Nothing Special   »   [go: up one dir, main page]

JP5989775B2 - Phosphor, method for manufacturing the same, and light emitting device using the same - Google Patents

Phosphor, method for manufacturing the same, and light emitting device using the same Download PDF

Info

Publication number
JP5989775B2
JP5989775B2 JP2014525209A JP2014525209A JP5989775B2 JP 5989775 B2 JP5989775 B2 JP 5989775B2 JP 2014525209 A JP2014525209 A JP 2014525209A JP 2014525209 A JP2014525209 A JP 2014525209A JP 5989775 B2 JP5989775 B2 JP 5989775B2
Authority
JP
Japan
Prior art keywords
phosphor
pyrophosphate
light
luminance
europium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014525209A
Other languages
Japanese (ja)
Other versions
JPWO2014156201A1 (en
Inventor
欣能 舩山
欣能 舩山
智治 戸村
智治 戸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Application granted granted Critical
Publication of JP5989775B2 publication Critical patent/JP5989775B2/en
Publication of JPWO2014156201A1 publication Critical patent/JPWO2014156201A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明の実施形態は、LEDランプなどの発光装置に用いられる蛍光体、特に緑色光乃至黄色光を発光する蛍光体及びそれを用いた発光装置に関するものである。   Embodiments of the present invention relate to a phosphor used in a light-emitting device such as an LED lamp, in particular, a phosphor that emits green light to yellow light, and a light-emitting device using the same.

近年、無鉛化のような環境保護に対応する技術が世界的に拡大しており、それに合わせて、照明用の光源(ランプ)も、Hgを含有する蛍光ランプから白色光を発光する発光ダイオード(LED:Light Emitting Diode)ランプへ移行しつつある。一般的な照明用途では、高演色性・長寿命を有する白色LEDランプが要求され、また、液晶表示装置(LCD)のバックライトとしては、高効率・広色再現性を提供する白色LEDランプが要求されている。   In recent years, technologies corresponding to environmental protection such as lead-free have expanded worldwide, and accordingly, a light source (lamp) for illumination is also a light emitting diode that emits white light from a fluorescent lamp containing Hg ( The LED (Light Emitting Diode) lamp is shifting. In general lighting applications, white LED lamps with high color rendering properties and long life are required, and white LED lamps that provide high efficiency and wide color reproducibility are used as backlights for liquid crystal display devices (LCD). It is requested.

このような要求に応えるために、青色発光のLEDチップと黄色蛍光体(YAG蛍光体)とを組合せた白色LEDランプに代わり、青色発光のLEDチップと緑色乃至黄色光を発光する珪酸塩蛍光体と赤色光を発光する窒化物蛍光体を組み合わせた白色LEDランプの開発が行われている。   In order to meet these requirements, instead of white LED lamps that combine blue LED chips and yellow phosphors (YAG phosphors), blue LED chips and silicate phosphors that emit green to yellow light. And white LED lamps that combine a nitride phosphor that emits red light.

しかしながら、この方式の白色LEDランプは、青色発光のLEDチップと黄色系蛍光体(YAG蛍光体)とを組合せたLEDランプに比べて効率及び演色性、色再現性は優れているものの耐熱性や耐湿性等といった耐候性が劣るという問題があった。中でも、青色発光のLEDと組合せる緑色乃至黄色光を発光する珪酸塩蛍光体として知られている(Sr,Ba,Ca)SiO:Eu蛍光体は、耐候性の面で十分では無く、より耐候性に優れた緑色乃至黄色光を発光する珪酸塩蛍光体の出現が望まれていた。 However, this type of white LED lamp is superior in efficiency, color rendering, and color reproducibility compared to an LED lamp combining a blue light emitting LED chip and a yellow phosphor (YAG phosphor), but it has excellent heat resistance and There was a problem that weather resistance such as moisture resistance was poor. Among these, (Sr, Ba, Ca) 2 SiO 4 : Eu phosphors known as silicate phosphors emitting green to yellow light in combination with blue light emitting LEDs are not sufficient in terms of weather resistance, The appearance of a silicate phosphor that emits green to yellow light with better weather resistance has been desired.

国際公開第2008/096545号International Publication No. 2008/096545

本発明は、上記のような技術的課題を解決するためになされたもので、演色性、色再現性が高く、特に効率および耐候性に優れた発光装置用蛍光体を提供することを目的としている。また、そのような蛍光体を用いることによって、効率および耐候性に優れ演色性、色再現性が高い白色LEDランプなどの発光装置を提供することを目的としている。   The present invention has been made to solve the technical problems as described above, and has an object to provide a phosphor for a light-emitting device that has high color rendering and color reproducibility, and is particularly excellent in efficiency and weather resistance. Yes. Another object of the present invention is to provide a light-emitting device such as a white LED lamp which is excellent in efficiency and weather resistance and has high color rendering properties and color reproducibility by using such a phosphor.

本実施形態の蛍光体は、(Sr,Ba,Mg)SiO:Eu,Mnで実質的に表されるユウロピウム(Eu)、マンガン(Mn)で付活されたストロンチウム(Sr)、バリウム(Ba)、アルカリ土類珪酸マグネシウム蛍光体粒子と、この蛍光体粒子表面にピロリン酸マグネシウム(Mg )又は上記ピロリン酸マグネシウムに加え、ピロリン酸カルシウム(Ca)ピロリン酸バリウム(Ba)、ピロリン酸ストロンチウム(Sr)の少なくともいずれか1種との混合物で均一に被覆されている蛍光体であり、紫外乃至青色発光素子により励起されて緑色乃至黄色光を発光する蛍光体であることを特徴とする。 The phosphor according to the present embodiment includes europium (Eu) substantially represented by (Sr, Ba, Mg) 2 SiO 4 : Eu, Mn, strontium (Sr) activated by manganese (Mn), barium ( Ba), alkaline earth magnesium silicate phosphor particles, and magnesium pyrophosphate (Mg 2 P 2 O 7 ) or magnesium pyrophosphate on the phosphor particle surface, calcium pyrophosphate (Ca 2 P 2 O 7 ) , pyrolin Phosphors uniformly coated with a mixture of at least one of barium acid (Ba 2 P 2 O 7 ) and strontium pyrophosphate (Sr 2 P 2 O 7 ), and excited by ultraviolet to blue light emitting elements And a phosphor that emits green to yellow light.

本実施形態にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning this embodiment.

以下、本実施形態について詳細に説明する。
本実施形態にかかる蛍光体は、紫外乃至青色光により励起されて緑色乃至黄色に発光する、ユーロピウムおよびマンガン付活アルカリ土類珪酸マグネシウム蛍光体粒子と、この蛍光体粒子の表面を均一に被覆する、ピロリン酸カルシウム(Ca)、ピロリン酸マグネシウム(Mg)、ピロリン酸バリウム(Ba)、ピロリン酸ストロンチウム(Sr)、少なくともいずれか1種からなる被覆層を備えていることを特徴とするものである。
Hereinafter, this embodiment will be described in detail.
The phosphor according to the present embodiment uniformly coats the surface of the phosphor particles and europium and manganese-activated alkaline earth magnesium silicate phosphors that are excited by ultraviolet to blue light to emit green to yellow light. , Calcium pyrophosphate (Ca 2 P 2 O 7 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ), barium pyrophosphate (Ba 2 P 2 O 7 ), strontium pyrophosphate (Sr 2 P 2 O 7 ), at least Or a coating layer made of one kind.

本実施形態にかかる蛍光体は、ユウロピウム(Eu)、マンガン(Mn)をそれぞれ付活剤および共付活剤とし、アルカリ土類珪酸マグネシウムを主体とする蛍光体である。より具体的には、化学式:(Sr,Ba,Mg)SiO:Eu,Mnで実質的に表される組成を有するユウロピウム、マンガン付活アルカリ土類珪酸マグネシウムを主体として構成され、紫外乃至青色光の放射により励起されて緑色乃至黄色光を発光する緑色乃至黄色蛍光体である。 The phosphor according to the present embodiment is a phosphor mainly composed of alkaline earth magnesium silicate with europium (Eu) and manganese (Mn) as activators and coactivators, respectively. More specifically, it is composed mainly of europium having a composition substantially represented by the chemical formula: (Sr, Ba, Mg) 2 SiO 4 : Eu, Mn, manganese-activated alkaline earth magnesium silicate, A green to yellow phosphor that emits green or yellow light when excited by the emission of blue light.

本実施形態の蛍光体において、母体原料のアルカリ土類金属及びマグネシウム(Sr,Ba,Mg)は組成比を変えることにより、蛍光体の発光色を広い範囲で変更可能である。具体的には、Eu付活ストロンチウム珪酸塩蛍光体(SrSiO:Eu)において、Srの一部を、モル数で0.1〜1.7モルの範囲でBaに置換えることにより黄色領域の、0.01〜0.15モルの範囲でMgに置換えることで青色領域の、さらに、0.001〜0.01モルの範囲でMnに置換えることにより赤色領域の発光強度を可変させることができ、夫々の波長領域の発光スペクトルを任意に増減させることができる。 In the phosphor of the present embodiment, the emission color of the phosphor can be changed in a wide range by changing the composition ratio of the alkaline earth metal and magnesium (Sr, Ba, Mg) as the base material. Specifically, in Eu-activated strontium silicate phosphor (Sr 2 SiO 4 : Eu), yellow is obtained by substituting a part of Sr with Ba in the range of 0.1 to 1.7 moles. Luminescence intensity in the blue region can be changed by substituting Mg in the range of 0.01 to 0.15 mol, and in the red region by substituting Mn in the range of 0.001 to 0.01 mol. The emission spectrum of each wavelength region can be arbitrarily increased or decreased.

ここで、各元素の添加量下限値は、それ以下だと効果的な発光スペクトル変化が見られない限界値を、また、添加量上限値は、十分なスペクトル変化効果が得られると共に、各元素間の濃度バランスを考慮して設定したものである。また、MgとMnとのモル比は、Mgの多い方が望ましい。MnがMgよりも多くなると、得られる結晶粉末が着色し、明るさが低下する。   Here, the lower limit value of the addition amount of each element is a limit value where an effective emission spectrum change is not observed if it is less than that, and the upper limit value of the addition amount is that each element has a sufficient spectrum change effect. This is set in consideration of the density balance between the two. The molar ratio between Mg and Mn is preferably higher with Mg. When Mn is more than Mg, the resulting crystal powder is colored and the brightness is lowered.

ユウロピウム(Eu)は、発光中心をなす付活剤(主付活剤)であり、高い遷移確率を有しているので発光効率が高い。主付活剤であるEuは、アルカリ土類元素の一部をモル数で0.025〜0.25モルの範囲で置き換えるのが好ましい。Euの含有割合が、この範囲を外れると発光輝度が低下する。より好ましくは、0.05〜0.2モルの範囲である。   Europium (Eu) is an activator (main activator) that forms a light emission center, and has a high transition probability, and therefore has high light emission efficiency. Eu, which is the main activator, preferably replaces a part of the alkaline earth element in the range of 0.025 to 0.25 mol. If the Eu content is out of this range, the light emission luminance decreases. More preferably, it is the range of 0.05-0.2 mol.

即ち、本実施形態の蛍光体粒子は、化学式:(Sr2−x−y−z−u,Ba,Mg,Eu,Mn)SiO(0.1≦x≦1.7、0.01≦y≦0.15、0.025≦z≦0.25、0.001≦u≦0.01)で表されるユーロピウムおよびマンガン付活アルカリ土類珪酸マグネシウムであることが好ましい。 That is, the phosphor particles of the present embodiment has the formula: (Sr 2-x-y -z-u, Ba x, Mg y, Eu z, Mn u) SiO 4 (0.1 ≦ x ≦ 1.7, 0.01 ≦ y ≦ 0.15, 0.025 ≦ z ≦ 0.25, 0.001 ≦ u ≦ 0.01), and preferably activated europium and manganese-activated alkaline earth magnesium silicate.

本実施形態に係るユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体は、例えば以下に示す方法で製造することができる。
先ず、蛍光体の母体と付活剤(主付活剤および共付活剤)を構成する元素またはその元素を含有する化合物を含む蛍光体原料を、所望の組成((Sr,Ba,Mg)SiO:Eu・Mn)となるように秤量し、さらに必要に応じてフラックスとして塩化アンモニウム等を添加し、これらを乾式で混合する。
The europium and manganese-activated alkaline earth magnesium silicate phosphor according to the present embodiment can be produced, for example, by the method shown below.
First, a phosphor raw material containing an element constituting a phosphor base material and an activator (main activator and coactivator) or a compound containing the element has a desired composition ((Sr, Ba, Mg) 2 SiO 4 : Eu · Mn), and if necessary, ammonium chloride or the like is added as a flux if necessary, and these are mixed in a dry method.

具体的には、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、二酸化珪素を所定量混合し、付活剤の酸化ユーロピウムと共付活剤の酸化マンガン及びフラックスを適量添加することで蛍光体の原料とする。酸化ストロンチウム、酸化バリウム、酸化マグネシウムの代わりに、炭酸ストロンチウム、炭酸バリウム、炭酸マグネシウムなどの炭酸塩を使用してもよい。付活剤としては、シュウ酸ユウロピウム、炭酸ユウロピウムを使用し、共付活剤として炭酸マンガンやシュウ酸マンガンなどを使用することができる。   Specifically, a predetermined amount of strontium oxide, barium oxide, magnesium oxide, and silicon dioxide are mixed, and an appropriate amount of activator europium oxide and coactivator manganese oxide and flux are added to obtain a phosphor material. . Instead of strontium oxide, barium oxide, and magnesium oxide, carbonates such as strontium carbonate, barium carbonate, and magnesium carbonate may be used. As an activator, europium oxalate or europium carbonate can be used, and manganese carbonate, manganese oxalate, or the like can be used as a coactivator.

次いで、このような蛍光体原料を、活性炭素とともにアルミナるつぼ等の耐熱容器に充填する。この混合材料を耐熱容器に充填した後、還元性ガス雰囲気(例えば3〜10%水素−残部窒素の雰囲気)で焼成する。焼成条件は、蛍光体母体((Sr,Ba,Mg)SiO)の結晶構造を制御する上で重要である。焼成温度は1100〜1400℃の範囲とすることが好ましい。焼成時間は、設定した焼成温度にもよるが2時間〜8時間とし、焼成後は焼成時と同一雰囲気で冷却することが好ましい。その後、得られた焼成物は粉砕工程を経てイオン交換水などで水洗し乾燥した後、必要に応じて粗大粒子を除去するための篩別などを行うことによって、ユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体を得ることができる。 Next, such a phosphor material is filled in a heat-resistant container such as an alumina crucible together with activated carbon. After this mixed material is filled in a heat-resistant container, it is fired in a reducing gas atmosphere (for example, an atmosphere of 3 to 10% hydrogen-balance nitrogen). Firing conditions are important in controlling the crystal structure of the phosphor matrix ((Sr, Ba, Mg) 2 SiO 4 ). The firing temperature is preferably in the range of 1100 to 1400 ° C. Although the firing time depends on the set firing temperature, it is preferably 2 to 8 hours, and after firing, it is preferable to cool in the same atmosphere as during firing. Thereafter, the obtained fired product is washed with ion-exchanged water through a pulverization step, dried, and then subjected to sieving to remove coarse particles as necessary, thereby activating europium and manganese-activated alkaline earth. A magnesium silicate phosphor can be obtained.

蛍光体原料の焼成については、以下に示すように回転式加熱炉を用いて行うことも可能である。すなわち、上記した蛍光体原料を、水平方向に対して傾斜して配置された回転する管状の加熱炉に投入し、連続的に通過させる。そして、この加熱炉内で蛍光体原料を所定の焼成温度まで急激に加熱し、かつ加熱炉の回転に応じて転動させながら炉内を上方から下方へ移動させる。こうして蛍光体原料を必要かつ十分な時間だけ加熱して焼成する。その後、焼成物を加熱炉から連続的に排出し、排出された焼成物を急激に冷却する。このような焼成工程において、管状の加熱炉の内部、および加熱炉から排出された焼成物の冷却部は、酸素が除去された無酸素状態に保持されていることが好ましく、特に加熱炉内を、アルゴン、窒素などの不活性ガス雰囲気や水素を含む還元性ガス雰囲気に保持することが望ましい。   The phosphor material can be fired using a rotary heating furnace as described below. That is, the above-described phosphor raw material is put into a rotating tubular heating furnace that is arranged to be inclined with respect to the horizontal direction, and is continuously passed. Then, the phosphor material is rapidly heated to a predetermined firing temperature in the heating furnace, and the furnace is moved from the upper side to the lower side while rolling according to the rotation of the heating furnace. In this way, the phosphor material is heated and fired for a necessary and sufficient time. Thereafter, the fired product is continuously discharged from the heating furnace, and the discharged fired product is rapidly cooled. In such a firing step, the inside of the tubular heating furnace and the cooling part of the fired product discharged from the heating furnace are preferably maintained in an oxygen-free state from which oxygen has been removed. It is desirable to maintain in an inert gas atmosphere such as argon or nitrogen or a reducing gas atmosphere containing hydrogen.

このような焼成方法によれば、蛍光体原料が加熱炉内を移動する過程で転動しながら急激に加熱されるため、無酸素状態で蛍光体原料に均一な熱エネルギーを加えることができる。その結果、従来のるつぼを用いた焼成方法に比べて短時間で焼成を完了することができ、熱履歴による輝度低下を生じることなく効率の良い蛍光体粒子を得ることができる。また、この焼成方法では蛍光体粒子の凝集を抑制することができるので、焼成後の粉砕を行う必要がなく、粉砕工程を重ねることによる蛍光体の劣化を抑制することができる。さらに、蛍光体原料は、加熱炉内を転動しながら加熱、焼成されるので、球形に近い形状で均一な粒径を有する蛍光体粒子を得ることができる。   According to such a firing method, since the phosphor material is rapidly heated while rolling in the process of moving in the heating furnace, uniform thermal energy can be applied to the phosphor material in an oxygen-free state. As a result, the firing can be completed in a shorter time compared to the conventional firing method using a crucible, and efficient phosphor particles can be obtained without causing a decrease in luminance due to thermal history. In addition, since the aggregation of the phosphor particles can be suppressed by this firing method, it is not necessary to perform pulverization after firing, and deterioration of the phosphor due to repeated pulverization steps can be suppressed. Furthermore, since the phosphor raw material is heated and fired while rolling in the heating furnace, phosphor particles having a uniform particle diameter in a shape close to a sphere can be obtained.

上記方法にて得られた蛍光体粒子の表面を、被覆剤を用いてピロリン酸カルシウム(Ca)、ピロリン酸マグネシウム(Mg)、ピロリン酸バリウム(Ba)、ピロリン酸ストロンチウム(Sr)の少なくとも何れか1種のピロリン酸金属塩を均一に被覆する表面処理を実施する。このように蛍光体粒子表面に上記ピロリン酸金属塩による皮膜(被覆層)を形成することにより、高温高湿下での蛍光体の耐候性が改善され、緑色乃至黄色発光の経時的な輝度低下が少なく輝度維持率が高くなる。 The surface of the phosphor particles obtained by the above method is coated with calcium pyrophosphate (Ca 2 P 2 O 7 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ), barium pyrophosphate (Ba 2 P 2 ) using a coating agent. Surface treatment for uniformly coating at least one metal pyrophosphate salt of O 7 ) and strontium pyrophosphate (Sr 2 P 2 O 7 ) is performed. Thus, by forming a film (coating layer) of the above-described metal pyrophosphate on the surface of the phosphor particles, the weather resistance of the phosphor under high temperature and high humidity is improved, and the luminance decreases with time from green to yellow emission. And the luminance maintenance rate is high.

上記皮膜(被覆層)は非発光成分であるため、過量の被覆は得られる蛍光体の大幅な輝度の低下を招く。一方、蛍光体への被覆が不十分であると、耐候性の効果が得られ難い。このような観点から皮膜(被覆層)は、蛍光体粒子に対して0.05〜5.0重量%の範囲が好ましい。   Since the coating (coating layer) is a non-light emitting component, an excessive amount of coating causes a significant decrease in luminance of the obtained phosphor. On the other hand, if the coating on the phosphor is insufficient, it is difficult to obtain the weather resistance effect. From such a viewpoint, the film (coating layer) is preferably in the range of 0.05 to 5.0% by weight with respect to the phosphor particles.

被覆剤による表面処理は具体的に以下のように実施される。すなわち、上記のように調製された蛍光体粒子を水中、又は水とエチルアルコール(COH)の混合液中に分散し、被覆剤として、ピロリン酸ナトリウムやピロリン酸カリウム等のピロリン酸塩と、カルシウム、マグネシウム、バリウムおよびストロンチウムの塩化物の少なくとも何れか1種を用いて、蛍光体粒子に対して0.05〜5.0重量%の範囲で反応被覆するように秤量し投入する。なお、表面処理における蛍光体分散液の温度は25℃〜40℃が好ましい。 Specifically, the surface treatment with the coating agent is carried out as follows. That is, phosphor particles prepared as described above are dispersed in water or a mixture of water and ethyl alcohol (C 2 H 5 OH), and as a coating agent, pyrophosphoric acid such as sodium pyrophosphate or potassium pyrophosphate is used. Using salt and at least one of calcium, magnesium, barium, and strontium chloride, weigh and inject the phosphor particles so as to be reactively coated in the range of 0.05 to 5.0% by weight. . In addition, the temperature of the phosphor dispersion liquid in the surface treatment is preferably 25 ° C to 40 ° C.

被覆剤を投入後、30分〜120分攪拌した後、得られる蛍光体を洗浄し、濾過、乾燥、及び篩別する事で、蛍光体粒子表面に均一にピロリン酸塩が被覆された蛍光体が得られる。こうして得られるユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体は、耐候性に優れたものとなる。   After the coating agent is added, the resulting phosphor is stirred for 30 minutes to 120 minutes, and the resulting phosphor is washed, filtered, dried, and sieved so that the phosphor particle surface is uniformly coated with pyrophosphate. Is obtained. The europium and manganese-activated alkaline earth magnesium silicate phosphors thus obtained have excellent weather resistance.

本実施形態のユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体の平均粒径は、特に制限されないが、10μm〜20μmの範囲が好ましい。なお、平均粒径とは、重量積算値50%の粒径を示すD50を意味する。 The average particle diameter of the europium and manganese-activated alkaline earth magnesium silicate phosphor of the present embodiment is not particularly limited, but is preferably in the range of 10 μm to 20 μm. The average and particle size means the D 50 showing a particle size of 50% by weight integrated value.

また、得られるユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体は、紫外乃至青色発光素子の放射により励起されて緑色乃至黄色に発光する蛍光体であり、また、良好な発光効率を有するので、高い発光輝度が得られる。従って、この蛍光体を緑色乃至黄色発光蛍光体として用いることで、発光輝度の高いLEDランプ等の発光装置を実現することができる。   Further, the obtained europium and manganese-activated alkaline earth magnesium silicate phosphor is a phosphor that emits green to yellow light when excited by radiation of an ultraviolet or blue light emitting element, and has a good luminous efficiency. High luminance can be obtained. Therefore, by using this phosphor as a green to yellow light emitting phosphor, it is possible to realize a light emitting device such as an LED lamp with high emission luminance.

次に、上記の緑色乃至黄色蛍光体を含む発光部を有する発光装置について説明する。白色ランプについて説明する。図1は、本実施形態に係る発光装置に用いられる白色ランプの構成を概略的に示す断面図である。   Next, a light-emitting device having a light-emitting unit that includes the above green to yellow phosphor will be described. The white lamp will be described. FIG. 1 is a cross-sectional view schematically showing a configuration of a white lamp used in the light emitting device according to the present embodiment.

図1に示すように、発光装置(LED装置)1は、表面に電極2A,2Bを形成した絶縁基板3と、絶縁基板3上に搭載された発光素子としてLED素子4と、LED素子4を収納する凹部を形成するためのリフレクタ基材5と、リフレクタ基材5の内側に配置されてLED素子4からの発光を正面方向に反射する反射材5aを貼り付けたリフレクタ6と、透明樹脂7中に蛍光体粒子8を分散させた透明樹脂封止層9と、電極2BからLED素子4に通電するためのボンディングワイヤ10を備えて構成される。本実施形態の白色ランプにおいては、発光部である透明樹脂封止層(蛍光体含有層)9に、本実施形態の緑色乃至黄色発光蛍光体と共に、赤色光を発光する赤色蛍光体を含有させることにより、白色LEDランプを得ることができる。   As shown in FIG. 1, a light emitting device (LED device) 1 includes an insulating substrate 3 having electrodes 2A and 2B formed on the surface, an LED element 4 as a light emitting element mounted on the insulating substrate 3, and an LED element 4. A reflector base 5 for forming a concave portion to be housed, a reflector 6 affixed with a reflector 5a that is arranged inside the reflector base 5 and reflects light emitted from the LED element 4 in the front direction, and a transparent resin 7 It comprises a transparent resin sealing layer 9 in which phosphor particles 8 are dispersed, and a bonding wire 10 for energizing the LED element 4 from the electrode 2B. In the white lamp of this embodiment, the transparent resin sealing layer (phosphor-containing layer) 9 that is a light-emitting portion contains a red phosphor that emits red light together with the green to yellow light-emitting phosphor of this embodiment. Thus, a white LED lamp can be obtained.

ここで、上記赤色光を発光する赤色系蛍光体としては、青色発光のLEDチップにより励起されて赤色光を発光する蛍光体であり、具体的には、例えばEu付活Sr,Ca窒化物蛍光体、Eu付活Ca窒化物蛍光体、Eu付活Sr,Ca硫化物蛍光体、Eu付活Ca硫化物蛍光体、Eu,Ce付活Ca硫化物蛍光体、Eu,Sm付活La酸硫化物蛍光体から選択される少なくとも1種の蛍光体が用いられる。このようなLEDランプでは、緑色乃至黄色蛍光体から発光される緑色光乃至黄色光と赤色蛍光体から発光される赤色発光との混色によって、演色性が高い高輝度の白色光が得られる。
なお、図1において、発光素子としてLED素子を用いているが、他の発光素子、例えばEL素子等を用いることもできる。
Here, the red phosphor that emits red light is a phosphor that emits red light when excited by a blue light emitting LED chip. Specifically, for example, Eu-activated Sr, Ca nitride fluorescence. Body, Eu-activated Ca nitride phosphor, Eu-activated Sr, Ca sulfide phosphor, Eu-activated Ca sulfide phosphor, Eu, Ce-activated Ca sulfide phosphor, Eu, Sm-activated La oxysulfide At least one phosphor selected from the product phosphors is used. In such an LED lamp, high-luminance white light with high color rendering is obtained by color mixing of green light to yellow light emitted from green to yellow phosphors and red light emission emitted from red phosphors.
In FIG. 1, an LED element is used as the light-emitting element, but other light-emitting elements such as an EL element can also be used.

以下、本発明の具体的な実施例に説明するが、本発明がこれら実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で任意に変更して実施することができる。
〈蛍光体の作製〉
実施例1〜4、参考例1〜6
蛍光体の母体および付活剤を構成する元素またはその元素を含有する化合物を含む原料を、Mg及びMn量は一定量とし、Sr、Ba及びEu量を変えて緑色領域から黄色領域になるように、下記の表1の組成にて秤量した。
Hereinafter, specific examples of the present invention will be described. However, the present invention is not limited to these examples, and the present invention can be arbitrarily modified and implemented without departing from the gist of the present invention.
<Fabrication of phosphor>
Examples 1 to 4, Reference Examples 1 to 6
The raw material containing the phosphor matrix and the element constituting the activator or the compound containing the element, the Mg and Mn amounts are constant, and the Sr, Ba and Eu amounts are changed to change from the green region to the yellow region. In addition, it was weighed with the composition shown in Table 1 below.

Figure 0005989775
Figure 0005989775

表1に示す試料No.1〜10の各蛍光体原料に、フラックスとして塩化アンモニウムを添加して十分に混合した。
得られた各蛍光体原料に、活性炭素を適当量添加してアルミナるつぼ内に充填し、還元性ガス雰囲気(3〜10%水素−残部窒素の雰囲気)下、1200℃で5時間焼成を行った。得られた各焼成物を粉砕、篩別し、さらに還元性ガス雰囲気下、1250℃で5時間焼成した。その後、得られた各焼成物を粉砕・篩別した後、水洗および乾燥を行い、さらに篩別することによって、表1に示す試料No.1〜10の組成を有するユウロピウム,マンガン付活アルカリ土類珪酸マグネシウム蛍光体((Sr,Ba,Mg)SiO:Eu,Mn)を得た。
Sample No. shown in Table 1 Ammonium chloride was added as a flux to each of the phosphor materials 1 to 10 and mixed well.
Appropriate amount of activated carbon is added to each phosphor material obtained, filled in an alumina crucible, and fired at 1200 ° C. for 5 hours in a reducing gas atmosphere (3 to 10% hydrogen-balance nitrogen atmosphere). It was. The obtained fired products were pulverized and sieved, and further fired at 1250 ° C. for 5 hours in a reducing gas atmosphere. Thereafter, each fired product obtained was pulverized and sieved, washed with water and dried, and further sieved to obtain sample Nos. Shown in Table 1. Europium and manganese-activated alkaline earth magnesium silicate phosphors having a composition of 1 to 10 ((Sr, Ba, Mg) 2 SiO 4 : Eu, Mn) were obtained.

得られた試料No.1〜10の各蛍光体を水及びエチルアルコール(COH)の混合液中に分散し、試料No.1〜10の各蛍光体分散液を調製後、ピロリン酸ナトリウムあるいはピロリン酸カリウムと共に、塩化カルシウム、塩化マグネシウム、塩化バリウム、塩化ストロンチウムを用いて、試料No.1〜10の各蛍光体に対して0.05〜5.0重量%の範囲で下記表2に示すピロリン酸塩で反応被覆するように秤量し投入した。この時、蛍光体分散液の温度は30℃とし、投入後90分間攪拌を行い濾過、乾燥、篩別を実施し、蛍光体表面に下記表2に示すピロリン酸塩が均一に被覆された実施例1〜4、参考例1〜6の各蛍光体を得た。

Figure 0005989775
The obtained sample No. 1 to 10 were dispersed in a mixed solution of water and ethyl alcohol (C 2 H 5 OH). After preparing each phosphor dispersion of 1 to 10, sample No. 1 was obtained using calcium chloride, magnesium chloride, barium chloride, strontium chloride together with sodium pyrophosphate or potassium pyrophosphate. Each phosphor of 1 to 10 was weighed and charged so as to be coated with pyrophosphate shown in Table 2 in the range of 0.05 to 5.0% by weight. At this time, the temperature of the phosphor dispersion liquid was set to 30 ° C., and after stirring for 90 minutes, filtration, drying and sieving were carried out, and the phosphor surface shown in Table 2 below was uniformly coated on the phosphor surface. The phosphors of Examples 1 to 4 and Reference Examples 1 to 6 were obtained.
Figure 0005989775

比較例1〜10
試料No.1〜10に被覆剤(表面処理剤)を被覆しなかったこと以外は、実施例1〜4、参考例1〜6と同様の方法で比較例1〜10の各蛍光体を得た。
Comparative Examples 1-10
Sample No. Each phosphor of Comparative Examples 1 to 10 was obtained in the same manner as in Examples 1 to 4 and Reference Examples 1 to 6, except that 1 to 10 was not coated with a coating agent (surface treatment agent).

〈粉体評価〉
上記のように調製された実施例1〜4、参考例1〜6、及び比較例1〜10の各蛍光体粉末を各5gずつ50mlビーカーに秤量し、高温高湿雰囲気下(温度85℃,湿度85%)の高温高湿槽に72時間投入し強制耐候性試験を実施し、試験後の蛍光体について発光輝度を測定した。
なお、各実施例、各参考例の発光輝度(試験前の初期値)は、表面処理をほどこさなかった各比較例の蛍光体粉末の発光輝度(試験前の初期値)を基準値100%とし、それに対する相対値として求めた。
また、蛍光体粉末の強制耐候性試験については、高温高湿槽(温度85℃・湿度85%)に投入する前の発光輝度を100%としたときの輝度維持率を下記算出方法[1]式に従って測定した。
粉体輝度維持率(%)=強制耐候性試験後の発光輝度÷強制耐候性試験前の発光輝度×100 …[1]
また、強制耐候性試験後の各蛍光体の体色変化については目視にて確認した。
上記の発光輝度および輝度維持率の測定結果、体色変化の評価結果を表3に示す。
<Powder evaluation>
5 g of each of the phosphor powders of Examples 1 to 4, Reference Examples 1 to 6, and Comparative Examples 1 to 10 prepared as described above were weighed in a 50 ml beaker and placed in a high-temperature and high-humidity atmosphere (temperature 85 ° C., A forced weather resistance test was conducted for 72 hours in a high-temperature and high-humidity tank having a humidity of 85%), and the luminance of the phosphor after the test was measured.
The emission luminance (initial value before the test) of each example and each reference example is the reference value 100% of the emission luminance (initial value before the test) of the phosphor powder of each comparative example that was not subjected to the surface treatment. And obtained as a relative value.
In addition, for the forced weather resistance test of the phosphor powder, the luminance maintenance rate when the emission luminance before being put into a high-temperature and high-humidity tank (temperature 85 ° C./humidity 85%) is taken as 100% is calculated by the following calculation method [1]. Measured according to the formula.
Powder luminance maintenance ratio (%) = Luminance luminance after forced weathering test / Luminance luminance before forced weathering test × 100 [1]
Moreover, the body color change of each phosphor after the forced weather resistance test was confirmed visually.
Table 3 shows the measurement results of the light emission luminance and the luminance maintenance ratio and the evaluation results of the body color change.

Figure 0005989775
Figure 0005989775

表3に示す結果から明らかなように、本実施形態の実施例1〜4、及び参考例1〜6の蛍光体粉末は、比較例1〜10の蛍光体粉末と比較して、発光輝度(耐候性試験前の初期値)においては表面処理による若干の輝度差が見られるが、高温高湿雰囲気下(温度85℃・湿度85%)の強制耐候性試験の輝度維持率においては、いずれも輝度の低下が見られず、発光輝度の維持が確認できた。また、体色変化の評価においては表面処理したものは体色の変化は見られないが、表面処理をしていない比較例のものは、いずれも体色が白色化する現象が見られた。これらをX線回折装置(XRD)にて分析した結果、いずれも炭酸ストロンチウムのピークが確認された。これは、高温高湿槽中の水分と蛍光体母体のSr(ストロンチウム)が反応し生成したものと考えられ、Sr(ストロンチウム)比が多くなる組成に連れて白色化の度合も多く、また輝度維持率も悪くなった。 As is clear from the results shown in Table 3, the phosphor powders of Examples 1 to 4 and Reference Examples 1 to 6 of the present embodiment are compared with the phosphor powders of Comparative Examples 1 to 10 in terms of emission luminance ( In the initial value before the weather resistance test, there is a slight luminance difference due to the surface treatment, but in the luminance maintenance ratio of the forced weather resistance test in a high temperature and high humidity atmosphere (temperature 85 ° C, humidity 85%), both A decrease in luminance was not observed, and it was confirmed that the emission luminance was maintained. Further, in the evaluation of the body color change, the surface treatment did not show a change in the body color, but the comparative example without any surface treatment showed a phenomenon that the body color turned white. As a result of analyzing them with an X-ray diffractometer (XRD), a peak of strontium carbonate was confirmed in all of them. This is thought to be caused by the reaction between the moisture in the high-temperature and high-humidity tank and the phosphor matrix Sr (strontium), and the degree of whitening increases as the Sr (strontium) ratio increases. The maintenance rate also worsened.

すなわち、本発明で規定するように、ユウロピウム、マンガン付活アルカリ土類珪酸塩蛍光体にピロリン酸カルシウム(Ca)、ピロリン酸マグネシウム(Mg)、ピロリン酸バリウム(Ba)、ピロリン酸ストロンチウム(Sr)を反応被覆した蛍光体の各実施例においては、蛍光体粉末を高温高湿雰囲気下(温度85℃・湿度85%)の耐候性試験での耐候性及び輝度維持率が、被覆しなかった各比較例と比較して大幅に向上することが上記結果から実証された。 That is, as defined in the present invention, europium, manganese-activated alkaline earth silicate phosphors are converted to calcium pyrophosphate (Ca 2 P 2 O 7 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ), barium pyrophosphate ( In each example of the phosphor coated with reaction coating of Ba 2 P 2 O 7 ) and strontium pyrophosphate (Sr 2 P 2 O 7 ), the phosphor powder was placed in a high-temperature and high-humidity atmosphere (temperature 85 ° C./humidity 85%). From the above results, it was proved that the weather resistance and the luminance maintenance ratio in the weather resistance test were significantly improved as compared with the comparative examples which were not coated.

〈緑色LEDランプ単色評価・黄色LEDランプ単色評価〉
実施例1〜4、参考例1〜6及び比較例1〜10の各蛍光体粉末を用い、以下に示すようにして図1に示すLEDランプを作製した。
すなわち、実施例1〜4、参考例1〜6及び比較例1〜10の各蛍光体を緑色及び黄色蛍光体として使用し、エポキシ樹脂と酸無水物系硬化剤との混合液に混合したものを、青色発光のLEDチップ(0.4mm角)4の上にディスペンサを用いて滴下し、エポキシ樹脂を硬化させた後、その上に半球形の透明なエポキシ樹脂キャップを被覆し、各実施例、各参考例及び各比較例に係る発光装置を製造し、高温高湿雰囲気下(温度85℃,湿度85%)でLEDランプを1000時間点灯させた。
<Green LED lamp single color evaluation / yellow LED lamp single color evaluation>
Using the phosphor powders of Examples 1 to 4, Reference Examples 1 to 6, and Comparative Examples 1 to 10, LED lamps shown in FIG. 1 were produced as shown below.
That is, the phosphors of Examples 1 to 4, Reference Examples 1 to 6 and Comparative Examples 1 to 10 were used as green and yellow phosphors, and mixed in a mixture of an epoxy resin and an acid anhydride curing agent. Was dropped on a blue light emitting LED chip (0.4 mm square) 4 using a dispenser, the epoxy resin was cured, and then a hemispherical transparent epoxy resin cap was coated thereon. The light emitting device according to each reference example and each comparative example was manufactured, and the LED lamp was lit for 1000 hours in a high temperature and high humidity atmosphere (temperature 85 ° C., humidity 85%).

各実施例及び各参考例の発光輝度(耐候性試験前の初期値)は、各比較例の表面処理無の蛍光体粉末を用いたLEDランプの発光輝度(それぞれ耐候性試験前の初期値)を基準値100%とし、それに対する相対値として求めた。
また、高温高湿雰囲気下(温度85℃,湿度85%)でLEDランプを1000時間点灯して、点灯開始から点灯末期(1000時間後)に至るまでの輝度変化を測定する輝度劣化(耐候性)試験を実施し、下記算出方法[2]式に従って輝度維持率を測定した。
LED輝度維持率(%)=輝度劣化試験後の発光輝度÷輝度劣化試験前の発光輝度 ×100 …[2]
上記の発光輝度および輝度維持率の測定結果を表4に示す。
The emission brightness of each example and each reference example (initial value before the weather resistance test) is the emission brightness of the LED lamp using the phosphor powder without surface treatment of each comparative example (each initial value before the weather resistance test). Was determined as a relative value with respect to a reference value of 100%.
In addition, the LED lamp is lit for 1000 hours in a high-temperature, high-humidity atmosphere (temperature: 85 ° C., humidity: 85%), and brightness deterioration (weather resistance) is measured from the start of lighting to the end of lighting (after 1000 hours). ) A test was conducted, and the luminance maintenance rate was measured according to the following calculation method [2].
LED luminance maintenance ratio (%) = emission luminance after luminance degradation test / emission luminance before luminance degradation test × 100 ... [2]
Table 4 shows the measurement results of the light emission luminance and the luminance maintenance rate.

Figure 0005989775
Figure 0005989775

表4に示す結果から明らかなように、実施例1〜4、参考例1〜6の蛍光体粉末を用いた緑色及び黄色LEDランプの発光輝度(耐候性試験前の初期値)については、比較例1〜10の蛍光体粉末を用いた緑色及び黄色LEDランプと比較して、表面処理の有無による差は殆ど見られなかったが、高温高湿雰囲気下(温度85℃・湿度85%)の輝度劣化(耐候性)試験においては、比較例と比較して、いずれも輝度維持率の向上が確認できた。 As is clear from the results shown in Table 4, the emission luminance (initial value before the weather resistance test) of the green and yellow LED lamps using the phosphor powders of Examples 1 to 4 and Reference Examples 1 to 6 was compared. Compared with the green and yellow LED lamps using the phosphor powders of Examples 1 to 10, there was almost no difference due to the presence or absence of surface treatment, but in a high-temperature and high-humidity atmosphere (temperature 85 ° C./humidity 85%). In the luminance degradation (weather resistance) test, it was confirmed that the luminance maintenance rate was improved as compared with the comparative example.

すなわち、本発明で規定するように、ユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体にピロリン酸マグネシウム(Mg )又はピロリン酸マグネシウムに加え、ピロリン酸カルシウム(Ca)ピロリン酸バリウム(Ba)及びピロリン酸ストロンチウム(Sr)の少なくともいずれか1種との混合物を反応被覆した蛍光体を用いた単色LEDランプの各実施例においては、高温高湿雰囲気下(温度85℃・湿度85%)の輝度劣化(耐候性)試験の輝度維持率が、被覆しなかった蛍光体を用いた単色LEDランプの各比較例と比較して大幅に向上していることが上記結果から実証された。 That is, as specified in the present invention, europium, manganese-activated alkaline earth magnesium silicate phosphor , calcium pyrophosphate (Ca 2 P 2 O 7 ) in addition to magnesium pyrophosphate (Mg 2 P 2 O 7 ) or magnesium pyrophosphate. ) , Single-color LED lamps using phosphors reactively coated with a mixture of at least one of barium pyrophosphate (Ba 2 P 2 O 7 ) and strontium pyrophosphate (Sr 2 P 2 O 7 ) In the high temperature and high humidity atmosphere (temperature 85 ° C, humidity 85%), the luminance maintenance rate of the luminance deterioration (weather resistance) test is compared with each comparative example of a single color LED lamp using a phosphor not coated. From the above results, it was proved that there was a significant improvement.

〈白色LEDランプ評価〉
白色LEDランプとして評価するために、以下に示すようにして図1に示すLEDランプを作製した。
参考例7
試料No.1の蛍光体に対してピロリン酸カルシウム(Ca)を表面処理した参考例1の緑色発光蛍光体であるユウロピウム、マンガン付活アルカリ土類珪酸塩蛍光体と、試料No.2の蛍光体に対してピロリン酸マグネシウム(Mg)を表面処理した実施例の黄色発光蛍光体であるユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体を使用し、ランプからの発光が白色となるように、赤色発光蛍光体の窒化物系赤色発光蛍光体(CaAlSiN:Eu)を混合した。このGYR白色LED用蛍光体を、エポキシ樹脂と酸無水物系硬化剤との混合液に混合し、その液を青色発光のLEDチップ(0.4mm角)4の上にディスペンサを用いて滴下しエポキシ樹脂を硬化させた後、その上に半球形の透明なエポキシ樹脂キャップを被覆し、参考例7に係る白色LEDランプを作製した。
<Evaluation of white LED lamp>
In order to evaluate as a white LED lamp, the LED lamp shown in FIG. 1 was produced as follows.
Reference Example 7
Sample No. Europium, a manganese-activated alkaline earth silicate phosphor, which is a green light-emitting phosphor of Reference Example 1 in which calcium pyrophosphate (Ca 2 P 2 O 7 ) is surface-treated with respect to the phosphor of Sample 1, From the lamp, europium, a manganese-activated alkaline earth magnesium silicate phosphor, which is a yellow light-emitting phosphor of Example 1 in which magnesium pyrophosphate (Mg 2 P 2 O 7 ) was surface-treated on the phosphor of No. 2 , was used. A red light-emitting phosphor nitride-based red light-emitting phosphor (CaAlSiN 3 : Eu) was mixed so that the white light emission was white. This phosphor for GYR white LED is mixed with a mixed liquid of an epoxy resin and an acid anhydride curing agent, and the liquid is dropped onto a blue light emitting LED chip (0.4 mm square) 4 using a dispenser. After the epoxy resin was cured, a hemispherical transparent epoxy resin cap was coated thereon to produce a white LED lamp according to Reference Example 7.

参考例8
試料No.3の蛍光体に対してピロリン酸ストロンチウム(Sr)を表面処理した参考例2の緑色発光蛍光体のユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体と、試料No.4の蛍光体に対してピロリン酸バリウム(Ba)を表面処理した参考例3の黄色発光蛍光体のユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体を使用して、ランプからの発光が白色となるように、赤色発光蛍光体の窒化物系赤色発光蛍光体(CaAlSiN:Eu)を混合した。このGYR白色LED用蛍光体を、エポキシ樹脂と酸無水物系硬化剤との混合液に混合し、その液を青色発光のLEDチップ(0.4mm角)の上にディスペンサを用いて滴下しエポキシ樹脂を硬化させた後、その上に半球形の透明なエポキシ樹脂キャップを被覆し、参考例8に係る白色LEDランプを作製した。
Reference Example 8
Sample No. No. 3 phosphor, strontium pyrophosphate (Sr 2 P 2 O 7 ), and the green light emitting phosphor of Reference Example 2 , europium, manganese-activated alkaline earth magnesium silicate phosphor, Using the yellow-emitting phosphor europium and manganese-activated alkaline earth magnesium silicate phosphor of Reference Example 3 in which barium pyrophosphate (Ba 2 P 2 O 7 ) was surface-treated on the phosphor of No. 4 from the lamp A red light-emitting phosphor nitride-based red light-emitting phosphor (CaAlSiN 3 : Eu) was mixed so that the white light emission was white. This phosphor for GYR white LED is mixed with a mixed liquid of an epoxy resin and an acid anhydride curing agent, and the liquid is dropped onto a blue light emitting LED chip (0.4 mm square) using a dispenser to form an epoxy. After the resin was cured, a hemispherical transparent epoxy resin cap was coated thereon to produce a white LED lamp according to Reference Example 8 .

比較例11
比較例1の緑色発光蛍光体のユウロピウム、マンガン付活アルカリ土類珪酸塩蛍光体と比較例2の黄色発光蛍光体のユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体を使用した以外は、実施例11と同様に処理した。すなわち、試料No1の蛍光体に対してピロリン酸カルシウム(Ca)の、及び試料No.2の蛍光体に対してピロリン酸マグネシウム(Mg)の被覆処理をしていない比較例11に係る白色LEDランプを作製した。
Comparative Example 11
Except for using the green-emitting phosphor europium and manganese activated alkaline earth silicate phosphor of Comparative Example 1 and the yellow-emitting phosphor europium and manganese activated alkaline earth magnesium silicate phosphor of Comparative Example 2 Treated as in Example 11. That is, calcium pyrophosphate (Ca 2 P 2 O 7 ) and sample No. A white LED lamp according to Comparative Example 11 in which the phosphor 2 was not coated with magnesium pyrophosphate (Mg 2 P 2 O 7 ) was produced.

比較例12
比較例3の緑色発光蛍光体のユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体と比較例4の黄色発光蛍光体のユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体を使用した以外は、実施例12と同様に処理した。すなわち、試料No.3の蛍光体に対してピロリン酸ストロンチウム(Sr)の、及び 試料No.4の蛍光体に対してピロリン酸バリウム(Ba)の被覆処理をしていない比較例12に係る白色LEDランプを作製した。
Comparative Example 12
Except for using the green-emitting phosphor of Comparative Example 3 europium and manganese-activated alkaline earth magnesium silicate phosphor and the yellow-emitting phosphor of Comparative Example 4 europium and manganese-activated alkaline earth magnesium silicate phosphor. Treated as in Example 12. That is, sample no. 3 phosphors of strontium pyrophosphate (Sr 2 P 2 O 7 ) and sample no. A white LED lamp according to Comparative Example 12 in which the phosphor 4 was not coated with barium pyrophosphate (Ba 2 P 2 O 7 ) was produced.

参考例7および比較例11,12に係る白色LEDランプについて、発光輝度を測定した。
なお、各発光輝度は、比較例11の白色LEDランプの発光輝度を基準値100%とし、それに対する相対値として求めた。
また、高温高湿雰囲気下(温度85℃,湿度85%)で白色LEDランプを1000時間点灯して、点灯開始から点灯末期(1000時間後)に至るまでの輝度変化を測定する輝度劣化(耐候性)試験を実施し、下記算出方法[3]式に従って輝度維持率を測定した。
輝度維持率(%)=輝度劣化試験後の発光輝度(%)÷発光輝度(%)×100 …[3]
発光輝度および輝度維持率の測定結果を表5に示す。

Figure 0005989775
With respect to the white LED lamps according to Reference Examples 7 and 8 and Comparative Examples 11 and 12, the light emission luminance was measured.
In addition, each light-emitting luminance was calculated | required as a relative value with respect to the light-emitting luminance of the white LED lamp of the comparative example 11 as the reference value of 100%.
In addition, a white LED lamp is lit for 1000 hours in a high-temperature and high-humidity atmosphere (temperature: 85 ° C., humidity: 85%), and brightness deterioration (weather resistance) is measured from the start of lighting to the end of lighting (after 1000 hours). The brightness maintenance rate was measured according to the following calculation method [3].
Luminance maintenance ratio (%) = Luminance luminance after luminance degradation test (%) ÷ Luminescence luminance (%) × 100 ... [3]
Table 5 shows the measurement results of the light emission luminance and the luminance maintenance rate.
Figure 0005989775

表5に示す結果から明らかなように、試料No.1およびNo.2に対してCa及びMgをそれぞれ表面処理した参考例7に係る白色LEDランプは、表面処理していない比較例11に係る白色LEDランプと比較して、白色発光の輝度は差が殆ど見られないが、高温高湿雰囲気下(温度85℃,湿度85%)の輝度劣化試験後においては大幅に向上していることがわかる。また、試料No.3およびNo.4に対してSr及びBaをそれぞれ表面処理した参考例8に係る白色LEDランプは、表面処理していない比較例12に係る白色LEDランプと比較して、白色発光の輝度は差が殆ど見られないが、高温高湿雰囲気下(温度85℃,湿度85%)の発光輝度劣化試験後においては大幅に向上していることがわかる。 As is clear from the results shown in Table 5, sample No. 1 and no. The white LED lamp according to Reference Example 7 in which Ca 2 P 2 O 7 and Mg 2 P 2 O 7 were surface-treated with respect to 2, compared with the white LED lamp according to Comparative Example 11 that was not surface-treated, Although there is almost no difference in the luminance of white light emission, it can be seen that the luminance is greatly improved after a luminance deterioration test under a high temperature and high humidity atmosphere (temperature 85 ° C., humidity 85%). Sample No. 3 and no. 4, the white LED lamp according to Reference Example 8 in which Sr 2 P 2 O 7 and Ba 2 P 2 O 7 were surface-treated, compared with the white LED lamp according to Comparative Example 12 that was not surface-treated, Although there is almost no difference in the luminance of white light emission, it can be seen that the luminance is significantly improved after the light emission luminance deterioration test in a high temperature and high humidity atmosphere (temperature 85 ° C., humidity 85%).

すなわち、本発明で規定するように、ユウロピウム、マンガン付活アルカリ土類珪酸マグネシウム蛍光体にピロリン酸カルシウム(Ca)、ピロリン酸マグネシウム(Mg)、ピロリン酸バリウム(Ba)、ピロリン酸ストロンチウム(Sr)の少なくともいずれか1種を反応被覆した蛍光体を使用することにより、白色LEDランプにおいても高温高湿雰囲気下(温度85℃・湿度85%)の輝度劣化(耐候性)試験の輝度維持率が大幅に向上することが上記結果から実証された。 That is, as defined in the present invention, europium, manganese-activated alkaline earth magnesium silicate phosphor, calcium pyrophosphate (Ca 2 P 2 O 7 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ), barium pyrophosphate ( By using a phosphor coated with at least one of Ba 2 P 2 O 7 ) and strontium pyrophosphate (Sr 2 P 2 O 7 ), a white LED lamp can be used in a high temperature and high humidity atmosphere (temperature 85). From the above results, it was proved that the luminance maintenance rate in the luminance deterioration (weather resistance) test at a temperature of 85 ° C./humidity was greatly improved.

本発明に係る蛍光体によれば、青色LEDの励起により緑色乃至黄色を発光する。さらに、これらの蛍光体に対しピロリン酸カルシウム(Ca)、ピロリン酸マグネシウム(Mg)、ピロリン酸バリウム(Ba)、ピロリン酸ストロンチウム(Sr)の少なくともいずれか1種で被覆することにより、耐熱、耐湿といった耐候性に優れる白色LEDランプなどの発光装置を実現することが可能になる。 According to the phosphor according to the present invention, green to yellow light is emitted by excitation of the blue LED. Furthermore, calcium pyrophosphate (Ca 2 P 2 O 7 ), magnesium pyrophosphate (Mg 2 P 2 O 7 ), barium pyrophosphate (Ba 2 P 2 O 7 ), strontium pyrophosphate (Sr 2 P) By coating with at least one of 2 O 7 ), it becomes possible to realize a light emitting device such as a white LED lamp having excellent weather resistance such as heat resistance and moisture resistance.

Claims (6)

紫外乃至青色光により励起されて緑色乃至黄色に発光する、ユーロピウムおよびマンガン付活アルカリ土類珪酸マグネシウム蛍光体粒子と、
この蛍光体粒子の表面を均一に被覆する、ピロリン酸マグネシウム又は前記ピロリン酸マグネシウムに加え、ピロリン酸カルシウムピロリン酸バリウム及びピロリン酸ストロンチウムの少なくともいずれか1種との混合物からなる被覆層と
を有することを特徴とする蛍光体。
Europium and manganese activated alkaline earth magnesium silicate phosphor particles excited by ultraviolet to blue light and emitting green to yellow light,
The phosphor uniformly covers the surface of the particles, in addition to magnesium or the magnesium pyrophosphate pyrophosphate, calcium pyrophosphate, to have a coating layer comprising a mixture of at least any one of barium pyrophosphate, and pyrophosphate strontium A phosphor characterized by.
前記被覆層は、前記蛍光体粒子に対して0.05〜5重量%であることを特徴とする請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein the coating layer is 0.05 to 5% by weight with respect to the phosphor particles. 前記蛍光体粒子は、化学式:(Sr2−x−y−z−u,Ba,Mg,Eu,Mn)SiO(0.1≦x≦1.7、0.01≦y≦0.15、0.025≦z≦0.25、0.001≦u≦0.01)で表されるユーロピウムおよびマンガン付活アルカリ土類珪酸マグネシウムであることを特徴とする請求項1又は請求項に記載の蛍光体。 Said phosphor particles, the chemical formula: (Sr 2-x-y -z-u, Ba x, Mg y, Eu z, Mn u) SiO 4 (0.1 ≦ x ≦ 1.7,0.01 ≦ y ≦ 0.15,0.025 ≦ z ≦ 0.25,0.001 ≦ u ≦ 0.01) , wherein the europium and manganese activated alkaline earth magnesium silicate represented by claims 1 or The phosphor according to claim 2 . 請求項1乃至請求項の何れか一項に記載の蛍光体と、この蛍光体を励起し発光させる紫外乃至青色発光を示す発光素子とを備えることを特徴とする発光装置。 A light emitting device comprising: the phosphor according to any one of claims 1 to 3 ; and a light emitting element that emits ultraviolet to blue light that excites the phosphor to emit light. 前記発光素子は、LEDであることを特徴とする請求項に記載の発光装置。 The light emitting device according to claim 4 , wherein the light emitting element is an LED. 紫外乃至青色光により励起されて緑色乃至黄色に発光する、ユーロピウムおよびマンガン付活アルカリ土類珪酸マグネシウム蛍光体粒子の表面に水中又はアルコール水溶液中でピロリン酸マグネシウム又は前記ピロリン酸マグネシウムに加え、ピロリン酸カルシウムピロリン酸バリウム及びピロリン酸ストロンチウムの少なくともいずれか1種との混合物を反応被覆する工程を含むことを特徴とする蛍光体の製造方法。 In addition to magnesium pyrophosphate or magnesium pyrophosphate in water or in an aqueous alcohol solution on the surface of europium and manganese activated alkaline earth magnesium silicate phosphor particles that are excited by ultraviolet to blue light to emit green to yellow light, calcium pyrophosphate A method for producing a phosphor, comprising a step of reactively coating a mixture of at least one of barium pyrophosphate and strontium pyrophosphate.
JP2014525209A 2013-03-29 2014-03-28 Phosphor, method for manufacturing the same, and light emitting device using the same Active JP5989775B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013073073 2013-03-29
JP2013073073 2013-03-29
PCT/JP2014/001860 WO2014156201A1 (en) 2013-03-29 2014-03-28 Phosphor, method for producing same and light emitting device using same

Publications (2)

Publication Number Publication Date
JP5989775B2 true JP5989775B2 (en) 2016-09-07
JPWO2014156201A1 JPWO2014156201A1 (en) 2017-02-16

Family

ID=51623211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014525209A Active JP5989775B2 (en) 2013-03-29 2014-03-28 Phosphor, method for manufacturing the same, and light emitting device using the same

Country Status (2)

Country Link
JP (1) JP5989775B2 (en)
WO (1) WO2014156201A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202042781A (en) * 2019-05-03 2020-12-01 瑞士商歐米亞國際公司 Surface-treated magnesium ion-containing materials as white pigments in oral care compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269938A (en) * 2005-03-25 2006-10-05 Nichia Chem Ind Ltd Light emitting device, phosphor for light emitting element and its manufacturing method
JP2008063446A (en) * 2006-09-07 2008-03-21 Sharp Corp Coated phosphor, method for producing the same and light-emitting device comprising the coated phosphor
WO2008096545A1 (en) * 2007-02-09 2008-08-14 Kabushiki Kaisha Toshiba White light-emitting lamp and illuminating device using the same
WO2009141982A1 (en) * 2008-05-19 2009-11-26 株式会社 東芝 Linear white light source, and backlight and liquid crystal display device using linear white light source

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902795B2 (en) * 1991-02-27 1999-06-07 株式会社東芝 Blue light emitting phosphor and fluorescent lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269938A (en) * 2005-03-25 2006-10-05 Nichia Chem Ind Ltd Light emitting device, phosphor for light emitting element and its manufacturing method
JP2008063446A (en) * 2006-09-07 2008-03-21 Sharp Corp Coated phosphor, method for producing the same and light-emitting device comprising the coated phosphor
WO2008096545A1 (en) * 2007-02-09 2008-08-14 Kabushiki Kaisha Toshiba White light-emitting lamp and illuminating device using the same
WO2009141982A1 (en) * 2008-05-19 2009-11-26 株式会社 東芝 Linear white light source, and backlight and liquid crystal display device using linear white light source

Also Published As

Publication number Publication date
JPWO2014156201A1 (en) 2017-02-16
WO2014156201A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP4418758B2 (en) Irradiation system having a radiation source and a light emitter
TWI424045B (en) A phosphor, a phosphor sheet, and a phosphor, and a light-emitting device using the phosphor
JP5813096B2 (en) Phosphor for light emitting device, method for producing the same, and light emitting device using the same
TWI491709B (en) A blue light-emitting phosphor, and a light-emitting device using the blue light-emitting phosphor
JP2005008843A (en) Sm-ACTIVATING RED LIGHT EMITTING FLUOROPHOR AND LIGHT-EMITTING DEVICE
JP2010270196A (en) Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint
JP4425977B1 (en) Nitride red phosphor and white light emitting diode using the same
KR100802873B1 (en) Orange light emitting phosphor
JP5818109B2 (en) (Halo) silicate phosphor and method for producing the same
JP4779384B2 (en) Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
JP5912895B2 (en) Phosphor, manufacturing method thereof, and light emitting device using the same
JP4433793B2 (en) Phosphor and light emitting device using the same
JP5989775B2 (en) Phosphor, method for manufacturing the same, and light emitting device using the same
JPWO2012117954A1 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
US9011718B2 (en) Blue light-emitting phosphor and light-emitting device using the blue light-emitting phosphor
JP5405156B2 (en) Red light emitting phosphor and light emitting device using the same
JP4948015B2 (en) Aluminate blue phosphor and light emitting device using the same
JP5736272B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JP2007238815A (en) Phosphor for light emitting device and light emitting device
JP4266339B2 (en) Long-wavelength ultraviolet-excited alkaline earth aluminate phosphor and light emitting device using the same
JP2015183084A (en) Fluorescent material for violet ray excitation, composition containing fluorescent material and light-emitting device using the fluorescent material and lightening apparatus and picture display unit using the light-emitting device
CN100490192C (en) Light emitting diode
CN107488450A (en) The manufacture method of chlorate MClO 3 fluorescent substance, light-emitting device and chlorate MClO 3 fluorescent substance
WO2024142450A1 (en) Light-emitting device, lighting device, image display device, and indicator lamp for vehicles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R150 Certificate of patent or registration of utility model

Ref document number: 5989775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250