JP4488228B2 - Induction hardening steel - Google Patents
Induction hardening steel Download PDFInfo
- Publication number
- JP4488228B2 JP4488228B2 JP2005298687A JP2005298687A JP4488228B2 JP 4488228 B2 JP4488228 B2 JP 4488228B2 JP 2005298687 A JP2005298687 A JP 2005298687A JP 2005298687 A JP2005298687 A JP 2005298687A JP 4488228 B2 JP4488228 B2 JP 4488228B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- content
- induction hardening
- induction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006698 induction Effects 0.000 title claims description 105
- 229910000831 Steel Inorganic materials 0.000 title claims description 100
- 239000010959 steel Substances 0.000 title claims description 100
- 239000000463 material Substances 0.000 claims description 43
- 229910000859 α-Fe Inorganic materials 0.000 claims description 40
- 229910001562 pearlite Inorganic materials 0.000 claims description 28
- 229910052748 manganese Inorganic materials 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000012535 impurity Substances 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 38
- 238000005452 bending Methods 0.000 description 35
- 238000010791 quenching Methods 0.000 description 35
- 230000000171 quenching effect Effects 0.000 description 34
- 229910001566 austenite Inorganic materials 0.000 description 25
- 239000010410 layer Substances 0.000 description 24
- 230000007423 decrease Effects 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 18
- 238000005255 carburizing Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000000126 substance Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 230000003068 static effect Effects 0.000 description 13
- 229910000734 martensite Inorganic materials 0.000 description 11
- 230000009471 action Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000005242 forging Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 229910001567 cementite Inorganic materials 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 238000013001 point bending Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001035 Soft ferrite Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000007545 Vickers hardness test Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、高周波焼入れ用鋼材に関する。詳しくは、切削加工性(以下、「被削性」ともいう。)に優れ、高周波焼入れによって浸炭焼入れの場合と同等以上の疲労強度、なかでも曲げ疲労強度を確保することができる高周波焼入れ用鋼材に関する。 The present invention relates to a steel material for induction hardening. Specifically, steel material for induction hardening that has excellent machinability (hereinafter also referred to as “machinability”) and can ensure fatigue strength equal to or higher than that of carburizing and quenching by induction hardening, especially bending fatigue strength. About.
アクスルシャフト、ドライブシャフト、等速ジョイント用アウターレースなどの自動車部品や建設機械用部品は、所定形状への機械加工後、所望の機械的性質を具備させるための表面硬化処理が施され、表面硬化処理としては「浸炭焼入れ処理」が施されることが多い。そして、この「浸炭焼入れ処理」を施すために、前記部品の素材として、一般に、質量%で、0.2%程度のCに加えて、Si、Mn、Ni、CrやMo等の合金元素を含む低炭素合金鋼が使用されてきた。 Automotive parts such as axle shafts, drive shafts, and outer races for constant velocity joints, and parts for construction machinery are subjected to surface hardening treatment to provide the desired mechanical properties after machining to a predetermined shape. As the treatment, “carburizing and quenching treatment” is often performed. And in order to perform this "carburization quenching process", in general, in addition to about 0.2% C by mass%, alloy elements such as Si, Mn, Ni, Cr and Mo are used as the material of the parts. Including low carbon alloy steels have been used.
しかしながら、「浸炭」は、拡散現象を利用する処理である。したがって、鋼材中に十分なCを拡散させるために、800〜1050℃程度のオーステナイト領域で、数時間から数十時間もの長時間の加熱処理を行うことが必要となる。このため、表面硬化処理として「浸炭焼入れ処理」を施す場合には、成形から熱処理までの製造工程をインライン化することが困難であるので生産能率を高めることが難しく、また、部品の製造コストも嵩んでしまう。 However, “carburization” is a process that uses the diffusion phenomenon. Therefore, in order to diffuse sufficient C in the steel material, it is necessary to perform a heat treatment for several hours to several tens of hours in an austenite region of about 800 to 1050 ° C. For this reason, when performing “carburizing and quenching” as the surface hardening treatment, it is difficult to inline the manufacturing process from molding to heat treatment, so it is difficult to increase the production efficiency, and the manufacturing cost of the parts is also high. It becomes bulky.
なお、浸炭処理としては通常「ガス浸炭法」が採用されるが、ガス浸炭の際に被処理材である鋼材の表面に、いわゆる「粒界酸化層」が形成されるので、浸炭処理後に疲労強度や衝撃特性の低下が生じてしまう。 Although the “gas carburizing method” is usually adopted as the carburizing process, a so-called “grain boundary oxide layer” is formed on the surface of the steel material to be processed during gas carburizing. Deterioration of strength and impact characteristics will occur.
上記の粒界酸化層の抑制のためには、鋼材中のSi、Mn及びCrの含有量を低減し、代わりにMoやNi等を含有させることが考えられるが、高価な合金元素を多量に含ませることになるので、鋼材コストの上昇を招く。 In order to suppress the above-mentioned grain boundary oxide layer, it is conceivable to reduce the contents of Si, Mn and Cr in the steel material, but to contain Mo, Ni, etc. instead, but a large amount of expensive alloy elements Since it will be included, the steel material cost rises.
更に、浸炭処理は、上述のように、800〜1050℃程度の高温領域で、数時間から数十時間の長時間加熱する処理であるため、一般に「異常粒成長」と称されるオーステナイト結晶粒の粗大化が生じる場合があり、この異常粒成長が、浸炭焼入れ後の熱処理歪みの発生や、疲労強度、更には衝撃特性の低下を招いてしまう。 Furthermore, since the carburizing process is a process of heating for a long time of several hours to several tens of hours in a high temperature region of about 800 to 1050 ° C. as described above, austenite crystal grains generally referred to as “abnormal grain growth” The abnormal grain growth may cause the occurrence of heat treatment distortion after carburizing and quenching, fatigue strength, and impact characteristics.
このため、浸炭焼入れ処理に代わる表面硬化処理として高周波焼入れ処理の適用が検討され、特許文献1〜6に、高周波焼入れ部品や高周波焼入れプロセスに適した鋼材が提案されている。 For this reason, application of induction hardening treatment as a surface hardening treatment instead of carburizing hardening treatment is studied, and Patent Documents 1 to 6 propose steel materials suitable for induction hardening parts and induction hardening processes.
特許文献1に、アクスルシャフト、ドライブシャフト、等速ジョイント用アウターレースなどの自動車の動力伝達系の部品の静的強度を確保し、且つ、衝撃曲げ特性及び耐衝撃ねじり特性に優れた「高周波焼入れ部品」、具体的には、重量%で、C:0.30〜0.60%、Si:0.50%以下、Mn:0.20〜1.50%、B:0.0005〜0.0050%、N:0.015%以下、Ti:0.10%以下を含有し、更に、必要に応じて、Cr:1.0%以下、Mo:0.5%以下及びNi:1.0%以下の1種又は2種以上、及び/又は、Pb:0.20%以下、S:0.10%以下、Bi:0.20%以下、Te:0.10%以下及びCa:0.01%以下のうちの1種又は2種以上を含有し、残部がFe及び不純物からなり、高周波焼入れ処理後の表面硬さが50HRC以上で、且つ、高周波焼入れ部組織のマルテンサイト率が90%以上の均一なマルテンサイト組織であり、硬化深さ比t(有効硬化深さ)/r(部品半径又は部品厚さ)が0.2〜0.7である「高周波焼入れ部品」が開示されている。 Patent Document 1 states that “high-frequency quenching that secures the static strength of parts of automobile power transmission systems such as axle shafts, drive shafts, outer races for constant velocity joints, and is excellent in impact bending characteristics and impact torsional resistance characteristics. Parts ", specifically, by weight, C: 0.30-0.60%, Si: 0.50% or less, Mn: 0.20-1.50%, B: 0.0005-0. 0050%, N: 0.015% or less, Ti: 0.10% or less, and if necessary, Cr: 1.0% or less, Mo: 0.5% or less and Ni: 1.0 % Or less, and / or Pb: 0.20% or less, S: 0.10% or less, Bi: 0.20% or less, Te: 0.10% or less, and Ca: 0.0. Containing one or more of 01% or less, the balance consisting of Fe and impurities, It is a uniform martensite structure with a surface hardness after induction hardening of 50 HRC or more and a martensite ratio of the induction hardening structure of 90% or more, and a hardening depth ratio t (effective hardening depth) / r ( An “induction-hardened component” having a component radius or component thickness of 0.2 to 0.7 is disclosed.
特許文献2に、被削性に優れ、しかも、浸炭プロセスを経て製造される例えば歯車の特性と同等以上の特性を確保できる「高周波焼入用鋼材」、具体的には、質量%で、C:0.5〜0.75%、Si:0.5〜1.8%、Mn:0.1〜0.4%、P:0.015%以下、S:0.020%以下、Al:0.019〜0.05%、O:0.0015%以下、N:0.003〜0.015%を含有し、更に、必要に応じて、Mo:0.05〜0.5%、B:0.0003〜0.005%、Ti:0.005〜0.05%、Ni:0.1〜1.0%からなる4種の元素のうちの1種以上の元素、及び/又は、V:0.05〜0.5%、Nb:0.01〜0.5%からなる2種の元素のうちの1種以上の元素を含有し、残部がFe及び不可避的不純物からなることを特徴とする「高周波焼入用鋼材」が開示されている。 Patent Document 2 discloses a “steel material for induction hardening” that is excellent in machinability and that can secure characteristics equal to or higher than those of, for example, gears manufactured through a carburizing process. : 0.5-0.75%, Si: 0.5-1.8%, Mn: 0.1-0.4%, P: 0.015% or less, S: 0.020% or less, Al: 0.019 to 0.05%, O: 0.0015% or less, N: 0.003 to 0.015%, and Mo: 0.05 to 0.5%, B as necessary. : 0.0003 to 0.005%, Ti: 0.005 to 0.05%, Ni: 0.1 or more elements of the four elements consisting of 0.1 to 1.0%, and / or V: contains 0.05 to 0.5%, Nb: 0.01 to 0.5% of one or more elements, the balance being Fe and unavoidable Characterized by comprising the object "induction hardening steel" is disclosed.
特許文献3に、P含有量が高くても、疲労強度、衝撃特性及び被削性に優れた「高周波焼入用の歯車用鋼材」とその製造方法、具体的には、質量%で、C:0.5〜0.75%、Si:0.5〜1.8%、Mn:0.1〜0.4%、P:0.015超〜0.03%、S:0.020%以下、Al:0.019〜0.05%、O:0.0015%以下、N:0.015超〜0.02%を含有し、更に、必要に応じて、Mo:0.05〜0.5%、B:0.0003〜0.005%、Ti:0.005〜0.05%、Ni:0.1〜1.0%のうちから選んだ少なくとも一種、及び/又は、V:0.05〜0.5%、Nb:0.01〜0.5%のうちから選んだ少なくとも一種を含有し、残部はFe及び不可避的不純物の組成になることを特徴とする「高周波焼入用の歯車用鋼材」とその製造方法が開示されている。 In Patent Document 3, even if the P content is high, the “steel material for gears for induction hardening” having excellent fatigue strength, impact characteristics and machinability and its manufacturing method, specifically, by mass%, C : 0.5 to 0.75%, Si: 0.5 to 1.8%, Mn: 0.1 to 0.4%, P: more than 0.015 to 0.03%, S: 0.020% Hereinafter, Al: 0.019 to 0.05%, O: 0.0015% or less, N: more than 0.015 to 0.02%, and Mo: 0.05 to 0 as necessary. 0.5%, B: 0.0003 to 0.005%, Ti: 0.005 to 0.05%, Ni: 0.1 to 1.0%, and / or V: It contains at least one selected from 0.05 to 0.5% and Nb: 0.01 to 0.5%, and the balance is composed of Fe and inevitable impurities. That "induction hardening of steel gear" and a manufacturing method thereof are disclosed.
特許文献4に、自動車等用の駆動伝達部品に適用できる、静的強度及び耐疲労特性の優れた「高周波焼入部品」とその製造方法、具体的には、重量%で、C:0.40〜0.70%、Si:0.05〜0.80%、Mn:0.50〜2.00%、S:0.01〜0.03%、V:0.30〜1.00%、Al:0.010〜0.050%、N:0.0050〜0.0200%を含有し、更に、必要に応じて、Nb:0.05〜0.50%、及び/又は、Cr:0.1〜1.50%を含有し、Pが0.030%以下で、残部はFe及び不可避不純物からなり、高周波焼入れ硬化層のマルテンサイトの結晶粒度がJIS粒度番号で14番以上であることを特徴とする静的強度と耐疲労特性に優れた「高周波焼入れ部品」とその製造方法が開示されている。 Patent Document 4 discloses that an “induction-hardened part” having excellent static strength and fatigue resistance, which can be applied to a drive transmission part for an automobile or the like, and a manufacturing method thereof, specifically, by weight%, C: 0.00. 40 to 0.70%, Si: 0.05 to 0.80%, Mn: 0.50 to 2.00%, S: 0.01 to 0.03%, V: 0.30 to 1.00% , Al: 0.010 to 0.050%, N: 0.0050 to 0.0200%, Nb: 0.05 to 0.50%, and / or Cr: 0.1 to 1.50% is contained, P is 0.030% or less, the balance is made of Fe and inevitable impurities, and the martensite grain size of the induction-hardened hardened layer is 14 or more in JIS grain size number. Disclosed is an induction-hardened component with excellent static strength and fatigue resistance, and its manufacturing method. There.
特許文献5に、高周波焼入れ性に優れると共に、高強度特性に優れた「高強度高周波焼入れ用鋼材」とその製造方法、具体的には、質量%で、C:0.35〜0.6%、Si:0.01〜1%、Mn:0.2〜2%、S:0.005〜0.15%、Cr:0.35%以下(0%を含む)、B:0.0005〜0.005%、Al:0.015〜0.05%、Ti:0.05〜0.2%を含有し、更に、必要に応じて、Mo:1%以下、Ni:2.5%以下、V:0.4%以下のうちの1種又は2種以上を含有し、N:0.007%未満(0%を含む)、P:0.025%(0%を含む)及びO:0.0025%以下(0%を含む)に各々制限し、残部がFe及び不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を5個/μm2以上を有し、フェライト結晶粒径が20μm以下であり、フェライト分率が30%以下であり、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする等の「高強度高周波焼き入れ用鋼材」とその製造方法が開示されている。 In Patent Document 5, “high-strength induction-quenching steel” that is excellent in induction hardenability and excellent in high-strength characteristics and its manufacturing method, specifically, in mass%, C: 0.35 to 0.6% , Si: 0.01 to 1%, Mn: 0.2 to 2%, S: 0.005 to 0.15%, Cr: 0.35% or less (including 0%), B: 0.0005 It contains 0.005%, Al: 0.015-0.05%, Ti: 0.05-0.2%, and, if necessary, Mo: 1% or less, Ni: 2.5% or less V: One or more of 0.4% or less, N: less than 0.007% (including 0%), P: 0.025% (including 0%), and O: The content is limited to 0.0025% or less (including 0%), the balance is Fe and inevitable impurities, and the diameter is 0.2 μm in the matrix of the structure after hot rolling. The precipitate below the Ti has five / [mu] m 2 or more, the ferrite grain size is not more 20μm or less, the ferrite fraction is 30% decarburization depth specified in JIS G 0558: DM- A “high-strength induction-hardening steel material” characterized by T 0.2 mm or less and its manufacturing method are disclosed.
特許文献6に、強度と靱性をともに高くし、強度と靱性とのバランスに優れた「高強度高靱性非調質棒鋼」とその製造方法、具体的には、質量%で、C:0.35〜0.50%、Si:0.1〜0.6%、Mn:0.5〜1.5%、Al:0.005〜0.02%、V:0.05〜0.50%を含み、更に、必要に応じて、Cr:0.60%以下、Mo:0.5%以下、Ni:1%以下、Cu:1%以下、Ti:0.2%以下、Nb:0.10%以下、の1種又は2種以上を含有し、残部はFe及び不可避的不純物からなり、鋼組織における、フェライト分率が20〜40%、パーライトの平均ラメラー間隔が0.05〜0.20μm、結晶方位差が15°以上の大角粒界で囲まれたフェライトの平均粒径が2〜10μmであるフェライト−パーライト複相組織からなることを特徴とする「高強度高靱性非調質棒鋼」とその製造方法が開示されている。 In Patent Document 6, “high-strength, high-toughness non-refined steel bar” having both high strength and toughness and excellent balance between strength and toughness, and its manufacturing method, specifically, by mass%, C: 0.00. 35 to 0.50%, Si: 0.1 to 0.6%, Mn: 0.5 to 1.5%, Al: 0.005 to 0.02%, V: 0.05 to 0.50% And, if necessary, Cr: 0.60% or less, Mo: 0.5% or less, Ni: 1% or less, Cu: 1% or less, Ti: 0.2% or less, Nb: 0. 1 type or 2 types or more of 10% or less, the remainder consists of Fe and unavoidable impurities, the ferrite fraction in the steel structure is 20 to 40%, the average lamellar spacing of pearlite is 0.05 to 0. A ferrite particle having an average grain size of 2 to 10 μm surrounded by large-angle grain boundaries having a crystal orientation difference of 15 ° or more is 20 μm. Characterized by comprising the light duplex structure "high strength and high toughness non-heat treated steel bar" and a manufacturing method thereof are disclosed.
前述の特許文献1で提案された技術は、高周波焼入れ部品の表面硬さ及び硬化深さ比並びに、表層部の高周波焼入れ部が均一なマルテンサイト組織であることを規定するだけで、高周波焼入れした表面硬化層の結晶粒径や、高周波焼入れ時に熱影響を受けなかった部分の硬さについて配慮されていない。このため、高周波焼入れ部品の衝撃特性は向上するものの、必ずしも良好な曲げ疲労強度が得られるというものではなかった。 The technique proposed in Patent Document 1 described above is induction-hardened only by specifying the surface hardness and hardening depth ratio of the induction-hardened part and that the induction-hardened part of the surface layer part is a uniform martensite structure. No consideration is given to the crystal grain size of the hardened surface layer or the hardness of the portion that was not affected by heat during induction hardening. For this reason, although the impact characteristics of the induction-hardened parts are improved, it is not always possible to obtain good bending fatigue strength.
特許文献2で提案された技術は、Si含有量の下限を質量%で、0.5%として、鋼材の焼戻し軟化抵抗を向上させ、また、Mn含有量の上限を質量%で、0.4%として、パーライトの層状化を抑制し、セメンタイトが分断した組織を形成させて、被削性を高めようとするものである。しかしながら、SiはA3変態点を上昇させるので、高周波加熱の際にオーステナイトの単相組織が得られず、フェライトとオーステナイトの2相組織となるので焼入れしても均質なマルテンサイトが得られず、軟質なフェライトが残存し、高周波焼入れ性が低下するために疲労強度の低下を招く場合がある。また、Mnの含有量を低下させることも高周波焼入れ前の鋼材の組織中にフェライトを増加させることになって、高周波焼入れ時の加熱段階で、オーステナイト単相組織が得られず、フェライトとオーステナイトの2相組織となるので焼入れしても均質なマルテンサイトが得られず、軟質なフェライトが残存することになって、たとえ被削性は向上しても、必ずしも良好な曲げ疲労強度が得られない。 The technique proposed in Patent Document 2 improves the temper softening resistance of the steel material by setting the lower limit of the Si content to 0.5% by mass, and the upper limit of the Mn content to 0.4% by mass. %, The layering of pearlite is suppressed, and a structure in which cementite is divided is formed to improve machinability. However, since Si raises the A 3 transformation point, a single-phase structure of austenite cannot be obtained during high-frequency heating, and a two-phase structure of ferrite and austenite is obtained, so that homogeneous martensite cannot be obtained even when quenched. In some cases, soft ferrite remains and the induction hardenability decreases, leading to a decrease in fatigue strength. In addition, reducing the Mn content also increases ferrite in the steel structure before induction hardening, and an austenite single phase structure cannot be obtained in the heating stage during induction hardening, and ferrite and austenite Since it has a two-phase structure, homogeneous martensite cannot be obtained even after quenching, and soft ferrite remains, so even if machinability is improved, good bending fatigue strength is not necessarily obtained. .
特許文献3で提案された技術は、Si含有量の下限を質量%で、0.5%として、鋼材の焼戻し軟化抵抗を向上させ、また、Mn含有量の上限を質量%で、0.4%として、パーライトの層状化を抑制し、セメンタイトが分断した組織を形成させて、被削性を高めようとするものである。このため、上記特許文献2の場合と同様に、高周波焼入れ後に均質なマルテンサイトを得ることが困難で、部材強度としての曲げ疲労強度が低下する。また、たとえ、オーステナイト粒径を16μm以下にしても、質量%で、0.015%を超えるPを含有させる必要があるので、粒界に偏析したPによって曲げ疲労強度の低下を避けることができない。しかも、オーステナイト粒径を16μm以下にするために、質量%で、0.015%を超えるNを含有させる必要があるが、鋼材中のN含有量が増加すると、熱間圧延や熱間鍛造などの熱間加工過程で、変形能が低下し、熱間加工後に鋼材表面に割れなど欠陥の増加をきたす。 In the technique proposed in Patent Document 3, the lower limit of the Si content is 0.5% by mass, and the temper softening resistance of the steel material is improved by 0.5%, and the upper limit of the Mn content is 0.4% by mass. %, The layering of pearlite is suppressed, and a structure in which cementite is divided is formed to improve machinability. For this reason, as in the case of Patent Document 2, it is difficult to obtain homogeneous martensite after induction hardening, and bending fatigue strength as member strength is reduced. Moreover, even if the austenite grain size is 16 μm or less, it is necessary to contain P in excess of 0.015% by mass. Therefore, a decrease in bending fatigue strength due to P segregated at the grain boundaries cannot be avoided. . And in order to make an austenite particle size 16 micrometers or less, it is necessary to contain N exceeding 0.015% by mass%, but when N content in steel materials increases, hot rolling, hot forging, etc. In the hot working process, the deformability decreases, and after hot working, the surface of the steel material is increased in defects such as cracks.
特許文献4で提案された技術は、高周波焼入れで得られる硬化層のマルテンサイト結晶粒度を14番以上(粒径3.1μm以下)を得るために、未再結晶温度域(600〜800℃)で30%以上の大ひずみ加工を2回以上行う必要がある。このため、例えば、鍛造加工する際に材料の変形抵抗が大きくなって鍛造金型への負荷が増大し、金型寿命が低下して製造コストの増加を招く。更に、微細組織を得るために、質量%で、0.3%以上ものVを含有させる必要があって、合金コストの増加が避けられないばかりか、炭窒化物が過剰に析出するので、硬化層の靱性劣化を引き起こし、曲げ疲労強度の低下を招く。 The technique proposed in Patent Document 4 is a non-recrystallization temperature range (600 to 800 ° C.) in order to obtain a martensite crystal grain size of the hardened layer obtained by induction quenching of 14 or more (grain size of 3.1 μm or less). Therefore, it is necessary to perform a large strain of 30% or more twice or more. For this reason, for example, when forging, the deformation resistance of the material is increased, the load on the forging die is increased, the die life is reduced, and the manufacturing cost is increased. Furthermore, in order to obtain a microstructure, it is necessary to contain 0.3% or more of V by mass%, and not only an increase in alloy cost is unavoidable, but also carbonitride precipitates excessively, so that hardening occurs. It causes toughness deterioration of the layer and leads to a decrease in bending fatigue strength.
特許文献5で提案された技術は、高周波焼入れ時に微細組織を得るために、鋼を鋳造後A3点温度以下に冷却することなく分塊圧延する所謂「HCR(Hot Charge Rolling)」を行う必要があるため、設備投資が必要になって製造コストが嵩む。また、棒鋼・線材の圧延に際して、低温加熱圧延することを前提にしているので、鋼材の変形抵抗が大きくなって圧延ロールへの負荷が増加し、結果的にロール寿命が低下するので製造コストの増大を招く。更に、高周波焼入れによる硬化層の旧オーステナイト粒径を微細化するために、質量%で、0.05%以上ものTiを含有させて、高周波焼入れ前の段階でTiC系の析出物を多量に微細分散させる必要があるため、高周波焼入れ硬化層の靱性が低下して、必ずしも良好な曲げ疲労強度が得られない。 The technique proposed in Patent Document 5 needs to perform so-called “HCR (Hot Charge Rolling)” in which a steel is cast into pieces without being cooled to A 3 point temperature or less after casting in order to obtain a fine structure during induction hardening. Therefore, capital investment is required and the manufacturing cost increases. Also, since rolling steel bars and wire rods are premised on low-temperature heating rolling, the deformation resistance of the steel materials increases, increasing the load on the rolling roll, resulting in a decrease in roll life, resulting in a reduction in manufacturing costs. Incurs an increase. Furthermore, in order to refine the prior austenite grain size of the hardened layer by induction hardening, 0.05% or more of Ti is contained in mass%, and a large amount of TiC-based precipitates are refined before induction hardening. Since it is necessary to disperse, the toughness of the induction-hardened hardened layer is lowered, and good bending fatigue strength cannot always be obtained.
特許文献6で提案されたフェライト分率が20〜40%の「高強度高靱性非調質棒鋼」を素材として高周波焼入れを行うと、フェライト残存などの不完全焼入れが生じる場合があり、必ずしも良好な曲げ疲労強度が得られない。 When induction hardening is performed using “high-strength, high-toughness, non-tempered steel bar” with a ferrite fraction of 20 to 40% proposed in Patent Document 6, incomplete quenching such as residual ferrite may occur and is not necessarily good. Bending fatigue strength cannot be obtained.
そこで、本発明の目的は、切削加工性に優れ、従来の浸炭焼入れを高周波焼入れに変更して生産効率を向上させた場合でも浸炭焼入れの場合と同等以上の疲労強度、なかでも曲げ疲労強度を確保することが可能で、自動車部品や建設機械用部品の素材として好適な「高周波焼入れ部品用鋼」を提供することである。 Therefore, the object of the present invention is excellent in machinability, and even when the conventional carburizing quenching is changed to induction quenching to improve the production efficiency, the fatigue strength is equal to or higher than that of the carburizing quenching, in particular, the bending fatigue strength. It is possible to provide "steel for induction hardening parts" that can be secured and is suitable as a material for automobile parts and construction machine parts.
高周波焼入れは、長時間での加熱時に表面から炭素が拡散し十分に焼入れ性を確保した状態から焼入れされる浸炭焼入れとは異なって、急速短時間で加熱された状態で焼入れされる。 Induction hardening is performed in a rapidly heated state, unlike carburizing and quenching, in which carbon is diffused from the surface during long-time heating and hardened from a state where sufficient hardenability is ensured.
そこで、本発明者らは、高周波焼入れ部における不完全焼入れを抑制するために、先ず、合金元素との関係を種々調査した。その結果、下記(a)〜(f)の知見を得た。 Therefore, the present inventors first investigated various relationships with alloy elements in order to suppress incomplete quenching in the induction-quenched portion. As a result, the following findings (a) to (f) were obtained.
(a)通常の長時間加熱してから焼入れする場合、C、Si、Mnなど合金元素の含有量を高めれば焼入れ性が向上するが、急速短時間加熱される高周波焼入れの場合には、その含有量を高めた場合に焼入れ性の低下を招く元素がある。 (A) In the case of quenching after heating for a long period of time, the hardenability is improved by increasing the content of alloy elements such as C, Si, Mn, etc. There is an element that causes a decrease in hardenability when the content is increased.
(b)SiとAlは、いずれも、含有量の増加に伴ってA3変態点を上昇させる元素である。このため、高周波焼入れのような急速短時間加熱の場合、Si及びAlの含有量が高い鋼材ではオーステナイトの単相組織が得られず、フェライトとオーステナイトの2相組織となるので、加熱後急冷する焼入れ処理を行っても、均質なマルテンサイト組織が得られない。したがって、Si及びAlの含有量は低くするのがよい。 (B) Both Si and Al are elements that increase the A 3 transformation point as the content increases. For this reason, in the case of rapid and short-time heating such as induction hardening, a steel material having a high Si and Al content does not provide a single-phase structure of austenite, but a two-phase structure of ferrite and austenite. Even if quenching is performed, a homogeneous martensite structure cannot be obtained. Therefore, the Si and Al contents should be low.
(c)Crは、セメンタイトを安定化する作用がある。このため、通常焼入れの場合には焼入れ性を増加させる元素の一つであるCrも、高周波焼入れの場合には、その含有量が高いと、焼入れ性の低下を招くことがある。したがって、Crの含有量も低くするのがよい。 (C) Cr has the effect of stabilizing cementite. For this reason, Cr, which is one of the elements that increase the hardenability in the case of normal quenching, may cause a decrease in hardenability if the content is high in the case of induction hardening. Therefore, the Cr content should be low.
(d)高周波焼入れ時の不完全焼入れを防止するためには、C、Mn、Mo及びBの含有量を高めてこれらの元素の焼入れ性向上作用を活用するのがよい。 (D) In order to prevent incomplete quenching during induction quenching, it is preferable to increase the contents of C, Mn, Mo, and B to utilize the effect of improving the hardenability of these elements.
(e)Bの焼入れ性向上効果を確保するためにはN固定のためにTiを含有させるのがよいものの、含有量が多すぎる場合には、鋼材中のC量が減少してフェライトの割合が多くなって高周波焼入れ性の低下を招く。このため、Tiの含有量を適正な範囲に調整するのがよい。 (E) In order to secure the effect of improving the hardenability of B, it is preferable to contain Ti for fixing N, but when the content is too large, the amount of C in the steel material is reduced and the proportion of ferrite Increases the induction hardenability. For this reason, it is good to adjust content of Ti to an appropriate range.
(f)強度向上に有効なVを含有させる場合、その量が多すぎる場合には、上記のTi同様、鋼材中のC量が減少してフェライトの割合が多くなって高周波焼入れ性の低下を招く。このため、Vを含有させる場合には、その量を適正な範囲に調整するのがよい。 (F) In the case where V effective for strength improvement is contained, if the amount is too large, the amount of C in the steel material decreases and the ratio of ferrite increases as in the case of Ti described above, and the induction hardenability decreases. Invite. For this reason, when it contains V, it is good to adjust the quantity to an appropriate range.
そこで次に、高周波焼入れする際の不完全焼入れ組織と合金元素との関係を更に詳細に調査した。その結果、下記の知見(g)が得られた。 Therefore, the relationship between the incompletely quenched structure and the alloy elements during induction hardening was investigated in more detail. As a result, the following knowledge (g) was obtained.
(g)高周波焼入れ時の不完全焼入れを抑止するためには、Vを含まない場合には、「C+Mn+2Mo−2Si−9Cr−2(Ti−3.4N)−6Al」で表される式の値を、また、Vを含む場合には、「C+Mn+2Mo−2Si−9Cr−2(Ti−3.4N)−6Al−4V」で表される式の値を適正な範囲に調整すればよい。 (G) In order to suppress incomplete quenching at the time of induction quenching, when V is not included, the value of the formula represented by “C + Mn + 2Mo-2Si-9Cr-2 (Ti-3.4N) -6Al” When V is included, the value of the expression represented by “C + Mn + 2Mo-2Si-9Cr-2 (Ti-3.4N) -6Al-4V” may be adjusted to an appropriate range.
更に、本発明者らは、高周波焼入れ部における不完全焼入れを抑制するために、高周波焼入れ前の鋼材の組織との関係を種々調査した。その結果、下記(h)の重要な知見が得られた。 Furthermore, the present inventors have investigated various relations with the structure of the steel material before induction hardening in order to suppress incomplete hardening in the induction hardening portion. As a result, the following important knowledge (h) was obtained.
(h)高周波焼入れ前の鋼材の組織をフェライト分率が15%以下でパーライトのラメラー間隔が1μm以下であるフェライトとパーライトとの混合組織(以下、「フェライト・パーライト組織」ともいう。)とすれば、高周波焼入れ性を高めることができる。 (H) The structure of the steel material before induction hardening is a mixed structure of ferrite and pearlite (hereinafter also referred to as “ferrite / pearlite structure”) having a ferrite fraction of 15% or less and a pearlite lamellar spacing of 1 μm or less. If it is, induction hardenability can be improved.
本発明者らは、更に、高周波焼入れした場合の静的強度、耐衝撃曲げ強度及び疲労強度を向上させるために、なかでも曲げ疲労強度を向上させるために種々の調査も実施した。その結果、下記(i)及び(j)の知見が得られた。 The present inventors further conducted various investigations in order to improve the bending fatigue strength, in order to improve the static strength, impact bending strength and fatigue strength when induction-quenched. As a result, the following findings (i) and (j) were obtained.
(i)曲げ疲労強度と静的曲げ強度との間には良い相関関係が存在する。 (I) There is a good correlation between bending fatigue strength and static bending strength.
(j)静的曲げ強度を向上させるためには、高周波焼入れ後に、その硬化層を均一硬質なマルテンサイト組織にして硬さを高めることに加えて、硬化層の靱性を高めることが重要である。 (J) In order to improve the static bending strength, it is important to increase the toughness of the hardened layer in addition to increasing the hardness after making the hardened layer a uniform hard martensite structure after induction hardening. .
一般に、硬さと靱性は相反する特性を示し、硬化層の硬さ増加や、硬化層深さの増加は、靱性の低下を招くと考えられる。また、硬さ、靱性ともに、鋼材のC含有量の影響が非常に大きい。 Generally, hardness and toughness exhibit contradictory characteristics, and it is considered that an increase in the hardness of the cured layer and an increase in the depth of the cured layer cause a decrease in toughness. Further, both the hardness and the toughness are greatly affected by the C content of the steel material.
そこで更に、本発明者らは、相反する靱性と硬さについて精査した。その結果、下記(k)及び(l)の知見が得られた。 Therefore, the present inventors further scrutinized contradictory toughness and hardness. As a result, the following findings (k) and (l) were obtained.
(k)高周波焼入れで形成された硬化層の旧オーステナイト結晶粒径を20μm以下に微細化することによって、硬さを低下させずに靱性を確保することが可能である。 (K) By refining the prior austenite grain size of the hardened layer formed by induction hardening to 20 μm or less, it is possible to ensure toughness without reducing the hardness.
(l)化学組成を適正化するとともに、高周波焼入れ前の組織をパーライトのラメラー間隔が1μm以下であるフェライト・パーライト組織とした鋼材は、オーステナイト変態時に、オーステナイト生成核が増加し,高周波焼入れによって、その硬化層の旧オーステナイト結晶粒径を20μm以下に微細化することができる。 (L) A steel material with an optimized chemical composition and a ferrite-pearlite structure with a pearlite lamellar spacing of 1 μm or less before induction hardening has increased austenite-forming nuclei during austenite transformation, and induction hardening, The prior austenite crystal grain size of the hardened layer can be reduced to 20 μm or less.
なお、自動車部品や建設機械用部品の加工工程には、必ず所定形状への「切削加工」がある。このため、浸炭焼入れの代替として高周波焼入れを適用する場合にも被削性を考慮する必要がある。そこで、本発明者らは、介在物形態に大きく左右される被削性を高める技術についても検討した。その結果、下記(m)及び(n)の知見を得た。 In the process of processing automobile parts and construction machine parts, there is always “cutting” into a predetermined shape. For this reason, it is necessary to consider machinability also when applying induction hardening as an alternative to carburizing quenching. Therefore, the present inventors also examined a technique for improving machinability that is greatly influenced by the form of inclusions. As a result, the following findings (m) and (n) were obtained.
(m)鋼中のO(酸素)の含有量を低減して、被削性に影響を与えるMnSの形態を微細化することで被削性を高めることができる。 (M) The machinability can be improved by reducing the content of O (oxygen) in the steel and refining the form of MnS that affects the machinability.
(n)適正量のCaを含有させて低融点酸化物を形成させれば、工具寿命を大きくすることもできる。 (N) The tool life can be increased if a low melting point oxide is formed by containing an appropriate amount of Ca.
本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)〜(3)に示す高周波焼入れ用鋼材にある。 This invention is completed based on said knowledge, The summary exists in the steel materials for induction hardening shown to following (1)-(3).
(1)質量%で、C:0.35〜0.65%、Si:0.50%以下、Mn:0.65〜2.00%、P:0.015%以下、S:0.010〜0.080%、Cr:0.01〜0.5%、Mo:0.05〜0.5%、B:0.0005〜0.0050%、Al:0.10%以下、N:0.0150%以下、O(酸素):0.0020%以下及びTi:3.4N〜(3.4N+0.05)%を含有し、残部はFe及び不純物からなり、下記(1)式で表されるfn1の値が1.0以上を満たし、更に、組織が、フェライト分率が15%以下でパーライトのラメラー間隔が1μm以下のフェライトとパーライトとの混合組織であることを特徴とする高周波焼入れ用鋼材。
fn1=C+Mn+2Mo−2Si−9Cr−2(Ti−3.4N)−6Al・・・・・(1)
但し、(1)式中の元素記号は、各元素の質量%での鋼中含有量を表す。
(1) By mass%, C: 0.35 to 0.65%, Si: 0.50% or less, Mn: 0.65 to 2.00%, P: 0.015% or less, S: 0.010 -0.080%, Cr: 0.01-0.5%, Mo: 0.05-0.5%, B: 0.0005-0.0050%, Al: 0.10% or less, N: 0 0.150% or less, O (oxygen): 0.0020% or less, and Ti: 3.4N to (3.4N + 0.05)%, the balance being made of Fe and impurities, expressed by the following formula (1) Fn1 value satisfies 1.0 or more, and the structure is a mixed structure of ferrite and pearlite having a ferrite fraction of 15% or less and a pearlite lamellar spacing of 1 μm or less. Steel material.
fn1 = C + Mn + 2Mo-2Si-9Cr-2 (Ti-3.4N) -6Al (1)
However, the element symbol in the formula (1) represents the content in steel in mass% of each element.
(2)質量%で、C:0.35〜0.65%、Si:0.50%以下、Mn:0.65〜2.00%、P:0.015%以下、S:0.010〜0.080%、Cr:0.01〜0.5%、Mo:0.05〜0.5%、B:0.0005〜0.0050%、Al:0.10%以下、N:0.0150%以下、O(酸素):0.0020%以下及びTi:3.4N〜(3.4N+0.05)%を含有するとともに、Cu:0.20%以下、Ni:0.20%以下、Nb:0.30%以下及びV:0.20%以下のうちの1種又は2種以上を含有し、残部はFe及び不純物からなり、下記(2)式で表されるfn2の値が1.0以上を満たし、更に、組織が、フェライト分率が15%以下でパーライトのラメラー間隔が1μm以下のフェライトとパーライトとの混合組織であることを特徴とする高周波焼入れ用鋼材。
fn2=C+Mn+2Mo−2Si−9Cr−2(Ti−3.4N)−6Al−4V・・・・・(2)
但し、(2)式中の元素記号は、各元素の質量%での鋼中含有量を表す。
(2) By mass%, C: 0.35 to 0.65%, Si: 0.50% or less, Mn: 0.65 to 2.00%, P: 0.015% or less, S: 0.010 -0.080%, Cr: 0.01-0.5%, Mo: 0.05-0.5%, B: 0.0005-0.0050%, Al: 0.10% or less, N: 0 0.150% or less, O (oxygen): 0.0020% or less, and Ti: 3.4N to (3.4N + 0.05)%, Cu: 0.20% or less, Ni: 0.20% or less Nb: 0.30% or less and V: 0.20% or less, and the balance is Fe and impurities, and the value of fn2 represented by the following formula (2) is 1.0 or more, and the structure is a ferrite having a ferrite fraction of 15% or less and a pearlite lamellar spacing of 1 μm or less. Induction hardening steel material characterized in that it is a mixed structure of Raito.
fn2 = C + Mn + 2Mo-2Si-9Cr-2 (Ti-3.4N) -6Al-4V (2)
However, the element symbol in the formula (2) represents the steel content in mass% of each element.
(3)Feの一部に代えて、Ca:0.01%以下を含有することを特徴とする上記(1)又は(2)に記載の高周波焼入れ用鋼材。 (3) The steel material for induction hardening as described in (1) or (2) above, which contains Ca: 0.01% or less instead of part of Fe.
以下、上記 (1)〜(3)の高周波焼入れ用鋼材に係る発明を、それぞれ、「本発明(1)」〜「本発明(3)」という。また、総称して「本発明」ということがある。 Hereinafter, the inventions relating to the steel materials for induction hardening according to the above (1) to (3) are referred to as “present invention (1)” to “present invention (3)”, respectively. Also, it may be collectively referred to as “the present invention”.
本発明の高周波焼入れ用鋼材は、切削加工性に優れ、従来の浸炭焼入れを高周波焼入れに変更して生産効率を向上させた場合でも浸炭焼入れの場合と同等以上の疲労強度、なかでも曲げ疲労強度を確保することができるので、アクスルシャフト、ドライブシャフト、等速ジョイント用アウターレースなどの自動車部品や建設機械用部品の素材として用いることができる。 The steel for induction hardening according to the present invention is excellent in machinability, and even when the conventional carburizing and quenching is changed to induction hardening to improve the production efficiency, the fatigue strength is equal to or higher than the case of carburizing and quenching, especially the bending fatigue strength. Therefore, it can be used as a material for automobile parts such as axle shafts, drive shafts, outer races for constant velocity joints, and construction machine parts.
以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。 Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.
(A)化学組成
C:0.35〜0.65%
Cは、鋼の強度を確保する作用及び高周波焼入れ後の硬化層硬さを確保する作用を有する。しかしながら、その含有量が0.35%未満では、前記作用による所望の効果が得られない。一方、Cの含有量が0.65%を超えると、鋼の靱性が劣化する。したがって、Cの含有量を0.35〜0.65%とした。なお、前記の効果を安定して得るためには、Cの含有量は0.45〜0.55%とすることが好ましい。
(A) Chemical composition C: 0.35 to 0.65%
C has the effect | action which ensures the intensity | strength of steel, and the effect | action which ensures the hardened layer hardness after induction hardening. However, if the content is less than 0.35%, the desired effect due to the above action cannot be obtained. On the other hand, if the C content exceeds 0.65%, the toughness of the steel deteriorates. Therefore, the content of C is set to 0.35 to 0.65%. In addition, in order to acquire the said effect stably, it is preferable that content of C shall be 0.45-0.55%.
Si:0.50%以下
Siは、脱酸元素ではあるが、高周波焼入れ時のA3変態点を上昇させ、高周波焼入れ性の低下を招く。特に、その含有量が0.50%を超える場合には、脱酸効果は期待できるものの、高周波焼入れ性の低下が著しくなる。したがって、Siの含有量を0.50%以下とした。なお、良好な高周波焼入れ性の確保という点からは、Si含有量は可能な限り低減することが好ましい。
Si: 0.50% or less Si, albeit with a deoxidizing element, raise the A 3 transformation point at the time of induction hardening, lowering the induction hardening properties. In particular, when the content exceeds 0.50%, the deoxidation effect can be expected, but the induction hardenability is significantly lowered. Therefore, the Si content is set to 0.50% or less. In addition, it is preferable to reduce Si content as much as possible from the point of ensuring favorable induction hardenability.
Mn:0.65〜2.00%
Mnは、高周波焼入れ性を向上させる有効な元素であるとともに、フェライトの生成を抑制する元素でもある。しかしながら、Mnの含有量が0.65%未満の場合、前記作用による所望の効果が得られない。一方、2.00%を超えてMnを含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Mnの含有量を0.65〜2.00%とした。なお、 合金コストを低く抑えたうえで前記の効果を安定して得るためには、Mnの含有量は0.75〜1.50%に調整するのが好ましい。
Mn: 0.65 to 2.00%
Mn is an effective element that improves induction hardenability and also an element that suppresses the formation of ferrite. However, when the content of Mn is less than 0.65%, the desired effect due to the above action cannot be obtained. On the other hand, even if it contains Mn exceeding 2.00%, the said effect will be saturated and cost will only increase. Therefore, the content of Mn is set to 0.65 to 2.00%. In order to obtain the above effect stably while keeping the alloy cost low, the content of Mn is preferably adjusted to 0.75 to 1.50%.
P:0.015%以下
Pは、高周波焼入れ時の硬化層の靱性を劣化させ、特に、その含有量が0.015%を超えると、硬化層の靱性低下が著しくなる。したがって、Pの含有量を、0.015%以下とした。なお、Pの含有量は、0.010%以下にするのが好ましい。
P: 0.015% or less P deteriorates the toughness of the hardened layer at the time of induction hardening. In particular, when the content exceeds 0.015%, the toughness of the hardened layer is significantly reduced. Therefore, the content of P is set to 0.015% or less. The P content is preferably 0.010% or less.
S:0.010〜0.080%
Sは、Mnと結合してMnSを形成し、被削性、なかでも切り屑処理性を高める作用を有する。しかしながら、その含有量が0.010%未満では前記の効果が得られない。一方、Sは、結晶粒界に偏析して粒界強度を劣化させ、鋼の強度低下を招き、特に、Sの含有量が0.080%を超えると、鋼の強度低下が著しくなる。したがって、Sの含有量を0.010〜0.080%とした。なお、Sの含有量は0.012〜0.06%とすることが好ましい。
S: 0.010 to 0.080%
S combines with Mn to form MnS, and has an effect of improving machinability, in particular, chip disposal. However, if the content is less than 0.010%, the above effect cannot be obtained. On the other hand, S segregates at the grain boundaries to deteriorate the grain boundary strength, leading to a reduction in steel strength. In particular, when the S content exceeds 0.080%, the strength reduction of steel becomes significant. Therefore, the content of S is set to 0.010 to 0.080%. In addition, it is preferable that content of S shall be 0.012-0.06%.
Cr:0.01〜0.5%
Crは、CやMnと同様、鋼の焼入れ性を高めて強度を向上させる作用を有し、高周波焼入れの場合に焼入れ性向上効果を確実に得るには、0.01%以上の含有量とする必要がある。しかしながら、Crの含有量が0.5%を超えると、高周波焼入れの場合には却って焼入れ性が低下する。更に、熱間加工性の劣化も生じる。したがって、Crの含有量を0.01〜0.5%とした。なお、Crの含有量は0.08〜0.2%とすることが好ましい。
Cr: 0.01 to 0.5%
Cr, like C and Mn, has the effect of improving the hardenability of steel and improving the strength. In the case of induction hardening, in order to reliably obtain the effect of improving hardenability, the content of 0.01% or more There is a need to. However, if the Cr content exceeds 0.5%, the hardenability deteriorates in the case of induction hardening. Further, the hot workability is deteriorated. Therefore, the Cr content is set to 0.01 to 0.5%. The Cr content is preferably 0.08 to 0.2%.
Mo:0.05〜0.5%
Moも、CやMnと同様、鋼の焼入れ性を高めて強度を向上させる作用がある。しかしながら、強度向上効果を確実に得るには、0.05%以上の含有量が必要である。一方、0.5%を超えてMoを含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Moの含有量を0.05〜0.5%とした。なお、Moの含有量は0.10〜0.3%とすることが好ましい。
Mo: 0.05-0.5%
Mo, like C and Mn, has the effect of increasing the hardenability of the steel and improving the strength. However, a content of 0.05% or more is necessary to reliably obtain the strength improvement effect. On the other hand, even if Mo is contained in excess of 0.5%, the above effect is saturated and the cost is increased. Therefore, the Mo content is set to 0.05 to 0.5%. The Mo content is preferably 0.10 to 0.3%.
B:0.0005〜0.0050%
Bは、高周波焼入れ性を向上させる作用を有し、その効果はBの含有量が0.0005%以上で顕著である。しかしながら、0.0050%を超えてBを含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Bの含有量を0.0005〜0.0050%とした。Bの含有量は0.0010〜0.0020%とすることが好ましい。
B: 0.0005 to 0.0050%
B has the effect | action which improves induction hardenability and the effect is remarkable when content of B is 0.0005% or more. However, even if B is contained in excess of 0.0050%, the above effect is saturated and the cost is increased. Therefore, the content of B is set to 0.0005 to 0.0050%. The B content is preferably 0.0010 to 0.0020%.
なお、上記した範囲の量のBを含有する場合であっても、Bが鋼中の不純物として存在するNと結合してBNを形成した場合には、高周波焼入れ性を高めることができない。したがって、Bの高周波焼入れ性向上効果を発揮させるためには、鋼中の不純物として存在するNを可能な限り低減する必要がある。このことについては後述する。 Even when B is contained in an amount in the above range, induction hardenability cannot be improved when BN is formed by combining B with N present as an impurity in steel. Therefore, in order to exhibit the effect of improving the induction hardenability of B, it is necessary to reduce N present as an impurity in the steel as much as possible. This will be described later.
Al:0.10%以下
Alは、Siと同様に、脱酸元素ではあるが、高周波焼入れ時のA3変態点を上昇させ、高周波焼入れ性の低下を招く。特に、その含有量が0.10%を超える場合には、前記の脱酸効果やAlが鋼中のNと結合して形成されたAlNの高周波焼入れ時の結晶粒粗大化防止作用は期待できるものの、高周波焼入れ性の低下が著しくなる。したがって、Alの含有量を0.10%以下とした。なお、良好な高周波焼入れ性の確保という点からは、Al含有量は可能な限り低減することが好ましい。
Al: 0.10% or less Al, like Si, albeit at a deoxidizing element, raise the A 3 transformation point at the time of induction hardening, lowering the induction hardening properties. In particular, when the content exceeds 0.10%, the deoxidation effect and the effect of preventing grain coarsening during induction hardening of AlN formed by combining Al with N in steel can be expected. However, the induction hardenability is significantly reduced. Therefore, the Al content is set to 0.10% or less. In addition, it is preferable to reduce Al content as much as possible from the point of ensuring favorable induction hardenability.
N:0.0150%以下
Nは、B、Al、Tiなどとの親和力が大きく、鋼中のBと結合してBNを形成した場合には、高周波焼入れ性を高めることができない。特に、Nの含有量が多くなって0.0150%を超えると、AlNやTiNの高周波焼入れ時の結晶粒粗大化防止作用は期待できるものの、BN形成による高周波焼入れ性向上効果が期待できない。したがって、Nの含有量を、0.0150%以下とした。なお、鋼中の不純物としてのNの含有量は可能な限り低減することが好ましい。
N: 0.0150% or less N has a large affinity with B, Al, Ti and the like, and when it is combined with B in steel to form BN, induction hardenability cannot be improved. In particular, when the N content increases and exceeds 0.0150%, the effect of preventing the coarsening of crystal grains during induction hardening of AlN or TiN can be expected, but the effect of improving the induction hardenability by forming BN cannot be expected. Therefore, the content of N is set to 0.0150% or less. Note that the content of N as an impurity in the steel is preferably reduced as much as possible.
O(酸素):0.0020%以下
Oは、鋼中の元素と結合して酸化物を形成し、強度低下、なかでも疲労強度の低下を招く。特に、Oの含有量が0.0020%を超えると、形成される酸化物が多くなるとともにMnSが粗大化して、疲労強度の低下が顕著になる。したがって、不純物元素としてのOの含有量を0.0020%以下とした。なお、Oの含有量は0.0015%以下とすることが好ましい。
O (oxygen): 0.0020% or less O combines with the elements in steel to form oxides, leading to a decrease in strength, particularly a decrease in fatigue strength. In particular, when the O content exceeds 0.0020%, the amount of oxide formed increases and MnS coarsens, resulting in a significant decrease in fatigue strength. Therefore, the content of O as an impurity element is set to 0.0020% or less. The O content is preferably 0.0015% or less.
Ti:3.4N〜(3.4N+0.05)%
Tiは、鋼中の不純物として存在しているNと優先的に結合することでBNの形成を抑制し、Bの高周波焼入れ性向上効果を確保するのに有効な元素である。この効果を得るためには、3.4N%以上のTiを含有させる必要がある。しかしながら、Tiの含有量が多すぎる場合には、鋼中のCと結合して炭化物を形成するため、鋼材中のC量が減少してフェライトの割合が多くなり、却って高周波焼入れ性の低下を招くし、高周波焼入れされた硬化層の靱性の低下をも招く。特に、Tiの含有量が多くなって、(3.4N+0.05)%を超えると、高周波焼入れ性及び硬化層の靱性の著しい低下をきたす。したがって、Tiの含有量を3.4N〜(3.4N+0.05)%とした。
Ti: 3.4N to (3.4N + 0.05)%
Ti is an element effective in suppressing the formation of BN by preferentially bonding with N present as an impurity in steel and ensuring the effect of improving the induction hardenability of B. In order to obtain this effect, it is necessary to contain 3.4 N% or more of Ti. However, when the Ti content is too high, it combines with C in the steel to form carbides, so the amount of C in the steel decreases and the proportion of ferrite increases, on the other hand, induction hardenability decreases. In addition, the toughness of the induction-hardened hardened layer is also reduced. In particular, when the Ti content increases and exceeds (3.4N + 0.05)%, the induction hardenability and the toughness of the hardened layer are significantly reduced. Therefore, the Ti content is determined to be 3.4N to (3.4N + 0.05)%.
fn1の値:1.0以上
前記(1)式で表されるfn1の値を1.0以上とすることで、Vを含まない本発明(1)に係る鋼材を高周波焼入れする際の不完全焼入れを抑止することができる。
fn1 value: 1.0 or more By setting the value of fn1 represented by the formula (1) to 1.0 or more, imperfection when induction-hardening the steel material according to the present invention (1) that does not contain V Quenching can be suppressed.
上記の理由から、本発明(1)に係る高周波焼入れ用鋼材の化学組成を、上述した範囲のCからTiまでの元素を含有するとともに、残部はFe及び不純物からなり、前記(1)式で表されるfn1の値が1.0以上を満たすことと規定した。 For the above reason, the chemical composition of the steel for induction hardening according to the present invention (1) contains elements from C to Ti in the above-mentioned range, and the balance is composed of Fe and impurities. It was defined that the value of fn1 expressed satisfies 1.0 or more.
なお、本発明に(2)に係る高周波焼入れ用鋼材の化学組成は、上述した範囲のCからTiまでの元素を含有するとともに、Cu:0.20%以下、Ni:0.20%以下、Nb:0.30%以下及びV:0.20%以下のうちの1種又は2種以上を含有し、前記(2)式で表されるfn2の値が1.0以上を満たすものである。以下、上記CuからVまでの元素と前記(2)式で表されるfn2の値について説明する。 In addition, the chemical composition of the steel for induction hardening according to the present invention (2) contains elements from C to Ti in the above-described range, Cu: 0.20% or less, Ni: 0.20% or less, One or more of Nb: 0.30% or less and V: 0.20% or less are contained, and the value of fn2 represented by the formula (2) satisfies 1.0 or more. . Hereinafter, the elements from Cu to V and the value of fn2 represented by the above formula (2) will be described.
Cu:0.20%以下
Cuは、鋼の強度を向上させる作用を有する。すなわち、Cuは、CやMnと同様に鋼の焼入れ性を高めて、強度を向上させる作用を有する。しかしながら、Cu含有量が0.20%を超えると、焼入れ性は向上するものの、疲労強度の低下を招く場合がある。したがって、Cuの含有量を0.20%以下とした。なお、Cuの含有量は、0.008〜0.015%とすることが好ましい。
Cu: 0.20% or less Cu has an effect of improving the strength of steel. That is, Cu has the effect | action which raises the hardenability of steel like C and Mn, and improves intensity | strength. However, if the Cu content exceeds 0.20%, the hardenability is improved, but the fatigue strength may be lowered. Therefore, the Cu content is set to 0.20% or less. The Cu content is preferably 0.008 to 0.015%.
Ni:0.20%以下
Niは、鋼の強度を向上させる作用を有する。すなわち、Niは、CやMnと同様に鋼の焼入れ性を高めて、強度を向上させる作用を有する。しかしながら、Niの含有量が0.20%を超えると、焼入れ性は向上するものの、高周波焼入れ時に焼割れを生じる場合がある。したがって、Niの含有量を0.20%以下とした。なお、Niの含有量は、0.008〜0.015%%とすることが好ましい。
Ni: 0.20% or less Ni has the effect | action which improves the intensity | strength of steel. That is, Ni has the effect | action which raises the hardenability of steel like C and Mn, and improves intensity | strength. However, if the Ni content exceeds 0.20%, the hardenability is improved, but quenching may occur during induction hardening. Therefore, the Ni content is set to 0.20% or less. Note that the Ni content is preferably 0.008 to 0.015%.
Nb:0.30%以下
Nbは、鋼の強度を向上させる作用を有する。すなわち、Nbは、炭化物、窒化物或いは炭窒化物を形成して結晶粒を微細化し、鋼の強度を高める作用を有する。しかしながら、0.30%を超えてNbを含有させても前記の効果は飽和し、コストが嵩むばかりである。したがって、Nbの含有量を0.30%以下とした。なお、Nbの含有量は、0.01〜0.30%とすることが好ましい。
Nb: 0.30% or less Nb has the effect | action which improves the intensity | strength of steel. That is, Nb has the effect | action which forms carbide | carbonized_material, nitride, or carbonitride, refines | miniaturizes a crystal grain, and raises the intensity | strength of steel. However, even if Nb is contained in excess of 0.30%, the above effects are saturated and the cost is increased. Therefore, the Nb content is set to 0.30% or less. Note that the Nb content is preferably 0.01 to 0.30%.
V:0.20%以下
Vは、鋼の強度を向上させる作用を有する。すなわち、Vは、CやMnと同様に鋼の焼入れ性を高めて、また、炭窒化物を形成して結晶粒を微細化し、強度を向上させる作用を有する。しかしながら、Vの含有量が0.20%を超えると、炭窒化物が過剰に析出して高周波焼入れされた硬化層の靱性劣化を引き起こして疲労寿命の低下を招くし、鋼中のCと結合して炭化物を多く形成することにもなるため、鋼材中のC量が減少してフェライトの割合が多くなって高周波焼入れ性の低下を招く。したがって、Vの含有量を0.20%以下とした。なお、Vの含有量は、0.01〜0.20%とすることが好ましい。
V: 0.20% or less V has an effect of improving the strength of steel. That is, V, like C and Mn, has the effect of enhancing the hardenability of the steel, forming carbonitrides to refine crystal grains, and improving the strength. However, if the content of V exceeds 0.20%, carbonitride precipitates excessively, causing toughness deterioration of the hardened layer induction-hardened, leading to a decrease in fatigue life, and bonding with C in the steel. As a result, a large amount of carbide is formed, so that the amount of C in the steel material is reduced and the proportion of ferrite is increased, which causes a decrease in induction hardenability. Therefore, the content of V is set to 0.20% or less. The V content is preferably 0.01 to 0.20%.
なお、上記のCu、Ni、Nb及びVは、そのうちのいずれか1種のみ、又は2種以上の複合で含有することができる。 In addition, said Cu, Ni, Nb, and V can be contained only in one of them, or 2 or more types of composites.
fn2の値:1.0以上
前記(2)式で表されるfn1の値を1.0以上とすることで、Vを含む本発明(2)に係る鋼材を高周波焼入れする際の不完全焼入れを抑止することができる。
fn2 value: 1.0 or more Incomplete quenching when the steel material according to the present invention (2) containing V is induction-quenched by setting the value of fn1 represented by the formula (2) to 1.0 or more. Can be suppressed.
上記の理由から、本発明(2)に係る高周波焼入れ用鋼材の化学組成を、前述した範囲のCからTiまでの元素を含有するとともに、Cu:0.20%以下、Ni:0.20%以下、Nb:0.30%以下及びV:0.20%以下のうちの1種又は2種以上を含有し、前記(2)式で表されるfn2の値が1.0以上を満たすことと規定した。 For the above reason, the chemical composition of the steel for induction hardening according to the present invention (2) contains elements from C to Ti in the above-mentioned range, Cu: 0.20% or less, Ni: 0.20% Hereinafter, it contains one or more of Nb: 0.30% or less and V: 0.20% or less, and the value of fn2 represented by the formula (2) satisfies 1.0 or more. Stipulated.
なお、本発明に係る高周波焼入れ用鋼材の化学組成は、必要に応じて、本発明(1)又は本発明(2)のFeの一部に代えて、後述する量のCaを任意に含有させたものでもよい。以下、このことについて説明する。 In addition, the chemical composition of the steel for induction hardening according to the present invention may optionally contain an amount of Ca described later instead of a part of Fe of the present invention (1) or the present invention (2) as necessary. May be good. This will be described below.
Ca:0.01%以下
Caは、脱酸元素であり、且つ、工具寿命向上に有効な、低融点酸化物を形成する。しかしながら、Caの含有量が0.01%を超えると、Caの添加歩留りが低いために、製造コストが嵩んでしまうし、却って低融点酸化物の形成が難しくなる。更に、Caを固溶するMnSが増加して粗大なMnSを形成しやすくなるため、被削性は確保できても、疲労強度の低下を招いてしまう。したがって、Caの含有量を0.01%以下とした。なお、疲労強度を低減することなく、被削性向上効果を、より安定して得るために、Caの含有量は、0.0005〜0.005%とすることが好ましい。
Ca: 0.01% or less Ca is a deoxidizing element and forms a low-melting-point oxide effective for improving the tool life. However, if the Ca content exceeds 0.01%, the yield of Ca addition is low, and thus the production cost increases, and on the contrary, the formation of a low melting point oxide becomes difficult. Furthermore, since MnS that dissolves Ca increases and coarse MnS is easily formed, even if machinability can be ensured, the fatigue strength is reduced. Therefore, the Ca content is set to 0.01% or less. In addition, in order to acquire the machinability improvement effect more stably without reducing fatigue strength, the Ca content is preferably set to 0.0005 to 0.005%.
上記の理由から、本発明(3)に係る高周波焼入れ用鋼材の化学組成を、本発明(1)又は本発明(2)における高周波焼入れ用鋼材のFeの一部に代えて、Ca:0.01%以下を含有することと規定した。 For the above reasons, the chemical composition of the steel for induction hardening according to the present invention (3) is replaced with a part of Fe of the steel for induction hardening according to the present invention (1) or the present invention (2). It was specified that the content was 01% or less.
(B)組織
前記(A)項で述べた化学組成を有する本発明に係る高周波焼入れ用鋼材の組織は、フェライト分率が15%以下でパーライトのラメラー間隔が1μm以下のフェライト・パーライト組織でなければならない。これは、化学組成に加えて、鋼材の組織を上記の組織とすることによって、高周波焼入れ時の不完全焼入れが抑制されて高周波焼入れで形成された硬化層が均一硬質なマルテンサイト組織になり、硬化層の硬さを高めることができ、また、ラメラー間隔が1μm以下の緻密なパーライト組織にすることで、オーステナイト変態の生成核が増加し、高周波焼入れ後の硬化層の旧オーステナイト結晶粒径が20μm以下に微細化されるので硬化層の靱性も確保することができて、良好な静的曲げ強度、したがって、良好な曲げ疲労強度を確保できるからである。
(B) Structure The structure of the steel for induction hardening according to the present invention having the chemical composition described in the above section (A) must be a ferrite / pearlite structure having a ferrite fraction of 15% or less and a pearlite lamellar spacing of 1 μm or less. I must. This is because, in addition to the chemical composition, the steel structure is the above structure, incomplete quenching during induction hardening is suppressed, and the hardened layer formed by induction hardening becomes a uniform hard martensite structure, The hardness of the hardened layer can be increased, and by forming a dense pearlite structure with a lamellar spacing of 1 μm or less, the number of austenite transformation nuclei increases, and the old austenite crystal grain size of the hardened layer after induction hardening is increased. This is because the toughness of the cured layer can be ensured because it is miniaturized to 20 μm or less, and good static bending strength, and hence good bending fatigue strength can be ensured.
フェライト分率が5%以下、パーライトのラメラー間隔が0.5μm以下であれば、より安定して高周波焼入れ時の不完全焼入れが抑制される。このため、前記(A)項で述べた化学組成を有する本発明に係る高周波焼入れ用鋼材の組織は、フェライト分率が5%以下でパーライトのラメラー間隔が0.5μm以下のフェライト・パーライト組織であることが好ましい。 When the ferrite fraction is 5% or less and the pearlite lamellar spacing is 0.5 μm or less, incomplete quenching during induction hardening is more stably suppressed. Therefore, the structure of the steel for induction hardening according to the present invention having the chemical composition described in the above section (A) is a ferrite pearlite structure having a ferrite fraction of 5% or less and a pearlite lamellar spacing of 0.5 μm or less. Preferably there is.
また、フェライト分率の下限は高周波焼入れ時の不完全焼入れを抑制する観点から小さいほどよく、全面パーライト単相組織となるフェライト分率が0が下限である。また、パーライトのラメラー間隔の下限は小さいほどよいが、加工や特殊熱処理が必要となりコストも嵩むため、その下限値は0.05μmであることが好ましい。 Further, the lower limit of the ferrite fraction is better from the viewpoint of suppressing incomplete quenching during induction quenching, and the lower limit of the ferrite fraction that forms the entire pearlite single phase structure is 0. Further, the lower limit of the pearlite lamellar spacing is better, but since the processing and special heat treatment are required and the cost is increased, the lower limit is preferably 0.05 μm.
なお、フェライト分率には、パーライトを構成するフェライトとセメンタイトにおけるフェライトは含まない。 Note that the ferrite fraction does not include ferrite constituting pearlite and ferrite in cementite.
高周波焼入れ前の鋼材の組織調整方法としては、高周波焼入れが熱間圧延後に実施される場合は熱間圧延段階で、高周波焼入れが熱間鍛造後に実施されるのであれば、熱間鍛造段階で、組織調整をすればよい。なお、いずれの場合も、高周波焼入れ処理前に組織調整用の熱処理を行ってもよい。 As a structure adjustment method of the steel material before induction hardening, if induction hardening is performed after hot rolling, in the hot rolling stage, if induction hardening is performed after hot forging, in the hot forging stage, Organizational adjustments should be made. In either case, a heat treatment for adjusting the structure may be performed before the induction hardening process.
熱間圧延段階或いは熱間鍛造段階で鋼材の組織を調整する場合、仕上加工段階で、加工温度を900〜1200℃として5%以上の塑性変形を付与し、その後、10℃/秒以上の冷却速度で500〜600℃の温度範囲に冷却し、次いで、冷却速度0.5℃/秒以下で徐冷するか、或いは、上記10℃/秒以上の冷却速度で500〜600℃の温度範囲に冷却し、更に、500〜600℃の温度範囲で5分以上保持してから冷却すればよい。なお、上記500〜600℃の温度範囲で5分以上保持してから冷却する場合、その冷却速度は任意である。 When adjusting the structure of the steel material in the hot rolling stage or the hot forging stage, at the finishing stage, the processing temperature is set to 900 to 1200 ° C., and 5% or more plastic deformation is applied, and then cooling at 10 ° C./second or more. Cool to a temperature range of 500 to 600 ° C. at a rate, and then slowly cool at a cooling rate of 0.5 ° C./second or less, or at a cooling rate of 10 ° C./second or more to a temperature range of 500 to 600 ° C. What is necessary is just to cool, after also hold | maintaining for 5 minutes or more in the temperature range of 500-600 degreeC. In addition, when cooling after hold | maintaining for 5 minutes or more in the said 500-600 degreeC temperature range, the cooling rate is arbitrary.
高周波焼入れ処理前に熱処理して鋼材の組織を調整する場合、オーステナイト単相組織になるように、例えば900℃に加熱した後、冷却速度10℃/s以上で500〜600℃の温度範囲、望ましくは500〜550℃の温度範囲に冷却し、その後、この温度域で5分以上保持してパーライト変態させた後、大気中で放冷すればよい。例えば、高周波焼入れする前の部品を、電気炉を用いて大気雰囲気中で900℃に加熱した後、550℃に加熱した塩浴炉中に5秒以内に素早く投入し、投入後、10分間等温保持してから大気中で室温まで冷却すればよい。 When adjusting the structure of the steel material by heat treatment prior to induction hardening, for example, after heating to 900 ° C. so that it becomes an austenite single-phase structure, a temperature range of 500 to 600 ° C. at a cooling rate of 10 ° C./s or higher is desirable. May be cooled to a temperature range of 500 to 550 ° C., held in this temperature range for 5 minutes or longer to cause pearlite transformation, and then allowed to cool in the atmosphere. For example, a part before induction hardening is heated to 900 ° C. in an air atmosphere using an electric furnace, and then quickly put into a salt bath furnace heated to 550 ° C. within 5 seconds. What is necessary is just to cool to room temperature in air | atmosphere after hold | maintaining.
上記の鋼材の組織を調整の際、オーステナイト単相領域から500〜600℃の温度範囲までの冷却速度が、パーライトのラメラー間隔に影響し、冷却速度が早いほど、ラメラー間隔を微細化できる。また、オーステナイト単相領域から冷却する温度である500〜600℃の温度域の高低により、フェライト分率が変化し、この冷却する温度が低温になるほどフェライト分率が減少する。 When adjusting the structure of the steel material, the cooling rate from the austenite single phase region to the temperature range of 500 to 600 ° C. affects the lamellar spacing of pearlite, and the faster the cooling rate, the finer the lamellar spacing. Further, the ferrite fraction changes depending on the temperature range of 500 to 600 ° C., which is the temperature for cooling from the austenite single phase region, and the ferrite fraction decreases as the cooling temperature decreases.
以下、実施例により本発明を更に詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
表1に示す化学組成を有する鋼A1〜A11及び鋼B1〜B8を真空炉溶製して150kg鋼塊を作製した。 Steels A1 to A11 and steels B1 to B8 having the chemical composition shown in Table 1 were melted in a vacuum furnace to produce a 150 kg steel ingot.
表1中の鋼A1〜A11は、化学組成が本発明で規定する範囲内にある鋼である。一方、鋼B1〜B8は、化学組成が本発明で規定する条件から外れた比較例の鋼である。なお、表1では、鋼がVを含まない場合の前記(1)式で表されるfn1の値及びVを含む場合の前記(2)式で表されるfn2の値を「fnの値」と表記した。 Steels A1 to A11 in Table 1 are steels whose chemical compositions are within the range defined by the present invention. On the other hand, steel B1-B8 is steel of the comparative example from which the chemical composition remove | deviated from the conditions prescribed | regulated by this invention. In Table 1, the value of fn1 represented by the above formula (1) when the steel does not contain V and the value of fn2 represented by the above formula (2) when V is included are expressed as “value of fn”. It was written.
このようにして得た鋼塊を、1200〜1300℃に加熱した後、熱間鍛造して直径30mmの丸棒とした。なお、熱間鍛造後の冷却は大気中での放冷とした。 The steel ingot thus obtained was heated to 1200 to 1300 ° C. and then hot forged into a round bar having a diameter of 30 mm. The cooling after hot forging was allowed to cool in the atmosphere.
次いで、上記直径30mmの丸棒を、900℃で30分加熱してオーステナイト単相組織にした後、表2に示す冷却速度で冷却し、次いで表2に示す温度に制御した塩浴中に10分間保持してから空冷する熱処理を施し、高周波焼入れ前の丸棒の組織を変化させた。 Next, the round bar having a diameter of 30 mm was heated at 900 ° C. for 30 minutes to form an austenite single-phase structure, then cooled at the cooling rate shown in Table 2, and then in a salt bath controlled to the temperature shown in Table 2. The structure of the round bar before induction quenching was changed by performing a heat treatment for holding for a minute and then air cooling.
上記の熱処理を施した直径30mmの丸棒を用いて、ミクロ組織を調査した。すなわち、熱処理した丸棒の横断面での状態を観察できるように切断して樹脂に埋め込み、鏡面研磨した後、ナイタルで腐食してミクロ組織を現出させ、光学顕微鏡を用いてフェライト分率を測定し、また、走査型電子顕微鏡(SEM)を用いてパーライトのラメラー間隔を測定した。 The microstructure was investigated using a round bar with a diameter of 30 mm subjected to the above heat treatment. That is, after cutting and embedding in a resin so that the state of the cross-section of the heat-treated round bar can be observed, mirror-polished and then corroded with nital to reveal a microstructure, and the ferrite fraction was determined using an optical microscope. The lamellar spacing of pearlite was measured using a scanning electron microscope (SEM).
具体的には、任意に10視野撮影した倍率100〜400倍の光学顕微鏡写真を画像処理して、フェライト分率を算出した。また、パーライトのラメラー間隔は、任意に10視野撮影した倍率2000〜5000倍のSEM写真を用いて、棒状セメンタイトの間隔を測定して平均値を求め、この平均値をパーライトのラメラー間隔とした。 Specifically, the ferrite fraction was calculated by performing image processing on an optical micrograph at a magnification of 100 to 400 times taken arbitrarily at 10 fields of view. Further, the pearlite lamellar interval was measured by measuring the interval between rod-like cementite using an SEM photograph with magnification of 2000 to 5000 times taken arbitrarily from 10 fields of view, and this average value was taken as the pearlite lamellar interval.
前記の熱処理を施した直径30mmの丸棒を用いて旋削試験を実施し、工具摩耗量を測定して切削加工性も調査した。すなわち、熱処理後の直径30mmの各丸棒を、TiNコーティング処理が施されたP20種の超硬工具を用いて下記の条件で10分間旋削し、超硬工具の平均逃げ面摩耗量を測定し、これを工具摩耗量として切削加工性を評価した。 A turning test was carried out using a round bar with a diameter of 30 mm subjected to the heat treatment, and the amount of tool wear was measured to investigate the machinability. That is, each round bar with a diameter of 30 mm after heat treatment was turned for 10 minutes under the following conditions using a P20 type carbide tool with TiN coating treatment, and the average flank wear of the carbide tool was measured. Using this as the amount of tool wear, the machinability was evaluated.
・切削速度:120m/分、
・切り込み量:1.5mm、
・送り量:0.40mm/rev.、
・潤滑:湿式(水溶性潤滑油剤を使用)。
・ Cutting speed: 120 m / min,
・ Incision amount: 1.5 mm,
-Feed amount: 0.40 mm / rev. ,
・ Lubrication: Wet (uses water-soluble lubricant).
なお、切削加工性の目標は、工具摩耗量が100μm以下である。 The target of the machinability is a tool wear amount of 100 μm or less.
更に、前記の熱処理を施した直径30mmの丸棒から、断面が10mm×10mmで長さが100mmの直方体の長手中央部の1つの面に、半径2mmの半円切欠きを設けた3点曲げ試験片を機械加工によって切り出した。次いで、上記の3点曲げ試験片の半円切り欠きを設けた面を、周波数20kHz、出力50kWの条件で3.0秒間加熱した後水冷する高周波焼入れを行って、高周波焼入れ性及び硬化層の旧オーステナイト粒径の調査を行った。 Further, from the round bar having a diameter of 30 mm subjected to the heat treatment, a three-point bend in which a semicircular cutout having a radius of 2 mm is provided on one surface of a longitudinal central portion of a rectangular parallelepiped having a cross section of 10 mm × 10 mm and a length of 100 mm The test piece was cut out by machining. Next, the surface provided with the semicircle notch of the above three-point bending test piece was subjected to induction hardening in which the surface was heated for 3.0 seconds under the conditions of a frequency of 20 kHz and an output of 50 kW, and then water-cooled. The prior austenite grain size was investigated.
高周波焼入れ性は、上記高周波焼入れ後の3点曲げ試験片の半円切欠き部での横断面が調査できるように樹脂に埋め込み、JIS G 2244(2003)に規定された方法でビッカース硬さ試験を行って評価した。すなわち、試験力を2.94Nとしてビッカース硬さ試験を行って硬さ分布を求め、切欠き底からビッカース硬さ(以下、「HV硬さ」という。)が500となる位置までの距離(mm)を求めた。なお、以下においては、切欠き底からHV硬さが500となる位置までの距離を「ECD」という。 Induction hardening is embedded in resin so that the cross section at the semicircle notch of the three-point bending test piece after induction hardening can be examined, and the Vickers hardness test is performed by the method specified in JIS G 2244 (2003). And evaluated. That is, the hardness is obtained by performing a Vickers hardness test with a test force of 2.94 N, and the distance (mm) from the notch bottom to a position where the Vickers hardness (hereinafter referred to as “HV hardness”) is 500. ) In the following, the distance from the notch bottom to the position where the HV hardness is 500 is referred to as “ECD”.
高周波焼入れ性の目標は、ECDが0.8mm以上である。 The target of induction hardenability is that ECD is 0.8 mm or more.
硬化層の旧オーステナイト粒径は、上記高周波焼入れ後の3点曲げ試験片の横断面が観察できるように樹脂に埋め込んで鏡面研磨した後、界面活性剤を添加したピクリン酸飽和水溶液で腐食して旧オーステナイト粒界を現出させ、任意に5視野撮影した倍率400倍の光学顕微鏡写真を用い、切断法によって求めた「平均切片長さ」Lを求め、「熱処理、第24巻、第6号(1984)」の334〜338ページに記載された方法に従って「1.128×L」を旧オーステナイト粒径とした。 The prior austenite grain size of the hardened layer was corroded with resin so that the cross section of the three-point bend specimen after induction hardening can be observed, mirror-polished, and then corroded with a saturated aqueous solution of picric acid to which a surfactant was added. Using an optical micrograph of magnification 400 times taken from 5 fields of view to reveal the prior austenite grain boundaries, the “average section length” L determined by the cutting method was determined, and “Heat Treatment, Vol. 24, No. 6” was obtained. (1984) ”,“ 1.128 × L ”was used as the prior austenite grain size.
旧オーステナイト粒径は20μm以下が目標である。 The target is the prior austenite grain size of 20 μm or less.
更に、上記条件で高周波焼入れした3点曲げ試験片を180℃で1時間焼戻しして、静的曲げ強度及び曲げ疲労強度を調査することも行った。 Further, the three-point bending test piece induction-hardened under the above conditions was tempered at 180 ° C. for 1 hour to investigate the static bending strength and bending fatigue strength.
静的曲げ強度試験は、支点間距離45mm、試験片切欠き部底の歪み速度0.01/秒で行い、最大到達荷重から静的曲げ強度を算出した。なお、1700MPa以上の静的曲げ強度を有することが目標である。 The static bending strength test was performed at a fulcrum distance of 45 mm and a strain rate at the bottom of the notch of the test piece of 0.01 / second, and the static bending strength was calculated from the maximum ultimate load. The target is to have a static bending strength of 1700 MPa or more.
曲げ疲労強度試験も、支点間距離45mmで行い、繰り返し回数1×104回での亀裂発生強度を曲げ疲労強度として評価した。なお、800MPa以上の曲げ疲労強度を有することが目標である。 The bending fatigue strength test was also performed at a fulcrum distance of 45 mm, and the crack initiation strength at the number of repetitions of 1 × 10 4 was evaluated as the bending fatigue strength. The goal is to have a bending fatigue strength of 800 MPa or more.
表2に、上記の各試験結果を併せて示す。 Table 2 also shows the results of the above tests.
表2から、本発明(1)〜(3)で規定する条件を満たす試験番号1〜11の場合、切削加工性は良好で、高周波焼入れ性に優れ、しかも、良好な曲げ疲労強度を有していることが明らかである。 From Table 2, in the case of test numbers 1 to 11 that satisfy the conditions specified in the present invention (1) to (3), the machinability is good, the induction hardenability is excellent, and the bending fatigue strength is good. It is clear that
これに対して、本発明で規定する条件から外れた試験番号12〜23の曲げ疲労強度は低く、しかも、切削加工性や高周波焼入れ性に劣る場合もあることが明らかである。 On the other hand, it is clear that the bending fatigue strengths of Test Nos. 12 to 23 deviating from the conditions defined in the present invention are low, and the cutting workability and induction hardenability may be inferior.
なお、別途JIS G 4053(2003)に記載されたSCr420の鋼材に925℃で1時間加熱後空冷する焼準処理を施した後、先に述べた形状の3点曲げ試験片を採取し、その3点曲げ試験片をカーボンポテンシャル0.8%の状態下で、940℃で3時間保持してから870℃に冷却して更に1時間保持した後、油焼入する条件で浸炭焼入れし、更に、180℃で1時間焼戻しして、先に述べたのと同じ条件で静的曲げ強度及び曲げ疲労強度を調査した。その結果、浸炭焼入れしたSCr420の静的曲げ強度は1690MPa,曲げ疲労強度は700MPaであった。したがって、本発明(1)〜(3)で規定する条件を満たす試験番号1〜11の曲げ疲労強度が、浸炭焼入れ材と同等以上の曲げ疲労強度を有するものであることが確認できた。 In addition, after subjecting the SCr420 steel material separately described in JIS G 4053 (2003) to a normalizing treatment that is heated at 925 ° C. for 1 hour and then air-cooled, a three-point bending test piece having the above-described shape was collected, and The three-point bending test piece was held at 940 ° C. for 3 hours under a carbon potential of 0.8%, then cooled to 870 ° C., held for another hour, and then carburized and quenched under oil quenching conditions. After tempering at 180 ° C. for 1 hour, static bending strength and bending fatigue strength were investigated under the same conditions as described above. As a result, carburized and quenched SCr420 had a static bending strength of 1690 MPa and a bending fatigue strength of 700 MPa. Therefore, it was confirmed that the bending fatigue strengths of Test Nos. 1 to 11 satisfying the conditions specified in the present inventions (1) to (3) have a bending fatigue strength equal to or higher than that of the carburized and quenched material.
本発明の高周波焼入れ用鋼材は、切削加工性に優れ、従来の浸炭焼入れの場合と同等以上の疲労強度、なかでも曲げ疲労強度を確保することができるので、アクスルシャフト、ドライブシャフト、等速ジョイント用アウターレースなどの自動車部品や建設機械用部品の素材として用いることができる。
The steel for induction hardening according to the present invention is excellent in machinability and can ensure fatigue strength equal to or higher than that of conventional carburizing and quenching, especially bending fatigue strength, so that axle shafts, drive shafts, constant velocity joints can be secured. It can be used as a material for automobile parts such as outer races and parts for construction machines.
Claims (3)
fn1=C+Mn+2Mo−2Si−9Cr−2(Ti−3.4N)−6Al・・・・・(1)
但し、(1)式中の元素記号は、各元素の質量%での鋼中含有量を表す。 In mass%, C: 0.35-0.65%, Si: 0.50% or less, Mn: 0.65-2.00%, P: 0.015% or less, S: 0.010-0. 080%, Cr: 0.01 to 0.5%, Mo: 0.05 to 0.5%, B: 0.0005 to 0.0050%, Al: 0.10% or less, N: 0.0150% Hereinafter, O (oxygen): 0.0020% or less and Ti: 3.4N to (3.4N + 0.05)% are contained, the balance is made of Fe and impurities, and fn1 represented by the following formula (1) A steel material for induction hardening, characterized in that the value satisfies 1.0 or more, and the structure is a mixed structure of ferrite and pearlite having a ferrite fraction of 15% or less and a pearlite lamellar spacing of 1 μm or less.
fn1 = C + Mn + 2Mo-2Si-9Cr-2 (Ti-3.4N) -6Al (1)
However, the element symbol in the formula (1) represents the content in steel in mass% of each element.
fn2=C+Mn+2Mo−2Si−9Cr−2(Ti−3.4N)−6Al−4V・・・・・(2)
但し、(2)式中の元素記号は、各元素の質量%での鋼中含有量を表す。 In mass%, C: 0.35-0.65%, Si: 0.50% or less, Mn: 0.65-2.00%, P: 0.015% or less, S: 0.010-0. 080%, Cr: 0.01 to 0.5%, Mo: 0.05 to 0.5%, B: 0.0005 to 0.0050%, Al: 0.10% or less, N: 0.0150% Hereinafter, O (oxygen): 0.0020% or less and Ti: 3.4N to (3.4N + 0.05)%, Cu: 0.20% or less, Ni: 0.20% or less, Nb: It contains one or more of 0.30% or less and V: 0.20% or less, and the balance consists of Fe and impurities, and the value of fn2 represented by the following formula (2) is 1.0. The ferrite and parlour satisfying the above, and having a ferrite fraction of 15% or less and a pearlite lamellar spacing of 1 μm or less. Induction hardening steel material characterized in that it is a mixed structure of bets.
fn2 = C + Mn + 2Mo-2Si-9Cr-2 (Ti-3.4N) -6Al-4V (2)
However, the element symbol in the formula (2) represents the steel content in mass% of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005298687A JP4488228B2 (en) | 2005-10-13 | 2005-10-13 | Induction hardening steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005298687A JP4488228B2 (en) | 2005-10-13 | 2005-10-13 | Induction hardening steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007107046A JP2007107046A (en) | 2007-04-26 |
JP4488228B2 true JP4488228B2 (en) | 2010-06-23 |
Family
ID=38033141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005298687A Active JP4488228B2 (en) | 2005-10-13 | 2005-10-13 | Induction hardening steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4488228B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5459065B2 (en) * | 2010-05-21 | 2014-04-02 | 新日鐵住金株式会社 | Rolled steel for induction hardening and method for producing the same |
JP5459062B2 (en) * | 2010-05-21 | 2014-04-02 | 新日鐵住金株式会社 | Rolled steel for induction hardening and method for producing the same |
CN104968821B (en) * | 2013-01-31 | 2017-03-08 | 杰富意钢铁株式会社 | Electric-resistance-welded steel pipe |
JP7175082B2 (en) * | 2017-11-22 | 2022-11-18 | 日本製鉄株式会社 | Mechanical structural steel and its cutting method |
WO2022071262A1 (en) * | 2020-09-29 | 2022-04-07 | 日本製鉄株式会社 | Railway axle |
-
2005
- 2005-10-13 JP JP2005298687A patent/JP4488228B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007107046A (en) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956146B2 (en) | Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts | |
JP5432105B2 (en) | Case-hardened steel and method for producing the same | |
JP5927868B2 (en) | Carburizing steel excellent in cold forgeability and method for producing the same | |
JP4581966B2 (en) | Induction hardening steel | |
JP5669339B2 (en) | Manufacturing method of high strength carburized parts | |
JP4464862B2 (en) | Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing. | |
JP7152832B2 (en) | machine parts | |
JP2006307273A (en) | Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same | |
JPWO2012073896A1 (en) | Rolled steel bar or wire rod for hot forging | |
WO2019198539A1 (en) | Machine component and method for producing same | |
JP2023002842A (en) | Machine component for automobiles made of steel material for carburization excellent in static torsional strength and torsional fatigue strength | |
JP4962695B2 (en) | Steel for soft nitriding and method for producing soft nitriding component | |
JP4488228B2 (en) | Induction hardening steel | |
JP4448047B2 (en) | A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing. | |
JP2006348321A (en) | Steel for nitriding treatment | |
JP4464861B2 (en) | Case hardening steel with excellent grain coarsening resistance and cold workability | |
JP2006265703A (en) | Steel for case hardening having excellent crystal grain coarsening resistance and cold workability and method for producing the same | |
JP4556770B2 (en) | Carburizing steel and method for producing the same | |
JP2010189702A (en) | Steel for induction hardening, and induction-hardened component having excellent static twisting fracture strength and twisting fatigue strength | |
JP2008240129A (en) | Non-heat treated steel material | |
JP4757831B2 (en) | Induction hardening part and manufacturing method thereof | |
JP4450217B2 (en) | Non-tempered steel for soft nitriding | |
JPH08260039A (en) | Production of carburized and case hardened steel | |
JP2011256447A (en) | High strength steel excellent in machinability, and manufacturing method therefor | |
JP4821582B2 (en) | Steel for vacuum carburized gear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100310 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4488228 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100323 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140409 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |