriate conditions ( Stage 1), and
In this step, the dispersion medium is removed by heat treatment under a specific temperature condition, and the bond between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material is strengthened (step 2). Hereinafter, each step will be described.
(段階1)
前記原料正極活物質は、リチウム遷移金属酸化物であれば特に制限はない。当該リチウム遷移金属酸化物は、例えば特開2010-92848号公報、特開2001-196063号公報などに記載の製造方法により得ることができる。 (Stage 1)
The raw material positive electrode active material is not particularly limited as long as it is a lithium transition metal oxide. The lithium transition metal oxide can be obtained, for example, by a production method described in JP 2010-92848 A, JP 2001-196063 A, or the like.
前記原料正極活物質は、リチウム遷移金属酸化物であれば特に制限はない。当該リチウム遷移金属酸化物は、例えば特開2010-92848号公報、特開2001-196063号公報などに記載の製造方法により得ることができる。 (Stage 1)
The raw material positive electrode active material is not particularly limited as long as it is a lithium transition metal oxide. The lithium transition metal oxide can be obtained, for example, by a production method described in JP 2010-92848 A, JP 2001-196063 A, or the like.
前記Zr表面処理材料は、Zrを含有した化合物ならば特に制限はない。当該材料は、原料正極活物質表面との間に効率よく結合を形成するために、触媒や反応開始剤の添加、光や熱による刺激など、特定の条件下において活性化する化合物であることが好ましい。そのような化合物の具体例として、Zr(OC2H5)4、Zr(OC3H7)4、Zr(OCH(CH3)2)4、Zr(OC4H10)4、ZrCl4等が挙げられる。
The Zr surface treatment material is not particularly limited as long as it is a compound containing Zr. The material may be a compound that is activated under specific conditions such as addition of a catalyst or reaction initiator, stimulation by light or heat, etc. in order to efficiently form a bond with the surface of the raw material positive electrode active material. preferable. Specific examples of such compounds include Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OCH (CH 3 ) 2 ) 4 , Zr (OC 4 H 10 ) 4 , ZrCl 4 and the like. Is mentioned.
Zr含有表面処理材料の混合量は、原料正極活物質100質量部に対し、通常0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.07質量部以上、通常3質量部以下、好ましくは2質量部以下、より好ましくは1.5質量部以下である。上記範囲であれば、電池容量の低下を招くことなく、表面処理による正極抵抗の増加抑制効果が得られるため好ましい。
The mixing amount of the Zr-containing surface treatment material is usually 0.01 parts by mass or more, preferably 0.05 parts by mass or more, more preferably 0.07 parts by mass or more, usually 3 parts by mass with respect to 100 parts by mass of the raw material positive electrode active material. Part or less, preferably 2 parts by weight or less, more preferably 1.5 parts by weight or less. If it is the said range, since the increase suppression effect of the positive electrode resistance by surface treatment is acquired, without causing the fall of battery capacity, it is preferable.
原料正極活物質とZr含有表面処理材料を混合するための分散媒は、原料正極活物質に親和性があり、Zr含有表面処理材料を溶解させることができるものであれば、特に制限はない。そのような分散媒として、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、アセトンなどが挙げられる。
The dispersion medium for mixing the raw material positive electrode active material and the Zr-containing surface treatment material is not particularly limited as long as it has an affinity for the raw material positive electrode active material and can dissolve the Zr-containing surface treatment material. Examples of such a dispersion medium include water, methanol, ethanol, propanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and acetone.
分散媒の混合量は、原料正極活物質100質量部に対し、通常20質量部以上、好ましくは30質量部以上、より好ましくは40質量部以上、通常200質量部以下、好ましくは180質量部以下、より好ましくは150質量部以下である。上記範囲であれば、製造コストを高くすることなく、均一にZr含有表面処理材料と原料正極活物質の表面との間に結合を形成することができるため好ましい。
The mixing amount of the dispersion medium is usually 20 parts by mass or more, preferably 30 parts by mass or more, more preferably 40 parts by mass or more, usually 200 parts by mass or less, preferably 180 parts by mass or less with respect to 100 parts by mass of the raw material positive electrode active material. More preferably, it is 150 parts by mass or less. If it is the said range, since a bond can be uniformly formed between the Zr containing surface treatment material and the surface of a raw material positive electrode active material, without raising manufacturing cost, it is preferable.
また分散媒には、Zr含有表面処理材料を活性化させる触媒が含まれていることが好ましく、活性化能力の高さという点においては水が特に好ましい。触媒の添加量は、原料正極活物質100質量部に対し、0.1~20質量部が好ましく、0.3~10質量部がより好ましく、0.5~5質量部が特に好ましい。触媒含有量が少ないと原料正極活物質表面とZr含有表面処理材料との間の結合形成が十分に進まない。一方含有量が多すぎると、Zr含有表面処理材料が自己会合を起こしてしまうおそれがある。なお、分散媒が水である場合には、水は分散媒及び触媒の両方として機能する。
The dispersion medium preferably contains a catalyst for activating the Zr-containing surface treatment material, and water is particularly preferable in terms of high activation ability. The addition amount of the catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.3 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the raw material positive electrode active material. When the catalyst content is low, bond formation between the surface of the raw material positive electrode active material and the Zr-containing surface treatment material does not proceed sufficiently. On the other hand, if the content is too large, the Zr-containing surface treatment material may cause self-association. Note that when the dispersion medium is water, the water functions as both the dispersion medium and the catalyst.
原料正極活物質とZr含有表面処理材料の混合過程においては、Zr含有表面処理材料を十分活性化し、かつ、原料正極活物質表面とZr含有表面処理材料の間の結合形成を促進するために、加温することが好ましい。その際の温度としては、30~100℃が好ましく、処理効率の観点からは、40~80℃が特に好ましい。
In the mixing process of the raw material positive electrode active material and the Zr-containing surface treatment material, in order to sufficiently activate the Zr-containing surface treatment material and promote bond formation between the raw material positive electrode active material surface and the Zr-containing surface treatment material, It is preferable to heat. The temperature at that time is preferably 30 to 100 ° C., and 40 to 80 ° C. is particularly preferable from the viewpoint of processing efficiency.
原料正極活物質とZr含有表面処理材料の混合時間については、5分~3時間が好ましく、20分~2時間がより好ましく、30~90分が特に好ましい。混合時間が短すぎると原料正極活物質表面とZr含有表面処理材料との間の結合形成が十分に進まないおそれがある。一方混合時間が長すぎると、原料正極活物質からLiが遊離し、得られる正極活物質の劣化を招くおそれがある。
The mixing time of the raw material positive electrode active material and the Zr-containing surface treatment material is preferably 5 minutes to 3 hours, more preferably 20 minutes to 2 hours, and particularly preferably 30 to 90 minutes. If the mixing time is too short, bond formation between the surface of the raw material positive electrode active material and the Zr-containing surface treatment material may not proceed sufficiently. On the other hand, if the mixing time is too long, Li may be liberated from the raw material positive electrode active material and the resulting positive electrode active material may be deteriorated.
(段階2)
核となる原料正極活物質とZr含有表面処理材料とを混合した後には、段階2として、分散媒の除去、及び、Zr含有表面処理材料と原料正極活物質の表面との間の結合を強化するために、特定の温度条件において熱処理を行う。 (Stage 2)
After mixing the core positive electrode active material and the Zr-containing surface treatment material, in Step 2, the dispersion medium is removed and the bond between the Zr-containing surface treatment material and the surface of the positive electrode active material is strengthened. In order to achieve this, heat treatment is performed under specific temperature conditions.
核となる原料正極活物質とZr含有表面処理材料とを混合した後には、段階2として、分散媒の除去、及び、Zr含有表面処理材料と原料正極活物質の表面との間の結合を強化するために、特定の温度条件において熱処理を行う。 (Stage 2)
After mixing the core positive electrode active material and the Zr-containing surface treatment material, in Step 2, the dispersion medium is removed and the bond between the Zr-containing surface treatment material and the surface of the positive electrode active material is strengthened. In order to achieve this, heat treatment is performed under specific temperature conditions.
当該熱処理の温度は、80℃を超え500℃未満であることが好ましく、100℃以上400℃未満であることが特に好ましい。温度が低すぎると、分散媒が十分に除去されないか、Zr含有表面処理材料と原料正極活物質の表面との間の結合が不十分となるおそれがある。一方温度が高すぎると、Zrが原料正極活物質内部へ浸透してしまい、電池容量の劣化が生じるおそれがある。
The temperature of the heat treatment is preferably more than 80 ° C. and less than 500 ° C., particularly preferably 100 ° C. or more and less than 400 ° C. If the temperature is too low, the dispersion medium may not be sufficiently removed, or the bonding between the Zr-containing surface treatment material and the surface of the raw material positive electrode active material may be insufficient. On the other hand, if the temperature is too high, Zr permeates into the raw material positive electrode active material, which may cause deterioration of battery capacity.
熱処理の時間は、30分~10時間が好ましく、45分~8時間がより好ましく、1~7時間が特に好ましい。熱処理の時間が短すぎると、上述のように分散媒の残留や結合が不十分となるおそれがある。一方熱処理が長すぎると、製造コストが高くなりすぎるおそれがある。
The heat treatment time is preferably 30 minutes to 10 hours, more preferably 45 minutes to 8 hours, and particularly preferably 1 to 7 hours. If the heat treatment time is too short, there is a risk that the dispersion medium may not remain or be bonded as described above. On the other hand, if the heat treatment is too long, the production cost may be too high.
なお、上記熱処理は減圧条件で行ってもよいし、予備的に減圧条件で処理を行った後、さらに高い温度において本処理を行ってもよい。
Note that the heat treatment may be performed under reduced pressure conditions, or after preliminarily performing the treatment under reduced pressure conditions, the main treatment may be performed at a higher temperature.
本段階2においては、予備的に減圧下で通常105℃以上150℃以下、好ましくは110℃以上140℃以下で加温することが特に好ましい。また、予備的に減圧下で加温する時間は、通常1~10時間、好ましくは2~9時間である。また、熱処理時の炉内の雰囲気は、空気でもよいし、酸素分圧を空気より高くしてもよい。
In this stage 2, it is particularly preferable to preheat at a temperature of usually 105 ° C. to 150 ° C., preferably 110 ° C. to 140 ° C. under reduced pressure. The time for preliminary heating under reduced pressure is usually 1 to 10 hours, preferably 2 to 9 hours. The atmosphere in the furnace during the heat treatment may be air, or the oxygen partial pressure may be higher than that of air.
〔非水二次電池用正極〕
本発明2の非水二次電池に使用する非水二次電池用正極は、以上説明した正極活物質、及び結着剤を含有する正極活物質層を集電体上に形成してなるものである。本発明2の非水二次電池における正極の構成は、正極活物質層における正極活物質として、以上説明した、Zr含有層及び表面官能基を有する正極活物質を使用する以外は、本発明1の非水二次電池における非水二次電池用正極と同様である。 [Positive electrode for non-aqueous secondary batteries]
The positive electrode for a non-aqueous secondary battery used in the non-aqueous secondary battery according to the second aspect of the present invention is obtained by forming a positive electrode active material layer containing a positive electrode active material and a binder described above on a current collector. It is. The configuration of the positive electrode in the nonaqueous secondary battery of the present invention 2 is the same as that of the present invention 1 except that the positive electrode active material having the Zr-containing layer and the surface functional group described above is used as the positive electrode active material in the positive electrode active material layer. This is the same as the positive electrode for a non-aqueous secondary battery in the non-aqueous secondary battery.
本発明2の非水二次電池に使用する非水二次電池用正極は、以上説明した正極活物質、及び結着剤を含有する正極活物質層を集電体上に形成してなるものである。本発明2の非水二次電池における正極の構成は、正極活物質層における正極活物質として、以上説明した、Zr含有層及び表面官能基を有する正極活物質を使用する以外は、本発明1の非水二次電池における非水二次電池用正極と同様である。 [Positive electrode for non-aqueous secondary batteries]
The positive electrode for a non-aqueous secondary battery used in the non-aqueous secondary battery according to the second aspect of the present invention is obtained by forming a positive electrode active material layer containing a positive electrode active material and a binder described above on a current collector. It is. The configuration of the positive electrode in the nonaqueous secondary battery of the present invention 2 is the same as that of the present invention 1 except that the positive electrode active material having the Zr-containing layer and the surface functional group described above is used as the positive electrode active material in the positive electrode active material layer. This is the same as the positive electrode for a non-aqueous secondary battery in the non-aqueous secondary battery.
〔非水電解液〕
本発明2の非水二次電池の製造に使用される非水電解液としては、炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物(特定添加剤)を含有するものであれば、特に制限はない。これを、非水電解液に通常用いられる、公知の電解質、有機溶媒、及び必要に応じてその他の添加剤と組合せて、非水電解液とする。前記電解質及び有機溶媒はそれぞれ、上記で説明した、本発明1の非水二次電池における、非水電解液を構成する電解質及び有機溶媒と同様である。 [Non-aqueous electrolyte]
Nonaqueous electrolytes used in the production of the nonaqueous secondary battery of the present invention 2 include cyclic carbonates having a carbon-carbon unsaturated bond, isocyanate compounds or condensates thereof, fluorinated oxoacid salts, nitrile compounds, aromatics There is no particular limitation as long as it contains at least one compound (specific additive) selected from the group consisting of a group compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, and an oxalate salt. This is combined with known electrolytes, organic solvents, and other additives as required, which are usually used for non-aqueous electrolytes, to form non-aqueous electrolytes. The electrolyte and the organic solvent are respectively the same as the electrolyte and the organic solvent constituting the nonaqueous electrolytic solution in the nonaqueous secondary battery of the first aspect described above.
本発明2の非水二次電池の製造に使用される非水電解液としては、炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物(特定添加剤)を含有するものであれば、特に制限はない。これを、非水電解液に通常用いられる、公知の電解質、有機溶媒、及び必要に応じてその他の添加剤と組合せて、非水電解液とする。前記電解質及び有機溶媒はそれぞれ、上記で説明した、本発明1の非水二次電池における、非水電解液を構成する電解質及び有機溶媒と同様である。 [Non-aqueous electrolyte]
Nonaqueous electrolytes used in the production of the nonaqueous secondary battery of the present invention 2 include cyclic carbonates having a carbon-carbon unsaturated bond, isocyanate compounds or condensates thereof, fluorinated oxoacid salts, nitrile compounds, aromatics There is no particular limitation as long as it contains at least one compound (specific additive) selected from the group consisting of a group compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, and an oxalate salt. This is combined with known electrolytes, organic solvents, and other additives as required, which are usually used for non-aqueous electrolytes, to form non-aqueous electrolytes. The electrolyte and the organic solvent are respectively the same as the electrolyte and the organic solvent constituting the nonaqueous electrolytic solution in the nonaqueous secondary battery of the first aspect described above.
本発明2の非水二次電池は、以上説明した、Zr含有層及び表面官能基を有する正極活物質と、特定添加剤を含む非水電解液とを備えている。このような構成のため、高温且つ高電圧環境下で保存しても、前記非水二次電池は、体積や抵抗率の増加が小さい。以下、前記特定添加剤について、順に説明する。
The non-aqueous secondary battery of the present invention 2 includes the positive electrode active material having the Zr-containing layer and the surface functional group described above and the non-aqueous electrolyte containing a specific additive. Due to such a configuration, even when stored in a high temperature and high voltage environment, the non-aqueous secondary battery has a small increase in volume and resistivity. Hereinafter, the specific additive will be described in order.
<炭素-炭素不飽和結合を有する環状カーボネート>
上記炭素-炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素-炭素二重結合または炭素-炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。 <Cyclic carbonate having a carbon-carbon unsaturated bond>
The cyclic carbonate having a carbon-carbon unsaturated bond (hereinafter sometimes referred to as “unsaturated cyclic carbonate”) is a cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond. There is no restriction | limiting in particular, Arbitrary unsaturated carbonates can be used. The cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate.
上記炭素-炭素不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と記載する場合がある)としては、炭素-炭素二重結合または炭素-炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。 <Cyclic carbonate having a carbon-carbon unsaturated bond>
The cyclic carbonate having a carbon-carbon unsaturated bond (hereinafter sometimes referred to as “unsaturated cyclic carbonate”) is a cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond. There is no restriction | limiting in particular, Arbitrary unsaturated carbonates can be used. The cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate.
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環または炭素-炭素二重結合または炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
Examples of unsaturated cyclic carbonates include vinylene carbonates, aromatic carbonates, ethylene carbonates substituted with a substituent having a carbon-carbon double bond or carbon-carbon triple bond, phenyl carbonates, vinyl carbonates, allyl carbonates, Catechol carbonates etc. are mentioned.
前記ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ジビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート等が挙げられる。
Examples of the vinylene carbonates include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, 4,5-divinyl vinylene carbonate, allyl vinylene carbonate, 4,5-diallyl vinylene carbonate, 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-fluoro-5-vinyl vinylene carbonate, 4-allyl-5 A fluoro vinylene carbonate etc. are mentioned.
前記芳香環または炭素-炭素二重結合または炭素-炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネート、4-アリル-5-エチニルエチレンカーボネート、フェニルエチレンカーボネート、4,5-ジフェニルエチレンカーボネート、4-フェニル-5-ビニルエチレンカーボネート、4-アリル-5-フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート等が挙げられる。
Specific examples of the ethylene carbonates substituted with a substituent having the aromatic ring or carbon-carbon double bond or carbon-carbon triple bond include vinyl ethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5 -Vinylethylene carbonate, 4-allyl-5-vinylethylene carbonate, ethynylethylene carbonate, 4,5-diethynylethylene carbonate, 4-methyl-5-ethynylethylene carbonate, 4-vinyl-5-ethynylethylene carbonate, 4- Allyl-5-ethynylethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl-5-phenylethylene carbonate, allylethylene carbonate Boneto, 4,5 diallyl carbonate, 4-methyl-5-allyl carbonate and the like.
以上挙げた中でも、好ましい不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4-メチル-5-ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5-ジアリルエチレンカーボネート、4-メチル-5-アリルエチレンカーボネート、4-アリル-5-ビニルエチレンカーボネート、エチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、4-メチル-5-エチニルエチレンカーボネート、4-ビニル-5-エチニルエチレンカーボネートが挙げられる。
Among these, preferable unsaturated cyclic carbonates include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate, 4,5-diallyl vinylene. Carbonate, vinylethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5-vinylethylene carbonate, allylethylene carbonate, 4,5-diallylethylene carbonate, 4-methyl-5-allylethylene carbonate, 4-allyl- 5-vinylethylene carbonate, ethynyl ethylene carbonate, 4,5-diethynyl ethylene carbonate, 4-methyl-5-ethynyl ethylene carbonate, 4-vinyl 5-ethynyl ethylene carbonate.
これらの中でも、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートは特に安定な界面保護被膜を形成するので、より好ましく、ビニレンカーボネート、ビニルエチレンカーボネートが特に好ましい。
Among these, vinylene carbonate, vinyl ethylene carbonate, and ethynyl ethylene carbonate are more preferable because they form a particularly stable interface protective film, and vinylene carbonate and vinyl ethylene carbonate are particularly preferable.
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、80以上、より好ましくは85以上であり、また、好ましくは、250以下であり、より好ましくは150以下である。この範囲であれば、非水電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。
The molecular weight of the unsaturated cyclic carbonate is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 80 or more, more preferably 85 or more, and preferably 250 or less, more preferably 150 or less. If it is this range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to a non-aqueous electrolyte, and the effect of this invention will fully be expressed easily.
不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。また、市販もされている。
The production method of the unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method. It is also commercially available.
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの含有量は、非水電解液全体(100質量%)に対して、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下、特に好ましくは3質量%以下である。この範囲内であれば、本発明2の非水二次電池の効果を十分に享受できる。具体的には、電池の高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。さらに、前記含有量が前記範囲内であれば、前記非水二次電池が十分なサイクル特性も発揮することができる。
Unsaturated cyclic carbonates may be used alone or in combination of two or more in any combination and ratio. Moreover, the compounding quantity of unsaturated cyclic carbonate is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The content of the unsaturated cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass with respect to the entire non-aqueous electrolyte (100% by mass). % Or more, preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 4% by mass or less, and particularly preferably 3% by mass or less. If it is in this range, the effect of the nonaqueous secondary battery of the present invention 2 can be fully enjoyed. Specifically, it is easy to avoid a situation where the high-temperature storage characteristics of the battery are reduced, the amount of gas generated is increased, and the discharge capacity retention rate is reduced. Furthermore, if the content is within the above range, the non-aqueous secondary battery can also exhibit sufficient cycle characteristics.
<イソシアネート化合物もしくはその縮合物>
上記イソシアネート化合物としては、分子内にイソシアネート基を有している化合物であれば特にその種類は限定されない。少なくとも2つのイソシアネート基を有する化合物が好ましい。 <Isocyanate compound or condensate thereof>
The isocyanate compound is not particularly limited as long as it is a compound having an isocyanate group in the molecule. Compounds having at least two isocyanate groups are preferred.
上記イソシアネート化合物としては、分子内にイソシアネート基を有している化合物であれば特にその種類は限定されない。少なくとも2つのイソシアネート基を有する化合物が好ましい。 <Isocyanate compound or condensate thereof>
The isocyanate compound is not particularly limited as long as it is a compound having an isocyanate group in the molecule. Compounds having at least two isocyanate groups are preferred.
イソシアネート化合物の具体例としては、例えば、メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、イソプロピルイソシアネート、ブチルイソシアネート、ターシャルブチルイソシアネート、ペンチルイソシアネートヘキシルイソシアネート、シクロヘキシルイソシアネート、ビニルイソシアネート、アリルイソシアネート、エチニルイソシアネート、プロピニルイソシアネート、フェニルイソシアネート、フロロフェニルイソシアネートなどのモノイソシアネート化合物;
モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3-ジイソシアナトプロパン、1,4-ジイソシアナト-2-ブテン、1,4-ジイソシアナト-2-フルオロブタン、1,4-ジイソシアナト-2,3-ジフルオロブタン、1,5-ジイソシアナト-2-ペンテン、1,5-ジイソシアナト-2-メチルペンタン、1,6-ジイソシアナト-2-ヘキセン、1,6-ジイソシアナト-3-ヘキセン、1,6-ジイソシアナト-3-フルオロヘキサン、1,6-ジイソシアナト-3,4-ジフルオロヘキサン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2-ビス(イソシアナトメチル)シクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、1,2-ジイソシアナトシクロヘキサン、1,3-ジイソシアナトシクロヘキサン、1,4-ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン-1,1’-ジイソシアネート、ジシクロヘキシルメタン-2,2’-ジイソシアネート、ジシクロヘキシルメタン-3,3’-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、カルボニルジイソシアネート、1,4-ジイソシアナトブタン-1,4-ジオン、1,5-ジイソシアナトペンタン-1,5-ジオン、2,2,4-トリメチルヘキサメチレンジイソシアナート、2,4,4-トリメチルヘキサメチレンジイソシアナートなどのジイソシアネート化合物;
また、それぞれ下記式(1)~(4)の基本構造で示されるビウレット、イソシアヌレート、アダクト、及び二官能のタイプの変性ポリイソシアネート化合物が挙げられる(式中、R1及びR2はそれぞれ任意の炭化水素基である)。 Specific examples of the isocyanate compound include, for example, methyl isocyanate, ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, tertiary butyl isocyanate, pentyl isocyanate hexyl isocyanate, cyclohexyl isocyanate, vinyl isocyanate, allyl isocyanate, ethynyl isocyanate, propynyl isocyanate, Monoisocyanate compounds such as phenyl isocyanate and fluorophenyl isocyanate;
Monomethylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, 1,3-diisocyanate Natopropane, 1,4-diisocyanato-2-butene, 1,4-diisocyanato-2-fluorobutane, 1,4-diisocyanato-2,3-difluorobutane, 1,5-diisocyanato-2-pentene, 1,5 -Diisocyanato-2-methylpentane, 1,6-diisocyanato-2-hexene, 1,6-diisocyanato-3-hexene, 1,6 Diisocyanato-3-fluorohexane, 1,6-diisocyanato-3,4-difluorohexane, toluene diisocyanate, xylene diisocyanate, tolylene diisocyanate, 1,2-bis (isocyanatomethyl) cyclohexane, 1,3-bis (isocyanato) Methyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 1,2-diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, dicyclohexylmethane-1,1 ′ -Diisocyanate, dicyclohexylmethane-2,2'-diisocyanate, dicyclohexylmethane-3,3'-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, bicyclo [2.2.1] heptane 2,5-diylbis (methylisocyanate), bicyclo [2.2.1] heptane-2,6-diylbis (methylisocyanate), isophorone diisocyanate, carbonyl diisocyanate, 1,4-diisocyanatobutane-1,4- Diisocyanate compounds such as dione, 1,5-diisocyanatopentane-1,5-dione, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate;
In addition, biurets, isocyanurates, adducts, and bifunctional type modified polyisocyanate compounds represented by the basic structures of the following formulas (1) to (4) are mentioned (in the formula, R 1 and R 2 are arbitrary, respectively) Hydrocarbon group).
モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3-ジイソシアナトプロパン、1,4-ジイソシアナト-2-ブテン、1,4-ジイソシアナト-2-フルオロブタン、1,4-ジイソシアナト-2,3-ジフルオロブタン、1,5-ジイソシアナト-2-ペンテン、1,5-ジイソシアナト-2-メチルペンタン、1,6-ジイソシアナト-2-ヘキセン、1,6-ジイソシアナト-3-ヘキセン、1,6-ジイソシアナト-3-フルオロヘキサン、1,6-ジイソシアナト-3,4-ジフルオロヘキサン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2-ビス(イソシアナトメチル)シクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、1,2-ジイソシアナトシクロヘキサン、1,3-ジイソシアナトシクロヘキサン、1,4-ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン-1,1’-ジイソシアネート、ジシクロヘキシルメタン-2,2’-ジイソシアネート、ジシクロヘキシルメタン-3,3’-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、カルボニルジイソシアネート、1,4-ジイソシアナトブタン-1,4-ジオン、1,5-ジイソシアナトペンタン-1,5-ジオン、2,2,4-トリメチルヘキサメチレンジイソシアナート、2,4,4-トリメチルヘキサメチレンジイソシアナートなどのジイソシアネート化合物;
また、それぞれ下記式(1)~(4)の基本構造で示されるビウレット、イソシアヌレート、アダクト、及び二官能のタイプの変性ポリイソシアネート化合物が挙げられる(式中、R1及びR2はそれぞれ任意の炭化水素基である)。 Specific examples of the isocyanate compound include, for example, methyl isocyanate, ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, tertiary butyl isocyanate, pentyl isocyanate hexyl isocyanate, cyclohexyl isocyanate, vinyl isocyanate, allyl isocyanate, ethynyl isocyanate, propynyl isocyanate, Monoisocyanate compounds such as phenyl isocyanate and fluorophenyl isocyanate;
Monomethylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, 1,3-diisocyanate Natopropane, 1,4-diisocyanato-2-butene, 1,4-diisocyanato-2-fluorobutane, 1,4-diisocyanato-2,3-difluorobutane, 1,5-diisocyanato-2-pentene, 1,5 -Diisocyanato-2-methylpentane, 1,6-diisocyanato-2-hexene, 1,6-diisocyanato-3-hexene, 1,6 Diisocyanato-3-fluorohexane, 1,6-diisocyanato-3,4-difluorohexane, toluene diisocyanate, xylene diisocyanate, tolylene diisocyanate, 1,2-bis (isocyanatomethyl) cyclohexane, 1,3-bis (isocyanato) Methyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 1,2-diisocyanatocyclohexane, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, dicyclohexylmethane-1,1 ′ -Diisocyanate, dicyclohexylmethane-2,2'-diisocyanate, dicyclohexylmethane-3,3'-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, bicyclo [2.2.1] heptane 2,5-diylbis (methylisocyanate), bicyclo [2.2.1] heptane-2,6-diylbis (methylisocyanate), isophorone diisocyanate, carbonyl diisocyanate, 1,4-diisocyanatobutane-1,4- Diisocyanate compounds such as dione, 1,5-diisocyanatopentane-1,5-dione, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate;
In addition, biurets, isocyanurates, adducts, and bifunctional type modified polyisocyanate compounds represented by the basic structures of the following formulas (1) to (4) are mentioned (in the formula, R 1 and R 2 are arbitrary, respectively) Hydrocarbon group).
これらのうち、モノメチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチルイソシアネート)、ジイソシアン酸イソホロン、2,2,4-トリメチルヘキサメチレンジイソシアナート、2,4,4-トリメチルヘキサメチレンジイソシアナート等のジイソシアネート化合物と、上記式(1)~(4)の基本構造で示されるビウレット、イソシアヌレート、アダクト、及び二官能のタイプの変性ポリイソシアネート化合物が、保存特性向上の点から好ましく、
ヘキサメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチルイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアナート、2,4,4-トリメチルヘキサメチレンジイソシアナートがより好ましい。 Among these, monomethylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, bicyclo [2.2.1] heptane-2,5-diylbis (methylisocyanate), bicyclo [2.2.1] heptane- 2,6-diylbis (methylisocyanate), isophorone diisocyanate, 2,2,4-trimethylhexamethyle Diisocyanates, 2,4,4-trimethylhexamethylene diisocyanate and the like, and biurets, isocyanurates, adducts, and bifunctional types represented by the basic structures of the above formulas (1) to (4) A modified polyisocyanate compound is preferable from the viewpoint of improving storage characteristics,
Hexamethylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, bicyclo [2.2.1] heptane-2,5-diylbis (methyl isocyanate), bicyclo [2. 2.1] Heptane-2,6-diylbis (methyl isocyanate), 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate are more preferable.
ヘキサメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチルイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアナート、2,4,4-トリメチルヘキサメチレンジイソシアナートがより好ましい。 Among these, monomethylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, bicyclo [2.2.1] heptane-2,5-diylbis (methylisocyanate), bicyclo [2.2.1] heptane- 2,6-diylbis (methylisocyanate), isophorone diisocyanate, 2,2,4-trimethylhexamethyle Diisocyanates, 2,4,4-trimethylhexamethylene diisocyanate and the like, and biurets, isocyanurates, adducts, and bifunctional types represented by the basic structures of the above formulas (1) to (4) A modified polyisocyanate compound is preferable from the viewpoint of improving storage characteristics,
Hexamethylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4′-diisocyanate, bicyclo [2.2.1] heptane-2,5-diylbis (methyl isocyanate), bicyclo [2. 2.1] Heptane-2,6-diylbis (methyl isocyanate), 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate are more preferable.
イソシアネート化合物もしくはその縮合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。非水電解液中のイソシアネート化合物もしくはその縮合物の含有量は、非水電解液全体(100質量%)に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更により好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。
An isocyanate compound or a condensate thereof may be used alone or in combination of two or more in any combination and ratio. The content of the isocyanate compound or the condensate thereof in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably based on the whole nonaqueous electrolytic solution (100% by mass). Is 0.1% by mass or more, more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
上記範囲を満たした場合は、本発明2の非水二次電池の効果に加えて、電池の出力特性、負荷特性、低温特性、サイクル特性等が向上する。
When the above range is satisfied, in addition to the effect of the non-aqueous secondary battery of the present invention 2, the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, etc. of the battery are improved.
<フッ素化オキソ酸塩>
本発明2の非水二次電池の効果に加えて、電池の負極表面に皮膜を形成し、電池の長寿命化を達成するために、非水電解液においてフッ素化オキソ酸塩を用いることが効果的である。 <Fluorinated oxo acid salt>
In addition to the effect of the non-aqueous secondary battery of the present invention 2, a fluorinated oxoacid salt is used in the non-aqueous electrolyte in order to form a film on the negative electrode surface of the battery and achieve a long battery life. It is effective.
本発明2の非水二次電池の効果に加えて、電池の負極表面に皮膜を形成し、電池の長寿命化を達成するために、非水電解液においてフッ素化オキソ酸塩を用いることが効果的である。 <Fluorinated oxo acid salt>
In addition to the effect of the non-aqueous secondary battery of the present invention 2, a fluorinated oxoacid salt is used in the non-aqueous electrolyte in order to form a film on the negative electrode surface of the battery and achieve a long battery life. It is effective.
フッ素化オキソ酸塩としては、フッ素置換リン酸塩類、フッ素置換カルボン酸塩類、フッ素置換スルホン酸塩類、フッ素置換硫酸塩類等が挙げられる。
Examples of fluorinated oxoacid salts include fluorine-substituted phosphates, fluorine-substituted carboxylates, fluorine-substituted sulfonates, and fluorine-substituted sulfates.
フッ素化オキソ酸塩のカウンターカチオンに特に限定はないが、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、及び、NR3R4R5R6(式中、R3~R6は、各々独立に、水素原子又は炭素数1~12の有機基を表す。)で表されるアンモニウム等が例示として挙げられる。
The counter cation of the fluorinated oxoacid salt is not particularly limited, but lithium, sodium, potassium, magnesium, calcium, and NR 3 R 4 R 5 R 6 (wherein R 3 to R 6 are each independently As an example, ammonium represented by a hydrogen atom or an organic group having 1 to 12 carbon atoms can be given.
前記アンモニウムのR3~R6で表わされる炭素数1~12の有機基としては特に限定はないが、例えば、ハロゲン原子で置換されていてもよいアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいシクロアルキル基、ハロゲン原子又はアルキル基で置換されていてもよいアリール基、置換基を有していてもよい窒素原子含有複素環基等が挙げられる。中でもR3~R6として、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、又は窒素原子含有複素環基が好ましい。
The organic group having 1 to 12 carbon atoms represented by R 3 to R 6 of ammonium is not particularly limited. For example, the organic group may be substituted with a halogen atom, a halogen atom or an alkyl group. Examples thereof include an cycloalkyl group which may be substituted, an aryl group which may be substituted with a halogen atom or an alkyl group, and a nitrogen atom-containing heterocyclic group which may have a substituent. In particular, R 3 to R 6 are each independently preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or a nitrogen atom-containing heterocyclic group.
また、非水電解液の耐リチウム電析性や耐酸化性の点から、上記カウンターカチオンの中でもリチウムが最も好ましい。
In addition, lithium is most preferable among the above counter cations from the viewpoint of lithium electrodeposition resistance and oxidation resistance of the non-aqueous electrolyte.
上記フッ素置換リン酸塩類としてはモノフルオロリン酸塩、ジフルオロリン酸塩が挙げられる。これらの具体例としては、モノフルオロリン酸リチウム、モノフルオロリン酸ナトリウム、モノフルオロリン酸カリウム、ジフルオロリン酸リチウム、ジフルオロリン酸ナトリウム、ジフルオロリン酸カリウム等が挙げられる。これらの中でも、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムが好ましく、ジフルオロリン酸リチウムがより好ましい。
Examples of the fluorine-substituted phosphates include monofluorophosphate and difluorophosphate. Specific examples thereof include lithium monofluorophosphate, sodium monofluorophosphate, potassium monofluorophosphate, lithium difluorophosphate, sodium difluorophosphate, potassium difluorophosphate and the like. Among these, lithium monofluorophosphate and lithium difluorophosphate are preferable, and lithium difluorophosphate is more preferable.
上記フッ素置換カルボン酸塩類としては、フルオロギ酸塩、モノフルオロ酢酸塩、ジフルオロ酢酸塩、トリフルオロ酢酸塩が挙げられる。これらの具体例としては、フルオロギ酸リチウム、モノフルオロ酢酸リチウム、ジフルオロ酢酸リチウム、トリフルオロ酢酸リチウムが挙げられる。
Examples of the fluorine-substituted carboxylates include fluoroformate, monofluoroacetate, difluoroacetate and trifluoroacetate. Specific examples thereof include lithium fluoroformate, lithium monofluoroacetate, lithium difluoroacetate, and lithium trifluoroacetate.
上記フッ素置換スルホン酸塩類としては、フルオロスルホン酸塩、トリフルオロメタンスルホン酸塩、ペンタフルオロエタンスルホン酸塩が挙げられる。これらの具体例としては、フルオロスルホン酸リチウム、トリフルオロメタンスルホン酸リチウム、ペンタフルオロエタンスルホン酸リチウムが挙げられる。
Examples of the fluorine-substituted sulfonates include fluorosulfonate, trifluoromethanesulfonate, and pentafluoroethanesulfonate. Specific examples thereof include lithium fluorosulfonate, lithium trifluoromethanesulfonate, and lithium pentafluoroethanesulfonate.
上記フッ素置換硫酸塩類としては、トリフルオロメチル硫酸塩、ペンタフルオロエチル硫酸塩が挙げられる。これらの具体例としては、トリフルオロメチル硫酸リチウム、ペンタフルオロエチル硫酸リチウムが挙げられる。
Examples of the fluorine-substituted sulfates include trifluoromethyl sulfate and pentafluoroethyl sulfate. Specific examples thereof include lithium trifluoromethyl sulfate and lithium pentafluoroethyl sulfate.
以上挙げた中でも、好ましいフッ素化オキソ酸塩は、フルオロスルホン酸リチウム、トリフルオロメタンスルホン酸リチウム、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムである。これらは安定な界面保護被膜を形成するからである。
Among these, preferred fluorinated oxoacid salts are lithium fluorosulfonate, lithium trifluoromethanesulfonate, lithium monofluorophosphate, and lithium difluorophosphate. This is because a stable interface protective film is formed.
フッ素化オキソ酸塩は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化オキソ酸塩の配合量は、非水電解液100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下である。この範囲内であれば、本発明2の非水二次電池の効果に加えて、電池が十分なサイクル特性向上効果を発現しやすい。また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
The fluorinated oxoacid salts may be used alone or in combination of two or more in any combination and ratio. The blending amount of the fluorinated oxoacid salt is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass or more in 100% by mass of the non-aqueous electrolyte. Moreover, it is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. Within this range, in addition to the effect of the nonaqueous secondary battery of the second aspect, the battery is likely to exhibit a sufficient cycle characteristic improving effect. In addition, it is easy to avoid a situation in which the high-temperature storage characteristics are reduced, the amount of gas generated is increased, and the discharge capacity maintenance rate is reduced.
<ニトリル化合物>
上記ニトリル化合物は、分子内にニトリル基を有している化合物であれば特にその種類は限定されない。少なくとも2つのニトリル基を有する化合物が好ましい。 <Nitrile compound>
The nitrile compound is not particularly limited as long as it is a compound having a nitrile group in the molecule. Compounds having at least two nitrile groups are preferred.
上記ニトリル化合物は、分子内にニトリル基を有している化合物であれば特にその種類は限定されない。少なくとも2つのニトリル基を有する化合物が好ましい。 <Nitrile compound>
The nitrile compound is not particularly limited as long as it is a compound having a nitrile group in the molecule. Compounds having at least two nitrile groups are preferred.
ニトリル化合物の具体例としては、例えば、
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2-メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3-メチルクロトノニトリル、2-メチル-2-ブテン二トリル、2-ペンテンニトリル、2-メチル-2-ペンテンニトリル、3-メチル-2-ペンテンニトリル、2-ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2-フルオロプロピオニトリル、3-フルオロプロピオニトリル、2,2-ジフルオロプロピオニトリル、2,3-ジフルオロプロピオニトリル、3,3-ジフルオロプロピオニトリル、2,2,3-トリフルオロプロピオニトリル、3,3,3-トリフルオロプロピオニトリル、3,3’-オキシジプロピオニトリル、3,3’-チオジプロピオニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のニトリル基を1つ有する化合物; Specific examples of nitrile compounds include, for example,
Acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, lauronitrile, 2-methylbutyronitrile, trimethylacetonitrile, hexanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, acrylonitrile, methacrylonitrile Crotononitrile, 3-methylcrotononitrile, 2-methyl-2-butenenitryl, 2-pentenenitrile, 2-methyl-2-pentenenitrile, 3-methyl-2-pentenenitrile, 2-hexenenitrile, Fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, 2-fluoropropionitrile, 3-fluoropropionitrile, 2,2-difluoropropionitrile, 2,3-diph Oropropionitrile, 3,3-difluoropropionitrile, 2,2,3-trifluoropropionitrile, 3,3,3-trifluoropropionitrile, 3,3'-oxydipropionitrile, 3,3 ' Compounds having one nitrile group such as thiodipropionitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, pentafluoropropionitrile;
アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2-メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3-メチルクロトノニトリル、2-メチル-2-ブテン二トリル、2-ペンテンニトリル、2-メチル-2-ペンテンニトリル、3-メチル-2-ペンテンニトリル、2-ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2-フルオロプロピオニトリル、3-フルオロプロピオニトリル、2,2-ジフルオロプロピオニトリル、2,3-ジフルオロプロピオニトリル、3,3-ジフルオロプロピオニトリル、2,2,3-トリフルオロプロピオニトリル、3,3,3-トリフルオロプロピオニトリル、3,3’-オキシジプロピオニトリル、3,3’-チオジプロピオニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のニトリル基を1つ有する化合物; Specific examples of nitrile compounds include, for example,
Acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, lauronitrile, 2-methylbutyronitrile, trimethylacetonitrile, hexanenitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, acrylonitrile, methacrylonitrile Crotononitrile, 3-methylcrotononitrile, 2-methyl-2-butenenitryl, 2-pentenenitrile, 2-methyl-2-pentenenitrile, 3-methyl-2-pentenenitrile, 2-hexenenitrile, Fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, 2-fluoropropionitrile, 3-fluoropropionitrile, 2,2-difluoropropionitrile, 2,3-diph Oropropionitrile, 3,3-difluoropropionitrile, 2,2,3-trifluoropropionitrile, 3,3,3-trifluoropropionitrile, 3,3'-oxydipropionitrile, 3,3 ' Compounds having one nitrile group such as thiodipropionitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, pentafluoropropionitrile;
マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert-ブチルマロノニトリル、メチルスクシノニトリル、2,2-ジメチルスクシノニトリル、2,3-ジメチルスクシノニトリル、2,3,3-トリメチルスクシノニトリル、2,2,3,3-テトラメチルスクシノニトリル、2,3-ジエチル-2,3-ジメチルスクシノニトリル、2,2-ジエチル-3,3-ジメチルスクシノニトリル、ビシクロヘキシル-1,1-ジカルボニトリル、ビシクロヘキシル-2,2-ジカルボニトリル、ビシクロヘキシル-3,3-ジカルボニトリル、2,5-ジメチル-2,5-ヘキサンジカルボニトリル、2,3-ジイソブチル-2,3-ジメチルスクシノニトリル、2,2-ジイソブチル-3,3-ジメチルスクシノニトリル、2-メチルグルタロニトリル、2,3-ジメチルグルタロニトリル、2,4-ジメチルグルタロニトリル、2,2,3,3-テトラメチルグルタロニトリル、2,2,4,4-テトラメチルグルタロニトリル、2,2,3,4-テトラメチルグルタロニトリル、2,3,3,4-テトラメチルグルタロニトリル、マレオニトリル、フマロニトリル、1,4-ジシアノペンタン、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン、1,2-ジジアノベンゼン、1,3-ジシアノベンゼン、1,4-ジシアノベンゼン、3,3’-(エチレンジオキシ)ジプロピオニトリル、3,3’-(エチレンジチオ)ジプロピオニトリル、3,9-ビス(2-シアノエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等のニトリル基を2つ有する化合物;
シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン、トリシアノエチレン、ペンタントリカルボニトリル、プロパントリカルボニトリル、ヘプタントリカルボニトリル等のニトリル基を3つ有する化合物;
等が挙げられる。 Malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, methylmalononitrile, ethylmalononitrile, isopropylmalononitrile, tert-butylmalononitrile, methylsuccinonitrile 2,2-dimethylsuccinonitrile, 2,3-dimethylsuccinonitrile, 2,3,3-trimethylsuccinonitrile, 2,2,3,3-tetramethylsuccinonitrile, 2,3-diethyl- 2,3-dimethylsuccinonitrile, 2,2-diethyl-3,3-dimethylsuccinonitrile, bicyclohexyl-1,1-dicarbonitrile, bicyclohexyl-2,2-dicarbonitrile, bicyclohexyl- , 3-dicarbonitrile, 2,5-dimethyl-2,5-hexanedicarbonitrile, 2,3-diisobutyl-2,3-dimethylsuccinonitrile, 2,2-diisobutyl-3,3-dimethylsuccino Nitrile, 2-methylglutaronitrile, 2,3-dimethylglutaronitrile, 2,4-dimethylglutaronitrile, 2,2,3,3-tetramethylglutaronitrile, 2,2,4,4-tetra Methylglutaronitrile, 2,2,3,4-tetramethylglutaronitrile, 2,3,3,4-tetramethylglutaronitrile, maleonitrile, fumaronitrile, 1,4-dicyanopentane, 2,6-dicyanoheptane 2,7-dicyanooctane, 2,8-dicyanononane, 1,6-dicyanodecane, 1,2-didianobenzene, 1,3-disi Nobenzene, 1,4-dicyanobenzene, 3,3 ′-(ethylenedioxy) dipropionitrile, 3,3 ′-(ethylenedithio) dipropionitrile, 3,9-bis (2-cyanoethyl) -2,4 , 8,10-tetraoxaspiro [5,5] undecane and other compounds having two nitrile groups;
Compounds having three nitrile groups such as cyclohexanetricarbonitrile, triscyanoethylamine, triscyanoethoxypropane, tricyanoethylene, pentanetricarbonitrile, propanetricarbonitrile, heptanetricarbonitrile;
Etc.
シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン、トリシアノエチレン、ペンタントリカルボニトリル、プロパントリカルボニトリル、ヘプタントリカルボニトリル等のニトリル基を3つ有する化合物;
等が挙げられる。 Malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, methylmalononitrile, ethylmalononitrile, isopropylmalononitrile, tert-butylmalononitrile, methylsuccinonitrile 2,2-dimethylsuccinonitrile, 2,3-dimethylsuccinonitrile, 2,3,3-trimethylsuccinonitrile, 2,2,3,3-tetramethylsuccinonitrile, 2,3-diethyl- 2,3-dimethylsuccinonitrile, 2,2-diethyl-3,3-dimethylsuccinonitrile, bicyclohexyl-1,1-dicarbonitrile, bicyclohexyl-2,2-dicarbonitrile, bicyclohexyl- , 3-dicarbonitrile, 2,5-dimethyl-2,5-hexanedicarbonitrile, 2,3-diisobutyl-2,3-dimethylsuccinonitrile, 2,2-diisobutyl-3,3-dimethylsuccino Nitrile, 2-methylglutaronitrile, 2,3-dimethylglutaronitrile, 2,4-dimethylglutaronitrile, 2,2,3,3-tetramethylglutaronitrile, 2,2,4,4-tetra Methylglutaronitrile, 2,2,3,4-tetramethylglutaronitrile, 2,3,3,4-tetramethylglutaronitrile, maleonitrile, fumaronitrile, 1,4-dicyanopentane, 2,6-dicyanoheptane 2,7-dicyanooctane, 2,8-dicyanononane, 1,6-dicyanodecane, 1,2-didianobenzene, 1,3-disi Nobenzene, 1,4-dicyanobenzene, 3,3 ′-(ethylenedioxy) dipropionitrile, 3,3 ′-(ethylenedithio) dipropionitrile, 3,9-bis (2-cyanoethyl) -2,4 , 8,10-tetraoxaspiro [5,5] undecane and other compounds having two nitrile groups;
Compounds having three nitrile groups such as cyclohexanetricarbonitrile, triscyanoethylamine, triscyanoethoxypropane, tricyanoethylene, pentanetricarbonitrile, propanetricarbonitrile, heptanetricarbonitrile;
Etc.
これらのうち、ラウロニトリル、クロトノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、フマロニトリル、3,9-ビス(2-シアノエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンが保存特性向上の点から好ましい。
Of these, lauronitrile, crotononitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, fumaronitrile, 3,9-bis (2-cyanoethyl)- 2,4,8,10-Tetraoxaspiro [5,5] undecane is preferred from the viewpoint of improving storage characteristics.
また、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、フマロニトリル、3,9-ビス(2-シアノエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等のニトリル基を2つ有する化合物がより好ましく、
スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリルがさらに好ましい。 In addition, succinonitrile, glutaronitrile, adiponitrile, pimonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, fumaronitrile, 3,9-bis (2-cyanoethyl) -2,4,8,10-tetra A compound having two nitrile groups such as oxaspiro [5,5] undecane is more preferable,
More preferred are succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, suberonitrile, azeronitrile, and sebaconitrile.
スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリルがさらに好ましい。 In addition, succinonitrile, glutaronitrile, adiponitrile, pimonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, fumaronitrile, 3,9-bis (2-cyanoethyl) -2,4,8,10-tetra A compound having two nitrile groups such as oxaspiro [5,5] undecane is more preferable,
More preferred are succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, suberonitrile, azeronitrile, and sebaconitrile.
ニトリル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。非水電解液中のニトリル化合物の含有量は、非水電解液全体(100質量%)に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。上記範囲を満たした場合は、本発明2の非水二次電池の効果に加えて、電池の出力特性、負荷特性、低温特性、サイクル特性等が向上する。
A nitrile compound may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. The content of the nitrile compound in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass relative to the whole nonaqueous electrolytic solution (100% by mass). It is at least mass%, more preferably at least 0.3 mass%, and usually at most 10 mass%, preferably at most 5 mass%, more preferably at most 3 mass%. When the above range is satisfied, the output characteristics, load characteristics, low temperature characteristics, cycle characteristics and the like of the battery are improved in addition to the effects of the nonaqueous secondary battery of the second aspect.
<芳香族化合物>
上記芳香族化合物は、芳香族基を有する化合物であれば特に制限はない。その具体例としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族含有炭化水素;
メチルフェニルカーボネート、エチルフェニルカーボネート、n-プロピルフェニルカーボネート、i-プロピルフェニルカーボネート、n-ブチルフェニルカーボネート、i-ブチルフェニルカーボネート、sec-ブチルフェニルカーボネート、t-ブチルフェニルカーボネート、n-ペンチルフェニルカーボネート、t-アミルフェニルカーボネート、(1,1-ジメチルブチル)フェニルカーボネート、ジフェニルカーボネート等の芳香族含有炭酸エステルが挙げられる。 <Aromatic compounds>
The aromatic compound is not particularly limited as long as it is a compound having an aromatic group. Specific examples thereof include aromatic hydrocarbons such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran;
Methyl phenyl carbonate, ethyl phenyl carbonate, n-propyl phenyl carbonate, i-propyl phenyl carbonate, n-butyl phenyl carbonate, i-butyl phenyl carbonate, sec-butyl phenyl carbonate, t-butyl phenyl carbonate, n-pentyl phenyl carbonate, Examples thereof include aromatic carbonates such as t-amylphenyl carbonate, (1,1-dimethylbutyl) phenyl carbonate, and diphenyl carbonate.
上記芳香族化合物は、芳香族基を有する化合物であれば特に制限はない。その具体例としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族含有炭化水素;
メチルフェニルカーボネート、エチルフェニルカーボネート、n-プロピルフェニルカーボネート、i-プロピルフェニルカーボネート、n-ブチルフェニルカーボネート、i-ブチルフェニルカーボネート、sec-ブチルフェニルカーボネート、t-ブチルフェニルカーボネート、n-ペンチルフェニルカーボネート、t-アミルフェニルカーボネート、(1,1-ジメチルブチル)フェニルカーボネート、ジフェニルカーボネート等の芳香族含有炭酸エステルが挙げられる。 <Aromatic compounds>
The aromatic compound is not particularly limited as long as it is a compound having an aromatic group. Specific examples thereof include aromatic hydrocarbons such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran;
Methyl phenyl carbonate, ethyl phenyl carbonate, n-propyl phenyl carbonate, i-propyl phenyl carbonate, n-butyl phenyl carbonate, i-butyl phenyl carbonate, sec-butyl phenyl carbonate, t-butyl phenyl carbonate, n-pentyl phenyl carbonate, Examples thereof include aromatic carbonates such as t-amylphenyl carbonate, (1,1-dimethylbutyl) phenyl carbonate, and diphenyl carbonate.
これらの中でも、好ましい芳香族化合物は、t-ブチルベンゼン、t-アミルベンゼン、メチルフェニルカーボネート、エチルフェニルカーボネート、n-プロピルフェニルカーボネート、n-ブチルフェニルカーボネート、ジフェニルカーボネートである。これらを使用すると、活性なベンジル水素がないため正極における副反応が抑えられるからである。
Among these, preferred aromatic compounds are t-butylbenzene, t-amylbenzene, methylphenyl carbonate, ethylphenyl carbonate, n-propylphenyl carbonate, n-butylphenyl carbonate, and diphenyl carbonate. This is because when these are used, side reactions at the positive electrode are suppressed because there is no active benzyl hydrogen.
芳香族化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。非水電解液中の芳香族化合物の含有量は、非水電解液全体(100質量%)に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更により好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。
An aromatic compound may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. The content of the aromatic compound in the non-aqueous electrolyte is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.001% by mass or more with respect to the whole non-aqueous electrolyte (100% by mass). 1% by mass or more, still more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
上記範囲を満たした場合は、本発明2の非水二次電池の効果に加えて、電池の出力特性、負荷特性、低温特性、サイクル特性等が向上する。
When the above range is satisfied, in addition to the effect of the non-aqueous secondary battery of the present invention 2, the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, etc. of the battery are improved.
<ホスホン酸エステル化合物>
上記ホスホン酸エステル化合物に特に制限はないが、具体的には
トリメチルホスホノフォルメート、
メチルジエチルホスホノフォルメート、
メチルジプロピルホスホノフォルメート、
メチルジブチルホスホノフォルメート、
トリエチルホスホノフォルメート、
エチルジメチルホスホノフォルメート、
エチルジプロピルホスホノフォルメート、
エチルジブチルホスホノフォルメート、
トリプロピルホスホノフォルメート、
プロピルジメチルホスホノフォルメート、
プロピルジエチルホスホノフォルメート、
プロピルジブチルホスホノフォルメート、
トリブチルホスホノフォルメート、
ブチルジメチルホスホノフォルメート、
ブチルジエチルホスホノフォルメート、
ブチルジプロピルホスホノフォルメート、
メチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、
エチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、
プロピルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、
ブチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート等
トリメチルホスホノアセテート、
メチルジエチルホスホノアセテート、
メチルジプロピルホスホノアセテート、
メチルジブチルホスホノアセテート、
トリエチルホスホノアセテート、
エチルジメチルホスホノアセテート、
エチルジプロピルホスホノアセテート、
エチルジブチルホスホノアセテート、
トリプロピルホスホノアセテート、
プロピルジメチルホスホノアセテート、
プロピルジエチルホスホノアセテート、
プロピルジブチルホスホノアセテート、
トリブチルホスホノアセテート、
ブチルジメチルホスホノアセテート、
ブチルジエチルホスホノアセテート、
ブチルジプロピルホスホノアセテート、
メチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
エチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
プロピルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
ブチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート
トリメチル-3-ホスホノプロピオネート、
メチルジエチル-3-ホスホノプロピオネート、
メチルジプロピル-3-ホスホノプロピオネート、
メチルジブチル-3-ホスホノプロピオネート、
トリエチル-3-ホスホノプロピオネート、
エチルジメチル-3-ホスホノプロピオネート、
エチルジプロピル-3-ホスホノプロピオネート、
エチルジブチル-3-ホスホノプロピオネート、
トリプロピル-3-ホスホノプロピオネート、
プロピルジメチル-3-ホスホノプロピオネート、
プロピルジエチル-3-ホスホノプロピオネート、
プロピルジブチル-3-ホスホノプロピオネート、
トリブチル-3-ホスホノプロピオネート、
ブチルジメチル-3-ホスホノプロピオネート、
ブチルジエチル-3-ホスホノプロピオネート、
ブチルジプロピル-3-ホスホノプロピオネート、
メチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、
エチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、
プロピルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、
ブチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、
トリメチル-4-ホスホノブチレート、
メチルジエチル-4-ホスホノブチレート、
メチルジプロピル-4-ホスホノブチレート、
メチルジブチル-4-ホスホノブチレート、
トリエチル-4-ホスホノブチレート、
エチルジメチル-4-ホスホノブチレート、
エチルジプロピル-4-ホスホノブチレート、
エチルジブチル-4-ホスホノブチレート、
トリプロピル-4-ホスホノブチレート、
プロピルジメチル-4-ホスホノブチレート、
プロピルジエチル-4-ホスホノブチレート、
プロピルジブチル-4-ホスホノブチレート、
トリブチル-4-ホスホノブチレート、
ブチルジメチル-4-ホスホノブチレート、
ブチルジエチル-4-ホスホノブチレート、
ブチルジプロピル-4-ホスホノブチレート、
2-プロピニル2-(ジメトキシホスホリル)アセテート、2-プロピニル-2-(ジエトキシホスホリル)アセテート、2-プロピニル-2-(ジフェノキシホスホリル)アセテート、2-プロピニル-2-(ジエトキシホスホリル)-2-フルオロアセテート、2-プロピニル-3-(ジエトキシホスホリル)プロパノエート、1-メチル-2-プロピニル-2-(ジエトキシホスホリル)アセテート、1,1-ジメチル-2-プロピニル-2-(ジエトキシホスホリル)アセテート、2-トリフルオロメチルフェニル-2-(ジエトキシホスホリル)アセテート、4-トリフルオロメチルフェニル-2-(ジエトキシホスホリル)アセテート、メチル-2-(2-オキシド-1,3,2-ジオキサホスホラン-2-イル)アセテート、2-(2-(ジエトキシホスホリル)アセトキシ)エチルメチルオギザレート、2-ブチン-1,4-ジイルビス(2-(ジエトキシホスホリル)アセテート)、及び2-シアノエチル-2-(ジエトキシホスホリル)アセテートが挙げられる。 <Phosphonate compounds>
The phosphonate compound is not particularly limited, and specifically, trimethylphosphonoformate,
Methyl diethylphosphonoformate,
Methyldipropylphosphonoformate,
Methyldibutylphosphonoformate,
Triethylphosphonoformate,
Ethyldimethylphosphonoformate,
Ethyldipropylphosphonoformate,
Ethyldibutylphosphonoformate,
Tripropylphosphonoformate,
Propyldimethylphosphonoformate,
Propyl diethylphosphonoformate,
Propyldibutylphosphonoformate,
Tributylphosphonoformate,
Butyldimethylphosphonoformate,
Butyl diethylphosphonoformate,
Butyl dipropyl phosphonoformate,
Methylbis (2,2,2-trifluoroethyl) phosphonoformate,
Ethylbis (2,2,2-trifluoroethyl) phosphonoformate,
Propylbis (2,2,2-trifluoroethyl) phosphonoformate,
Trimethylphosphonoacetate such as butylbis (2,2,2-trifluoroethyl) phosphonoformate,
Methyl diethylphosphonoacetate,
Methyldipropylphosphonoacetate,
Methyldibutylphosphonoacetate,
Triethylphosphonoacetate,
Ethyldimethylphosphonoacetate,
Ethyldipropylphosphonoacetate,
Ethyl dibutylphosphonoacetate,
Tripropylphosphonoacetate,
Propyldimethylphosphonoacetate,
Propyl diethylphosphonoacetate,
Propyl dibutyl phosphonoacetate,
Tributylphosphonoacetate,
Butyldimethylphosphonoacetate,
Butyl diethylphosphonoacetate,
Butyl dipropyl phosphonoacetate,
Methylbis (2,2,2-trifluoroethyl) phosphonoacetate,
Ethyl bis (2,2,2-trifluoroethyl) phosphonoacetate,
Propylbis (2,2,2-trifluoroethyl) phosphonoacetate,
Butyl bis (2,2,2-trifluoroethyl) phosphonoacetate trimethyl-3-phosphonopropionate,
Methyldiethyl-3-phosphonopropionate,
Methyldipropyl-3-phosphonopropionate,
Methyldibutyl-3-phosphonopropionate,
Triethyl-3-phosphonopropionate,
Ethyldimethyl-3-phosphonopropionate,
Ethyldipropyl-3-phosphonopropionate,
Ethyldibutyl-3-phosphonopropionate,
Tripropyl-3-phosphonopropionate,
Propyldimethyl-3-phosphonopropionate,
Propyl diethyl-3-phosphonopropionate,
Propyldibutyl-3-phosphonopropionate,
Tributyl-3-phosphonopropionate,
Butyldimethyl-3-phosphonopropionate,
Butyl diethyl-3-phosphonopropionate,
Butyldipropyl-3-phosphonopropionate,
Methyl bis (2,2,2-trifluoroethyl) -3-phosphonopropionate,
Ethyl bis (2,2,2-trifluoroethyl) -3-phosphonopropionate,
Propyl bis (2,2,2-trifluoroethyl) -3-phosphonopropionate,
Butyl bis (2,2,2-trifluoroethyl) -3-phosphonopropionate,
Trimethyl-4-phosphonobutyrate,
Methyldiethyl-4-phosphonobutyrate,
Methyldipropyl-4-phosphonobutyrate,
Methyldibutyl-4-phosphonobutyrate,
Triethyl-4-phosphonobutyrate,
Ethyldimethyl-4-phosphonobutyrate,
Ethyldipropyl-4-phosphonobutyrate,
Ethyldibutyl-4-phosphonobutyrate,
Tripropyl-4-phosphonobutyrate,
Propyldimethyl-4-phosphonobutyrate,
Propyldiethyl-4-phosphonobutyrate,
Propyldibutyl-4-phosphonobutyrate,
Tributyl-4-phosphonobutyrate,
Butyldimethyl-4-phosphonobutyrate,
Butyldiethyl-4-phosphonobutyrate,
Butyldipropyl-4-phosphonobutyrate,
2-propynyl 2- (dimethoxyphosphoryl) acetate, 2-propynyl-2- (diethoxyphosphoryl) acetate, 2-propynyl-2- (diphenoxyphosphoryl) acetate, 2-propynyl-2- (diethoxyphosphoryl) -2 -Fluoroacetate, 2-propynyl-3- (diethoxyphosphoryl) propanoate, 1-methyl-2-propynyl-2- (diethoxyphosphoryl) acetate, 1,1-dimethyl-2-propynyl-2- (diethoxyphosphoryl) ) Acetate, 2-trifluoromethylphenyl-2- (diethoxyphosphoryl) acetate, 4-trifluoromethylphenyl-2- (diethoxyphosphoryl) acetate, methyl-2- (2-oxide-1,3,2- Dioxaphosphoran-2-yl) acetate, -(2- (diethoxyphosphoryl) acetoxy) ethyl methyl oxalate, 2-butyne-1,4-diylbis (2- (diethoxyphosphoryl) acetate), and 2-cyanoethyl-2- (diethoxyphosphoryl) acetate Is mentioned.
上記ホスホン酸エステル化合物に特に制限はないが、具体的には
トリメチルホスホノフォルメート、
メチルジエチルホスホノフォルメート、
メチルジプロピルホスホノフォルメート、
メチルジブチルホスホノフォルメート、
トリエチルホスホノフォルメート、
エチルジメチルホスホノフォルメート、
エチルジプロピルホスホノフォルメート、
エチルジブチルホスホノフォルメート、
トリプロピルホスホノフォルメート、
プロピルジメチルホスホノフォルメート、
プロピルジエチルホスホノフォルメート、
プロピルジブチルホスホノフォルメート、
トリブチルホスホノフォルメート、
ブチルジメチルホスホノフォルメート、
ブチルジエチルホスホノフォルメート、
ブチルジプロピルホスホノフォルメート、
メチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、
エチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、
プロピルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート、
ブチルビス(2,2,2-トリフルオロエチル)ホスホノフォルメート等
トリメチルホスホノアセテート、
メチルジエチルホスホノアセテート、
メチルジプロピルホスホノアセテート、
メチルジブチルホスホノアセテート、
トリエチルホスホノアセテート、
エチルジメチルホスホノアセテート、
エチルジプロピルホスホノアセテート、
エチルジブチルホスホノアセテート、
トリプロピルホスホノアセテート、
プロピルジメチルホスホノアセテート、
プロピルジエチルホスホノアセテート、
プロピルジブチルホスホノアセテート、
トリブチルホスホノアセテート、
ブチルジメチルホスホノアセテート、
ブチルジエチルホスホノアセテート、
ブチルジプロピルホスホノアセテート、
メチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
エチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
プロピルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
ブチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート
トリメチル-3-ホスホノプロピオネート、
メチルジエチル-3-ホスホノプロピオネート、
メチルジプロピル-3-ホスホノプロピオネート、
メチルジブチル-3-ホスホノプロピオネート、
トリエチル-3-ホスホノプロピオネート、
エチルジメチル-3-ホスホノプロピオネート、
エチルジプロピル-3-ホスホノプロピオネート、
エチルジブチル-3-ホスホノプロピオネート、
トリプロピル-3-ホスホノプロピオネート、
プロピルジメチル-3-ホスホノプロピオネート、
プロピルジエチル-3-ホスホノプロピオネート、
プロピルジブチル-3-ホスホノプロピオネート、
トリブチル-3-ホスホノプロピオネート、
ブチルジメチル-3-ホスホノプロピオネート、
ブチルジエチル-3-ホスホノプロピオネート、
ブチルジプロピル-3-ホスホノプロピオネート、
メチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、
エチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、
プロピルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、
ブチルビス(2,2,2-トリフルオロエチル)-3-ホスホノプロピオネート、
トリメチル-4-ホスホノブチレート、
メチルジエチル-4-ホスホノブチレート、
メチルジプロピル-4-ホスホノブチレート、
メチルジブチル-4-ホスホノブチレート、
トリエチル-4-ホスホノブチレート、
エチルジメチル-4-ホスホノブチレート、
エチルジプロピル-4-ホスホノブチレート、
エチルジブチル-4-ホスホノブチレート、
トリプロピル-4-ホスホノブチレート、
プロピルジメチル-4-ホスホノブチレート、
プロピルジエチル-4-ホスホノブチレート、
プロピルジブチル-4-ホスホノブチレート、
トリブチル-4-ホスホノブチレート、
ブチルジメチル-4-ホスホノブチレート、
ブチルジエチル-4-ホスホノブチレート、
ブチルジプロピル-4-ホスホノブチレート、
2-プロピニル2-(ジメトキシホスホリル)アセテート、2-プロピニル-2-(ジエトキシホスホリル)アセテート、2-プロピニル-2-(ジフェノキシホスホリル)アセテート、2-プロピニル-2-(ジエトキシホスホリル)-2-フルオロアセテート、2-プロピニル-3-(ジエトキシホスホリル)プロパノエート、1-メチル-2-プロピニル-2-(ジエトキシホスホリル)アセテート、1,1-ジメチル-2-プロピニル-2-(ジエトキシホスホリル)アセテート、2-トリフルオロメチルフェニル-2-(ジエトキシホスホリル)アセテート、4-トリフルオロメチルフェニル-2-(ジエトキシホスホリル)アセテート、メチル-2-(2-オキシド-1,3,2-ジオキサホスホラン-2-イル)アセテート、2-(2-(ジエトキシホスホリル)アセトキシ)エチルメチルオギザレート、2-ブチン-1,4-ジイルビス(2-(ジエトキシホスホリル)アセテート)、及び2-シアノエチル-2-(ジエトキシホスホリル)アセテートが挙げられる。 <Phosphonate compounds>
The phosphonate compound is not particularly limited, and specifically, trimethylphosphonoformate,
Methyl diethylphosphonoformate,
Methyldipropylphosphonoformate,
Methyldibutylphosphonoformate,
Triethylphosphonoformate,
Ethyldimethylphosphonoformate,
Ethyldipropylphosphonoformate,
Ethyldibutylphosphonoformate,
Tripropylphosphonoformate,
Propyldimethylphosphonoformate,
Propyl diethylphosphonoformate,
Propyldibutylphosphonoformate,
Tributylphosphonoformate,
Butyldimethylphosphonoformate,
Butyl diethylphosphonoformate,
Butyl dipropyl phosphonoformate,
Methylbis (2,2,2-trifluoroethyl) phosphonoformate,
Ethylbis (2,2,2-trifluoroethyl) phosphonoformate,
Propylbis (2,2,2-trifluoroethyl) phosphonoformate,
Trimethylphosphonoacetate such as butylbis (2,2,2-trifluoroethyl) phosphonoformate,
Methyl diethylphosphonoacetate,
Methyldipropylphosphonoacetate,
Methyldibutylphosphonoacetate,
Triethylphosphonoacetate,
Ethyldimethylphosphonoacetate,
Ethyldipropylphosphonoacetate,
Ethyl dibutylphosphonoacetate,
Tripropylphosphonoacetate,
Propyldimethylphosphonoacetate,
Propyl diethylphosphonoacetate,
Propyl dibutyl phosphonoacetate,
Tributylphosphonoacetate,
Butyldimethylphosphonoacetate,
Butyl diethylphosphonoacetate,
Butyl dipropyl phosphonoacetate,
Methylbis (2,2,2-trifluoroethyl) phosphonoacetate,
Ethyl bis (2,2,2-trifluoroethyl) phosphonoacetate,
Propylbis (2,2,2-trifluoroethyl) phosphonoacetate,
Butyl bis (2,2,2-trifluoroethyl) phosphonoacetate trimethyl-3-phosphonopropionate,
Methyldiethyl-3-phosphonopropionate,
Methyldipropyl-3-phosphonopropionate,
Methyldibutyl-3-phosphonopropionate,
Triethyl-3-phosphonopropionate,
Ethyldimethyl-3-phosphonopropionate,
Ethyldipropyl-3-phosphonopropionate,
Ethyldibutyl-3-phosphonopropionate,
Tripropyl-3-phosphonopropionate,
Propyldimethyl-3-phosphonopropionate,
Propyl diethyl-3-phosphonopropionate,
Propyldibutyl-3-phosphonopropionate,
Tributyl-3-phosphonopropionate,
Butyldimethyl-3-phosphonopropionate,
Butyl diethyl-3-phosphonopropionate,
Butyldipropyl-3-phosphonopropionate,
Methyl bis (2,2,2-trifluoroethyl) -3-phosphonopropionate,
Ethyl bis (2,2,2-trifluoroethyl) -3-phosphonopropionate,
Propyl bis (2,2,2-trifluoroethyl) -3-phosphonopropionate,
Butyl bis (2,2,2-trifluoroethyl) -3-phosphonopropionate,
Trimethyl-4-phosphonobutyrate,
Methyldiethyl-4-phosphonobutyrate,
Methyldipropyl-4-phosphonobutyrate,
Methyldibutyl-4-phosphonobutyrate,
Triethyl-4-phosphonobutyrate,
Ethyldimethyl-4-phosphonobutyrate,
Ethyldipropyl-4-phosphonobutyrate,
Ethyldibutyl-4-phosphonobutyrate,
Tripropyl-4-phosphonobutyrate,
Propyldimethyl-4-phosphonobutyrate,
Propyldiethyl-4-phosphonobutyrate,
Propyldibutyl-4-phosphonobutyrate,
Tributyl-4-phosphonobutyrate,
Butyldimethyl-4-phosphonobutyrate,
Butyldiethyl-4-phosphonobutyrate,
Butyldipropyl-4-phosphonobutyrate,
2-propynyl 2- (dimethoxyphosphoryl) acetate, 2-propynyl-2- (diethoxyphosphoryl) acetate, 2-propynyl-2- (diphenoxyphosphoryl) acetate, 2-propynyl-2- (diethoxyphosphoryl) -2 -Fluoroacetate, 2-propynyl-3- (diethoxyphosphoryl) propanoate, 1-methyl-2-propynyl-2- (diethoxyphosphoryl) acetate, 1,1-dimethyl-2-propynyl-2- (diethoxyphosphoryl) ) Acetate, 2-trifluoromethylphenyl-2- (diethoxyphosphoryl) acetate, 4-trifluoromethylphenyl-2- (diethoxyphosphoryl) acetate, methyl-2- (2-oxide-1,3,2- Dioxaphosphoran-2-yl) acetate, -(2- (diethoxyphosphoryl) acetoxy) ethyl methyl oxalate, 2-butyne-1,4-diylbis (2- (diethoxyphosphoryl) acetate), and 2-cyanoethyl-2- (diethoxyphosphoryl) acetate Is mentioned.
これらの中でも、好ましいホスホン酸エステル化合物は、トリメチルホスホノアセテート、
メチルジエチルホスホノアセテート、
メチルジプロピルホスホノアセテート、
メチルジブチルホスホノアセテート、
トリエチルホスホノアセテート、
エチルジメチルホスホノアセテート、
エチルジプロピルホスホノアセテート、
エチルジブチルホスホノアセテート、
トリプロピルホスホノアセテート、
プロピルジメチルホスホノアセテート、
プロピルジエチルホスホノアセテート、
プロピルジブチルホスホノアセテート、
トリブチルホスホノアセテート、
ブチルジメチルホスホノアセテート、
ブチルジエチルホスホノアセテート、
ブチルジプロピルホスホノアセテート、
メチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
エチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
プロピルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
ブチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、2-プロピニル-2-(ジメトキシホスホリル)アセテート、2-プロピニル-2-(ジエトキシホスホリル)アセテート、2-プロピニル-2-(ジフェノキシホスホリル)アセテート、2-プロピニル-2-(ジエトキシホスホリル)-2-フルオロアセテート、2-プロピニル-3-(ジエトキシホスホリル)プロパノエート、1-メチル-2-プロピニル-2-(ジエトキシホスホリル)アセテート、1,1-ジメチル-2-プロピニル-2-(ジエトキシホスホリル)アセテート、2-トリフルオロメチルフェニル-2-(ジエトキシホスホリル)アセテート、4-トリフルオロメチルフェニル-2-(ジエトキシホスホリル)アセテート、メチル-2-(2-オキシド-1,3,2-ジオキサホスホラン-2-イル)アセテート、2-(2-(ジエトキシホスホリル)アセトキシ)エチルメチルオギザレート、2-ブチン-1,4-ジイルビス(2-(ジエトキシホスホリル)アセテート)、及び2-シアノエチル-2-(ジエトキシホスホリル)アセテートである。これらはキレート配位しやすい構造であるため、正極に対する保護作用が強いからである。 Among these, preferred phosphonate compounds are trimethylphosphonoacetate,
Methyl diethylphosphonoacetate,
Methyldipropylphosphonoacetate,
Methyldibutylphosphonoacetate,
Triethylphosphonoacetate,
Ethyldimethylphosphonoacetate,
Ethyldipropylphosphonoacetate,
Ethyl dibutylphosphonoacetate,
Tripropylphosphonoacetate,
Propyldimethylphosphonoacetate,
Propyl diethylphosphonoacetate,
Propyl dibutyl phosphonoacetate,
Tributylphosphonoacetate,
Butyldimethylphosphonoacetate,
Butyl diethylphosphonoacetate,
Butyl dipropyl phosphonoacetate,
Methylbis (2,2,2-trifluoroethyl) phosphonoacetate,
Ethyl bis (2,2,2-trifluoroethyl) phosphonoacetate,
Propylbis (2,2,2-trifluoroethyl) phosphonoacetate,
Butylbis (2,2,2-trifluoroethyl) phosphonoacetate, 2-propynyl-2- (dimethoxyphosphoryl) acetate, 2-propynyl-2- (diethoxyphosphoryl) acetate, 2-propynyl-2- (diphenoxy) Phosphoryl) acetate, 2-propynyl-2- (diethoxyphosphoryl) -2-fluoroacetate, 2-propynyl-3- (diethoxyphosphoryl) propanoate, 1-methyl-2-propynyl-2- (diethoxyphosphoryl) acetate 1,1-dimethyl-2-propynyl-2- (diethoxyphosphoryl) acetate, 2-trifluoromethylphenyl-2- (diethoxyphosphoryl) acetate, 4-trifluoromethylphenyl-2- (diethoxyphosphoryl) Acetate, methyl-2- (2 Oxide-1,3,2-dioxaphosphoran-2-yl) acetate, 2- (2- (diethoxyphosphoryl) acetoxy) ethyl methyl oxalate, 2-butyne-1,4-diylbis (2- ( Diethoxyphosphoryl) acetate), and 2-cyanoethyl-2- (diethoxyphosphoryl) acetate. This is because these have a structure that facilitates chelate coordination, and thus have a strong protective effect on the positive electrode.
メチルジエチルホスホノアセテート、
メチルジプロピルホスホノアセテート、
メチルジブチルホスホノアセテート、
トリエチルホスホノアセテート、
エチルジメチルホスホノアセテート、
エチルジプロピルホスホノアセテート、
エチルジブチルホスホノアセテート、
トリプロピルホスホノアセテート、
プロピルジメチルホスホノアセテート、
プロピルジエチルホスホノアセテート、
プロピルジブチルホスホノアセテート、
トリブチルホスホノアセテート、
ブチルジメチルホスホノアセテート、
ブチルジエチルホスホノアセテート、
ブチルジプロピルホスホノアセテート、
メチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
エチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
プロピルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、
ブチルビス(2,2,2-トリフルオロエチル)ホスホノアセテート、2-プロピニル-2-(ジメトキシホスホリル)アセテート、2-プロピニル-2-(ジエトキシホスホリル)アセテート、2-プロピニル-2-(ジフェノキシホスホリル)アセテート、2-プロピニル-2-(ジエトキシホスホリル)-2-フルオロアセテート、2-プロピニル-3-(ジエトキシホスホリル)プロパノエート、1-メチル-2-プロピニル-2-(ジエトキシホスホリル)アセテート、1,1-ジメチル-2-プロピニル-2-(ジエトキシホスホリル)アセテート、2-トリフルオロメチルフェニル-2-(ジエトキシホスホリル)アセテート、4-トリフルオロメチルフェニル-2-(ジエトキシホスホリル)アセテート、メチル-2-(2-オキシド-1,3,2-ジオキサホスホラン-2-イル)アセテート、2-(2-(ジエトキシホスホリル)アセトキシ)エチルメチルオギザレート、2-ブチン-1,4-ジイルビス(2-(ジエトキシホスホリル)アセテート)、及び2-シアノエチル-2-(ジエトキシホスホリル)アセテートである。これらはキレート配位しやすい構造であるため、正極に対する保護作用が強いからである。 Among these, preferred phosphonate compounds are trimethylphosphonoacetate,
Methyl diethylphosphonoacetate,
Methyldipropylphosphonoacetate,
Methyldibutylphosphonoacetate,
Triethylphosphonoacetate,
Ethyldimethylphosphonoacetate,
Ethyldipropylphosphonoacetate,
Ethyl dibutylphosphonoacetate,
Tripropylphosphonoacetate,
Propyldimethylphosphonoacetate,
Propyl diethylphosphonoacetate,
Propyl dibutyl phosphonoacetate,
Tributylphosphonoacetate,
Butyldimethylphosphonoacetate,
Butyl diethylphosphonoacetate,
Butyl dipropyl phosphonoacetate,
Methylbis (2,2,2-trifluoroethyl) phosphonoacetate,
Ethyl bis (2,2,2-trifluoroethyl) phosphonoacetate,
Propylbis (2,2,2-trifluoroethyl) phosphonoacetate,
Butylbis (2,2,2-trifluoroethyl) phosphonoacetate, 2-propynyl-2- (dimethoxyphosphoryl) acetate, 2-propynyl-2- (diethoxyphosphoryl) acetate, 2-propynyl-2- (diphenoxy) Phosphoryl) acetate, 2-propynyl-2- (diethoxyphosphoryl) -2-fluoroacetate, 2-propynyl-3- (diethoxyphosphoryl) propanoate, 1-methyl-2-propynyl-2- (diethoxyphosphoryl) acetate 1,1-dimethyl-2-propynyl-2- (diethoxyphosphoryl) acetate, 2-trifluoromethylphenyl-2- (diethoxyphosphoryl) acetate, 4-trifluoromethylphenyl-2- (diethoxyphosphoryl) Acetate, methyl-2- (2 Oxide-1,3,2-dioxaphosphoran-2-yl) acetate, 2- (2- (diethoxyphosphoryl) acetoxy) ethyl methyl oxalate, 2-butyne-1,4-diylbis (2- ( Diethoxyphosphoryl) acetate), and 2-cyanoethyl-2- (diethoxyphosphoryl) acetate. This is because these have a structure that facilitates chelate coordination, and thus have a strong protective effect on the positive electrode.
ホスホン酸エステル化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。非水電解液中のホスホン酸エステル化合物の含有量は、非水電解液全体(100質量%)に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更により好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。
A phosphonic acid ester compound may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. The content of the phosphonic acid ester compound in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0, relative to the entire nonaqueous electrolytic solution (100% by mass). 0.1% by mass or more, still more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
上記範囲を満たした場合は、本発明2の非水二次電池の効果に加えて、電池の出力特性、負荷特性、低温特性、サイクル特性等が向上する。
When the above range is satisfied, in addition to the effect of the non-aqueous secondary battery of the present invention 2, the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, etc. of the battery are improved.
<ハロゲン含有環状カーボネート>
上記ハロゲン含有環状カーボネートとしては、フッ素原子を有する環状カーボネート(以下、「フッ素化環状カーボネート」と記載する場合がある)が挙げられる。フッ素化環状カーボネートは、フッ素原子を有する環状カーボネートであれば、特に制限はされない。 <Halogen-containing cyclic carbonate>
Examples of the halogen-containing cyclic carbonate include cyclic carbonates having fluorine atoms (hereinafter sometimes referred to as “fluorinated cyclic carbonates”). The fluorinated cyclic carbonate is not particularly limited as long as it is a cyclic carbonate having a fluorine atom.
上記ハロゲン含有環状カーボネートとしては、フッ素原子を有する環状カーボネート(以下、「フッ素化環状カーボネート」と記載する場合がある)が挙げられる。フッ素化環状カーボネートは、フッ素原子を有する環状カーボネートであれば、特に制限はされない。 <Halogen-containing cyclic carbonate>
Examples of the halogen-containing cyclic carbonate include cyclic carbonates having fluorine atoms (hereinafter sometimes referred to as “fluorinated cyclic carbonates”). The fluorinated cyclic carbonate is not particularly limited as long as it is a cyclic carbonate having a fluorine atom.
フッ素化環状カーボネートとしては、炭素原子数2~6のアルキレン基を有する環状カーボネートのフッ素化物、及びその誘導体が挙げられる。具体例としては、エチレンカーボネートのフッ素化物、及びその誘導体が挙げられる。前記エチレンカーボネートのフッ素化物の誘導体としては、例えば、アルキル基(例えば、炭素原子数1~4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられる。中でもフッ素原子を1~8個有するエチレンカーボネート、及びその誘導体が好ましい。
Examples of the fluorinated cyclic carbonate include fluorinated cyclic carbonates having a C 2-6 alkylene group, and derivatives thereof. Specific examples include fluorinated ethylene carbonate and derivatives thereof. Examples of the derivatives of fluorinated ethylene carbonate include fluorinated ethylene carbonate substituted with an alkyl group (eg, an alkyl group having 1 to 4 carbon atoms). Of these, ethylene carbonate having 1 to 8 fluorine atoms and derivatives thereof are preferred.
フッ素化環状カーボネートとして具体的には、
モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-フルオロ-4-メチルエチレンカーボネート、4,5-ジフルオロ-4-メチルエチレンカーボネート、4-フルオロ-5-メチルエチレンカーボネート、4,4-ジフルオロ-5-メチルエチレンカーボネート、4-(フルオロメチル)-エチレンカーボネート、4-(ジフルオロメチル)-エチレンカーボネート、4-(トリフルオロメチル)-エチレンカーボネート、4-(フルオロメチル)-4-フルオロエチレンカーボネート、4-(フルオロメチル)-5-フルオロエチレンカーボネート、4-フルオロ-4,5-ジメチルエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート、4,4-ジフルオロ-5,5-ジメチルエチレンカーボネート等が挙げられる。 Specifically, as the fluorinated cyclic carbonate,
Monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4-fluoro-5-methyl Ethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (trifluoromethyl) -ethylene carbonate, 4- (fluoro Methyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethylethylene Boneto, 4,4-difluoro-5,5-dimethylethylene carbonate.
モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-フルオロ-4-メチルエチレンカーボネート、4,5-ジフルオロ-4-メチルエチレンカーボネート、4-フルオロ-5-メチルエチレンカーボネート、4,4-ジフルオロ-5-メチルエチレンカーボネート、4-(フルオロメチル)-エチレンカーボネート、4-(ジフルオロメチル)-エチレンカーボネート、4-(トリフルオロメチル)-エチレンカーボネート、4-(フルオロメチル)-4-フルオロエチレンカーボネート、4-(フルオロメチル)-5-フルオロエチレンカーボネート、4-フルオロ-4,5-ジメチルエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート、4,4-ジフルオロ-5,5-ジメチルエチレンカーボネート等が挙げられる。 Specifically, as the fluorinated cyclic carbonate,
Monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4-fluoro-5-methyl Ethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (trifluoromethyl) -ethylene carbonate, 4- (fluoro Methyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethylethylene Boneto, 4,4-difluoro-5,5-dimethylethylene carbonate.
これらの中でも、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート及び4,5-ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種が、本発明2の非水二次電池の効果に加えて、非水電解液に高イオン伝導性を与え、かつ好適に界面保護被膜を形成するため、より好ましい。
Among these, at least one selected from the group consisting of monofluoroethylene carbonate, 4,4-difluoroethylene carbonate and 4,5-difluoroethylene carbonate, in addition to the effect of the nonaqueous secondary battery of the present invention 2, This is more preferable because it imparts high ion conductivity to the non-aqueous electrolyte and suitably forms an interface protective film.
以上説明したハロゲン含有環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
The halogen-containing cyclic carbonates described above may be used alone or in combination of two or more in any combination and ratio.
ハロゲン含有環状カーボネートの含有量は、非水電解液全体(100質量%)に対して、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上、更により好ましくは0.5質量%以上、特に好ましくは1質量%以上、最も好ましくは2質量%以上であり、また、好ましくは10質量%以下、より好ましくは7質量%以下であり、さらに好ましくは5質量%以下である。
The content of the halogen-containing cyclic carbonate is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass with respect to the entire non-aqueous electrolyte (100% by mass). Above, still more preferably 0.5% by mass or more, particularly preferably 1% by mass or more, most preferably 2% by mass or more, preferably 10% by mass or less, more preferably 7% by mass or less, More preferably, it is 5 mass% or less.
上記範囲内であれば、本発明2の非水二次電池について、高温保存特性が低下したり、ガス発生量の増加により、放電容量維持率が低下するといった事態を回避しやすい。さらに、前記非水二次電池において、サイクル特性が向上する。
If it is within the above range, it is easy to avoid a situation in which the high-temperature storage characteristics of the non-aqueous secondary battery of the second aspect of the invention are lowered or the discharge capacity retention rate is lowered due to an increase in the amount of gas generated. Furthermore, in the non-aqueous secondary battery, cycle characteristics are improved.
<オキサラート塩>
上記オキサラート塩に特に制限はなく、任意のオキサラート塩を用いることができる。オキサラート塩としては、ビス(オキサラート)ホウ酸、ジフルオロ(オキサラート)ホウ酸塩、トリス(オキサラート)リン酸塩、ジフルオロ(ビスオキサラート)リン酸塩、テトラフルオロ(オキサラート)リン酸塩
等が挙げられる。 <Oxalate salt>
There is no restriction | limiting in particular in the said oxalate salt, Arbitrary oxalate salts can be used. Examples of the oxalate salt include bis (oxalate) boric acid, difluoro (oxalate) borate, tris (oxalate) phosphate, difluoro (bisoxalate) phosphate, tetrafluoro (oxalate) phosphate, and the like. .
上記オキサラート塩に特に制限はなく、任意のオキサラート塩を用いることができる。オキサラート塩としては、ビス(オキサラート)ホウ酸、ジフルオロ(オキサラート)ホウ酸塩、トリス(オキサラート)リン酸塩、ジフルオロ(ビスオキサラート)リン酸塩、テトラフルオロ(オキサラート)リン酸塩
等が挙げられる。 <Oxalate salt>
There is no restriction | limiting in particular in the said oxalate salt, Arbitrary oxalate salts can be used. Examples of the oxalate salt include bis (oxalate) boric acid, difluoro (oxalate) borate, tris (oxalate) phosphate, difluoro (bisoxalate) phosphate, tetrafluoro (oxalate) phosphate, and the like. .
オキサラート塩のカウンターカチオンとしては特に限定はないが、リチウム、ナトリウム、カリウム等が例示として挙げられる。非水電解液の耐リチウム電析性や耐酸化性の点から、上記カウンターカチオンの中でもリチウムが最も好ましい。
The counter cation of the oxalate salt is not particularly limited, and examples thereof include lithium, sodium, and potassium. Among the counter cations, lithium is most preferable from the viewpoint of the lithium electrodeposition resistance and oxidation resistance of the non-aqueous electrolyte.
具体的には、
ビス(オキサラート)ホウ酸リチウム、
ジフルオロ(オキサラート)ホウ酸リチウム、
トリス(オキサラート)リン酸リチウム、
ジフルオロ(ビスオキサラート)リン酸リチウム、
テトラフルオロ(オキサラート)リン酸リチウム、
ビス(オキサラート)ホウ酸カリウム、
ジフルオロ(オキサラート)ホウ酸カリウム、
トリス(オキサラート)リン酸カリウム、
ジフルオロ(ビスオキサラート)リン酸カリウム、
テトラフルオロ(オキサラート)リン酸カリウム、
ビス(オキサラート)ホウ酸ナトリウム、
ジフルオロ(オキサラート)ホウ酸ナトリウム、
トリス(オキサラート)リン酸ナトリウム、
ジフルオロ(ビスオキサラート)リン酸ナトリウム、
テトラフルオロ(オキサラート)リン酸ナトリウム
が挙げられる。 In particular,
Lithium bis (oxalate) borate,
Lithium difluoro (oxalate) borate,
Tris (oxalate) lithium phosphate,
Difluoro (bisoxalate) lithium phosphate,
Tetrafluoro (oxalate) lithium phosphate,
Potassium bis (oxalate) borate,
Potassium difluoro (oxalate) borate,
Tris (oxalate) potassium phosphate,
Difluoro (bisoxalate) potassium phosphate,
Tetrafluoro (oxalate) potassium phosphate,
Sodium bis (oxalate) borate,
Sodium difluoro (oxalate) borate,
Tris (oxalate) sodium phosphate,
Difluoro (bisoxalate) sodium phosphate,
An example is sodium tetrafluoro (oxalate) phosphate.
ビス(オキサラート)ホウ酸リチウム、
ジフルオロ(オキサラート)ホウ酸リチウム、
トリス(オキサラート)リン酸リチウム、
ジフルオロ(ビスオキサラート)リン酸リチウム、
テトラフルオロ(オキサラート)リン酸リチウム、
ビス(オキサラート)ホウ酸カリウム、
ジフルオロ(オキサラート)ホウ酸カリウム、
トリス(オキサラート)リン酸カリウム、
ジフルオロ(ビスオキサラート)リン酸カリウム、
テトラフルオロ(オキサラート)リン酸カリウム、
ビス(オキサラート)ホウ酸ナトリウム、
ジフルオロ(オキサラート)ホウ酸ナトリウム、
トリス(オキサラート)リン酸ナトリウム、
ジフルオロ(ビスオキサラート)リン酸ナトリウム、
テトラフルオロ(オキサラート)リン酸ナトリウム
が挙げられる。 In particular,
Lithium bis (oxalate) borate,
Lithium difluoro (oxalate) borate,
Tris (oxalate) lithium phosphate,
Difluoro (bisoxalate) lithium phosphate,
Tetrafluoro (oxalate) lithium phosphate,
Potassium bis (oxalate) borate,
Potassium difluoro (oxalate) borate,
Tris (oxalate) potassium phosphate,
Difluoro (bisoxalate) potassium phosphate,
Tetrafluoro (oxalate) potassium phosphate,
Sodium bis (oxalate) borate,
Sodium difluoro (oxalate) borate,
Tris (oxalate) sodium phosphate,
Difluoro (bisoxalate) sodium phosphate,
An example is sodium tetrafluoro (oxalate) phosphate.
中でも、好ましいオキサラート塩としては、
ビス(オキサラート)ホウ酸リチウム、
ジフルオロ(オキサラート)ホウ酸リチウム、
トリス(オキサラート)リン酸リチウム、
ジフルオロ(ビスオキサラート)リン酸リチウム、
テトラフルオロ(オキサラート)リン酸リチウムが、耐リチウム電析の点からより好適に用いられる。 Among them, preferred oxalate salts include
Lithium bis (oxalate) borate,
Lithium difluoro (oxalate) borate,
Tris (oxalate) lithium phosphate,
Difluoro (bisoxalate) lithium phosphate,
Tetrafluoro (oxalate) lithium phosphate is more preferably used from the viewpoint of lithium electrodeposition resistance.
ビス(オキサラート)ホウ酸リチウム、
ジフルオロ(オキサラート)ホウ酸リチウム、
トリス(オキサラート)リン酸リチウム、
ジフルオロ(ビスオキサラート)リン酸リチウム、
テトラフルオロ(オキサラート)リン酸リチウムが、耐リチウム電析の点からより好適に用いられる。 Among them, preferred oxalate salts include
Lithium bis (oxalate) borate,
Lithium difluoro (oxalate) borate,
Tris (oxalate) lithium phosphate,
Difluoro (bisoxalate) lithium phosphate,
Tetrafluoro (oxalate) lithium phosphate is more preferably used from the viewpoint of lithium electrodeposition resistance.
オキサラート塩は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。非水電解液中のオキサラート塩の含有量は、非水電解液全体(100質量%)に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更により好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。
The oxalate salt may be used alone or in combination of two or more in any combination and ratio. The content of the oxalate salt in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0.1% by mass with respect to the entire nonaqueous electrolytic solution (100% by mass). % By mass or more, still more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less.
上記範囲を満たした場合は、本発明2の非水二次電池の効果に加えて、電池の出力特性、負荷特性、低温特性、サイクル特性等が向上する。
When the above range is satisfied, in addition to the effect of the non-aqueous secondary battery of the present invention 2, the output characteristics, load characteristics, low temperature characteristics, cycle characteristics, etc. of the battery are improved.
<特定添加剤の含有量>
以上説明した特定添加剤は、それぞれの種類において好ましい非水電解液中の含有量がある。特定添加剤全体としての非水電解液中の含有量は、非水電解液全体(100質量%)に対して、0.001質量%以上、10質量%以下であることが好ましい。この範囲であると、本発明2の非水二次電池の効果に加えて、添加したそれぞれの特定添加剤の効果を享受することができる。また、この範囲であればいずれかの特定添加剤が過剰に配合されることもなく、過剰配合による不利な効果が発現することもない。 <Content of specific additive>
The specific additive described above has a preferable content in the non-aqueous electrolyte in each type. The content of the specific additive in the non-aqueous electrolyte is preferably 0.001% by mass or more and 10% by mass or less with respect to the entire non-aqueous electrolyte (100% by mass). Within this range, in addition to the effect of the nonaqueous secondary battery of the second aspect, the effect of each added specific additive can be enjoyed. Moreover, if it is this range, any specific additive will not be mix | blended excessively, and the disadvantageous effect by an excessive mix | blending will not express.
以上説明した特定添加剤は、それぞれの種類において好ましい非水電解液中の含有量がある。特定添加剤全体としての非水電解液中の含有量は、非水電解液全体(100質量%)に対して、0.001質量%以上、10質量%以下であることが好ましい。この範囲であると、本発明2の非水二次電池の効果に加えて、添加したそれぞれの特定添加剤の効果を享受することができる。また、この範囲であればいずれかの特定添加剤が過剰に配合されることもなく、過剰配合による不利な効果が発現することもない。 <Content of specific additive>
The specific additive described above has a preferable content in the non-aqueous electrolyte in each type. The content of the specific additive in the non-aqueous electrolyte is preferably 0.001% by mass or more and 10% by mass or less with respect to the entire non-aqueous electrolyte (100% by mass). Within this range, in addition to the effect of the nonaqueous secondary battery of the second aspect, the effect of each added specific additive can be enjoyed. Moreover, if it is this range, any specific additive will not be mix | blended excessively, and the disadvantageous effect by an excessive mix | blending will not express.
<特定添加剤以外の添加剤>
本発明2の非水二次電池に用いられる非水電解液において、目的に応じて上記特定添加剤以外に、適宜他の添加剤を用いてもよい。他の添加剤としては、以下に示される環状スルホン酸エステル、その他の添加剤等が挙げられる。 <Additives other than specific additives>
In the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention 2, other additives may be appropriately used in addition to the specific additive depending on the purpose. Examples of other additives include cyclic sulfonic acid esters shown below and other additives.
本発明2の非水二次電池に用いられる非水電解液において、目的に応じて上記特定添加剤以外に、適宜他の添加剤を用いてもよい。他の添加剤としては、以下に示される環状スルホン酸エステル、その他の添加剤等が挙げられる。 <Additives other than specific additives>
In the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention 2, other additives may be appropriately used in addition to the specific additive depending on the purpose. Examples of other additives include cyclic sulfonic acid esters shown below and other additives.
(環状スルホン酸エステル)
前記環状スルホン酸エステルは、環状構造を有するスルホン酸エステルであれば特にその種類は限定されない。 (Cyclic sulfonate ester)
The cyclic sulfonate ester is not particularly limited as long as it is a sulfonate ester having a cyclic structure.
前記環状スルホン酸エステルは、環状構造を有するスルホン酸エステルであれば特にその種類は限定されない。 (Cyclic sulfonate ester)
The cyclic sulfonate ester is not particularly limited as long as it is a sulfonate ester having a cyclic structure.
環状スルホン酸エステルの具体例としては、例えば、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-メチル-1,3-プロパンスルトン、2-メチル-1,3-プロパンスルトン、3-メチル-1,3-プロパンスルトン1-プロペン-1,3-スルトン、2-プロペン-1,3-スルトン、1-フルオロ-1-プロペン-1,3-スルトン、2-フルオロ-1-プロペン-1,3-スルトン、3-フルオロ-1-プロペン-1,3-スルトン、1-フルオロ-2-プロペン-1,3-スルトン、2-フルオロ-2-プロペン-1,3-スルトン、3-フルオロ-2-プロペン-1,3-スルトン、1-メチル-1-プロペン-1,3-スルトン、2-メチル-1-プロペン-1,3-スルトン、3-メチル-1-プロペン-1,3-スルトン、1-メチル-2-プロペン-1,3-スルトン、2-メチル-2-プロペン-1,3-スルトン、3-メチル-2-プロペン-1,3-スルトン、1,4-ブタンスルトン、1-フルオロ-1,4-ブタンスルトン、2-フルオロ-1,4-ブタンスルトン、3-フルオロ-1,4-ブタンスルトン、4-フルオロ-1,4-ブタンスルトン、1-メチル-1,4-ブタンスルトン、2-メチル-1,4-ブタンスルトン、3-メチル-1,4-ブタンスルトン、4-メチル-1,4-ブタンスルトン、1-ブテン-1,4-スルトン、2-ブテン-1,4-スルトン、3-ブテン-1,4-スルトン、1-フルオロ-1-ブテン-1,4-スルトン、2-フルオロ-1-ブテン-1,4-スルトン、3-フルオロ-1-ブテン-1,4-スルトン、4-フルオロ-1-ブテン-1,4-スルトン、1-フルオロ-2-ブテン-1,4-スルトン、2-フルオロ-2-ブテン-1,4-スルトン、3-フルオロ-2-ブテン-1,4-スルトン、4-フルオロ-2-ブテン-1,4-スルトン、1-フルオロ-3-ブテン-1,4-スルトン、2-フルオロ-3-ブテン-1,4-スルトン、3-フルオロ-3-ブテン-1,4-スルトン、4-フルオロ-3-ブテン-1,4-スルトン、1-メチル-1-ブテン-1,4-スルトン、2-メチル-1-ブテン-1,4-スルトン、3-メチル-1-ブテン-1,4-スルトン、4-メチル-1-ブテン-1,4-スルトン、1-メチル-2-ブテン-1,4-スルトン、2-メチル-2-ブテン-1,4-スルトン、3-メチル-2-ブテン-1,4-スルトン、4-メチル-2-ブテン-1,4-スルトン、1-メチル-3-ブテン-1,4-スルトン、2-メチル-3-ブテン-1,4-スルトン、3-メチル-3-ブテン-1,4-スルトン、4-メチル-3-ブテン-1,4-スルトン、1,5-ペンタンスルトン、1-フルオロ-1,5-ペンタンスルトン、2-フルオロ-1,5-ペンタンスルトン、3-フルオロ-1,5-ペンタンスルトン、4-フルオロ-1,5-ペンタンスルトン、5-フルオロ-1,5-ペンタンスルトン、1-メチル-1,5-ペンタンスルトン、2-メチル-1,5-ペンタンスルトン、3-メチル-1,5-ペンタンスルトン、4-メチル-1,5-ペンタンスルトン、5-メチル-1,5-ペンタンスルトン、1-ペンテン-1,5-スルトン、2-ペンテン-1,5-スルトン、3-ペンテン-1,5-スルトン、4-ペンテン-1,5-スルトン、1-フルオロ-1-ペンテン-1,5-スルトン、2-フルオロ-1-ペンテン-1,5-スルトン、3-フルオロ-1-ペンテン-1,5-スルトン、4-フルオロ-1-ペンテン-1,5-スルトン、5-フルオロ-1-ペンテン-1,5-スルトン、1-フルオロ-2-ペンテン-1,5-スルトン、2-フルオロ-2-ペンテン-1,5-スルトン、3-フルオロ-2-ペンテン-1,5-スルトン、4-フルオロ-2-ペンテン-1,5-スルトン、5-フルオロ-2-ペンテン-1,5-スルトン、1-フルオロ-3-ペンテン-1,5-スルトン、2-フルオロ-3-ペンテン-1,5-スルトン、3-フルオロ-3-ペンテン-1,5-スルトン、4-フルオロ-3-ペンテン-1,5-スルトン、5-フルオロ-3-ペンテン-1,5-スルトン、1-フルオロ-4-ペンテン-1,5-スルトン、2-フルオロ-4-ペンテン-1,5-スルトン、3-フルオロ-4-ペンテン-1,5-スルトン、4-フルオロ-4-ペンテン-1,5-スルトン、5-フルオロ-4-ペンテン-1,5-スルトン、1-メチル-1-ペンテン-1,5-スルトン、2-メチル-1-ペンテン-1,5-スルトン、3-メチル-1-ペンテン-1,5-スルトン、4-メチル-1-ペンテン-1,5-スルトン、5-メチル-1-ペンテン-1,5-スルトン、1-メチル-2-ペンテン-1,5-スルトン、2-メチル-2-ペンテン-1,5-スルトン、3-メチル-2-ペンテン-1,5-スルトン、4-メチル-2-ペンテン-1,5-スルトン、5-メチル-2-ペンテン-1,5-スルトン、1-メチル-3-ペンテン-1,5-スルトン、2-メチル-3-ペンテン-1,5-スルトン、3-メチル-3-ペンテン-1,5-スルトン、4-メチル-3-ペンテン-1,5-スルトン、5-メチル-3-ペンテン-1,5-スルトン、1-メチル-4-ペンテン-1,5-スルトン、2-メチル-4-ペンテン-1,5-スルトン、3-メチル-4-ペンテン-1,5-スルトン、4-メチル-4-ペンテン-1,5-スルトン、5-メチル-4-ペンテン-1,5-スルトン、メチレンスルフェート、エチレンスルフェート、プロピレンスルフェート等が挙げられる。
Specific examples of the cyclic sulfonate ester include, for example, 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, and 3-fluoro-1,3-propane. Sultone, 1-methyl-1,3-propane sultone, 2-methyl-1,3-propane sultone, 3-methyl-1,3-propane sultone 1-propene-1,3-sultone, 2-propene-1, 3-sultone, 1-fluoro-1-propene-1,3-sultone, 2-fluoro-1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sultone, 1-fluoro- 2-propene-1,3-sultone, 2-fluoro-2-propene-1,3-sultone, 3-fluoro-2-propene-1,3-sultone, 1-methyl-1-propyl Pen-1,3-sultone, 2-methyl-1-propene-1,3-sultone, 3-methyl-1-propene-1,3-sultone, 1-methyl-2-propene-1,3-sultone, 2-methyl-2-propene-1,3-sultone, 3-methyl-2-propene-1,3-sultone, 1,4-butane sultone, 1-fluoro-1,4-butane sultone, 2-fluoro-1, 4-butane sultone, 3-fluoro-1,4-butane sultone, 4-fluoro-1,4-butane sultone, 1-methyl-1,4-butane sultone, 2-methyl-1,4-butane sultone, 3-methyl-1, 4-butane sultone, 4-methyl-1,4-butane sultone, 1-butene-1,4-sultone, 2-butene-1,4-sultone, 3-butene-1,4-sultone, 1-fluo -1-butene-1,4-sultone, 2-fluoro-1-butene-1,4-sultone, 3-fluoro-1-butene-1,4-sultone, 4-fluoro-1-butene-1,4 -Sultone, 1-fluoro-2-butene-1,4-sultone, 2-fluoro-2-butene-1,4-sultone, 3-fluoro-2-butene-1,4-sultone, 4-fluoro-2 -Butene-1,4-sultone, 1-fluoro-3-butene-1,4-sultone, 2-fluoro-3-butene-1,4-sultone, 3-fluoro-3-butene-1,4-sultone 4-fluoro-3-butene-1,4-sultone, 1-methyl-1-butene-1,4-sultone, 2-methyl-1-butene-1,4-sultone, 3-methyl-1-butene -1,4-sultone, 4-methyl-1-butene 1,4-sultone, 1-methyl-2-butene-1,4-sultone, 2-methyl-2-butene-1,4-sultone, 3-methyl-2-butene-1,4-sultone, 4- Methyl-2-butene-1,4-sultone, 1-methyl-3-butene-1,4-sultone, 2-methyl-3-butene-1,4-sultone, 3-methyl-3-butene-1, 4-sultone, 4-methyl-3-butene-1,4-sultone, 1,5-pentane sultone, 1-fluoro-1,5-pentane sultone, 2-fluoro-1,5-pentane sultone, 3-fluoro -1,5-pentane sultone, 4-fluoro-1,5-pentane sultone, 5-fluoro-1,5-pentane sultone, 1-methyl-1,5-pentane sultone, 2-methyl-1,5-pentane Sultone, 3-methyl 1,5-pentane sultone, 4-methyl-1,5-pentanthruton, 5-methyl-1,5-pentanthruton, 1-pentene-1,5-sultone, 2-pentene-1,5-sultone, 3 -Pentene-1,5-sultone, 4-pentene-1,5-sultone, 1-fluoro-1-pentene-1,5-sultone, 2-fluoro-1-pentene-1,5-sultone, 3-fluoro -1-pentene-1,5-sultone, 4-fluoro-1-pentene-1,5-sultone, 5-fluoro-1-pentene-1,5-sultone, 1-fluoro-2-pentene-1,5 -Sultone, 2-fluoro-2-pentene-1,5-sultone, 3-fluoro-2-pentene-1,5-sultone, 4-fluoro-2-pentene-1,5-sultone, 5-fluoro-2 -Bae Ten-1,5-sultone, 1-fluoro-3-pentene-1,5-sultone, 2-fluoro-3-pentene-1,5-sultone, 3-fluoro-3-pentene-1,5-sultone, 4-fluoro-3-pentene-1,5-sultone, 5-fluoro-3-pentene-1,5-sultone, 1-fluoro-4-pentene-1,5-sultone, 2-fluoro-4-pentene- 1,5-sultone, 3-fluoro-4-pentene-1,5-sultone, 4-fluoro-4-pentene-1,5-sultone, 5-fluoro-4-pentene-1,5-sultone, 1- Methyl-1-pentene-1,5-sultone, 2-methyl-1-pentene-1,5-sultone, 3-methyl-1-pentene-1,5-sultone, 4-methyl-1-pentene-1, 5-sultone, 5-me Til-1-pentene-1,5-sultone, 1-methyl-2-pentene-1,5-sultone, 2-methyl-2-pentene-1,5-sultone, 3-methyl-2-pentene-1, 5-sultone, 4-methyl-2-pentene-1,5-sultone, 5-methyl-2-pentene-1,5-sultone, 1-methyl-3-pentene-1,5-sultone, 2-methyl- 3-pentene-1,5-sultone, 3-methyl-3-pentene-1,5-sultone, 4-methyl-3-pentene-1,5-sultone, 5-methyl-3-pentene-1,5- Sultone, 1-methyl-4-pentene-1,5-sultone, 2-methyl-4-pentene-1,5-sultone, 3-methyl-4-pentene-1,5-sultone, 4-methyl-4- Pentene-1,5-sultone, 5-methyl- - pentene-1,5-sultone, methylene sulfate, ethylene sulfate, propylene sulfate, and the like.
これらのうち、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-プロペン-1,3-スルトン、1-フルオロ-1-プロペン-1,3-スルトン、2-フルオロ-1-プロペン-1,3-スルトン、3-フルオロ-1-プロペン-1,3-スルトン、1,4-ブタンスルトン、メチレンメタンジスルホネート、エチレンメタンジスルホネートが、本発明2の非水二次電池の保存特性向上の点から好ましく、1,3-プロパンスルトン、1-プロペン-1,3-スルトンがより好ましい。
Of these, 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-propene-1, 3-sultone, 1-fluoro-1-propene-1,3-sultone, 2-fluoro-1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sultone, 1,4- Butane sultone, methylene methane disulfonate, and ethylene methane disulfonate are preferable from the viewpoint of improving the storage characteristics of the nonaqueous secondary battery of the present invention 2, and 1,3-propane sultone and 1-propene-1,3-sultone are more preferable. .
環状スルホン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。非水電解液中の環状スルホン酸エステルの含有量は、非水電解液全体(100質量%)に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上、また、通常10質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。上記範囲を満たした場合は、本発明2の非水二次電池の効果に加えて、電池の出力特性、負荷特性、低温特性、サイクル特性等が向上する。
As the cyclic sulfonic acid ester, one kind may be used alone, and two kinds or more may be used in optional combination and ratio. The content of the cyclic sulfonic acid ester in the nonaqueous electrolytic solution is usually 0.001% by mass or more, preferably 0.01% by mass or more, more preferably 0, relative to the entire nonaqueous electrolytic solution (100% by mass). 0.1% by mass or more, more preferably 0.3% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less. When the above range is satisfied, the output characteristics, load characteristics, low temperature characteristics, cycle characteristics and the like of the battery are improved in addition to the effects of the nonaqueous secondary battery of the second aspect.
(その他の添加剤)
非水電解液には、公知のその他の添加剤を添加することができる。その他の添加剤としては、
エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート等のカーボネート化合物;
無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物、および5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等のカルボン酸無水物; (Other additives)
Other known additives can be added to the non-aqueous electrolyte. Other additives include
Carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate;
Succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride, And carboxylic anhydrides such as 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride;
非水電解液には、公知のその他の添加剤を添加することができる。その他の添加剤としては、
エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート等のカーボネート化合物;
無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物、および5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等のカルボン酸無水物; (Other additives)
Other known additives can be added to the non-aqueous electrolyte. Other additives include
Carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate;
Succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride, And carboxylic anhydrides such as 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride;
2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ジビニル-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;
エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2-ビス(ビニルスルホニロキシ)エタン
等の含硫黄化合物; Spiro compounds such as 2,4,8,10-tetraoxaspiro [5.5] undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane;
Ethylene sulfite, methyl fluorosulfonate, ethyl fluorosulfonate, methyl methanesulfonate, ethyl methanesulfonate, busulfan, sulfolene, diphenylsulfone, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide, vinyl Methyl sulfonate, ethyl vinyl sulfonate, allyl vinyl sulfonate, propargyl vinyl sulfonate, methyl allyl sulfonate, ethyl allyl sulfonate, allyl sulfonate, propargyl allyl sulfonate, 1,2-bis (vinylsulfonoxy) Sulfur-containing compounds such as ethane;
エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド、ビニルスルホン酸メチル、ビニルスルホン酸エチル、ビニルスルホン酸アリル、ビニルスルホン酸プロパルギル、アリルスルホン酸メチル、アリルスルホン酸エチル、アリルスルホン酸アリル、アリルスルホン酸プロパルギル、1,2-ビス(ビニルスルホニロキシ)エタン
等の含硫黄化合物; Spiro compounds such as 2,4,8,10-tetraoxaspiro [5.5] undecane, 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane;
Ethylene sulfite, methyl fluorosulfonate, ethyl fluorosulfonate, methyl methanesulfonate, ethyl methanesulfonate, busulfan, sulfolene, diphenylsulfone, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide, vinyl Methyl sulfonate, ethyl vinyl sulfonate, allyl vinyl sulfonate, propargyl vinyl sulfonate, methyl allyl sulfonate, ethyl allyl sulfonate, allyl sulfonate, propargyl allyl sulfonate, 1,2-bis (vinylsulfonoxy) Sulfur-containing compounds such as ethane;
1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド等の含窒素化合物;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド等の含燐化合物;
ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;
等が挙げられる。 Nitrogen-containing compounds such as 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide;
Trimethyl phosphite, triethyl phosphite, triphenyl phosphite, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, dimethyl methylphosphonate, diethyl ethylphosphonate, dimethyl vinylphosphonate, diethyl vinylphosphonate, diethylphospho Phosphorus-containing compounds such as ethyl vinegar, methyl dimethylphosphinate, ethyl diethylphosphinate, trimethylphosphine oxide, triethylphosphine oxide;
Hydrocarbon compounds such as heptane, octane, nonane, decane, cycloheptane;
Fluorine-containing aromatic compounds such as fluorobenzene, difluorobenzene, hexafluorobenzene and benzotrifluoride;
Etc.
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド等の含燐化合物;
ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物;
等が挙げられる。 Nitrogen-containing compounds such as 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide;
Trimethyl phosphite, triethyl phosphite, triphenyl phosphite, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, dimethyl methylphosphonate, diethyl ethylphosphonate, dimethyl vinylphosphonate, diethyl vinylphosphonate, diethylphospho Phosphorus-containing compounds such as ethyl vinegar, methyl dimethylphosphinate, ethyl diethylphosphinate, trimethylphosphine oxide, triethylphosphine oxide;
Hydrocarbon compounds such as heptane, octane, nonane, decane, cycloheptane;
Fluorine-containing aromatic compounds such as fluorobenzene, difluorobenzene, hexafluorobenzene and benzotrifluoride;
Etc.
これらは1種を単独で用いても、2種以上を併用してもよい。これらの添加剤を添加することにより、本発明2の非水二次電池の高温保存後の容量維持特性やサイクル特性を向上させることができる。
These may be used alone or in combination of two or more. By adding these additives, capacity maintenance characteristics and cycle characteristics after high-temperature storage of the nonaqueous secondary battery of the second aspect of the invention can be improved.
その他の添加剤の非水電解液中の含有量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。前記含有量は、非水電解液全体(100質量%)に対し、好ましくは、0.01質量%以上であり、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、好ましくは5質量%以下であり、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。この範囲であれば、その他の添加剤の効果が十分に発現しやすく、高負荷放電特性等の電池特性が低下するといった事態も回避しやすい。
The content of other additives in the nonaqueous electrolytic solution is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The content is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more with respect to the entire non-aqueous electrolyte (100% by mass). In addition, it is preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 1% by mass or less. If it is this range, the effect of other additives will be fully exhibited easily, and it will be easy to avoid the situation where battery characteristics, such as a high load discharge characteristic, fall.
以上説明した、本発明2の非水二次電池に用いられる非水電解液は、当該非水二次電池の内部に存在するものも包含する。
The non-aqueous electrolyte used in the non-aqueous secondary battery of the second aspect described above includes those present inside the non-aqueous secondary battery.
具体的には、以下の場合が挙げられる。
電解質や有機溶媒等の非水電解液の構成要素を別途合成し、実質的に単離されたものから非水電解液を調製し、下記に記載する方法にて別途組み立てた非水二次電池内に注液して得た非水二次電池内の非水電解液である場合。
非水電解液の構成要素を個別に非水二次電池内に入れておき、電池内にて混合することにより非水電解液と同じ組成を得る場合。
非水電解液を構成する化合物を非水二次電池内で発生させて、非水電解液と同じ組成を得る場合。 Specifically, the following cases are mentioned.
Non-aqueous secondary battery prepared by separately synthesizing components of non-aqueous electrolyte such as electrolyte and organic solvent, preparing non-aqueous electrolyte from substantially isolated one, and separately assembling by the method described below When it is a non-aqueous electrolyte solution in a non-aqueous secondary battery obtained by pouring the solution into the inside.
When the components of the non-aqueous electrolyte are individually put in the non-aqueous secondary battery and mixed in the battery to obtain the same composition as the non-aqueous electrolyte.
When the compound constituting the non-aqueous electrolyte is generated in the non-aqueous secondary battery to obtain the same composition as the non-aqueous electrolyte.
電解質や有機溶媒等の非水電解液の構成要素を別途合成し、実質的に単離されたものから非水電解液を調製し、下記に記載する方法にて別途組み立てた非水二次電池内に注液して得た非水二次電池内の非水電解液である場合。
非水電解液の構成要素を個別に非水二次電池内に入れておき、電池内にて混合することにより非水電解液と同じ組成を得る場合。
非水電解液を構成する化合物を非水二次電池内で発生させて、非水電解液と同じ組成を得る場合。 Specifically, the following cases are mentioned.
Non-aqueous secondary battery prepared by separately synthesizing components of non-aqueous electrolyte such as electrolyte and organic solvent, preparing non-aqueous electrolyte from substantially isolated one, and separately assembling by the method described below When it is a non-aqueous electrolyte solution in a non-aqueous secondary battery obtained by pouring the solution into the inside.
When the components of the non-aqueous electrolyte are individually put in the non-aqueous secondary battery and mixed in the battery to obtain the same composition as the non-aqueous electrolyte.
When the compound constituting the non-aqueous electrolyte is generated in the non-aqueous secondary battery to obtain the same composition as the non-aqueous electrolyte.
また、本発明2の非水二次電池に使用される非水電解液は、上述の通り炭素-炭素不飽和結合を有する環状カーボネートなどの必須成分(特定添加剤)を含有し、環状スルホン酸エステルやその他の添加剤などを任意に含んでもよい。当該電解液は、電池のガス発生抑制、低抵抗化の観点から、Zr又はZrの化合物を含むことが好ましい。前記Zrの化合物としては、(Zr(OC2H5)4、Zr(OC3H7)4、Zr(OCH(CH3)2)4、Zr(OC4H10)4、ZrCl4等及びこれらの酸化物が挙げられる。
In addition, the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention 2 contains an essential component (specific additive) such as a cyclic carbonate having a carbon-carbon unsaturated bond as described above, and a cyclic sulfonic acid Esters and other additives may optionally be included. The electrolytic solution preferably contains Zr or a Zr compound from the viewpoint of suppressing gas generation in the battery and reducing resistance. Examples of the Zr compound include (Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Zr (OCH (CH 3 ) 2 ) 4 , Zr (OC 4 H 10 ) 4 , ZrCl 4 and the like. These oxides are mentioned.
なお、前記非水電解液中のZrは、外部から非水電解液に添加したものであってもよい。さらに、前記非水電解液は、当初はZrを含まないが、非水二次電池を製造して充放電を行い、電極に含まれるZrが溶けだした結果、Zrを含むこととなった非水電解液であってもよい。
Note that Zr in the non-aqueous electrolyte may be added to the non-aqueous electrolyte from the outside. Further, the non-aqueous electrolyte initially does not contain Zr, but the non-aqueous secondary battery was manufactured and charged and discharged, and as a result of the Zr contained in the electrode being melted, the non-aqueous electrolyte that contained Zr was obtained. It may be an electrolytic solution.
このようなZr又はZrの化合物を含む非水電解液も、本明細書に開示される発明の一つであり、これを使用することで、サイクル充放電後の正極抵抗の増加や電池容量の低下が抑制され、また高温高電圧環境下での保存特性に優れた非水二次電池を製造することができる。当該非水二次電池は、Zr又はZrの化合物を含む非水電解液を備えているということ以外は、従来公知の構成を有している。すなわち当該非水二次電池は、リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水電解液を含む。
Such a non-aqueous electrolyte containing Zr or a compound of Zr is also one of the inventions disclosed in the present specification, and by using this, an increase in positive electrode resistance after cycle charge / discharge and battery capacity can be improved. It is possible to manufacture a non-aqueous secondary battery in which the decrease is suppressed and the storage characteristics are excellent in a high temperature and high voltage environment. The nonaqueous secondary battery has a conventionally known configuration except that the nonaqueous secondary battery includes a nonaqueous electrolytic solution containing Zr or a compound of Zr. That is, the non-aqueous secondary battery includes a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte.
[本発明1の非水二次電池、本発明2の非水二次電池]
本発明1の非水二次電池用正極活物質を使用して得られた、本発明1の非水二次電池としては、特にリチウム二次電池が好適である。また、本発明2の非水二次電池も、リチウム二次電池として好適に利用できる。以下、これら両非水二次電池(以下、これらをまとめて「本発明の非水二次電池」ともいう)の電池構成について説明する。 [Nonaqueous Secondary Battery of Invention 1 and Nonaqueous Secondary Battery of Invention 2]
As the nonaqueous secondary battery of the present invention 1 obtained using the positive electrode active material for the nonaqueous secondary battery of the present invention 1, a lithium secondary battery is particularly suitable. Moreover, the non-aqueous secondary battery of this invention 2 can also be utilized suitably as a lithium secondary battery. Hereinafter, the battery configuration of these non-aqueous secondary batteries (hereinafter collectively referred to as “non-aqueous secondary battery of the present invention”) will be described.
本発明1の非水二次電池用正極活物質を使用して得られた、本発明1の非水二次電池としては、特にリチウム二次電池が好適である。また、本発明2の非水二次電池も、リチウム二次電池として好適に利用できる。以下、これら両非水二次電池(以下、これらをまとめて「本発明の非水二次電池」ともいう)の電池構成について説明する。 [Nonaqueous Secondary Battery of Invention 1 and Nonaqueous Secondary Battery of Invention 2]
As the nonaqueous secondary battery of the present invention 1 obtained using the positive electrode active material for the nonaqueous secondary battery of the present invention 1, a lithium secondary battery is particularly suitable. Moreover, the non-aqueous secondary battery of this invention 2 can also be utilized suitably as a lithium secondary battery. Hereinafter, the battery configuration of these non-aqueous secondary batteries (hereinafter collectively referred to as “non-aqueous secondary battery of the present invention”) will be described.
〔電池構成〕
本発明の非水二次電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極と、本発明1及び2の非水二次電池における所定の正極活物質を含有する正極と、非水電解液とを備える。 (Battery configuration)
The non-aqueous secondary battery of the present invention can adopt a known structure. Typically, the negative electrode capable of occluding and releasing ions (for example, lithium ions), and the non-aqueous secondary battery of the present inventions 1 and 2 are used. A positive electrode containing a predetermined positive electrode active material in a battery and a non-aqueous electrolyte are provided.
本発明の非水二次電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極と、本発明1及び2の非水二次電池における所定の正極活物質を含有する正極と、非水電解液とを備える。 (Battery configuration)
The non-aqueous secondary battery of the present invention can adopt a known structure. Typically, the negative electrode capable of occluding and releasing ions (for example, lithium ions), and the non-aqueous secondary battery of the present inventions 1 and 2 are used. A positive electrode containing a predetermined positive electrode active material in a battery and a non-aqueous electrolyte are provided.
<非水二次電池用負極>
負極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法でも用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって、集電体上に負極活物質層を有する、負極を形成することができる。バインダー(結着剤)、増粘剤、導電材としては、正極の形成に使用したものと同様のものを使用することができる。 <Negative electrode for non-aqueous secondary battery>
The negative electrode can be produced by any known method as long as the effects of the present invention are not significantly impaired. For example, a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. are added to a negative electrode active material to form a slurry, which is applied to a current collector, dried, and then pressed to collect current. A negative electrode having a negative electrode active material layer on the body can be formed. As the binder (binder), the thickener, and the conductive material, the same materials as those used for forming the positive electrode can be used.
負極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法でも用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって、集電体上に負極活物質層を有する、負極を形成することができる。バインダー(結着剤)、増粘剤、導電材としては、正極の形成に使用したものと同様のものを使用することができる。 <Negative electrode for non-aqueous secondary battery>
The negative electrode can be produced by any known method as long as the effects of the present invention are not significantly impaired. For example, a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. are added to a negative electrode active material to form a slurry, which is applied to a current collector, dried, and then pressed to collect current. A negative electrode having a negative electrode active material layer on the body can be formed. As the binder (binder), the thickener, and the conductive material, the same materials as those used for forming the positive electrode can be used.
また、負極活物質として合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
Further, when an alloy material is used as the negative electrode active material, a method of forming a thin film layer (negative electrode active material layer) containing the negative electrode active material by a technique such as vapor deposition, sputtering, or plating is also used.
(負極活物質)
前記負極活物質は、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。 (Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples thereof include carbonaceous materials, alloy-based materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.
前記負極活物質は、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。 (Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples thereof include carbonaceous materials, alloy-based materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.
前記炭素質材料としては、(1)天然黒鉛、(2)人造黒鉛、(3)非晶質炭素、(4)炭素被覆黒鉛、(5)黒鉛被覆黒鉛、(6)樹脂被覆黒鉛等が挙げられる。
Examples of the carbonaceous material include (1) natural graphite, (2) artificial graphite, (3) amorphous carbon, (4) carbon-coated graphite, (5) graphite-coated graphite, and (6) resin-coated graphite. It is done.
また、(1)~(6)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なお、(1)の天然黒鉛とそのほかの炭素質材料を組み合わせて用いる場合、全炭素質材料のうち天然黒鉛が占める比率が50質量%以上であることが好ましい。
Further, the carbonaceous materials (1) to (6) may be used alone or in combination of two or more in any combination and ratio. When the natural graphite of (1) and other carbonaceous materials are used in combination, it is preferable that the ratio of natural graphite to the total carbonaceous material is 50% by mass or more.
負極活物質として用いられる合金系材料は、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよい。前記リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料が好ましく、より好ましくはアルミニウム、ケイ素及びスズの単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
The alloy material used as the negative electrode active material is lithium simple substance, single metal and alloy forming lithium alloy, or oxides, carbides, nitrides, silicides, sulfides thereof as long as lithium can be occluded / released. Or any of compounds, such as a phosphide, may be sufficient. The single metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / metalloid elements (that is, excluding carbon), more preferably single metals of aluminum, silicon and tin and their atoms. An alloy or compound containing These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
負極活物質として用いられるリチウム含有金属複合酸化物材料は、リチウムを吸蔵・放出可能であれば、特に制限されない。高電流密度充放電特性の点からはチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属複合酸化物材料であり、さらに好ましくはリチウムとチタンの複合酸化物である。即ちスピネル構造を有するリチウムチタン複合酸化物を、負極活物質として用いると、本発明の非水二次電池の出力抵抗が大きく低減するので特に好ましい。
The lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium. From the viewpoint of high current density charge / discharge characteristics, a material containing titanium and lithium is preferable, a lithium-containing composite metal composite oxide material containing titanium is more preferable, and a composite oxide of lithium and titanium is more preferable. That is, it is particularly preferable to use a lithium titanium composite oxide having a spinel structure as the negative electrode active material because the output resistance of the nonaqueous secondary battery of the present invention is greatly reduced.
(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料で形成されたものが挙げられる。前記材料としては、加工し易さとコストの点から特に銅が好ましい。 (Current collector)
As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the current collector for the negative electrode include those formed of a metal material such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. As the material, copper is particularly preferable from the viewpoint of ease of processing and cost.
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料で形成されたものが挙げられる。前記材料としては、加工し易さとコストの点から特に銅が好ましい。 (Current collector)
As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the current collector for the negative electrode include those formed of a metal material such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. As the material, copper is particularly preferable from the viewpoint of ease of processing and cost.
<セパレータ>
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、非水電解液に対し安定な材料、すなわち樹脂、ガラス繊維、無機物等で形成されたセパレータが好ましい。また、保液性に優れた多孔性シート又は不織布状の形態のセパレータを用いるのが好ましい。 <Separator>
Usually, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit. The material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Among these, a separator made of a material that is stable with respect to the non-aqueous electrolyte, that is, a resin, glass fiber, an inorganic substance, or the like is preferable. Moreover, it is preferable to use the separator of the porous sheet or nonwoven fabric form excellent in the liquid retention property.
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、非水電解液に対し安定な材料、すなわち樹脂、ガラス繊維、無機物等で形成されたセパレータが好ましい。また、保液性に優れた多孔性シート又は不織布状の形態のセパレータを用いるのが好ましい。 <Separator>
Usually, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit. The material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Among these, a separator made of a material that is stable with respect to the non-aqueous electrolyte, that is, a resin, glass fiber, an inorganic substance, or the like is preferable. Moreover, it is preferable to use the separator of the porous sheet or nonwoven fabric form excellent in the liquid retention property.
<電池設計>
(電極群)
電極群は、上記の正極と負極とを上記のセパレータを介してなる積層構造のもの、及び上記の正極と負極とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。 <Battery design>
(Electrode group)
The electrode group may have either a laminated structure in which the positive electrode and the negative electrode are interposed via the separator, or a structure in which the positive electrode and the negative electrode are wound in a spiral shape via the separator. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
(電極群)
電極群は、上記の正極と負極とを上記のセパレータを介してなる積層構造のもの、及び上記の正極と負極とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。 <Battery design>
(Electrode group)
The electrode group may have either a laminated structure in which the positive electrode and the negative electrode are interposed via the separator, or a structure in which the positive electrode and the negative electrode are wound in a spiral shape via the separator. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりする。この結果、電池内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性が低下する。さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
When the electrode group occupancy falls below the above range, the battery capacity decreases. Further, if the above range is exceeded, the void space is small, and the battery becomes hot and the member expands or the vapor pressure of the liquid component of the electrolyte increases. As a result, the internal pressure of the battery rises, and various characteristics such as charge / discharge repetition performance and high-temperature storage as the battery deteriorate. Furthermore, a gas release valve that releases the internal pressure to the outside may operate.
(外装ケース)
外装ケースの材質は用いられる非水電解液に対して安定なものであれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。 (Exterior case)
The material of the outer case is not particularly limited as long as it is stable with respect to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
外装ケースの材質は用いられる非水電解液に対して安定なものであれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。 (Exterior case)
The material of the outer case is not particularly limited as long as it is stable with respect to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
金属類を用いる外装ケースとしては、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造としたもの、及び、樹脂製ガスケットを介して上記金属類を用いてかしめ構造としたものが挙げられる。上記ラミネートフィルムを用いる外装ケースとしては、樹脂層同士を熱融着することにより封止密閉構造としたもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。また、外装体の形状も任意である。当該形状の例として、円筒型、角形、ラミネート型、コイン型、大型等が挙げられる。
As an exterior case using metals, laser welding, resistance welding, ultrasonic welding, metals are welded together to form a sealed and sealed structure, and the above-mentioned metals are used for caulking structure via a resin gasket The thing which was done is mentioned. Examples of the exterior case using the laminate film include a case in which a resin-sealed structure is formed by heat-sealing resin layers. In order to improve sealing performance, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used. Resins are preferably used. Moreover, the shape of the exterior body is also arbitrary. Examples of the shape include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large size.
以下に本発明を実施例により具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[本発明1に関する実施例及び比較例]
まず、本発明1の非水二次電池用正極活物質、非水二次電池用正極、非水二次電池に関する実施例及び比較例を示す。 [Examples and Comparative Examples for Invention 1]
First, the Example and comparative example regarding the positive electrode active material for non-aqueous secondary batteries of this invention 1, the positive electrode for non-aqueous secondary batteries, and a non-aqueous secondary battery are shown.
まず、本発明1の非水二次電池用正極活物質、非水二次電池用正極、非水二次電池に関する実施例及び比較例を示す。 [Examples and Comparative Examples for Invention 1]
First, the Example and comparative example regarding the positive electrode active material for non-aqueous secondary batteries of this invention 1, the positive electrode for non-aqueous secondary batteries, and a non-aqueous secondary battery are shown.
〔実施例1-1〕
<正極活物質1の作製>
元素組成がLiNi0.33Co0.33Mn0.33O2である正極活物質コア100質量部に、プロパノール50質量部を加えた。ここに17質量部のプロパノールに溶解したジルコニウム(IV)テトラプロポキシド2質量部を加えて撹拌した。その後、得られた反応混合液に、0.7質量部の水及びプロパノール16質量部の混合液を滴下して、さらに60℃で加温しながら1時間撹拌した。溶媒を除去して得られた粉体を減圧下、120℃の温度で5時間加温した。その後、空気下焼成炉中において、400℃の温度で3時間熱処理を行って、正極活物質1を得た。 Example 1-1
<Preparation of positive electrode active material 1>
50 parts by mass of propanol was added to 100 parts by mass of the positive electrode active material core having an elemental composition of LiNi 0.33 Co 0.33 Mn 0.33 O 2 . 2 parts by mass of zirconium (IV) tetrapropoxide dissolved in 17 parts by mass of propanol was added and stirred. Thereafter, 0.7 parts by mass of water and 16 parts by mass of propanol were added dropwise to the resulting reaction mixture, and the mixture was further stirred for 1 hour while heating at 60 ° C. The powder obtained by removing the solvent was heated at 120 ° C. under reduced pressure for 5 hours. Thereafter, heat treatment was performed at a temperature of 400 ° C. for 3 hours in an air-fired furnace, whereby a positive electrode active material 1 was obtained.
<正極活物質1の作製>
元素組成がLiNi0.33Co0.33Mn0.33O2である正極活物質コア100質量部に、プロパノール50質量部を加えた。ここに17質量部のプロパノールに溶解したジルコニウム(IV)テトラプロポキシド2質量部を加えて撹拌した。その後、得られた反応混合液に、0.7質量部の水及びプロパノール16質量部の混合液を滴下して、さらに60℃で加温しながら1時間撹拌した。溶媒を除去して得られた粉体を減圧下、120℃の温度で5時間加温した。その後、空気下焼成炉中において、400℃の温度で3時間熱処理を行って、正極活物質1を得た。 Example 1-1
<Preparation of positive electrode active material 1>
50 parts by mass of propanol was added to 100 parts by mass of the positive electrode active material core having an elemental composition of LiNi 0.33 Co 0.33 Mn 0.33 O 2 . 2 parts by mass of zirconium (IV) tetrapropoxide dissolved in 17 parts by mass of propanol was added and stirred. Thereafter, 0.7 parts by mass of water and 16 parts by mass of propanol were added dropwise to the resulting reaction mixture, and the mixture was further stirred for 1 hour while heating at 60 ° C. The powder obtained by removing the solvent was heated at 120 ° C. under reduced pressure for 5 hours. Thereafter, heat treatment was performed at a temperature of 400 ° C. for 3 hours in an air-fired furnace, whereby a positive electrode active material 1 was obtained.
<正極の作製>
正極活物質1を85質量部と、導電材としてアセチレンブラック10質量部と、結着材としてポリフッ化ビニリデン(PVdF)5質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。 <Preparation of positive electrode>
85 parts by mass of the positive electrodeactive material 1, 10 parts by mass of acetylene black as a conductive material, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder were mixed with a disperser in an N-methylpyrrolidone solvent. Slurried. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode.
正極活物質1を85質量部と、導電材としてアセチレンブラック10質量部と、結着材としてポリフッ化ビニリデン(PVdF)5質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。 <Preparation of positive electrode>
85 parts by mass of the positive electrode
<負極の作製>
負極活物質として黒鉛粉末、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着材としてスチレンブタジエンゴムの水性ディスパージョン(スチレンブタジエンゴムの濃度50質量%)を用意し、これらをディスパーザーで混合してスラリー化した。このスラリーを厚さ10μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極を作製した。なお、乾燥後の負極において、天然黒鉛:カルボキシメチルセルロースナトリウム:スチレンブタジエンゴム=98:1:1の質量比となるように、スラリー作製の際に各成分を配合した。 <Production of negative electrode>
Graphite powder as the negative electrode active material, aqueous dispersion of sodium carboxymethylcellulose as the thickener (concentration of 1% by mass of sodium carboxymethylcellulose), aqueous dispersion of styrene butadiene rubber as the binder (concentration of styrene butadiene rubber of 50% by mass) Were prepared and mixed with a disperser to form a slurry. This slurry was uniformly applied to one side of a 10 μm thick copper foil, dried, and then pressed to prepare a negative electrode. In addition, each component was mix | blended in the case of slurry preparation so that it might become a mass ratio of natural graphite: Carboxymethylcellulose sodium: styrene butadiene rubber = 98: 1: 1 in the negative electrode after drying.
負極活物質として黒鉛粉末、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着材としてスチレンブタジエンゴムの水性ディスパージョン(スチレンブタジエンゴムの濃度50質量%)を用意し、これらをディスパーザーで混合してスラリー化した。このスラリーを厚さ10μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極を作製した。なお、乾燥後の負極において、天然黒鉛:カルボキシメチルセルロースナトリウム:スチレンブタジエンゴム=98:1:1の質量比となるように、スラリー作製の際に各成分を配合した。 <Production of negative electrode>
Graphite powder as the negative electrode active material, aqueous dispersion of sodium carboxymethylcellulose as the thickener (concentration of 1% by mass of sodium carboxymethylcellulose), aqueous dispersion of styrene butadiene rubber as the binder (concentration of styrene butadiene rubber of 50% by mass) Were prepared and mixed with a disperser to form a slurry. This slurry was uniformly applied to one side of a 10 μm thick copper foil, dried, and then pressed to prepare a negative electrode. In addition, each component was mix | blended in the case of slurry preparation so that it might become a mass ratio of natural graphite: Carboxymethylcellulose sodium: styrene butadiene rubber = 98: 1: 1 in the negative electrode after drying.
<非水電解液>
非水電解液としては、エチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートからなる混合溶媒(混合体積比3:4:3)に、電解質であるLiPF6を1mol/Lの割合で溶解させたものを用いた。 <Non-aqueous electrolyte>
As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 as an electrolyte at a rate of 1 mol / L in a mixed solvent composed of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate (mixing volume ratio 3: 4: 3) is used. It was.
非水電解液としては、エチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートからなる混合溶媒(混合体積比3:4:3)に、電解質であるLiPF6を1mol/Lの割合で溶解させたものを用いた。 <Non-aqueous electrolyte>
As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 as an electrolyte at a rate of 1 mol / L in a mixed solvent composed of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate (mixing volume ratio 3: 4: 3) is used. It was.
<二次電池の作製>
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素を、アルミニウム(厚さ40μm)の両面を樹脂層で被覆してなるラミネートフィルムからなる袋内に、正・負極の端子を突設させながら挿入した。その後、非水電解液を袋内に注入し、真空封止を行ない、シート状の非水二次電池を作製した。 <Production of secondary battery>
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, and the positive electrode to prepare a battery element. This battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 μm) were covered with a resin layer while projecting positive and negative terminals. Thereafter, a non-aqueous electrolyte was poured into the bag and vacuum sealed to produce a sheet-like non-aqueous secondary battery.
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素を、アルミニウム(厚さ40μm)の両面を樹脂層で被覆してなるラミネートフィルムからなる袋内に、正・負極の端子を突設させながら挿入した。その後、非水電解液を袋内に注入し、真空封止を行ない、シート状の非水二次電池を作製した。 <Production of secondary battery>
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, and the positive electrode to prepare a battery element. This battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness: 40 μm) were covered with a resin layer while projecting positive and negative terminals. Thereafter, a non-aqueous electrolyte was poured into the bag and vacuum sealed to produce a sheet-like non-aqueous secondary battery.
<初期抵抗評価>
非水二次電池を、ガラス板で挟んで加圧した状態で、25℃において、12時間以上かけて電圧4.1Vまで充電した後、3.0Vまで定電流放電を行った。さらに、3時間以上かけて4.2Vまで定電流充電した後、3.0Vまで定電流放電する操作を2回行った。その後、3時間以上かけて4.5Vまで定電流充電した後、3.0Vまで定電流放電する操作を2回行った。このときの2回目の放電時の容量を「基準容量」とした。 <Evaluation of initial resistance>
The nonaqueous secondary battery was charged to a voltage of 4.1 V over 12 hours at 25 ° C. in a state where the nonaqueous secondary battery was pressed between glass plates, and then a constant current discharge was performed to 3.0 V. Furthermore, after carrying out constant current charge to 4.2V over 3 hours or more, operation which carries out constant current discharge to 3.0V was performed twice. Then, after carrying out constant current charge to 4.5V over 3 hours or more, operation which carries out constant current discharge to 3.0V was performed twice. The capacity at the time of the second discharge at this time was defined as “reference capacity”.
非水二次電池を、ガラス板で挟んで加圧した状態で、25℃において、12時間以上かけて電圧4.1Vまで充電した後、3.0Vまで定電流放電を行った。さらに、3時間以上かけて4.2Vまで定電流充電した後、3.0Vまで定電流放電する操作を2回行った。その後、3時間以上かけて4.5Vまで定電流充電した後、3.0Vまで定電流放電する操作を2回行った。このときの2回目の放電時の容量を「基準容量」とした。 <Evaluation of initial resistance>
The nonaqueous secondary battery was charged to a voltage of 4.1 V over 12 hours at 25 ° C. in a state where the nonaqueous secondary battery was pressed between glass plates, and then a constant current discharge was performed to 3.0 V. Furthermore, after carrying out constant current charge to 4.2V over 3 hours or more, operation which carries out constant current discharge to 3.0V was performed twice. Then, after carrying out constant current charge to 4.5V over 3 hours or more, operation which carries out constant current discharge to 3.0V was performed twice. The capacity at the time of the second discharge at this time was defined as “reference capacity”.
なお、1Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。
Note that 1C represents a current value for discharging the reference capacity of the battery in one hour, and for example, 0.2C represents a current value of 1/5 thereof.
以上の操作の後、電圧3.8Vまで充電を行った非水二次電池について、温度25℃、電圧の振幅10mV、周波数領域20000~0.02Hzの条件でインピーダンス測定を実施した。得られたインピーダンス測定結果から、測定周波数と複素インピーダンスの虚部をプロットした。100~1Hzの領域における極大値を非水二次電池の「初期の正極抵抗の指標」とした。
After the above operation, the impedance measurement was performed on the nonaqueous secondary battery charged to a voltage of 3.8 V under the conditions of a temperature of 25 ° C., a voltage amplitude of 10 mV, and a frequency range of 20000 to 0.02 Hz. From the obtained impedance measurement results, the measurement frequency and the imaginary part of the complex impedance were plotted. The maximum value in the region of 100 to 1 Hz was set as an “index of initial positive electrode resistance” of the nonaqueous secondary battery.
<サイクル充放電後の抵抗評価>
初期抵抗評価を実施した非水二次電池について、サイクル充放電を行い、その後の抵抗を評価した。具体的には以下の通りである。 <Evaluation of resistance after cycle charge / discharge>
About the non-aqueous secondary battery which implemented initial resistance evaluation, cycle charging / discharging was performed and the subsequent resistance was evaluated. Specifically, it is as follows.
初期抵抗評価を実施した非水二次電池について、サイクル充放電を行い、その後の抵抗を評価した。具体的には以下の通りである。 <Evaluation of resistance after cycle charge / discharge>
About the non-aqueous secondary battery which implemented initial resistance evaluation, cycle charging / discharging was performed and the subsequent resistance was evaluated. Specifically, it is as follows.
温度60℃の環境下、電流値1Cにて非水二次電池を4.5Vまで定電流充電し、さらに電流値が0.1Cとなるまで定電圧充電した。その後、1Cにて3.0Vまで定電流放電を行った。以上の充放電過程を1サイクルとし、50サイクルの充放電を実施した。
In an environment of a temperature of 60 ° C., the non-aqueous secondary battery was charged at a constant current to 4.5 V at a current value of 1 C, and further charged at a constant voltage until the current value reached 0.1 C. Then, constant current discharge was performed to 3.0V at 1C. The above charging / discharging process was made into 1 cycle, and 50 cycles of charging / discharging was implemented.
50サイクル後の非水二次電池について、上記初期抵抗評価と同様にインピーダンス測定を行い、正極抵抗の指標を得た。上記で求めた「初期の正極抵抗の指標」を100としたときの、50サイクル後の正極抵抗指標の値を、「サイクル充放電後の正極の相対抵抗値」とした。
For the non-aqueous secondary battery after 50 cycles, impedance measurement was performed in the same manner as the initial resistance evaluation to obtain an index of positive electrode resistance. The value of the positive electrode resistance index after 50 cycles when the “initial positive electrode resistance index” obtained above was 100 was defined as “the relative resistance value of the positive electrode after cycle charge / discharge”.
<Zr含有領域の評価>
正極活物質1を用いて作製した正極から、集束イオンビーム(FIB)を用いて切片を作製し、この切片を透過型電子顕微鏡(TEM)によって観察した。観察された正極活物質1の粒子表面部分から内部方向に向かって、一定間隔毎にエネルギー分散X線分光法(EDS)によって元素組成を分析した。このとき、正極活物質1の表面近傍において、正極活物質コアの構成元素が初めて検出される点を正極活物質1の表面とし、その点からの距離を深度とした。結果を図1に示す。 <Evaluation of Zr-containing region>
From the positive electrode produced using the positive electrode active material 1, a section was prepared using a focused ion beam (FIB), and this section was observed with a transmission electron microscope (TEM). The element composition was analyzed by energy dispersive X-ray spectroscopy (EDS) at regular intervals from the observed particle surface portion of the positive electrode active material 1 toward the inside. At this time, in the vicinity of the surface of the positive electrode active material 1, the point where the constituent elements of the positive electrode active material core are detected for the first time is defined as the surface of the positive electrode active material 1, and the distance from that point is defined as the depth. The results are shown in FIG.
正極活物質1を用いて作製した正極から、集束イオンビーム(FIB)を用いて切片を作製し、この切片を透過型電子顕微鏡(TEM)によって観察した。観察された正極活物質1の粒子表面部分から内部方向に向かって、一定間隔毎にエネルギー分散X線分光法(EDS)によって元素組成を分析した。このとき、正極活物質1の表面近傍において、正極活物質コアの構成元素が初めて検出される点を正極活物質1の表面とし、その点からの距離を深度とした。結果を図1に示す。 <Evaluation of Zr-containing region>
From the positive electrode produced using the positive electrode active material 1, a section was prepared using a focused ion beam (FIB), and this section was observed with a transmission electron microscope (TEM). The element composition was analyzed by energy dispersive X-ray spectroscopy (EDS) at regular intervals from the observed particle surface portion of the positive electrode active material 1 toward the inside. At this time, in the vicinity of the surface of the positive electrode active material 1, the point where the constituent elements of the positive electrode active material core are detected for the first time is defined as the surface of the positive electrode active material 1, and the distance from that point is defined as the depth. The results are shown in FIG.
なお、Zr含有領域は、Ni、Co、Mn及びZrが全て、モル比で1.5%以上含まれる領域として判定した。また、(Zr+Ni+Co+M)に対するZrのモル比は、当該領域における測定点ごとのZr含有比率の平均値として測定した。
Note that the Zr-containing region was determined as a region containing all Ni, Co, Mn, and Zr in a molar ratio of 1.5% or more. The molar ratio of Zr to (Zr + Ni + Co + M) was measured as the average value of the Zr content ratio at each measurement point in the region.
図1から、実施例1-1の正極活物質1は、正極活物質表面から0.8~8nmの深度の部分に、Zrと正極活物質コアの構成金属元素(Ni、Co、Mn)を含むZr含有領域を持つ。当該領域における、(Zr+Ni+Co+Mn)に対するZrのモル比は15%であるが、Zr含有領域よりも深い8nmを超え、80nmまでの深度におけるZrのモル比は0.1%である。
From FIG. 1, the positive electrode active material 1 of Example 1-1 has Zr and the constituent metal elements (Ni, Co, Mn) of the positive electrode active material core at a depth of 0.8 to 8 nm from the surface of the positive electrode active material. It has a Zr containing region. In this region, the molar ratio of Zr to (Zr + Ni + Co + Mn) is 15%, but the molar ratio of Zr at a depth exceeding 8 nm deeper than the Zr-containing region and up to 80 nm is 0.1%.
〔実施例1-2〕
温度400℃の熱処理を行わなかったこと以外は、実施例1-1と同様の操作を行って正極活物質2を作製し、実施例1-1と同様の操作を行って電池を作製、評価した。 [Example 1-2]
A positive electrode active material 2 was prepared by performing the same operation as in Example 1-1 except that the heat treatment at a temperature of 400 ° C. was not performed, and a battery was manufactured and evaluated by performing the same operation as in Example 1-1. did.
温度400℃の熱処理を行わなかったこと以外は、実施例1-1と同様の操作を行って正極活物質2を作製し、実施例1-1と同様の操作を行って電池を作製、評価した。 [Example 1-2]
A positive electrode active material 2 was prepared by performing the same operation as in Example 1-1 except that the heat treatment at a temperature of 400 ° C. was not performed, and a battery was manufactured and evaluated by performing the same operation as in Example 1-1. did.
〔実施例1-3〕
元素組成がLiNi0.80Co0.15Al0.05O2である正極活物質コア100質量部に、プロパノール38質量部を加えた。ここに6質量部のプロパノールに溶解したジルコニウム(IV)テトラプロポキシド0.6質量部を加えて撹拌した。その後、反応混合液に、0.5質量部の水及びプロパノール12質量部の混合液を滴下して、さらに60℃で加温しながら1時間撹拌した。溶媒を留去して得られた粉体を減圧下、120℃の温度で8時間加温して、正極活物質3を得た。 Example 1-3
38 parts by mass of propanol was added to 100 parts by mass of the positive electrode active material core having an element composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 . To this, 0.6 parts by mass of zirconium (IV) tetrapropoxide dissolved in 6 parts by mass of propanol was added and stirred. Thereafter, a mixture of 0.5 part by mass of water and 12 parts by mass of propanol was added dropwise to the reaction mixture, followed by further stirring for 1 hour while heating at 60 ° C. The powder obtained by distilling off the solvent was heated at 120 ° C. under reduced pressure for 8 hours to obtain a positive electrode active material 3.
元素組成がLiNi0.80Co0.15Al0.05O2である正極活物質コア100質量部に、プロパノール38質量部を加えた。ここに6質量部のプロパノールに溶解したジルコニウム(IV)テトラプロポキシド0.6質量部を加えて撹拌した。その後、反応混合液に、0.5質量部の水及びプロパノール12質量部の混合液を滴下して、さらに60℃で加温しながら1時間撹拌した。溶媒を留去して得られた粉体を減圧下、120℃の温度で8時間加温して、正極活物質3を得た。 Example 1-3
38 parts by mass of propanol was added to 100 parts by mass of the positive electrode active material core having an element composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 . To this, 0.6 parts by mass of zirconium (IV) tetrapropoxide dissolved in 6 parts by mass of propanol was added and stirred. Thereafter, a mixture of 0.5 part by mass of water and 12 parts by mass of propanol was added dropwise to the reaction mixture, followed by further stirring for 1 hour while heating at 60 ° C. The powder obtained by distilling off the solvent was heated at 120 ° C. under reduced pressure for 8 hours to obtain a positive electrode active material 3.
その後、85質量部の正極活物質1を95質量部の正極活物質3としたこと、アセチレンブラックを3質量部としたこと、PVdFを2質量部としたこと以外は、実施例1-1と同様の操作を行って正極を作製した。
Thereafter, Example 1-1 except that 85 parts by mass of the positive electrode active material 1 was changed to 95 parts by mass of the positive electrode active material 3, acetylene black was changed to 3 parts by mass, and PVdF was changed to 2 parts by mass. The same operation was performed to produce a positive electrode.
負極の作製、非水電解液、非水二次電池の作製は実施例1-1と同様の方法で実施した。
The production of the negative electrode, the non-aqueous electrolyte, and the non-aqueous secondary battery were carried out in the same manner as in Example 1-1.
<初期抵抗評価>
正極活物質3を用いて作製した非水二次電池を、ガラス板で挟んで加圧した状態で、25℃において、5時間以上かけて電圧4.2Vまで充電した後、3.0Vまで定電流放電する操作を4回実施した。このときの4回目の放電時の容量を「基準容量」とした。 <Evaluation of initial resistance>
A non-aqueous secondary battery produced using the positive electrode active material 3 is charged to a voltage of 4.2 V over 5 hours at 25 ° C. in a state where the non-aqueous secondary battery is sandwiched between glass plates and pressurized. The operation of discharging current was performed 4 times. The capacity at the time of the fourth discharge at this time was defined as “reference capacity”.
正極活物質3を用いて作製した非水二次電池を、ガラス板で挟んで加圧した状態で、25℃において、5時間以上かけて電圧4.2Vまで充電した後、3.0Vまで定電流放電する操作を4回実施した。このときの4回目の放電時の容量を「基準容量」とした。 <Evaluation of initial resistance>
A non-aqueous secondary battery produced using the positive electrode active material 3 is charged to a voltage of 4.2 V over 5 hours at 25 ° C. in a state where the non-aqueous secondary battery is sandwiched between glass plates and pressurized. The operation of discharging current was performed 4 times. The capacity at the time of the fourth discharge at this time was defined as “reference capacity”.
その後、4.1Vまで充電した非水二次電池を60℃で12時間静置した。以上の操作の後、3.0Vまで放電した電池を3.7Vまで再度充電し、温度-10℃、電圧の振幅10mV、周波数領域20000~0.02Hzの条件でインピーダンス測定を実施した。得られたインピーダンス測定結果から、測定周波数と複素インピーダンスの虚部をプロットした。100~1Hzの領域における極大値を「初期の正極抵抗の指標」とした。
Thereafter, the non-aqueous secondary battery charged to 4.1 V was allowed to stand at 60 ° C. for 12 hours. After the above operation, the battery discharged to 3.0 V was recharged to 3.7 V, and impedance measurement was performed under the conditions of a temperature of −10 ° C., a voltage amplitude of 10 mV, and a frequency range of 20000 to 0.02 Hz. From the obtained impedance measurement results, the measurement frequency and the imaginary part of the complex impedance were plotted. The maximum value in the region of 100 to 1 Hz was taken as “an index of initial positive electrode resistance”.
<サイクル充放電後の抵抗・容量評価>
初期抵抗評価を実施した非水二次電池について、サイクル充放電を行い、その後の抵抗及び容量を評価した。具体的には以下の通りである。 <Evaluation of resistance and capacity after cycle charge / discharge>
About the non-aqueous secondary battery which implemented initial resistance evaluation, cycle charging / discharging was performed and subsequent resistance and capacity | capacitance were evaluated. Specifically, it is as follows.
初期抵抗評価を実施した非水二次電池について、サイクル充放電を行い、その後の抵抗及び容量を評価した。具体的には以下の通りである。 <Evaluation of resistance and capacity after cycle charge / discharge>
About the non-aqueous secondary battery which implemented initial resistance evaluation, cycle charging / discharging was performed and subsequent resistance and capacity | capacitance were evaluated. Specifically, it is as follows.
温度60℃の環境下、電流値2Cにて4.2Vまで定電流充電を行い、さらに電流値が0.1Cとなるまで定電圧充電した。その後、2Cにて3.0Vまで定電流放電を行った。以上の充放電過程を1サイクルとし、100サイクルの充放電を実施した。
In an environment at a temperature of 60 ° C., constant current charging was performed up to 4.2 V at a current value of 2 C, and further constant voltage charging was performed until the current value reached 0.1 C. Then, constant current discharge was performed to 3.0V at 2C. The above charging / discharging process was made into 1 cycle, and 100 cycles of charging / discharging was implemented.
また、初回、50サイクル後及び100サイクル後の充放電においては、放電を電流値0.2Cで実施し、初回の放電時の容量を100とした時の、100サイクル後の放電時の容量を「サイクル充放電後の容量の指標」とした。また、50サイクル後の電池について、初期の正極抵抗の指標の測定と同様にインピーダンス測定を行い、正極抵抗の指標を得た。そして、「初期の正極抵抗の指標」を100としたときの50サイクル後の正極抵抗指標の値を、「サイクル充放電後の正極の相対抵抗値」とした。
In charge / discharge after the first time, 50 cycles, and 100 cycles, the discharge was performed at a current value of 0.2 C, and the capacity at the time of discharge after 100 cycles when the capacity at the time of the first discharge was assumed to be 100. It was defined as “capacity index after cycle charge / discharge”. In addition, the battery after 50 cycles was subjected to impedance measurement in the same manner as the measurement of the initial positive electrode resistance index to obtain the positive electrode resistance index. The value of the positive electrode resistance index after 50 cycles when the “initial positive electrode resistance index” was 100 was defined as “the relative resistance value of the positive electrode after cycle charge / discharge”.
〔比較例1-1〕
元素組成がLiNi0.33Co0.33Mn0.33O2である正極活物質4を85質量部と、導電材としてアセチレンブラック5質量部と、結着材としてポリフッ化ビニリデン(PVdF)10質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。この正極を使用して、実施例1-1と同様の操作を行って非水二次電池を作製、評価した。 [Comparative Example 1-1]
85 parts by mass of the positive electrode active material 4 having an elemental composition of LiNi 0.33 Co 0.33 Mn 0.33 O 2 , 5 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) 10 as a binder A part by mass was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode. Using this positive electrode, a non-aqueous secondary battery was produced and evaluated in the same manner as in Example 1-1.
元素組成がLiNi0.33Co0.33Mn0.33O2である正極活物質4を85質量部と、導電材としてアセチレンブラック5質量部と、結着材としてポリフッ化ビニリデン(PVdF)10質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。この正極を使用して、実施例1-1と同様の操作を行って非水二次電池を作製、評価した。 [Comparative Example 1-1]
85 parts by mass of the positive electrode active material 4 having an elemental composition of LiNi 0.33 Co 0.33 Mn 0.33 O 2 , 5 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) 10 as a binder A part by mass was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode. Using this positive electrode, a non-aqueous secondary battery was produced and evaluated in the same manner as in Example 1-1.
なお、実施例1-1と同様に、正極活物質4についてZr含有領域の評価を行った。結果を図2に示す。Zrは検出されなかったため、図2においてZrのプロットはされていない。図2から、比較例1-1の、表面処理をしていない正極活物質4は、当該活物質の表面近傍にZr含有領域を持たないことが分かる。
Note that the Zr-containing region of the positive electrode active material 4 was evaluated in the same manner as in Example 1-1. The results are shown in FIG. Since Zr was not detected, Zr is not plotted in FIG. From FIG. 2, it can be seen that the positive electrode active material 4 of Comparative Example 1-1 that has not been surface-treated does not have a Zr-containing region near the surface of the active material.
〔比較例1-2〕
元素組成がLiNi0.33Co0.33Mn0.33O2である正極活物質100質量部に、ZrO2ナノ粒子(粒径100nm未満)0.5質量部を加え、混合物に対してメカノケミカル処理を行った。これにより、表面にZrO2の被覆層を持つが、Zrと正極活物質コアの構成金属元素(Ni、Co、Mn)との双方を含む領域を持たない正極活物質5を作製した。 [Comparative Example 1-2]
To 100 parts by mass of the positive electrode active material having an elemental composition of LiNi 0.33 Co 0.33 Mn 0.33 O 2 , 0.5 part by mass of ZrO 2 nanoparticles (particle size less than 100 nm) is added, and the mechano to the mixture is added. Chemical treatment was performed. As a result, a positive electrodeactive material 5 having a ZrO 2 coating layer on the surface but having no region containing both Zr and the constituent metal elements (Ni, Co, Mn) of the positive electrode active material core was produced.
元素組成がLiNi0.33Co0.33Mn0.33O2である正極活物質100質量部に、ZrO2ナノ粒子(粒径100nm未満)0.5質量部を加え、混合物に対してメカノケミカル処理を行った。これにより、表面にZrO2の被覆層を持つが、Zrと正極活物質コアの構成金属元素(Ni、Co、Mn)との双方を含む領域を持たない正極活物質5を作製した。 [Comparative Example 1-2]
To 100 parts by mass of the positive electrode active material having an elemental composition of LiNi 0.33 Co 0.33 Mn 0.33 O 2 , 0.5 part by mass of ZrO 2 nanoparticles (particle size less than 100 nm) is added, and the mechano to the mixture is added. Chemical treatment was performed. As a result, a positive electrode
正極活物質として、正極活物質5を用いたこと以外は比較例1-1と同様の操作を行って、正極を作製した。この正極を使用して、実施例1-1と同様の操作を行って非水二次電池を作製、評価した。
A positive electrode was produced in the same manner as in Comparative Example 1-1 except that the positive electrode active material 5 was used as the positive electrode active material. Using this positive electrode, a non-aqueous secondary battery was produced and evaluated in the same manner as in Example 1-1.
〔比較例1-3〕
元素組成がLiNi0.80Co0.15Al0.05O2である正極活物質6を95質量部と、導電材としてアセチレンブラック3質量部と、結着材としてポリフッ化ビニリデン(PVdF)2質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。 [Comparative Example 1-3]
95 parts by mass of a positive electrode active material 6 having an elemental composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 3 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) 2 as a binder A part by mass was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode.
元素組成がLiNi0.80Co0.15Al0.05O2である正極活物質6を95質量部と、導電材としてアセチレンブラック3質量部と、結着材としてポリフッ化ビニリデン(PVdF)2質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。 [Comparative Example 1-3]
95 parts by mass of a positive electrode active material 6 having an elemental composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 3 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) 2 as a binder A part by mass was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode.
この正極を使用して、実施例1-3と同様の操作を行って非水二次電池を作製、評価した。ただし、サイクル充放電後の電池容量の指標は求めていない。
Using this positive electrode, a non-aqueous secondary battery was produced and evaluated in the same manner as in Example 1-3. However, an index of battery capacity after cycle charge / discharge is not obtained.
〔比較例1-4〕
ジルコニウム(IV)テトラプロポキシドをアルミニウム(III)イソプロポキシドとしたこと以外は、実施例1-3と同様の操作を行って、正極活物質7を作製した。この正極活物質7を使用して実施例1-3と同様の操作を行って、非水二次電池の作製、評価をした。ただし、サイクル充放電後の正極の相対抵抗値は求めていない。 [Comparative Example 1-4]
A positive electrode active material 7 was produced in the same manner as in Example 1-3, except that zirconium (IV) tetrapropoxide was changed to aluminum (III) isopropoxide. Using this positive electrode active material 7, the same operation as in Example 1-3 was performed to produce and evaluate a nonaqueous secondary battery. However, the relative resistance value of the positive electrode after cycle charge / discharge is not obtained.
ジルコニウム(IV)テトラプロポキシドをアルミニウム(III)イソプロポキシドとしたこと以外は、実施例1-3と同様の操作を行って、正極活物質7を作製した。この正極活物質7を使用して実施例1-3と同様の操作を行って、非水二次電池の作製、評価をした。ただし、サイクル充放電後の正極の相対抵抗値は求めていない。 [Comparative Example 1-4]
A positive electrode active material 7 was produced in the same manner as in Example 1-3, except that zirconium (IV) tetrapropoxide was changed to aluminum (III) isopropoxide. Using this positive electrode active material 7, the same operation as in Example 1-3 was performed to produce and evaluate a nonaqueous secondary battery. However, the relative resistance value of the positive electrode after cycle charge / discharge is not obtained.
〔比較例1-5〕
焼成炉における熱処理温度を800℃としたこと以外は、実施例1-1と同様の操作を行って、正極活物質8を作製した。この正極活物質8を使用して、実施例1-1と同様の操作を行って非水二次電池を作製、評価した。 [Comparative Example 1-5]
A positive electrode active material 8 was produced in the same manner as in Example 1-1 except that the heat treatment temperature in the firing furnace was 800 ° C. Using this positive electrode active material 8, a non-aqueous secondary battery was fabricated and evaluated in the same manner as in Example 1-1.
焼成炉における熱処理温度を800℃としたこと以外は、実施例1-1と同様の操作を行って、正極活物質8を作製した。この正極活物質8を使用して、実施例1-1と同様の操作を行って非水二次電池を作製、評価した。 [Comparative Example 1-5]
A positive electrode active material 8 was produced in the same manner as in Example 1-1 except that the heat treatment temperature in the firing furnace was 800 ° C. Using this positive electrode active material 8, a non-aqueous secondary battery was fabricated and evaluated in the same manner as in Example 1-1.
以上の評価結果を、下記表1及び表2に示す。
The above evaluation results are shown in Table 1 and Table 2 below.
実施例1-1~1-3と比較例1-1、1-3から、本発明1の正極活物質を用いて製造した非水二次電池においては、サイクル充放電後の相対抵抗値が小さく抑えられていることが分かる。
In the non-aqueous secondary battery produced using Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-3 using the positive electrode active material of the present invention 1, the relative resistance value after cycle charge / discharge is It can be seen that it is kept small.
また、実施例1-1と比較例1-2から、以下のことがわかる。本発明1の正極活物質を用いて製造した非水二次電池(実施例1-1)においては、正極活物質の表面近傍にZr含有領域が存在する。一方比較例1-2で作製された正極活物質は、ZrO2の被覆層を持つが、Zrと正極活物質コアの構成金属元素(Ni、Co、Mn)の双方を含む領域を持たない。このような実施例1-1の非水二次電池と比較例1-2の非水二次電池を比べると、前者の方が、サイクル充放電の後の抵抗の増加が大きく抑えられている。
Further, the following can be seen from Example 1-1 and Comparative Example 1-2. In the non-aqueous secondary battery (Example 1-1) manufactured using the positive electrode active material of the first invention, a Zr-containing region exists in the vicinity of the surface of the positive electrode active material. On the other hand, the positive electrode active material manufactured in Comparative Example 1-2 has a ZrO 2 coating layer, but does not have a region containing both Zr and the constituent metal elements (Ni, Co, Mn) of the positive electrode active material core. When the non-aqueous secondary battery of Example 1-1 and the non-aqueous secondary battery of Comparative Example 1-2 are compared, the increase in resistance after cycle charge / discharge is greatly suppressed in the former. .
実施例1-3と比較例1-4から、本発明1の正極活物質を用いて製造した非水二次電池(実施例1-3)においては、Zr含有表面処理材料の代わりに、Alを含有した表面処理材料を用いて、同様の表面処理を行った正極活物質を用いて製造した非水二次電池(比較例1-4)においてよりも、サイクル充放電の後の電池容量の減少が抑えられていることが分かる。
In Example 1-3 and Comparative Example 1-4, in the nonaqueous secondary battery (Example 1-3) manufactured using the positive electrode active material of the present invention 1, instead of the Zr-containing surface treatment material, Al The battery capacity after cycle charge / discharge is higher than that in the non-aqueous secondary battery (Comparative Example 1-4) manufactured using the positive electrode active material subjected to the same surface treatment using the surface treatment material containing It can be seen that the decrease is suppressed.
実施例1-1と比較例1-5から、本発明1の正極活物質を用いて製造した電池(実施例1-1)においては、製造時の熱処理温度が高く、活物質の表面近傍のZr量が不十分な正極活物質を用いて製造した非水二次電池(比較例1-5)においてよりも、サイクル充放電の後の相対抵抗値が小さく抑えられていることが分かる。
From Example 1-1 and Comparative Example 1-5, in the battery manufactured using the positive electrode active material of the present invention 1 (Example 1-1), the heat treatment temperature at the time of manufacture was high, and the vicinity of the surface of the active material was high. It can be seen that the relative resistance value after cycle charge / discharge is suppressed smaller than in the non-aqueous secondary battery (Comparative Example 1-5) manufactured using the positive electrode active material having an insufficient amount of Zr.
[本発明2に関する実施例及び比較例]
次に、本発明2の非水二次電池に関する実施例及び比較例を示す。 [Examples and Comparative Examples for Invention 2]
Next, the Example and comparative example regarding the non-aqueous secondary battery of this invention 2 are shown.
次に、本発明2の非水二次電池に関する実施例及び比較例を示す。 [Examples and Comparative Examples for Invention 2]
Next, the Example and comparative example regarding the non-aqueous secondary battery of this invention 2 are shown.
<非水二次電池用正極活物質の作製>
元素組成がLiNi0.80Co0.15Al0.05O2であるリチウム遷移金属酸化物100質量部に、プロパノール38質量部を加えた。ここに6質量部のプロパノールに溶解したジルコニウム(IV)テトラプロポキシド0.6質量部を加えて撹拌した後、0.5質量部の水とプロパノール12質量部の混合液を滴下した。さらに、得られた混合液を60℃で加温しながら1時間撹拌した。当該混合液から溶媒を留去して得られた粉体を減圧下、120℃の温度で8時間加温して、本発明2の非水二次電池用の正極活物質を得た。 <Preparation of positive electrode active material for non-aqueous secondary battery>
38 parts by mass of propanol was added to 100 parts by mass of a lithium transition metal oxide having an elemental composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 . To this was added 0.6 parts by mass of zirconium (IV) tetrapropoxide dissolved in 6 parts by mass of propanol, and after that, a mixture of 0.5 parts by mass of water and 12 parts by mass of propanol was added dropwise. Furthermore, the obtained mixed liquid was stirred for 1 hour while heating at 60 ° C. The powder obtained by distilling off the solvent from the mixture was heated under reduced pressure at a temperature of 120 ° C. for 8 hours to obtain a positive electrode active material for a non-aqueous secondary battery of the present invention 2.
元素組成がLiNi0.80Co0.15Al0.05O2であるリチウム遷移金属酸化物100質量部に、プロパノール38質量部を加えた。ここに6質量部のプロパノールに溶解したジルコニウム(IV)テトラプロポキシド0.6質量部を加えて撹拌した後、0.5質量部の水とプロパノール12質量部の混合液を滴下した。さらに、得られた混合液を60℃で加温しながら1時間撹拌した。当該混合液から溶媒を留去して得られた粉体を減圧下、120℃の温度で8時間加温して、本発明2の非水二次電池用の正極活物質を得た。 <Preparation of positive electrode active material for non-aqueous secondary battery>
38 parts by mass of propanol was added to 100 parts by mass of a lithium transition metal oxide having an elemental composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 . To this was added 0.6 parts by mass of zirconium (IV) tetrapropoxide dissolved in 6 parts by mass of propanol, and after that, a mixture of 0.5 parts by mass of water and 12 parts by mass of propanol was added dropwise. Furthermore, the obtained mixed liquid was stirred for 1 hour while heating at 60 ° C. The powder obtained by distilling off the solvent from the mixture was heated under reduced pressure at a temperature of 120 ° C. for 8 hours to obtain a positive electrode active material for a non-aqueous secondary battery of the present invention 2.
この正極活物質を熱脱着-GC/MS分析した結果、1-プロパノールとプロパナールが確認できた。後述する参考例2の、Zr含有層の形成処理を行っていない正極活物質では、1-プロパノールとプロパナールが確認できなかった。
As a result of thermal desorption-GC / MS analysis of this positive electrode active material, 1-propanol and propanal were confirmed. 1-propanol and propanal could not be confirmed in the positive electrode active material that was not subjected to the Zr-containing layer formation treatment in Reference Example 2 described later.
なお、熱脱着-GC/MS分析の詳細は以下の通りである。試料10mgを300℃で5分間加熱処理し、生成したガスをHe気流下で抽出し、液化窒素を用い、カラムにトラップさせた。トラップされた収集物について、分析を行った。
The details of thermal desorption-GC / MS analysis are as follows. 10 mg of the sample was heat-treated at 300 ° C. for 5 minutes, and the generated gas was extracted under a He stream, and trapped on the column using liquefied nitrogen. The trapped collection was analyzed.
[参考例1]
<正極の作製>
上記の非水二次電池用正極活物質を95質量部と、導電材としてアセチレンブラック3質量部と、結着材としてポリフッ化ビニリデン(呉羽化学製、商品名L#1120)2質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。 [Reference Example 1]
<Preparation of positive electrode>
95 parts by mass of the positive electrode active material for a non-aqueous secondary battery, 3 parts by mass of acetylene black as a conductive material, and 2 parts by mass of polyvinylidene fluoride (trade name L # 1120, manufactured by Kureha Chemical) as a binder. In a N-methylpyrrolidone solvent, the mixture was slurried by mixing with a disperser. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode.
<正極の作製>
上記の非水二次電池用正極活物質を95質量部と、導電材としてアセチレンブラック3質量部と、結着材としてポリフッ化ビニリデン(呉羽化学製、商品名L#1120)2質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。 [Reference Example 1]
<Preparation of positive electrode>
95 parts by mass of the positive electrode active material for a non-aqueous secondary battery, 3 parts by mass of acetylene black as a conductive material, and 2 parts by mass of polyvinylidene fluoride (trade name L # 1120, manufactured by Kureha Chemical) as a binder. In a N-methylpyrrolidone solvent, the mixture was slurried by mixing with a disperser. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode.
得られた正極を用いて、上記実施例1-1と同様の操作で非水二次電池を作製し、それを3回充放電した。その後電池から正極を取り出して、当該正極についてX線光電子分光分析法(XPS)により分析した結果を図3に示す。
Using the obtained positive electrode, a nonaqueous secondary battery was produced in the same manner as in Example 1-1, and was charged and discharged three times. Thereafter, the positive electrode is taken out from the battery, and the result of analyzing the positive electrode by X-ray photoelectron spectroscopy (XPS) is shown in FIG.
なお、XPSの評価条件は以下の通りである。正極のサンプリングはAr雰囲気のグローブボックス中で行った。トランスファーベッセルを用いて、大気に触れないようにして測定装置(PHI社製、ESCA5700ci)内に正極を導入した。X線はAl Kα(1486.7 eV)、加速電圧14kV、350Wの条件で、電子中和銃を使用し、取り出し角は65°と設定した。測定領域は電極の800μmφであった。正極は測定前に溶媒洗浄した後、カーボンテープに試料として貼り付けて測定した。
The XPS evaluation conditions are as follows. The positive electrode was sampled in a glove box in an Ar atmosphere. Using a transfer vessel, a positive electrode was introduced into a measuring apparatus (PCA, ESCA5700ci) without being exposed to the atmosphere. X-rays were Al Kα (1486.7 eV), acceleration voltage 14 kV, 350 W, using an electron neutralizing gun, and the take-off angle was set to 65 °. The measurement area was 800 μmφ of the electrode. The positive electrode was subjected to solvent washing before measurement, and then attached to a carbon tape as a sample for measurement.
[参考例2]
元素組成がLiNi0.80Co0.15Al0.05O2である正極活物質を95質量部と、導電材としてアセチレンブラック3質量部と、結着材としてポリフッ化ビニリデン(呉羽化学製、商品名L#1120)2質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。 [Reference Example 2]
95 parts by mass of a positive electrode active material having an elemental composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 3 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (manufactured by Kureha Chemical, 2 parts by mass of a product name L # 1120) was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode.
元素組成がLiNi0.80Co0.15Al0.05O2である正極活物質を95質量部と、導電材としてアセチレンブラック3質量部と、結着材としてポリフッ化ビニリデン(呉羽化学製、商品名L#1120)2質量部とを、N-メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。このスラリーを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、プレスして正極を作製した。 [Reference Example 2]
95 parts by mass of a positive electrode active material having an elemental composition of LiNi 0.80 Co 0.15 Al 0.05 O 2 , 3 parts by mass of acetylene black as a conductive material, and polyvinylidene fluoride (manufactured by Kureha Chemical, 2 parts by mass of a product name L # 1120) was mixed with a disperser in an N-methylpyrrolidone solvent to form a slurry. This slurry was uniformly applied to a 15 μm thick aluminum foil, dried, and then pressed to produce a positive electrode.
得られた正極を用いて、上記実施例1-1と同様の操作で非水二次電池を作製し、それを3回充放電した。その後電池から正極を取り出して、当該正極についてXPSによる分析を行った。結果を図3に示す。
Using the obtained positive electrode, a nonaqueous secondary battery was produced in the same manner as in Example 1-1, and was charged and discharged three times. Thereafter, the positive electrode was taken out from the battery, and the positive electrode was analyzed by XPS. The results are shown in FIG.
<負極の作製>
上記実施例1-1における<負極の作製>と同様にして、負極を作製した。 <Production of negative electrode>
A negative electrode was produced in the same manner as in <Preparation of negative electrode> in Example 1-1.
上記実施例1-1における<負極の作製>と同様にして、負極を作製した。 <Production of negative electrode>
A negative electrode was produced in the same manner as in <Preparation of negative electrode> in Example 1-1.
<非水電解液>
上記実施例1-1における<非水電解液>と同様の電解液を用いた。 <Non-aqueous electrolyte>
The same electrolytic solution as the <nonaqueous electrolytic solution> in Example 1-1 was used.
上記実施例1-1における<非水電解液>と同様の電解液を用いた。 <Non-aqueous electrolyte>
The same electrolytic solution as the <nonaqueous electrolytic solution> in Example 1-1 was used.
<二次電池の作製>
上記の参考例1又は2の正極、負極、及びポリエチレン製のセパレータを使用して、実施例1-1における<二次電池の作製>と同様にして、シート状の非水二次電池を作製した。 <Production of secondary battery>
Using the positive electrode, negative electrode, and polyethylene separator of Reference Example 1 or 2, a sheet-like non-aqueous secondary battery was prepared in the same manner as in <Preparation of secondary battery> in Example 1-1. did.
上記の参考例1又は2の正極、負極、及びポリエチレン製のセパレータを使用して、実施例1-1における<二次電池の作製>と同様にして、シート状の非水二次電池を作製した。 <Production of secondary battery>
Using the positive electrode, negative electrode, and polyethylene separator of Reference Example 1 or 2, a sheet-like non-aqueous secondary battery was prepared in the same manner as in <Preparation of secondary battery> in Example 1-1. did.
<初期評価>
非水二次電池を、ガラス板で挟んで加圧した状態で、25℃において、5時間以上かけて電圧4.2Vまで充電した後、2.5Vまで定電流放電する操作を2回行った。その後、5時間以上かけて4.2Vまで定電流充電した後、室温でエタノール浴中に浸して電池体積を測定した(「初期体積(mL/セル)」とする)。 <Initial evaluation>
In a state where the nonaqueous secondary battery was sandwiched between glass plates and pressurized, the operation of charging to a voltage of 4.2 V over 25 hours at 25 ° C. and then discharging to a constant current of 2.5 V were performed twice. . Thereafter, the battery was charged at a constant current to 4.2 V over 5 hours and then immersed in an ethanol bath at room temperature to measure the battery volume (referred to as “initial volume (mL / cell)”).
非水二次電池を、ガラス板で挟んで加圧した状態で、25℃において、5時間以上かけて電圧4.2Vまで充電した後、2.5Vまで定電流放電する操作を2回行った。その後、5時間以上かけて4.2Vまで定電流充電した後、室温でエタノール浴中に浸して電池体積を測定した(「初期体積(mL/セル)」とする)。 <Initial evaluation>
In a state where the nonaqueous secondary battery was sandwiched between glass plates and pressurized, the operation of charging to a voltage of 4.2 V over 25 hours at 25 ° C. and then discharging to a constant current of 2.5 V were performed twice. . Thereafter, the battery was charged at a constant current to 4.2 V over 5 hours and then immersed in an ethanol bath at room temperature to measure the battery volume (referred to as “initial volume (mL / cell)”).
その後、温度-10℃、電圧の振幅10mV、周波数領域100000~0.001Hzの条件で正極のインピーダンス測定を実施した。得られたインピーダンス測定結果から、測定周波数と複素インピーダンスの虚部をプロットした。10~0.005Hzの領域における極大値を初期の正極抵抗(「初期抵抗(Ω/セル)」とする)の指標とした。
Thereafter, impedance measurement of the positive electrode was performed under the conditions of a temperature of −10 ° C., a voltage amplitude of 10 mV, and a frequency region of 100,000 to 0.001 Hz. From the obtained impedance measurement results, the measurement frequency and the imaginary part of the complex impedance were plotted. The maximum value in the region of 10 to 0.005 Hz was used as an index of the initial positive electrode resistance (referred to as “initial resistance (Ω / cell)”).
<高温且つ高電圧環境下での保存試験>
初期評価を実施した非水二次電池について、初期評価と同条件で放電・充電を行い、2回4.2Vまでの充電(この時の容量を「保存前充電容量」とする)した電池を、85℃で3日間保存した。 <Storage test under high temperature and high voltage>
For the non-aqueous secondary battery that was initially evaluated, a battery that was discharged and charged under the same conditions as the initial evaluation and was charged up to 4.2 V twice (the capacity at this time is referred to as “charging capacity before storage”) And stored at 85 ° C. for 3 days.
初期評価を実施した非水二次電池について、初期評価と同条件で放電・充電を行い、2回4.2Vまでの充電(この時の容量を「保存前充電容量」とする)した電池を、85℃で3日間保存した。 <Storage test under high temperature and high voltage>
For the non-aqueous secondary battery that was initially evaluated, a battery that was discharged and charged under the same conditions as the initial evaluation and was charged up to 4.2 V twice (the capacity at this time is referred to as “charging capacity before storage”) And stored at 85 ° C. for 3 days.
保存後の電池を25℃で2.5Vまで放電(「残存容量:保存後の放電容量」とする)した後に、4.2Vまで定電流充電(「回復容量:保存後充電容量」とする)した電池を、室温でエタノール浴中に浸してその体積を測定した(「保存後体積(mL/セル)」とする)。
The battery after storage was discharged to 2.5 V at 25 ° C. (“Remaining capacity: discharge capacity after storage”) and then constant-current charging to 4.2 V (“Recovery capacity: charge capacity after storage”) The obtained battery was immersed in an ethanol bath at room temperature and its volume was measured (referred to as “volume after storage (mL / cell)”).
その後、温度-10℃、電圧の振幅10mV、周波数領域100000~0.001Hzの条件で正極のインピーダンス測定を実施した。得られたインピーダンス測定結果から、測定周波数と複素インピーダンスの虚部をプロットした。10~0.005Hzの領域における極大値を保存後の正極抵抗(「保存後抵抗(Ω/セル)」とする)の指標とした。
Thereafter, impedance measurement of the positive electrode was performed under the conditions of a temperature of −10 ° C., a voltage amplitude of 10 mV, and a frequency region of 100,000 to 0.001 Hz. From the obtained impedance measurement results, the measurement frequency and the imaginary part of the complex impedance were plotted. The maximum value in the region of 10 to 0.005 Hz was used as an index of positive electrode resistance after storage (referred to as “resistance after storage (Ω / cell)”).
電池性能の指標は、以下のように求めた。
残存率(%)=残存容量/保存前充電容量×100
回復率(%)=回復容量/保存前充電容量×100
保存後体積変化(mL/セル)=保存後体積-初期体積 The battery performance index was determined as follows.
Residual rate (%) = remaining capacity / charge capacity before storage x 100
Recovery rate (%) = Recovery capacity / Charge capacity before storage × 100
Volume change after storage (mL / cell) = Volume after storage-Initial volume
残存率(%)=残存容量/保存前充電容量×100
回復率(%)=回復容量/保存前充電容量×100
保存後体積変化(mL/セル)=保存後体積-初期体積 The battery performance index was determined as follows.
Residual rate (%) = remaining capacity / charge capacity before storage x 100
Recovery rate (%) = Recovery capacity / Charge capacity before storage × 100
Volume change after storage (mL / cell) = Volume after storage-Initial volume
体積変化率(%)は、下記実施例2-1~2-4については参考例1の保存後体積変化(mL/セル)を、下記比較例2-1~2-4については参考例2の保存後体積変化(mL/セル)を基準(100%)として算出した。
The volume change rate (%) is the volume change (mL / cell) after storage of Reference Example 1 for Examples 2-1 to 2-4 below, and Reference Example 2 for Comparative Examples 2-1 to 2-4 below. The volume change after storage of (mL / cell) was calculated as a standard (100%).
初期抵抗率(%)=実施例又は比較例の初期抵抗/参考例1又は2の初期抵抗×100
保存後抵抗率(%)=実施例又は比較例の保存後抵抗/参考例1又は2の保存後抵抗×100
*抵抗率について、実施例の正極抵抗は参考例1の正極抵抗で割り、比較例の正極抵抗は参考例2の正極抵抗で割る。 Initial resistivity (%) = initial resistance of Example or Comparative Example / initial resistance of Reference Example 1 or 2 × 100
Resistivity after storage (%) = Resistance after storage in Examples or Comparative Examples / Resistance after storage in Reference Example 1 or 2 × 100
* Regarding the resistivity, the positive electrode resistance of the example is divided by the positive electrode resistance of Reference Example 1, and the positive electrode resistance of the comparative example is divided by the positive electrode resistance of Reference Example 2.
保存後抵抗率(%)=実施例又は比較例の保存後抵抗/参考例1又は2の保存後抵抗×100
*抵抗率について、実施例の正極抵抗は参考例1の正極抵抗で割り、比較例の正極抵抗は参考例2の正極抵抗で割る。 Initial resistivity (%) = initial resistance of Example or Comparative Example / initial resistance of Reference Example 1 or 2 × 100
Resistivity after storage (%) = Resistance after storage in Examples or Comparative Examples / Resistance after storage in Reference Example 1 or 2 × 100
* Regarding the resistivity, the positive electrode resistance of the example is divided by the positive electrode resistance of Reference Example 1, and the positive electrode resistance of the comparative example is divided by the positive electrode resistance of Reference Example 2.
〔実施例2-1〕
参考例1において、ビニレンカーボネートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-1]
In Reference Example 1, a non-aqueous secondary battery was produced and evaluated in the same manner as Reference Example 1 except that a non-aqueous electrolyte solution added with vinylene carbonate to a content of 0.5% by mass was used.
参考例1において、ビニレンカーボネートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-1]
In Reference Example 1, a non-aqueous secondary battery was produced and evaluated in the same manner as Reference Example 1 except that a non-aqueous electrolyte solution added with vinylene carbonate to a content of 0.5% by mass was used.
〔実施例2-2〕
参考例1において、ヘキサメチレンジイソシアネートを含有量0.5質量部となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-2]
In Reference Example 1, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolytic solution in which hexamethylene diisocyanate was added to a content of 0.5 part by mass was used.
参考例1において、ヘキサメチレンジイソシアネートを含有量0.5質量部となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-2]
In Reference Example 1, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolytic solution in which hexamethylene diisocyanate was added to a content of 0.5 part by mass was used.
〔実施例2-3〕
参考例1において、ジフルオロリン酸リチウムを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-3]
In Reference Example 1, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolytic solution in which lithium difluorophosphate was added to a content of 0.5% by mass was used. .
参考例1において、ジフルオロリン酸リチウムを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-3]
In Reference Example 1, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolytic solution in which lithium difluorophosphate was added to a content of 0.5% by mass was used. .
〔実施例2-4〕
参考例1において、アジポニトリルを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-4]
A nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolyte solution in which adiponitrile was added to a content of 0.5% by mass was used in Reference Example 1.
参考例1において、アジポニトリルを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-4]
A nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a nonaqueous electrolyte solution in which adiponitrile was added to a content of 0.5% by mass was used in Reference Example 1.
〔比較例2-1〕
参考例2において、ビニレンカーボネートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例2と同様に非水二次電池を作製し、評価した。 [Comparative Example 2-1]
In Reference Example 2, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 2 except that a nonaqueous electrolytic solution in which vinylene carbonate was added to a content of 0.5% by mass was used.
参考例2において、ビニレンカーボネートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例2と同様に非水二次電池を作製し、評価した。 [Comparative Example 2-1]
In Reference Example 2, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 2 except that a nonaqueous electrolytic solution in which vinylene carbonate was added to a content of 0.5% by mass was used.
〔比較例2-2〕
参考例2において、ヘキサメチレンジイソシアネートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例2と同様に非水二次電池を作製し、評価した。 [Comparative Example 2-2]
In Reference Example 2, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 2 except that a nonaqueous electrolytic solution in which hexamethylene diisocyanate was added to a content of 0.5% by mass was used.
参考例2において、ヘキサメチレンジイソシアネートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例2と同様に非水二次電池を作製し、評価した。 [Comparative Example 2-2]
In Reference Example 2, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 2 except that a nonaqueous electrolytic solution in which hexamethylene diisocyanate was added to a content of 0.5% by mass was used.
〔比較例2-3〕
参考例2において、ジフルオロリン酸リチウムを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例2と同様に非水二次電池を作製し、評価した。 [Comparative Example 2-3]
In Reference Example 2, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 2 except that a nonaqueous electrolyte solution added with lithium difluorophosphate so as to have a content of 0.5% by mass was used. .
参考例2において、ジフルオロリン酸リチウムを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例2と同様に非水二次電池を作製し、評価した。 [Comparative Example 2-3]
In Reference Example 2, a nonaqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 2 except that a nonaqueous electrolyte solution added with lithium difluorophosphate so as to have a content of 0.5% by mass was used. .
〔比較例2-4〕
参考例2において、アジポニトリルを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例2と同様に非水二次電池を作製し、評価した。 [Comparative Example 2-4]
In Reference Example 2, a nonaqueous secondary battery was produced and evaluated in the same manner as Reference Example 2 except that a nonaqueous electrolyte solution added with adiponitrile to a content of 0.5% by mass was used.
参考例2において、アジポニトリルを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例2と同様に非水二次電池を作製し、評価した。 [Comparative Example 2-4]
In Reference Example 2, a nonaqueous secondary battery was produced and evaluated in the same manner as Reference Example 2 except that a nonaqueous electrolyte solution added with adiponitrile to a content of 0.5% by mass was used.
参考例1~2、実施例2-1~2-4及び比較例2-1~2-4で得られた電池の評価結果を下記表3及び表4に示す。
The evaluation results of the batteries obtained in Reference Examples 1-2, Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-4 are shown in Tables 3 and 4 below.
表3に示すように、参考例1(正極活物質表面のZr有り)と参考例2(正極活物質表面のZr無し)を比較すると、参考例1が参考例2より、高温且つ高電圧環境下での保存後の抵抗値が低いことが分かる。しかしこれではまだ、電池性能が十分とは言えない。
As shown in Table 3, when Reference Example 1 (with Zr on the surface of the positive electrode active material) and Reference Example 2 (without Zr on the surface of the positive electrode active material) were compared, Reference Example 1 had a higher temperature and higher voltage environment than Reference Example 2. It can be seen that the resistance value after storage below is low. However, this still does not have sufficient battery performance.
次に、実施例2-1~実施例2-4のように、Zr含有層を有する正極(参考例1)において、さらに非水電解液に特定添加剤を含有させることで、高温且つ高電圧環境下での保存試験において、低抵抗且つ低体積変化を有する非水二次電池を得ることができた。一方、比較例2-1~比較例2-4のように、Zr含有層を持たない正極でも、電解液に添加剤を含有させることで概ね保存後の体積を低くすることはできるが、依然として保存後の抵抗が高いことがわかった。
Next, as in Example 2-1 to Example 2-4, in the positive electrode having a Zr-containing layer (Reference Example 1), a specific additive is further added to the non-aqueous electrolyte so that a high temperature and high voltage can be obtained. In a storage test under an environment, a non-aqueous secondary battery having low resistance and low volume change could be obtained. On the other hand, as in Comparative Examples 2-1 to 2-4, even with a positive electrode that does not have a Zr-containing layer, the volume after storage can be generally reduced by adding an additive to the electrolyte, It was found that the resistance after storage was high.
より詳しく見ると、実施例2-1~実施例2-4は、Zr含有層を持つ正極を使用し、かつ所定の特定添加剤を添加したものであり、比較例2-1~比較例2-4は、Zr含有層を持たない正極を使用し、番号が同じ実施例と同様の特定添加剤を添加したものである。これら番号が同じもの同士を比較すると、以下のことがわかる。
More specifically, Example 2-1 to Example 2-4 use a positive electrode having a Zr-containing layer and to which a predetermined specific additive is added. Comparative Examples 2-1 to 2 -4 is obtained by using a positive electrode having no Zr-containing layer and adding the same specific additive as in the example having the same number. When the same numbers are compared, the following can be understood.
ビニレンカーボネートを添加した場合(実施例2-1及び比較例2-1)の効果については、比較例では体積変化率は大きくなってしまうのに対し、実施例では体積変化率は減少している。初期抵抗率及び保存後抵抗率については、実施例及び比較例で減少しているが(比較例2-1の初期抵抗率を除く)、その減少の度合いが、実施例の方が大きい。
When vinylene carbonate is added (Example 2-1 and Comparative Example 2-1), the volume change rate is increased in the comparative example, whereas the volume change rate is reduced in the example. . Although the initial resistivity and the resistivity after storage are decreased in the examples and comparative examples (except for the initial resistivity in comparative example 2-1), the degree of the decrease is larger in the examples.
ヘキサメチレンジイソシアネート(実施例2-2及び比較例2-2)、ジフルオロリン酸リチウム(実施例2-3及び比較例2-3)及びアジポニトリル(実施例2-4及び比較例2-4)についても、Zr含有層を有する正極を使用した場合(実施例)の方が、体積変化率、初期抵抗率及び保存後抵抗率が減少し、又は減少の度合いが大きい。
About hexamethylene diisocyanate (Example 2-2 and Comparative Example 2-2), lithium difluorophosphate (Example 2-3 and Comparative Example 2-3) and adiponitrile (Example 2-4 and Comparative Example 2-4) However, when the positive electrode having the Zr-containing layer is used (Example), the volume change rate, the initial resistivity, and the resistivity after storage are reduced, or the degree of reduction is large.
このような効果が得られる理由は不明であるが、正極活物質の粒子表面に形成されたZr含有層と特定添加剤との相乗効果によるものであると推測される。
The reason why such an effect is obtained is unknown, but it is presumed to be due to a synergistic effect between the Zr-containing layer formed on the surface of the positive electrode active material particles and the specific additive.
〔実施例2-5〕
参考例1において、2-プロピニル-2-(ジエトキシホスホリル)アセテートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-5]
In Reference Example 1, a non-aqueous electrolyte was used in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution containing 2-propynyl-2- (diethoxyphosphoryl) acetate added to a content of 0.5% by mass was used. A secondary battery was fabricated and evaluated.
参考例1において、2-プロピニル-2-(ジエトキシホスホリル)アセテートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-5]
In Reference Example 1, a non-aqueous electrolyte was used in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution containing 2-propynyl-2- (diethoxyphosphoryl) acetate added to a content of 0.5% by mass was used. A secondary battery was fabricated and evaluated.
〔実施例2-6〕
参考例1において、t-アミルベンゼンを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-6]
A non-aqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with t-amylbenzene in a content of 0.5% by mass was used in Reference Example 1. .
参考例1において、t-アミルベンゼンを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-6]
A non-aqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with t-amylbenzene in a content of 0.5% by mass was used in Reference Example 1. .
〔実施例2-7〕
参考例1において、モノフルオロエチレンカーボネートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-7]
In Reference Example 1, a non-aqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with monofluoroethylene carbonate to a content of 0.5% by mass was used. .
参考例1において、モノフルオロエチレンカーボネートを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-7]
In Reference Example 1, a non-aqueous secondary battery was prepared and evaluated in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with monofluoroethylene carbonate to a content of 0.5% by mass was used. .
〔実施例2-8〕
参考例1において、ジフルオロ(ビスオキサラート)リン酸リチウムを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-8]
In Reference Example 1, a non-aqueous secondary battery was prepared in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with a difluoro (bisoxalate) lithium phosphate content of 0.5% by mass was used. Prepared and evaluated.
参考例1において、ジフルオロ(ビスオキサラート)リン酸リチウムを含有量0.5質量%となるように添加した非水電解液を使用した以外は、参考例1と同様に非水二次電池を作製し、評価した。 [Example 2-8]
In Reference Example 1, a non-aqueous secondary battery was prepared in the same manner as in Reference Example 1 except that a non-aqueous electrolyte solution added with a difluoro (bisoxalate) lithium phosphate content of 0.5% by mass was used. Prepared and evaluated.
参考例1、及び実施例2-5~2-8で得られた電池の評価結果を下記表5に示す。
Table 5 below shows the evaluation results of the batteries obtained in Reference Example 1 and Examples 2-5 to 2-8.
表5に示すように、実施例2-5~実施例2-8のいずれにおいても、高温且つ高電圧環境下での保存試験において、低抵抗の非水二次電池を得ることができた。
As shown in Table 5, in any of Examples 2-5 to 2-8, a low resistance non-aqueous secondary battery could be obtained in a storage test under a high temperature and high voltage environment.
Claims (12)
- 以下の(1)~(3)の条件を満たす非水二次電池用正極活物質:
(1)正極活物質コアがNi、Co及びM(MはMn及び/又はAl)を含む、Liイオンを脱離、挿入することが可能な構造を有するリチウム化合物である。
(2)活物質表面から0.1~100nmの深度の部分に、Zr、Ni、Co及びMを全て含有するZr含有領域が存在する。
(3)前記Zr含有領域における、(Zr+Ni+Co+M)に対するZrのモル比が1.5~30%である。 Positive electrode active material for non-aqueous secondary battery that satisfies the following conditions (1) to (3):
(1) A lithium compound having a structure capable of desorbing and inserting Li ions, wherein the positive electrode active material core includes Ni, Co, and M (M is Mn and / or Al).
(2) A Zr-containing region containing all of Zr, Ni, Co, and M exists at a depth of 0.1 to 100 nm from the active material surface.
(3) The molar ratio of Zr to (Zr + Ni + Co + M) in the Zr-containing region is 1.5 to 30%. - 前記正極活物質コアの元素組成が、LixNi1-y-z-αCoyAlzM’αO2と表され、前記式において、M’はLi、Ni、Co、Al以外の1種以上の元素であり、0.9≦x≦1.1、0<y≦0.4、0<z≦0.5、0≦α≦0.01である、請求項1に記載の非水二次電池用正極活物質。 The element composition of the positive electrode active material core is expressed as Li x Ni 1-yz-α Co y Al z M ′ α O 2 , where M ′ is 1 other than Li, Ni, Co, and Al. The element according to claim 1, wherein the element is a seed or more element, and 0.9 ≦ x ≦ 1.1, 0 <y ≦ 0.4, 0 <z ≦ 0.5, and 0 ≦ α ≦ 0.01. Positive electrode active material for water secondary battery.
- 前記活物質表面から0.2~70nmの深度の部分に、前記Zr含有領域が存在する、請求項1又は2に記載の非水二次電池用正極活物質。 The positive electrode active material for a non-aqueous secondary battery according to claim 1 or 2, wherein the Zr-containing region is present at a depth of 0.2 to 70 nm from the surface of the active material.
- 正極集電体と、該正極集電体上に形成された、請求項1乃至3のいずれか1項に記載の非水二次電池用正極活物質を含む正極活物質層とを含む、非水二次電池用正極。 A positive electrode current collector, and a positive electrode active material layer containing the positive electrode active material for a nonaqueous secondary battery according to any one of claims 1 to 3 formed on the positive electrode current collector, Positive electrode for water secondary battery.
- リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水電解液を含む非水二次電池であって、前記正極が請求項4に記載の非水二次電池用正極である、非水二次電池。 A nonaqueous secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte, wherein the positive electrode is the positive electrode for a nonaqueous secondary battery according to claim 4. Next battery.
- 正極活物質を有する正極、負極活物質を有する負極及び非水電解液から少なくとも構成される非水二次電池であって、
前記正極活物質の粒子表面に、Zr、並びに、ヒドロキシル基、アルデヒド基、アルコキシ基、及びカルボキシル基からなる群より選ばれる少なくとも1種の基が存在し、
前記非水電解液が、炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物を含有する、非水二次電池。 A non-aqueous secondary battery comprising at least a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte,
Zr and at least one group selected from the group consisting of a hydroxyl group, an aldehyde group, an alkoxy group, and a carboxyl group exist on the particle surface of the positive electrode active material,
The non-aqueous electrolyte includes a cyclic carbonate having a carbon-carbon unsaturated bond, an isocyanate compound or a condensate thereof, a fluorinated oxo acid salt, a nitrile compound, an aromatic compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, and an oxalate A non-aqueous secondary battery containing at least one compound selected from the group consisting of salts. - 前記正極活物質が、Liイオンを脱離、挿入することが可能な構造を有するリチウム遷移金属酸化物であり、その元素組成がLisM”1-tAtO2と表され、前記式において、M”はLi、Ni、Co及びMnからなる群より選ばれる少なくとも2種の元素であり、AはLi、Ni、Co及びMn以外の元素であり、0.9≦s≦1.2、0≦t≦0.1である、請求項6に記載の非水二次電池。 The positive electrode active material is a lithium transition metal oxide having a structure capable of desorbing and inserting Li ions, the elemental composition of which is expressed as Li s M ″ 1-t AtO 2 , M ″ is at least two elements selected from the group consisting of Li, Ni, Co and Mn, A is an element other than Li, Ni, Co and Mn, and 0.9 ≦ s ≦ 1.2. The nonaqueous secondary battery according to claim 6, wherein 0 ≦ t ≦ 0.1.
- 前記炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物が、前記非水電解液全体に対し0.001質量%以上、10質量%以下含有される、請求項6又は7に記載の非水二次電池。 Selected from the group consisting of the above cyclic carbonate having a carbon-carbon unsaturated bond, isocyanate compound or condensate thereof, fluorinated oxo acid salt, nitrile compound, aromatic compound, phosphonic acid ester compound, halogen-containing cyclic carbonate, and oxalate salt. The non-aqueous secondary battery according to claim 6 or 7, wherein at least one kind of compound is contained in an amount of 0.001% by mass or more and 10% by mass or less based on the whole non-aqueous electrolyte.
- Zrが存在する部分において、Zrの、当該部分に存在する全遷移金属中のモル比が、1.5~30%である、請求項6乃至8のいずれか1項に記載の非水二次電池。 The non-aqueous secondary according to any one of claims 6 to 8, wherein in the portion where Zr is present, the molar ratio of Zr to all transition metals present in the portion is 1.5 to 30%. battery.
- ZrもしくはZrを含む化合物と、
炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物と
を含有する、非水電解液。 Zr or a compound containing Zr;
Selected from the group consisting of cyclic carbonates having a carbon-carbon unsaturated bond, isocyanate compounds or condensates thereof, fluorinated oxo acid salts, nitrile compounds, aromatic compounds, phosphonic acid ester compounds, halogen-containing cyclic carbonates, and oxalate salts. A non-aqueous electrolyte containing at least one compound. - リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水電解液を含む非水二次電池であって、前記非水電解液が請求項10に記載の非水電解液である、非水二次電池。 A nonaqueous secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium ions, and a nonaqueous electrolyte solution, wherein the nonaqueous electrolyte solution is the nonaqueous electrolyte solution according to claim 10. Next battery.
- 請求項6乃至9及び11のいずれか1項に記載の非水二次電池の製造のための、炭素-炭素不飽和結合を有する環状カーボネート、イソシアネート化合物もしくはその縮合物、フッ素化オキソ酸塩、ニトリル化合物、芳香族化合物、ホスホン酸エステル化合物、ハロゲン含有環状カーボネート、及びオキサラート塩からなる群より選ばれる少なくとも1種の化合物とを含有する非水電解液の使用。 A cyclic carbonate having a carbon-carbon unsaturated bond, an isocyanate compound or a condensate thereof, a fluorinated oxoacid salt, for producing the nonaqueous secondary battery according to any one of claims 6 to 9 and 11. Use of a nonaqueous electrolytic solution containing at least one compound selected from the group consisting of a nitrile compound, an aromatic compound, a phosphonic acid ester compound, a halogen-containing cyclic carbonate, and an oxalate salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016515175A JPWO2015163356A1 (en) | 2014-04-22 | 2015-04-22 | Cathode active material for non-aqueous secondary battery and non-aqueous secondary battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-088401 | 2014-04-22 | ||
JP2014088401 | 2014-04-22 | ||
JP2014120384 | 2014-06-11 | ||
JP2014-120384 | 2014-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015163356A1 true WO2015163356A1 (en) | 2015-10-29 |
Family
ID=54332519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/062212 WO2015163356A1 (en) | 2014-04-22 | 2015-04-22 | Positive electrode active material for non-aqueous secondary cell, and non-aqueous secondary cell |
Country Status (2)
Country | Link |
---|---|
JP (2) | JPWO2015163356A1 (en) |
WO (1) | WO2015163356A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190011208A (en) * | 2017-07-24 | 2019-02-01 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery and rechargeable lithium battery including same |
JP2019057450A (en) * | 2017-09-22 | 2019-04-11 | トヨタ自動車株式会社 | Positive electrode material and lithium secondary battery using the same |
WO2020003864A1 (en) * | 2018-06-25 | 2020-01-02 | 株式会社日立製作所 | Negative electrode, battery cell sheet, and secondary battery |
JP2020013713A (en) * | 2018-07-19 | 2020-01-23 | 本田技研工業株式会社 | Cathode active material and cathode active material thereof |
JP2020029396A (en) * | 2018-08-22 | 2020-02-27 | エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. | Lithium composite oxide, positive electrode active material for lithium secondary battery and lithium secondary battery comprising the same |
CN111033863A (en) * | 2017-08-30 | 2020-04-17 | 松下知识产权经营株式会社 | Nonaqueous electrolyte secondary battery |
JP2021009755A (en) * | 2019-06-28 | 2021-01-28 | 旭化成株式会社 | Nonaqueous electrolyte and nonaqueous secondary battery |
KR20210035300A (en) * | 2019-03-25 | 2021-03-31 | 히다찌긴조꾸가부시끼가이사 | Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery |
US11043660B2 (en) | 2016-07-05 | 2021-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
US11444274B2 (en) | 2017-05-12 | 2022-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
KR20230021001A (en) | 2020-06-05 | 2023-02-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Cathode active material, cathode active material layer, secondary battery, electronic device, and vehicle |
US11670770B2 (en) | 2017-06-26 | 2023-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and secondary battery |
US11799080B2 (en) | 2017-05-19 | 2023-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7417135B2 (en) * | 2021-07-21 | 2024-01-18 | 日亜化学工業株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005310744A (en) * | 2004-03-24 | 2005-11-04 | Hitachi Metals Ltd | Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator |
JP2009218198A (en) * | 2008-02-13 | 2009-09-24 | Tdk Corp | Method of manufacturing active material and electrode, and active material and electrode |
WO2012014998A1 (en) * | 2010-07-29 | 2012-02-02 | 日立マクセルエナジー株式会社 | Lithium secondary battery |
WO2013024621A1 (en) * | 2011-08-17 | 2013-02-21 | 日本電気株式会社 | Lithium-ion cell |
JP2013206688A (en) * | 2012-03-28 | 2013-10-07 | Nissan Motor Co Ltd | Lithium ion secondary battery, and method for pretreatment and use of the same |
JP2013218895A (en) * | 2012-04-09 | 2013-10-24 | Toyota Motor Corp | Electrode and manufacturing method therefor and nonaqueous electrolyte battery having the electrode |
JP2013235666A (en) * | 2012-05-07 | 2013-11-21 | Honda Motor Co Ltd | Positive-electrode active material for batteries and method for manufacturing the same |
JP2014011023A (en) * | 2012-06-29 | 2014-01-20 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2014022332A (en) * | 2012-07-23 | 2014-02-03 | Asahi Kasei Corp | Electrolyte for nonaqueous electricity storage device |
WO2014058068A1 (en) * | 2012-10-12 | 2014-04-17 | 日産自動車株式会社 | Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing positive electrode active substance for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell |
JP2014216077A (en) * | 2013-04-23 | 2014-11-17 | 日立マクセル株式会社 | Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and nonaqueous electrolyte lithium ion secondary battery using the positive electrode material |
WO2015045340A1 (en) * | 2013-09-30 | 2015-04-02 | 三洋電機株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same |
-
2015
- 2015-04-22 WO PCT/JP2015/062212 patent/WO2015163356A1/en active Application Filing
- 2015-04-22 JP JP2016515175A patent/JPWO2015163356A1/en not_active Withdrawn
-
2019
- 2019-04-26 JP JP2019085976A patent/JP2019165010A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005310744A (en) * | 2004-03-24 | 2005-11-04 | Hitachi Metals Ltd | Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator |
JP2009218198A (en) * | 2008-02-13 | 2009-09-24 | Tdk Corp | Method of manufacturing active material and electrode, and active material and electrode |
WO2012014998A1 (en) * | 2010-07-29 | 2012-02-02 | 日立マクセルエナジー株式会社 | Lithium secondary battery |
WO2013024621A1 (en) * | 2011-08-17 | 2013-02-21 | 日本電気株式会社 | Lithium-ion cell |
JP2013206688A (en) * | 2012-03-28 | 2013-10-07 | Nissan Motor Co Ltd | Lithium ion secondary battery, and method for pretreatment and use of the same |
JP2013218895A (en) * | 2012-04-09 | 2013-10-24 | Toyota Motor Corp | Electrode and manufacturing method therefor and nonaqueous electrolyte battery having the electrode |
JP2013235666A (en) * | 2012-05-07 | 2013-11-21 | Honda Motor Co Ltd | Positive-electrode active material for batteries and method for manufacturing the same |
JP2014011023A (en) * | 2012-06-29 | 2014-01-20 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2014022332A (en) * | 2012-07-23 | 2014-02-03 | Asahi Kasei Corp | Electrolyte for nonaqueous electricity storage device |
WO2014058068A1 (en) * | 2012-10-12 | 2014-04-17 | 日産自動車株式会社 | Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing positive electrode active substance for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell |
JP2014216077A (en) * | 2013-04-23 | 2014-11-17 | 日立マクセル株式会社 | Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and nonaqueous electrolyte lithium ion secondary battery using the positive electrode material |
WO2015045340A1 (en) * | 2013-09-30 | 2015-04-02 | 三洋電機株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11043660B2 (en) | 2016-07-05 | 2021-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
US11489151B2 (en) | 2017-05-12 | 2022-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11444274B2 (en) | 2017-05-12 | 2022-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle |
US11799080B2 (en) | 2017-05-19 | 2023-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
US11670770B2 (en) | 2017-06-26 | 2023-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing positive electrode active material, and secondary battery |
KR102628435B1 (en) | 2017-07-24 | 2024-01-23 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery and rechargeable lithium battery including same |
KR20190011208A (en) * | 2017-07-24 | 2019-02-01 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery and rechargeable lithium battery including same |
JP2019024004A (en) * | 2017-07-24 | 2019-02-14 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | Positive electrode active material for lithium secondary battery and lithium secondary battery including the same |
CN111033863A (en) * | 2017-08-30 | 2020-04-17 | 松下知识产权经营株式会社 | Nonaqueous electrolyte secondary battery |
JP2019057450A (en) * | 2017-09-22 | 2019-04-11 | トヨタ自動車株式会社 | Positive electrode material and lithium secondary battery using the same |
JP6997943B2 (en) | 2017-09-22 | 2022-01-18 | トヨタ自動車株式会社 | Positive electrode material and lithium secondary battery using it |
WO2020003864A1 (en) * | 2018-06-25 | 2020-01-02 | 株式会社日立製作所 | Negative electrode, battery cell sheet, and secondary battery |
JP2020013713A (en) * | 2018-07-19 | 2020-01-23 | 本田技研工業株式会社 | Cathode active material and cathode active material thereof |
US11643337B2 (en) | 2018-08-22 | 2023-05-09 | Ecopro Bm Co., Ltd. | Lithium composite oxide, positive electrode active material and lithium secondary battery comprising the same |
US11078089B2 (en) | 2018-08-22 | 2021-08-03 | Ecopro Bm Co., Ltd. | Lithium composite oxide, positive electrode active material and lithium secondary battery comprising the same |
JP2020029396A (en) * | 2018-08-22 | 2020-02-27 | エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. | Lithium composite oxide, positive electrode active material for lithium secondary battery and lithium secondary battery comprising the same |
JPWO2020195790A1 (en) * | 2019-03-25 | 2021-05-20 | 日立金属株式会社 | Positive electrode active material for lithium ion secondary batteries, their manufacturing methods, and lithium ion secondary batteries |
KR20210035300A (en) * | 2019-03-25 | 2021-03-31 | 히다찌긴조꾸가부시끼가이사 | Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery |
KR102628617B1 (en) | 2019-03-25 | 2024-01-24 | 가부시키가이샤 프로테리아루 | Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery |
JP7233323B2 (en) | 2019-06-28 | 2023-03-06 | 旭化成株式会社 | Non-aqueous electrolyte and non-aqueous secondary battery |
JP2021009755A (en) * | 2019-06-28 | 2021-01-28 | 旭化成株式会社 | Nonaqueous electrolyte and nonaqueous secondary battery |
KR20230021001A (en) | 2020-06-05 | 2023-02-13 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Cathode active material, cathode active material layer, secondary battery, electronic device, and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015163356A1 (en) | 2017-04-20 |
JP2019165010A (en) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019165010A (en) | Nonaqueous secondary battery | |
JP6750716B2 (en) | Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery | |
JP6187566B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP6604014B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
KR101857930B1 (en) | Nonaqueous electrolytic solution and nonaqueous electrolytic solution cell using same | |
JP6997730B2 (en) | Non-aqueous electrolyte and power storage device | |
JP6171354B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
WO2012108270A1 (en) | Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery using same | |
WO2014024990A1 (en) | Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same | |
JP2016146341A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery | |
JP2018163867A (en) | Nonaqueous electrolyte and energy device employing the same | |
JP6019663B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
JP2013065540A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery including the same | |
JP2015164126A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery | |
KR20210153122A (en) | Alkali metal electrode treatment agent, electrolyte for alkali metal secondary battery, alkali metal electrode, alkali metal secondary battery and module | |
JP2011138759A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP2013157305A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP2019135730A (en) | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery | |
JP2021015812A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP6459695B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2015176765A (en) | Nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte | |
WO2021128094A1 (en) | Electrochemical device and electronic device comprising same | |
JP5103766B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
WO2021128092A1 (en) | Electrochemical device and electronic device containing same | |
JP2013165049A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15782772 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016515175 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15782772 Country of ref document: EP Kind code of ref document: A1 |