Nothing Special   »   [go: up one dir, main page]

JP6057626B2 - Machine structural steel with low heat treatment deformation - Google Patents

Machine structural steel with low heat treatment deformation Download PDF

Info

Publication number
JP6057626B2
JP6057626B2 JP2012193763A JP2012193763A JP6057626B2 JP 6057626 B2 JP6057626 B2 JP 6057626B2 JP 2012193763 A JP2012193763 A JP 2012193763A JP 2012193763 A JP2012193763 A JP 2012193763A JP 6057626 B2 JP6057626 B2 JP 6057626B2
Authority
JP
Japan
Prior art keywords
quenching
hardness
distance
heat treatment
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012193763A
Other languages
Japanese (ja)
Other versions
JP2014047419A (en
Inventor
藤松 威史
威史 藤松
盛彦 中崎
盛彦 中崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2012193763A priority Critical patent/JP6057626B2/en
Priority to PCT/JP2013/073681 priority patent/WO2014038548A1/en
Priority to KR1020157006758A priority patent/KR20150047524A/en
Priority to US14/425,420 priority patent/US20150218682A1/en
Publication of JP2014047419A publication Critical patent/JP2014047419A/en
Application granted granted Critical
Publication of JP6057626B2 publication Critical patent/JP6057626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、例えば、自動車や産業機械などに使用されるギヤやシャフトなどの動力伝達部品として用いられる機械構造用鋼に関し、特に熱処理変形の小さい機械構造用鋼に関する。   The present invention relates to a machine structural steel used as a power transmission component such as a gear and a shaft used in automobiles and industrial machines, for example, and more particularly to a machine structural steel having a small heat treatment deformation.

焼入れ等の熱処理によって鋼材の変形(以下「熱処理変形」という。)が発生することが知られている。こうした熱処理変形があると、その変形を矯正するために製造工程数が増えたり、矯正しきれない場合には部品不良率が増加したり、あるいは駆動系部品として組み込んだ場合に変形に起因して騒音や振動を発生させるといった悪影響がある。したがって、熱処理変形をできる限り小さく抑えることが実用上非常に重要な課題となっている。   It is known that deformation of a steel material (hereinafter referred to as “heat treatment deformation”) occurs due to heat treatment such as quenching. If there is such heat treatment deformation, the number of manufacturing processes will increase to correct the deformation, the defective part rate will increase if it cannot be corrected, or it will be caused by deformation when incorporated as a drive system part. There are adverse effects such as generating noise and vibration. Therefore, it is a very important problem in practice to keep the heat treatment deformation as small as possible.

従来、この熱処理変形は、鋼材以外の要因として、部品形状、熱処理前工程の影響、焼入油などの冷媒の物性値、冷却の不均一性といった多数の要因にも影響を受けていると考えられている。そこで、それらを種々に適正化することにより熱処理変形の軽減が試みられている。例えば、材料対策として、焼き入れ鋼材の芯部に軟質のフェライト相を析出させて熱処理歪みを軽減する方法が提案されている(例えば、特許文献1参照。)。   Conventionally, this heat treatment deformation is considered to be influenced by many factors other than steel, such as part shape, influence of pre-heat treatment process, physical properties of refrigerants such as quenching oil, and non-uniform cooling. It has been. Therefore, attempts have been made to reduce heat treatment deformation by optimizing them in various ways. For example, as a material countermeasure, a method has been proposed in which a soft ferrite phase is precipitated in the core of a hardened steel material to reduce heat treatment strain (see, for example, Patent Document 1).

また、冷却方法からのアプローチとして、従来型の油焼入れではなく、加圧ガス冷却を利用する方法が提案されている(例えば、特許文献2参照。)。また、熱伝達率を促進あるいは低減する手段を用いて被冷却物の均一冷却化を図る方法が提案されている(例えば、特許文献3参照。)。   As an approach from the cooling method, a method using pressurized gas cooling instead of conventional oil quenching has been proposed (see, for example, Patent Document 2). In addition, a method for achieving uniform cooling of an object to be cooled using means for promoting or reducing the heat transfer coefficient has been proposed (for example, see Patent Document 3).

なお、特許文献3において、熱伝達率を促進する手段は、冷却が遅れる部位に設けられた冷却を促進する被膜材または冷却が遅れる部位の周りに形成された冷却剤の対流によるものであり、熱伝達率の低減手段は、冷却が進行しやすい部位を覆うグラスウールまたは断熱被膜材によるとされている。   In Patent Document 3, the means for promoting the heat transfer coefficient is due to the convection of the coating material that promotes cooling provided in the portion where cooling is delayed or the coolant formed around the portion where cooling is delayed, The means for reducing the heat transfer rate is said to be glass wool or a heat insulating coating material covering a portion where cooling is likely to proceed.

しかしながら、上記で提案されている従来の方法は必ずしも汎用的な手段たり得なかった。なぜなら、たとえば特許文献1の技術では、部品内部に強度の低い軟質相が導入されてしまうことがあり、特許文献2の技術では、熱処理炉そのものを変更しなければならないものであった。また、特許文献3の技術では、個々の熱処理部品に対する処理が必要になることなど、必ずしも汎用的な手段とは言い難かったからである。   However, the conventional method proposed above cannot always be a general-purpose means. This is because, for example, in the technique of Patent Document 1, a soft phase having a low strength may be introduced into a part, and in the technique of Patent Document 2, the heat treatment furnace itself has to be changed. This is because the technique of Patent Document 3 is not necessarily a general-purpose means, for example, it requires processing for individual heat-treated parts.

一方、本願の発明者らは、軟質で部品強度を低下させかねないフェライト組織の生成に頼らずに十分な鋼材強度を確保したうえ、油焼入れなどの一般的な焼入れ手法のもとで、たとえ部品の冷却が不均一となる場合でも、熱処理変形が小さく抑えられる鋼に関して鋭意研究を行った。その結果、鋼の化学成分、マルテンサイト変態開始温度(Ms点)、ジョミニー式一端焼入法により測定される焼入性を適切な範囲に制御することによって熱処理変形が小さく抑えられることを終に見出し、本発明に至ったものである。   On the other hand, the inventors of the present application ensure a sufficient steel strength without relying on the formation of a ferrite structure that is soft and may reduce the strength of the parts, and under a general quenching technique such as oil quenching, We have conducted intensive research on steel that can keep heat treatment deformation small even when the parts are not evenly cooled. As a result, by controlling the chemical composition of steel, the martensitic transformation start temperature (Ms point), and the hardenability measured by Jominy's one-end quenching method to an appropriate range, the heat treatment deformation can be kept small. This is the headline and the present invention.

特開1997−111408号公報JP 1997-111408 A 特開2008−121064号公報JP 2008-121064 A 特開2010−174289号公報JP 2010-174289 A

本発明が解決しようとする課題は、自動車や産業機械などに使用されるギヤやシャフトなどの動力伝達用の部品として用いられる機械構造用鋼からなる熱処理変形の少ない鋼材を提供することである。   The problem to be solved by the present invention is to provide a steel material with less heat treatment deformation made of mechanical structural steel used as power transmission parts such as gears and shafts used in automobiles and industrial machines.

上記の課題を解決するための本発明の手段は、請求項1の手段では、質量%で、C:0.20〜0.30%、Si:0.10〜1.50%、Mn:0.20〜0.55%、P:0.030%以下、S:0.014%以下、Cr:1.30〜2.50%、Cu:0.30%以下、Al:0.008〜0.300%、O:0.0030%以下、N:0.0020〜0.0300%を含有し、残部Feおよび不可避不純物からなる機械構造用鋼で、該鋼からなる鋼材のマルテンサイト変態開始温度(Ms点)が460℃以下であり、該鋼材についてジョミニー式一端焼入法により測定される鋼材の焼入端からの距離1.5mmにおける硬さのJ1.5および距離9mmにおける硬さのJ9を用いて、下記の式(1)により算出の(J9/J1.5)の値が0.70〜0.85の範囲にあり、さらに距離1.5mmにおける硬さのJ1.5、および距離11mmにおける硬さのJ11を用いて下記の式(2)により算出の(J11/J1.5)の値が0.67〜0.78の範囲にあることを特徴とする熱処理変形の小さい機械構造用鋼材である。
ただし、
(J9/J1.5)=(ジョミニー式一端焼入法により測定される焼入端からの距離9mmにおける硬さ)÷(ジョミニー式一端焼入法により測定される焼入端からの距離1.5mmの硬さ)・・・式(1)
(J11/J1.5)=(ジョミニー式一端焼入法により測定される焼入端からの距離11mmにおける硬さ)÷(ジョミニー式一端焼入法により測定される焼入端からの距離1.5mmにおける硬さ)・・・式(2)
The means of the present invention for solving the above-mentioned problems is that in the means of claim 1, in mass%, C: 0.20 to 0.30%, Si: 0.10 to 1.50%, Mn: 0 20 to 0.55%, P: 0.030% or less, S: 0.014% or less, Cr: 1.30 to 2.50%, Cu: 0.30% or less, Al: 0.008 to 0 300%, O: 0.0030% or less, N: 0.0020 to 0.0300%, steel for mechanical structure comprising the balance Fe and inevitable impurities, martensitic transformation start temperature of the steel material comprising the steel The (Ms point) is 460 ° C. or less, and the steel material is measured by the Jominy-type one-end quenching method, the hardness J1.5 at a distance 1.5 mm from the quenching end of the steel material and the hardness J9 at a distance 9 mm. (J9 / J1.5) calculated by the following equation (1) using The value is in the range of 0.70 to 0.85, and further calculated by the following equation (2) using J1.5 of hardness at a distance of 1.5 mm and J11 of hardness at a distance of 11 mm (J11 / J1.5) is a steel for machine structural use with small heat treatment deformation, characterized in that it is in the range of 0.67 to 0.78.
However,
(J9 / J1.5) = (hardness at a distance of 9 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (distance from the quenching end measured by the Jominy type one-end quenching method. 5mm hardness) ... Formula (1)
(J11 / J1.5) = (hardness at a distance of 11 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (distance from the quenching end measured by the Jominy type one-end quenching method. (Hardness at 5 mm) (2)

請求項2の手段では、質量%で、C:0.20〜0.30%、Si:0.10〜1.50%、Mn:0.20〜0.55%、P:0.030%以下、S:0.014%以下、Cr:1.30〜2.50%、Cu:0.30%以下、Al:0.008〜0.300%、O:0.0030%以下、N:0.0020〜0.0300%を含有し、さらにTi:0.020〜0.200%、Nb:0.02〜0.20%のうち1種または2種を含有し、残部Feおよび不可避不純物からなる機械構造用鋼からなる鋼材であり、さらに、この鋼材のマルテンサイト変態開始温度(Ms点)が460℃以下であり、この鋼材についてのジョミニー式一端焼入法により測定される鋼材の焼入端からの距離1.5mmにおける硬さのJ1.5および距離9mmにおける硬さのJ9を用いて上記の式(1)により算出の(J9/J1.5)の値が0.70〜0.85の範囲にあり、さらに、距離1.5mmにおける硬さのJ1.5および距離11mmにおける硬さのJ11を用いて、上記の式(2)により算出の(J11/J1.5)の値が0.67〜0.78の範囲にあることを特徴とする熱処理変形の小さい機械構造用鋼材である。
ただし、
(J9/J1.5)=(ジョミニー式一端焼入法により測定される焼入端からの距離9mmにおける硬さ)÷(ジョミニー式一端焼入法により測定される焼入端からの距離1.5mmの硬さ)・・・式(1)
(J11/J1.5)=(ジョミニー式一端焼入法により測定される焼入端からの距離11mmにおける硬さ)÷(ジョミニー式一端焼入法により測定される焼入端からの距離1.5mmにおける硬さ)・・・式(2)
In the means of claim 2, in mass%, C: 0.20 to 0.30%, Si: 0.10 to 1.50%, Mn: 0.20 to 0.55%, P: 0.030% Hereinafter, S: 0.014% or less, Cr: 1.30 to 2.50%, Cu: 0.30% or less, Al: 0.008 to 0.300%, O: 0.0030% or less, N: It contains 0.0020 to 0.0300%, further contains one or two of Ti: 0.020 to 0.200%, Nb: 0.02 to 0.20%, and the balance Fe and inevitable impurities The steel material is made of mechanical structural steel, and the martensite transformation start temperature (Ms point) of the steel material is 460 ° C. or less, and the steel material is measured by Jominy one-end quenching method. J1.5 of hardness and distance 9mm at distance 1.5mm from the input end The value of (J9 / J1.5) calculated by the above equation (1) using J9 of hardness in the range is 0.70 to 0.85, and further, the hardness of J1 at a distance of 1.5 mm Heat treatment characterized in that the value of (J11 / J1.5) calculated by the above equation (2) is in the range of 0.67 to 0.78 using J11 of hardness at 0.5 and a distance of 11 mm It is a steel material for machine structures with little deformation.
However,
(J9 / J1.5) = (hardness at a distance of 9 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (distance from the quenching end measured by the Jominy type one-end quenching method. 5mm hardness) ... Formula (1)
(J11 / J1.5) = (hardness at a distance of 11 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (distance from the quenching end measured by the Jominy type one-end quenching method. (Hardness at 5 mm) (2)

上記の各請求項の手段における成分の限定理由について、以下に説明する。なお、各成分元素の%は質量%を示す。   The reasons for limiting the components in the means of the above claims will be described below. In addition,% of each component element shows the mass%.

C:0.20〜0.30%
Cは、機械構造用部品として鋼材の焼入焼戻し後の強度もしくは浸炭焼入焼戻し後の芯部強度を確保するために必要な元素であるとともに、熱処理変形を小さくするために所定の範囲に調整する必要がある。その範囲は0.20%未満では強度を確保できず、0.30%を超えると熱処理による変形が大きくなり過ぎる。そこでCは0.20〜0.30%とし、望ましくは0.22〜0.27%とする。
C: 0.20 to 0.30%
C is an element necessary for ensuring the strength after quenching and tempering of steel or the strength of the core after carburizing, quenching and tempering as machine structural parts, and is adjusted to a predetermined range in order to reduce heat treatment deformation. There is a need to. If the range is less than 0.20%, the strength cannot be secured, and if it exceeds 0.30%, deformation due to heat treatment becomes too large. Therefore, C is 0.20 to 0.30%, preferably 0.22 to 0.27%.

Si:0.10〜1.50%
Siは、脱酸に必要な元素であるとともに、鋼に必要な強度、焼入性を付与するために有効な元素である。しかし、Siが0.10%未満ではその効果が得られず、1.50%を超えると機械加工性を低下させる。そこでSiは0.10〜1.50%とし、望ましくは0.20〜1.00%とする。
Si: 0.10 to 1.50%
Si is an element necessary for deoxidation and is an effective element for imparting necessary strength and hardenability to steel. However, if Si is less than 0.10%, the effect cannot be obtained, and if it exceeds 1.50%, the machinability is lowered. Therefore, Si is 0.10 to 1.50%, preferably 0.20 to 1.00%.

Mn:0.20〜0.55%
Mnは、焼入性を確保するために必要な元素である。しかし、Mnが0.10%未満では焼入性への効果は十分に得られず、1.20%を超えると機械加工性を低下させる。そこでMnは0.10〜1.20%とし、望ましくは0.20〜0.80%、より望ましくは0.20〜0.55%とする。ところで、より望ましくは0.20〜0.55%とする、に基づき、出願時のMnの限定範囲の、Mn:0.10〜1.20%を、補正後のMn:0.20〜0.55%とする。
Mn: 0.20 to 0.55%
Mn is an element necessary for ensuring hardenability. However, if Mn is less than 0.10%, a sufficient effect on hardenability cannot be obtained, and if it exceeds 1.20%, the machinability is lowered. Therefore, Mn is 0.10 to 1.20%, preferably 0.20 to 0.80%, and more preferably 0.20 to 0.55%. By the way, more preferably, 0.20 to 0.55%, Mn: 0.10 to 1.20% of the limited range of Mn at the time of filing, Mn after correction: 0.20 to 0 .55%.

P:0.030%以下
Pは、スクラップから含有される不可避な元素であるが、粒界に偏析して衝撃強度や曲げ強度などの特性を低下させる。そこでPは0.030%以下とする。
P: 0.030% or less P is an unavoidable element contained in scrap, but segregates at the grain boundary and lowers properties such as impact strength and bending strength. Therefore, P is set to 0.030% or less.

S:0.014%以下
Sは、被削性を向上させる元素であるが、非金属介在物であるMnSを生成して横方向の靱性および疲労強度を低下する。そこでSは0.030%以下とする。ところで、補正後の表1のSの成分量の最大値である発明例のNo.8の0.014%に基づき、出願時のSの限定範囲のS:0.030%以下を補正後のS:0.014%以下とする。
S: 0.014% or less S is an element that improves machinability, but generates MnS, which is a non-metallic inclusion, and lowers the toughness and fatigue strength in the lateral direction. Therefore, S is set to 0.030% or less. By the way, No. of the invention example which is the maximum value of the S component amount in Table 1 after correction. 8, S: 0.030% or less of the limited range of S at the time of filing is made S: 0.014% or less after correction.

Cr:1.30〜2.50%
Crは、焼入性を確保するために必要な元素である。しかし、Crが1.30%未満では焼入性への効果は十分に得られず、2.50%を超えると浸炭を阻害し、また機械加工性も低下する。そこでCrは1.30〜2.50%とし、望ましくは1.50〜2.25%とする。
Cr: 1.30 to 2.50%
Cr is an element necessary for ensuring hardenability. However, if Cr is less than 1.30%, a sufficient effect on hardenability cannot be obtained, and if it exceeds 2.50%, carburization is inhibited, and machinability is also deteriorated. Therefore, Cr is 1.30 to 2.50%, preferably 1.50 to 2.25%.

Cu:0.30%以下
Cuは、スクラップから含有される不可避な元素であるが、時効性を有し、強度を上昇させる効果がある。しかし、Cuは0.30%を超えると熱間加工性を低下する。そこで、Cuは0.30%以下とする。
Cu: 0.30% or less Cu is an inevitable element contained from scrap, but has aging properties and an effect of increasing strength. However, when Cu exceeds 0.30%, the hot workability decreases. Therefore, Cu is made 0.30% or less.

Al:0.008〜0.300%
Alは、脱酸材として使用される元素であり、また後述のようにNと結合してAlNとして析出して結晶粒粗大化抑制効果をもたらす。この効果を得るため、Alは0.008%以上の添加が必要である。一方、Alを0.300%を超えて添加すると大型のアルミナ系介在物を形成し、疲労特性および加工性を低下する。そこで、Alは0.008〜0.300%とし、望ましくは0.014〜0.200%とする。
Al: 0.008 to 0.300%
Al is an element used as a deoxidizing material, and also binds to N and precipitates as AlN as will be described later, thereby bringing about an effect of suppressing grain coarsening. In order to obtain this effect, Al needs to be added in an amount of 0.008% or more. On the other hand, if Al is added in excess of 0.300%, large alumina inclusions are formed, and fatigue characteristics and workability are deteriorated. Therefore, Al is made 0.008 to 0.300%, preferably 0.014 to 0.200%.

O:0.0030%以下
Oは、鋼中に不可避的に含有される元素である。しかし、Oが0.0030%を超えて含有されると酸化物の増加による加工性や疲労強度の低下を招く。そこでOは0.0030%以下とし、望ましくは0.0020%以下とする。
O: 0.0030% or less O is an element inevitably contained in steel. However, if O exceeds 0.0030%, workability and fatigue strength are reduced due to an increase in oxide. Therefore, O is set to 0.0030% or less, preferably 0.0020% or less.

N:0.0020〜0.0300%
Nは、鋼中でAlNやNb窒化物として微細析出し、結晶粒粗大化を防止する効果をもたらし、その効果を得るために0.0020%以上添加する必要がある。しかし、0.0300%を超えると窒化物が増加し、疲労強度や加工性が低下する。そこで、Nは0.0020〜0.0300%とし、望ましくは0.0020〜0.0200%とする。ただし、特にTiを0.020%以上含有する鋼においては、TiNの過剰生成による疲労強度の低下を避けるため、Nは0.0020〜0.0100%とする。
N: 0.0020 to 0.0300%
N precipitates finely as AlN or Nb nitride in the steel and brings about an effect of preventing coarsening of crystal grains, and 0.0020% or more needs to be added to obtain the effect. However, if it exceeds 0.0300%, nitrides increase, and fatigue strength and workability decrease. Therefore, N is 0.0020 to 0.0300%, preferably 0.0020 to 0.0200%. However, especially in steel containing 0.020% or more of Ti, N is made 0.0020 to 0.0100% in order to avoid a decrease in fatigue strength due to excessive TiN formation.

Ti:0.020〜0.200%
Tiは、鋼中のCと結び付いて炭化物を微細に形成し、結晶粒粗大化を防止する効果をもたらすが、その効果を得る場合には、Tiを0.020%以上を添加する必要がある。一方、Tiが0.200%を超える添加は機械加工性を損なう。そこで、Tiは0.020〜0.200%とする。
Ti: 0.020 to 0.200%
Ti combines with C in steel to form carbides finely and brings about the effect of preventing crystal grain coarsening. To obtain this effect, it is necessary to add 0.020% or more of Ti. . On the other hand, the addition of Ti exceeding 0.200% impairs machinability. Therefore, Ti is set to 0.020 to 0.200%.

Nb:0.02〜0.20%
Nbは、炭化物あるいは窒化物を形成し、結晶粒粗大化防止効果をもたらす。特に鋼中に微細に分散したナノオーダーサイズのNbCまたはNb(C,N)が結晶粒の成長を抑制する。Nbが0.02%未満では、その効果は得られず、0.20%を超えると析出物の量が過剰となり加工性を低下する。そこで、Nbは0.02〜0.20%、望ましくは0.02〜0.12%とする。
Nb: 0.02 to 0.20%
Nb forms carbides or nitrides, and has an effect of preventing crystal grain coarsening. In particular, nano-order sized NbC or Nb (C, N) finely dispersed in steel suppresses the growth of crystal grains. If Nb is less than 0.02%, the effect cannot be obtained, and if it exceeds 0.20%, the amount of precipitates becomes excessive and the workability deteriorates. Therefore, Nb is 0.02 to 0.20%, preferably 0.02 to 0.12%.

さらに、上記の成分の限定理由以外のMs点およびジョミニー式一端焼入法により測定される焼入性の限定理由について説明する。   Further, the reasons for limiting the Ms point and the hardenability measured by the Jominy one-side quenching method other than the reasons for limiting the above components will be described.

Ms点:460℃以下
本発明の手段における、鋼材の熱処理変形を小さくするために、マルテンサイト変態開始温度(Ms点)を460℃以下に規制する必要がある。Ms点を460℃以下に規制することで熱処理変形を小さくできる理由は、焼入れした際に、部品の冷却がたとい不均一であっても、冷媒の冷却性能が高い温度域で、マルテンサイト変態が起こることを回避でき、その結果、マルテンサイト変態の時期が部品の部位によって大きくずれることが抑制できるからである。そこでMs点を460℃以下に規制するが、望ましくはMs点は450℃以下に規制する。なお、この場合の熱処理変形とは、軸状部品の曲がりやギヤの歯の倒れやねじれのことである。
Ms point: 460 ° C. or lower In order to reduce the heat treatment deformation of the steel material in the means of the present invention, it is necessary to regulate the martensitic transformation start temperature (Ms point) to 460 ° C. or lower. The reason why heat treatment deformation can be reduced by restricting the Ms point to 460 ° C. or less is that, even when the parts are not cooled when quenched, the martensitic transformation occurs in the temperature range where the cooling performance of the refrigerant is high. This is because it can be avoided, and as a result, it can be suppressed that the martensitic transformation time largely deviates depending on the parts. Therefore, the Ms point is restricted to 460 ° C. or lower, but preferably the Ms point is restricted to 450 ° C. or lower. In this case, the heat treatment deformation means bending of the shaft-shaped part, falling of the gear teeth, or twisting.

(J9/J1.5)の値:0.70〜0.85、(J11/J1.5)の値:0.67〜0.78
鋼材のジョミニー式一端焼入法により測定される鋼材の焼入端からの距離1.5mmにおける硬さのJ1.5と、距離9mmにおける硬さのJ9と、距離11mmにおける硬さのJ11とから算出される(J9/J1.5)の値を0.70〜0.85に規制し、(J11/J1.5)の値を0.67〜0.78に規制する理由は、この範囲とすることで鋼材の熱処理変形が小さく抑えられるからである。ここで言う熱処理変形とは、焼入れ後の軸状部品の曲がりやギヤの歯の倒れやねじれ、また、焼入れ前後における部品の寸法(長さ、径、厚み等)の変化のことである。なお、ジョミニー焼入性を適切な範囲に制御することで熱処理変形が抑制されるメカニズムについては、未だ十分に解明できていないが、ジョミニー焼入性が低すぎても、高すぎても熱処理変形が増大することは本発明者らにより実験的に確かめられている。推定として、この範囲のジョミニー焼入性を有する鋼においては、焼入れの冷却過程においてマルテンサイト変態に先立ってベイナイト変態が適度に起こり、鋼材強度が高められ、ある程度変形しにくくなった状態からマルテンサイト変態が開始するために熱処理変形が抑えられるものと考えている。一方、焼入性が低すぎる場合には、ベイナイト変態が過剰に起こるため、ベイナイト変態自体の影響によって熱処理変形が増大し、また、焼入れ性が高すぎる場合には、熱処理変形を緩和するベイナイト組織が少ないためにやはり熱処理変形が増大すると考えている。
(J9 / J1.5) value: 0.70 to 0.85, (J11 / J1.5) value: 0.67 to 0.78
From the J1.5 hardness at a distance of 1.5 mm from the quenching end of the steel material measured by the Jominy-type one-end quenching method of the steel material, the J9 hardness at a distance of 9 mm, and the J11 hardness at a distance of 11 mm The reason why the calculated (J9 / J1.5) value is regulated to 0.70 to 0.85 and the (J11 / J1.5) value is regulated to 0.67 to 0.78 is based on this range. This is because the heat treatment deformation of the steel material can be suppressed small. The heat treatment deformation referred to here is the bending of the shaft-shaped part, the gear teeth falling or twisting after quenching, and the change in the dimension (length, diameter, thickness, etc.) of the part before and after quenching. Although the mechanism by which heat treatment deformation is suppressed by controlling the Jominy hardenability within an appropriate range has not yet been fully elucidated, heat treatment deformation can be achieved even if Jominy hardenability is too low or too high. It has been experimentally confirmed by the present inventors that this increases. Presumably, in this range of steel with Jominy hardenability, bainite transformation occurs moderately prior to martensite transformation in the quenching cooling process, the steel material strength is increased, and martensite is not easily deformed to some extent. It is believed that heat treatment deformation can be suppressed because transformation starts. On the other hand, if the hardenability is too low, the bainite transformation occurs excessively, so that the heat treatment deformation increases due to the influence of the bainite transformation itself, and if the hardenability is too high, the bainite structure relaxes the heat treatment deformation. It is thought that the deformation due to heat treatment increases because of the small amount of heat.

本発明の手段の鋼成分の限定およびMs点の限定およびジョミニー式一端焼入法により測定される焼入性の限定により、鋼材を部品に加工した後、部品を硬化させるための焼入れや浸炭焼入れを行った場合の熱処理変形を小さくすることができる。この結果、本発明は、部品の歩留の向上、部品の矯正工程の簡略化や廃止、あるいは騒音および振動対策のためのギヤの歯面研削の省略が期待されるといった有益な効果を奏することができる。   Quenching and carburizing and quenching to harden the parts after processing the steel into parts by limiting the steel component and Ms point of the means of the present invention and by limiting the hardenability as measured by the Jomini-type one-end quenching method It is possible to reduce the heat treatment deformation when performing the above. As a result, the present invention has beneficial effects such as improvement of component yield, simplification and abolition of component correction processes, and omission of gear tooth grinding for noise and vibration countermeasures. Can do.

本発明を実施するための形態について、以下に表を参照して説明する。
自動車や産業機械などに使用されるギヤやシャフトなどの動力伝達用の部品として用いられる機械構造用鋼を得るために、表1に示す発明例のNo.2、No.5、No.6、No.14、No.16、No.22の成分組成と、残部Feおよび不可避不純物からなる鋼を真空誘導溶解炉にて溶製し、100kgの鋼塊を得た。
EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated with reference to a table | surface below.
In order to obtain mechanical structural steels used as power transmission parts such as gears and shafts used in automobiles and industrial machines, No. 1 of the invention examples shown in Table 1 were obtained . 2, No. 5, no. 6, no. 14, no. 16, no. Steel consisting of 22 component compositions, the remainder Fe and inevitable impurities was melted in a vacuum induction melting furnace to obtain a 100 kg steel ingot.

Figure 0006057626
Figure 0006057626

上記の本発明例と同様に、自動車や産業機械などに使用されるギヤやシャフトなどの動力伝達用の部品として用いられる機械構造用鋼として、表2に示す比較例のNo.1〜4およびNo.10〜12の成分組成と、残部Feおよび不可避不純物からなる鋼を真空誘導溶解炉にて溶製し、100kgの鋼塊を得た。 As in the above-described examples of the present invention, as a steel for machine structural use used as a power transmission component such as a gear or a shaft used in automobiles, industrial machines, etc., the comparative example No. 1-4 and No.1. Steel consisting of 10 to 12 components, the balance Fe and inevitable impurities was melted in a vacuum induction melting furnace to obtain 100 kg of steel ingot.

Figure 0006057626
Figure 0006057626

先ず、これらの本発明例および比較例の上記で溶製された鋼塊を、1250℃で5時間加熱した後、直径32mmの棒鋼に鍛伸した。次に、900℃で1.5時間加熱保持した後に空冷する焼ならしを行った。続いて、直径32mmの棒鋼から直径20mm、長さ80mmの試験片を作製し、その試験片の側面に、深さ5mm、幅8mm、長さ80mmの溝加工を施した。この溝加工によって焼き入れた際に、試験片内の部位によって冷却速度に大きく差がつくようにした。また、溝加工後に試験片の長さを測定した。さらに試験片端部から2mm、20mm、および試験片長さの中央である40mmの各位置における半径および溝幅を測定した。続いて、これらの試験片を930℃で浸炭した後、炉内で850℃まで降温し、さらに1時間保持してから60℃の焼入油中へ焼入れした。焼入れ後、十分に冷えた試験片について、試験片の曲り、長さ、および試験片端部から2mm、20mm、および試験片長さの中央である40mmの各位置における半径および溝幅を測定した。   First, these ingots of the present invention and comparative examples were heated at 1250 ° C. for 5 hours and then forged into a steel bar having a diameter of 32 mm. Next, normalizing was performed by heating and holding at 900 ° C. for 1.5 hours and then air cooling. Subsequently, a test piece having a diameter of 20 mm and a length of 80 mm was produced from a steel bar having a diameter of 32 mm, and a groove having a depth of 5 mm, a width of 8 mm, and a length of 80 mm was applied to the side surface of the test piece. When quenching was performed by this groove processing, the cooling rate was varied greatly depending on the portion in the test piece. Moreover, the length of the test piece was measured after the groove processing. Further, the radius and groove width were measured at each position of 2 mm, 20 mm from the end of the test piece, and 40 mm which is the center of the test piece length. Then, after carburizing these test pieces at 930 ° C., the temperature was lowered to 850 ° C. in the furnace, and further maintained for 1 hour, and then quenched into a quenching oil at 60 ° C. After quenching, the specimens that were sufficiently cooled were measured for the bend and length of the specimen and the radius and groove width at each position of 2 mm, 20 mm from the specimen edge, and 40 mm, which is the center of the specimen length.

なお、熱処理後の曲りについては、試験片の両端をVブロックで保持し、試験片を一周回転させたときの試験片の中央部の円周上の最大変位と最小変位をダイヤルゲージで測定し、最大変位と最小変位の差を2で割ることにより求めた。この測定の際、試験片の円周上に存在する溝の底の部分の変位は無視するものとした。また、熱処理変形の指標として、熱処理前後の試験片の長さの差を求め、その絶対値を評価した。さらに、試験片端部から2mm、20mm、および試験片長さの中央である40mmの合計3箇所の各位置における熱処理前後の半径、および溝幅の寸法測定結果から、各箇所の熱処理前後の半径、および溝幅の寸法変化量を求めたのち、その3箇所における寸法変化量のうちの最大値から最小値を差し引いた値を、それぞれ半径変化量、および溝幅変化量と定義して、これを熱処理変形の指標として評価した。   For bending after heat treatment, hold both ends of the test piece with V block, and measure the maximum and minimum displacement on the circumference of the center of the test piece with a dial gauge when the test piece is rotated once. The difference between the maximum displacement and the minimum displacement was obtained by dividing by 2. In this measurement, the displacement of the bottom portion of the groove existing on the circumference of the test piece was ignored. In addition, as an index of heat treatment deformation, a difference in length of the test piece before and after the heat treatment was obtained, and the absolute value thereof was evaluated. Furthermore, the radius before and after the heat treatment at each position of the total three locations of 2 mm, 20 mm from the end of the test piece, and 40 mm which is the center of the length of the test piece, and the groove width dimension measurement result, After obtaining the dimensional change amount of the groove width, the values obtained by subtracting the minimum value from the maximum value among the dimensional change amounts at the three locations are defined as the radius change amount and the groove width change amount, respectively. It was evaluated as an index of deformation.

また、上記の焼ならし後の直径32mmの棒鋼から、直径3mmで長さ10mmの試験片を割り出し、鋼材のマルテンサイト変態開始温度であるMs点を、全自動変態記録測定装置を用いて測定した。本実施の形態におけるMs点は、部品の冷却過程を想定した条件下で実測測定されるものであり、本実施の形態においては、上記した直径20mmの溝付き試験片の油温60℃の場合の油焼入れを想定して、焼入れ時の冷却速度を30℃/sとして測定した。鋼材のジョミニー式一端焼入法による焼入性の測定については、上記の鍛伸した直径32mmの棒鋼から試験片を作製し、JIS G 0561に規定される「鋼の焼入性試験方法(一端焼入方法)」に準じた条件の下で試験を行って評価した。   In addition, a test piece having a diameter of 3 mm and a length of 10 mm is determined from the steel bar having a diameter of 32 mm after the above normalization, and the Ms point, which is the martensitic transformation start temperature of the steel material, is measured using a fully automatic transformation recording measuring device. did. The Ms point in the present embodiment is measured and measured under the condition that the cooling process of the component is assumed. In the present embodiment, the above-described grooved test piece having a diameter of 20 mm has an oil temperature of 60 ° C. Assuming oil quenching, the cooling rate during quenching was measured at 30 ° C./s. For the measurement of the hardenability of the steel material by the Jominy one-side quenching method, a test piece was prepared from the forged steel bar having a diameter of 32 mm and the “steel hardenability test method (one end) specified in JIS G 0561”. The test was conducted under the conditions according to the quenching method) and evaluated.

表3に本発明例の鋼について測定されたMs点、ジョミニー式一端焼入法で測定した焼入端からの、距離1.5mmにおける硬さのJ1.5、距離9mmにおける硬さのJ9および距離11mmにおける硬さのJ11のそれぞれの値、また、求めた(J9/J1.5)の値および(J11/J1.5)の値を示す。さらに、上記の試験片の焼入れ後に評価した曲り(単位mm)、熱処理前後の試験片の長さの差の絶対値(単位mm)、および上記の方法により求めた熱処理前後の試験片の半径変化量(単位mm)および溝幅変化量(単位mm)を示す。発明例のNo.2、5〜6、14、16、22からなる鋼材では、表3に示すように、マルテンサイト変態開始温度すなわちMs点が421〜444℃の範囲にあり、この鋼材の(J9/J1.5)の下記に示す式(1)の値が0.74〜0.84の範囲にあり、(J11/J1.5)の下記に示す式(2)の値が0.69〜0.77の範囲にあり、熱処理後の曲りは0.005〜0.025mmであり、熱処理前後の試験片の長さの差の絶対値は0.003〜0.018mmであり、熱処理前後の半径変化量は0.004〜0.008mmであり、熱処理前後の溝幅変化量は0.011〜0.022mmであった。
ただし、
(J9/J1.5)=(ジョミニー式一端焼入法により測定される焼入れ端からの距離9mmの硬さ)÷(ジョミニー式一端焼入法により測定される焼入れ端からの距離1.5mmの硬さ)……(1)
(J11/J1.5)=(ジョミニー式一端焼入法により測定される焼入れ端からの距離11mmの硬さ)÷(ジョミニー式一端焼入法により測定される焼入れ端からの距離1.5mmの硬さ)……(2)



Table 3 shows the Ms point measured for the steel of the present invention, J1.5 of the hardness at a distance of 1.5 mm, J9 of the hardness at a distance of 9 mm from the quenching end measured by the Jomini type one-end quenching method, and Each value of the hardness J11 at a distance of 11 mm, and the obtained (J9 / J1.5) value and (J11 / J1.5) value are shown. Further, the bending (unit: mm) evaluated after quenching the above test piece, the absolute value of the difference in length of the test piece before and after the heat treatment (unit: mm), and the radius change of the test piece before and after the heat treatment determined by the above method An amount (unit: mm) and a groove width change amount (unit: mm) are shown. Invention Example No. As shown in Table 3, the steel material consisting of 2, 5-6, 14, 16, and 22 has a martensite transformation start temperature, that is, an Ms point in the range of 421 to 444 ° C., and (J9 / J1.5 of this steel material). The value of the formula (1) shown below in the range of 0.74 to 0.84 , and the value of the formula (2) shown below in (J11 / J1.5) is 0.69 to 0.77 . In the range, the bending after the heat treatment is 0.005 to 0.025 mm, the absolute value of the difference in the length of the test piece before and after the heat treatment is 0.003 to 0.018 mm, and the radius change before and after the heat treatment The amount was 0.004 to 0.008 mm, and the change in groove width before and after the heat treatment was 0.011 to 0.022 mm.
However,
(J9 / J1.5) = (hardness at a distance of 9 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (1.5 mm from the quenching end measured by the Jominy type one-end quenching method) (Hardness) …… (1)
(J11 / J1.5) = (hardness at a distance of 11 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (a distance of 1.5 mm from the quenching end measured by the Jominy type one-end quenching method) (Hardness) …… (2)



Figure 0006057626
Figure 0006057626

同様に、表4に比較例の鋼の測定されたMs点、ジョミニー式一端焼入法により測定した焼入端からの距離1.5mmにおける硬さ(HRC)のJ1.5、距離9mmにおける硬さ(HRC)のJ9、および距離11mmにおける硬さ(HRC)のJ11であるジョミニー焼入性、また、求めた(J9/J1.5)の値および(J11/J1.5)の値を示す。さらに、上記試験片の焼入れ後の曲り(単位mm)、および、熱処理前後の試験片の長さの差の絶対値(単位mm)、および上記の方法により求めた熱処理前後の試験片の半径変化量(単位mm)、および溝幅変化量(単位mm)を示す。   Similarly, Table 4 shows the measured Ms point of the steel of the comparative example, J1.5 of the hardness (HRC) at a distance of 1.5 mm from the quenching end measured by the Jomini type one-end quenching method, and the hardness at a distance of 9 mm. Jominy hardenability which is J9 of thickness (HRC) and J11 of hardness (HRC) at a distance of 11 mm, and the obtained values of (J9 / J1.5) and (J11 / J1.5) are shown. . Further, the bending of the test piece after quenching (unit: mm), the absolute value of the difference in length of the test piece before and after the heat treatment (unit: mm), and the radius change of the test piece before and after the heat treatment determined by the above method The amount (unit: mm) and the groove width change amount (unit: mm) are shown.

Figure 0006057626
Figure 0006057626

上記の発明例のNo.2、No.5、No.6、No.14、No.16、No.22では、鋼材のFeおよびNi、Mo以外の不可避不純物を除いた組成範囲を表1に示すものとし、Ms点を460℃以下の388〜444℃とし、ジョミニー式一端焼入法により測定される焼入性を適切に制御して、式(1)から計算される(J9/J1.5)の値を0.70〜0.85の範囲に、式(2)から計算される(J11/J1.5)の値を0.67〜0.78の範囲とすることによって、熱処理後の試験片の曲りを0.005〜0.025mmの小さな範囲に、さらに熱処理前後の試験片の長さの差の絶対値を0.003〜0.018mmの小さな範囲に、さらに熱処理前後の半径変化量を0.004〜0.008mmの小さな範囲に、さらに熱処理前後の溝幅変化量を0.011〜0.022mmの小さな範囲に抑えることができた。 No. of the above invention examples 2, No. 5, no. 6, no. 14, no. 16, no. No. 22 , the composition range excluding inevitable impurities other than Fe, Ni, and Mo of the steel material is shown in Table 1, and the Ms point is set to 388 to 444 ° C. of 460 ° C. or less, and is measured by the Jominy one-side quenching method. The hardenability is appropriately controlled, and the value of (J9 / J1.5) calculated from the formula (1) is within the range of 0.70 to 0.85, calculated from the formula (2) (J11 / By setting the value of J1.5) in the range of 0.67 to 0.78 , the bending of the test piece after heat treatment is reduced to a small range of 0.005 to 0.025 mm, and the length of the test piece before and after the heat treatment is further increased. The absolute value of the difference in thickness is set to a small range of 0.003 to 0.018 mm, the change in radius before and after the heat treatment is set to a small range of 0.004 to 0.008 mm, and the change in groove width before and after the heat treatment is set to 0. depression in a small range of .011~ 0.022 mm Rukoto could be.

これに対し、上記の比較例のNo.1〜4およびNo.10〜12の、鋼材のFeおよびNi、Mo以外の不可避不純物を除いた組成範囲を表2に示すものでは、No.2の1例を除く、残りの6例は本発明の組成範囲から外れるものであった。これらNo.1〜4およびNo.10〜12の比較例の鋼は、ジョミニー式一端焼入法によって測定した硬さから式(1)、および式(2)により求まる(J9/J1.5)の値が0.70〜0.85の範囲外であり、および(J11/J1.5)の値が0.67〜0.78の範囲外である。また、これらNo.1〜4およびNo.10〜12は、熱処理後の試験片の曲がりが0.050〜0.080mmであり、いずれも発明例の鋼に比べ大きい。また、これらNo.1〜4およびNo.10〜12の比較例の鋼は、熱処理前後の試験片の長さの差の絶対値、あるいは熱処理前後の半径変化量および溝幅変化量のうち、いずれか一つ以上の値が本発明の鋼に比べて大きい。したがって、比較例のうちで熱処理後の試験片の曲り、熱処理前後の試験片の長さの差の絶対値、および熱処理前後の半径変化量および溝幅変化量の全てが本発明例の鋼と同等のものは1例も無かった。 On the other hand, No. of the above comparative example . 1-4 and No.1. In Table 2, the composition range excluding inevitable impurities other than Fe, Ni, and Mo of steel materials 10 to 12 is shown in Table 2. The remaining 6 cases , excluding 1 example , were out of the composition range of the present invention. These No. 1-4 and No.1. The steels of Comparative Examples 10 to 12 have a value (J9 / J1.5) of 0.70 to 0. 0 determined by the formula (1) and the formula (2) based on the hardness measured by the Jomini type one-end quenching method. It is out of the range of 85, and the value of (J11 / J1.5) is out of the range of 0.67 to 0.78 . In addition, these No. 1-4 and No.1. 10-12 is a bend 0.050~ 0.080 mm test piece after the heat treatment, both larger than in the steel of the invention examples. In addition, these No. 1-4 and No.1. In the steels of Comparative Examples 10 to 12 , one or more values of the absolute value of the difference in length of the test pieces before and after the heat treatment, or the radius change amount and the groove width change amount before and after the heat treatment are the values of the present invention. Bigger than steel. Therefore, among the comparative examples, the bending of the test piece after the heat treatment, the absolute value of the difference in length of the test piece before and after the heat treatment, and the radius change amount and the groove width change amount before and after the heat treatment are all the same as the steel of the present invention example. There was no one equivalent.

Ms点が本発明の請求の範囲を満足し、(J9/J1.5)の値および(J11/J1.5)の値が本発明の請求の範囲を満足する、本発明例のNo.2、No.5、No.6、No.14、No.16、No.22は、熱処理後の試験片の曲り、熱処理前後の試験片の長さの差の絶対値、および熱処理前後の半径変化量および溝幅変化量が比較例に比して略小さく、熱処理変形が抑制されている。なお、本発明例の鋼材は浸炭焼入れ等の部品を硬化させるための焼入れをともなう熱処理を施した後、焼戻しを施してから使用される。 The Ms point satisfies the claims of the present invention, and the values of (J9 / J1.5) and (J11 / J1.5) satisfy the claims of the present invention . 2, No. 5, no. 6, no. 14, no. 16, no. 22 shows that the bending of the test piece after the heat treatment, the absolute value of the difference in length of the test piece before and after the heat treatment, and the radius change amount and the groove width change amount before and after the heat treatment are substantially smaller than the comparative example, and the heat treatment deformation is It is suppressed. The steel material of the present invention is used after being tempered after being subjected to heat treatment with hardening for hardening parts such as carburizing and quenching.

以上から、本発明における鋼成分の限定およびマルテンサイト変態開始温度であるMs点の限定およびジョミニー式一端焼入法により測定される焼入性の限定により、鋼材を部品に加工した後、浸炭焼入れ等、部品を硬化させるための焼入れをともなう熱処理を行った場合の熱処理変形を小さくすることができる。この結果、本発明による鋼材は、自動車や産業機械などに使用されるギヤやシャフトなどの動力伝達用の部品に適用しうる鋼材である。   From the above, after the steel material was processed into parts by the limitation of the steel components and the Ms point which is the martensitic transformation start temperature and the limitation of the hardenability measured by the Jominy one-side quenching method, carburizing and quenching was performed. For example, the heat treatment deformation when the heat treatment with hardening for hardening the parts is performed can be reduced. As a result, the steel material according to the present invention is a steel material applicable to power transmission parts such as gears and shafts used in automobiles and industrial machines.

Claims (2)

質量%で、C:0.20〜0.30%、Si:0.10〜1.50%、Mn:0.20〜0.55%、P:0.030%以下、S:0.014%以下、Cr:1.30〜2.50%、Cu:0.30%以下、Al:0.008〜0.300%、O:0.0030%以下、N:0.0020〜0.0300%を含有し、残部Feおよび不可避不純物からなる機械構造用鋼であり、該鋼からなる鋼材のマルテンサイト変態開始温度(Ms点)が460℃以下であり、該鋼材についてのジョミニー式一端焼入法により測定される鋼材の焼入端からの距離1.5mmにおける硬さのJ1.5および距離9mmにおける硬さのJ9を用いて、下記の式(1)によって算出した(J9/J1.5)の値が0.70〜0.85の範囲にあり、さらに距離1.5mmにおける硬さのJ1.5および距離11mmにおける硬さのJ11を用いて、下記の式(2)によって算出した(J11/J1.5)の値が0.67〜0.78の範囲にあることを特徴とする熱処理変形の小さい機械構造用鋼材。
ただし、
(J9/J1.5)=(ジョミニー式一端焼入法により測定される焼入端からの距離9mmの硬さ)÷(ジョミニー式一端焼入法により測定される焼入端からの距離1.5mmの硬さ)……式(1)
(J11/J1.5)=(ジョミニー式一端焼入法により測定される焼入端からの距離11mmの硬さ)÷(ジョミニー式一端焼入法により測定される焼入端からの距離1.5mmの硬さ)……式(2)
By mass%, C: 0.20 to 0.30%, Si: 0.10 to 1.50%, Mn: 0.20 to 0.55%, P: 0.030% or less, S: 0.014 %: Cr: 1.30-2.50%, Cu: 0.30% or less, Al: 0.008-0.300%, O: 0.0030% or less, N: 0.0020-0.0300 %, The balance is Fe and inevitable impurities, and the steel material is martensitic transformation start temperature (Ms point) of 460 ° C. or less. Using the following formula (1), J1.5 of the hardness at a distance of 1.5 mm from the quenching end of the steel material measured by the method and J9 of the hardness at a distance of 9 mm was calculated (J9 / J1.5 ) In the range of 0.70 to 0.85, and the distance 1. The value of (J11 / J1.5) calculated by the following equation (2) using J1.5 of hardness at mm and J11 of hardness at distance 11 mm is in the range of 0.67 to 0.78. A machine structural steel material having a small heat treatment deformation.
However,
(J9 / J1.5) = (hardness at a distance of 9 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (distance from the quenching end measured by the Jominy type one-end quenching method. (Hardness of 5mm) …… Formula (1)
(J11 / J1.5) = (hardness of a distance of 11 mm from the quenching end measured by the Jomini-type one-end quenching method) ÷ (distance from the quenching end measured by the Jomini-type one-end quenching method. (Hardness of 5mm) …… Formula (2)
質量%で、C:0.20〜0.30%、Si:0.10〜1.50%、Mn:0.20〜0.55%、P:0.030%以下、S:0.014%以下、Cr:1.30〜2.50%、Cu:0.30%以下、Al:0.008〜0.300%、O:0.0030%以下、N:0.0020〜0.0300%を含有し、さらにTi:0.020〜0.200%、Nb:0.02〜0.20%の1種または2種を含有し、残部Feおよび不可避不純物からなる機械構造用鋼であり、該鋼からなる鋼材のマルテンサイト変態開始温度(Ms点)が460℃以下であり、該鋼材についてのジョミニー式一端焼入法により測定される鋼材の焼入端からの距離1.5mmにおける硬さのJ1.5および距離9mmにおける硬さのJ9を用いて、下記の式(1)によって算出した(J9/J1.5)の値が0.70〜0.85の範囲にあり、さらに距離1.5mmにおける硬さのJ1.5および距離11mmにおける硬さのJ11を用いて、下記の式(2)によって算出した(J11/J1.5)の値が0.67〜0.78の範囲にあることを特徴とする熱処理変形の小さい機械構造用鋼材。
ただし、
(J9/J1.5)=(ジョミニー式一端焼入法により測定される焼入端からの距離9mmの硬さ)÷(ジョミニー式一端焼入法により測定される焼入端からの距離1.5mmの硬さ)……(1)
(J11/J1.5)=(ジョミニー式一端焼入法により測定される焼入れ端からの距離11mmの硬さ)÷(ジョミニー式一端焼入法により測定される焼入れ端からの距離1.5mmの硬さ)……(2)
By mass%, C: 0.20 to 0.30%, Si: 0.10 to 1.50%, Mn: 0.20 to 0.55%, P: 0.030% or less, S: 0.014 %: Cr: 1.30-2.50%, Cu: 0.30% or less, Al: 0.008-0.300%, O: 0.0030% or less, N: 0.0020-0.0300 Is a steel for machine structural use that contains 1 or 2 types of Ti: 0.020-0.200%, Nb: 0.02-0.20% , and the balance Fe and inevitable impurities. The steel material made of the steel has a martensite transformation start temperature (Ms point) of 460 ° C. or less, and the steel material has a hardness at a distance of 1.5 mm from the quenching end of the steel material measured by the Jominy one-end quenching method. J1.5 of the thickness and J9 of the hardness at a distance of 9 mm, the following formula ( ), The value of (J9 / J1.5) calculated in the range of 0.70 to 0.85, and further using J1.5 of hardness at a distance of 1.5 mm and J11 of hardness at a distance of 11 mm, A steel material for machine structure having a small heat treatment deformation, characterized in that the value of (J11 / J1.5) calculated by the following formula (2) is in the range of 0.67 to 0.78.
However,
(J9 / J1.5) = (hardness at a distance of 9 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (distance from the quenching end measured by the Jominy type one-end quenching method. (Hardness of 5mm) …… (1)
(J11 / J1.5) = (hardness at a distance of 11 mm from the quenching end measured by the Jomini type one-end quenching method) ÷ (a distance of 1.5 mm from the quenching end measured by the Jominy type one-end quenching method) (Hardness) …… (2)
JP2012193763A 2012-09-04 2012-09-04 Machine structural steel with low heat treatment deformation Active JP6057626B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012193763A JP6057626B2 (en) 2012-09-04 2012-09-04 Machine structural steel with low heat treatment deformation
PCT/JP2013/073681 WO2014038548A1 (en) 2012-09-04 2013-09-03 Machine structure steel material having low heat-treatment deformation
KR1020157006758A KR20150047524A (en) 2012-09-04 2013-09-03 Machine structure steel material having low heat-treatment deformation
US14/425,420 US20150218682A1 (en) 2012-09-04 2013-09-03 Machine Structural Steel Material Having Low Heat-Treatment Deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193763A JP6057626B2 (en) 2012-09-04 2012-09-04 Machine structural steel with low heat treatment deformation

Publications (2)

Publication Number Publication Date
JP2014047419A JP2014047419A (en) 2014-03-17
JP6057626B2 true JP6057626B2 (en) 2017-01-11

Family

ID=50237157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193763A Active JP6057626B2 (en) 2012-09-04 2012-09-04 Machine structural steel with low heat treatment deformation

Country Status (4)

Country Link
US (1) US20150218682A1 (en)
JP (1) JP6057626B2 (en)
KR (1) KR20150047524A (en)
WO (1) WO2014038548A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404224A (en) * 2014-12-15 2015-03-11 南车长江车辆有限公司 Heat treatment process method for EA1N-material urban rail car axle
KR101705168B1 (en) * 2015-04-20 2017-02-10 현대자동차주식회사 Carburizing alloy steel improved durability and the method of manufacturing the same
CN109971929A (en) * 2019-04-16 2019-07-05 中南大学 It is a kind of high throughput material preparation and performance characterization system
CN110777303B (en) * 2019-12-04 2020-11-27 宝钢特钢韶关有限公司 Round steel for gear and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116857A (en) * 1980-02-20 1981-09-12 Mitsubishi Steel Mfg Co Ltd Low-heat treated strained steel for gear
JP2001262203A (en) * 2000-03-22 2001-09-26 Daido Steel Co Ltd High hardness gas atomizing shot
JP4877688B2 (en) * 2001-08-10 2012-02-15 本田技研工業株式会社 Austenitic tool steel with excellent machinability and method for producing austenitic tools
JP5182067B2 (en) * 2008-12-24 2013-04-10 新日鐵住金株式会社 Steel for vacuum carburizing or carbonitriding
JP5185852B2 (en) * 2009-02-13 2013-04-17 株式会社神戸製鋼所 Gears with excellent resistance to peeling damage
JP5350181B2 (en) * 2009-10-27 2013-11-27 株式会社神戸製鋼所 Case-hardened steel with excellent grain coarsening prevention properties
JP5644166B2 (en) * 2010-04-20 2014-12-24 大同特殊鋼株式会社 Carbon nitrided steel with excellent surface fatigue strength of hydrogen brittle type
US20130186522A1 (en) * 2010-11-30 2013-07-25 Jfe Steel Corporation Carburizing steel having excellent cold forgeability and method of manufacturing the same
JP5617798B2 (en) * 2011-08-12 2014-11-05 新日鐵住金株式会社 Rolled steel bar or wire rod for hot forging

Also Published As

Publication number Publication date
US20150218682A1 (en) 2015-08-06
WO2014038548A1 (en) 2014-03-13
KR20150047524A (en) 2015-05-04
JP2014047419A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
JP5123335B2 (en) Crankshaft and manufacturing method thereof
US20130186522A1 (en) Carburizing steel having excellent cold forgeability and method of manufacturing the same
US9523404B2 (en) Spring steel and spring
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP5804832B2 (en) Steel material made of carburizing steel with excellent torsional fatigue properties
JP6057626B2 (en) Machine structural steel with low heat treatment deformation
JP2023002842A (en) Machine component for automobiles made of steel material for carburization excellent in static torsional strength and torsional fatigue strength
JP5641992B2 (en) Machine structural steel with low heat treatment deformation
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JP5641991B2 (en) Machine structural steel with low heat treatment deformation
JP4828321B2 (en) Induction hardened steel and induction hardened parts with excellent low cycle fatigue properties
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP5688742B2 (en) Steel manufacturing method with excellent toughness and wear resistance
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
JP7149179B2 (en) Mechanical parts for automobiles made of induction hardened steel with excellent static torsional strength and torsional fatigue strength
JP6447064B2 (en) Steel parts
JP5505264B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
JP4488228B2 (en) Induction hardening steel
JP5131770B2 (en) Non-tempered steel for soft nitriding
JP6282078B2 (en) Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics
WO2022137697A1 (en) Case hardened steel for warm forging and forged blank manufactured using same
JP6197761B2 (en) Manufacturing method of cold processed products
KR20170106462A (en) Case hardening steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6057626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250