JP5834765B2 - Multi-component laser gas analyzer - Google Patents
Multi-component laser gas analyzer Download PDFInfo
- Publication number
- JP5834765B2 JP5834765B2 JP2011232698A JP2011232698A JP5834765B2 JP 5834765 B2 JP5834765 B2 JP 5834765B2 JP 2011232698 A JP2011232698 A JP 2011232698A JP 2011232698 A JP2011232698 A JP 2011232698A JP 5834765 B2 JP5834765 B2 JP 5834765B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- signal
- light emitting
- gas
- emitting element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 claims description 197
- 238000001514 detection method Methods 0.000 claims description 107
- 238000005259 measurement Methods 0.000 claims description 76
- 239000013307 optical fiber Substances 0.000 claims description 74
- 239000000835 fiber Substances 0.000 claims description 53
- 238000012545 processing Methods 0.000 claims description 53
- 230000003287 optical effect Effects 0.000 claims description 39
- 230000001360 synchronised effect Effects 0.000 claims description 31
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 27
- 230000035945 sensitivity Effects 0.000 claims description 23
- 230000031700 light absorption Effects 0.000 claims description 18
- 230000004075 alteration Effects 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 12
- 238000004868 gas analysis Methods 0.000 claims description 12
- 230000000644 propagated effect Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 12
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 9
- 229910002091 carbon monoxide Inorganic materials 0.000 description 9
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000013626 chemical specie Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000001307 laser spectroscopy Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本発明は、空間内の各種の測定対象ガスの有無や濃度を分析する多成分用レーザ式ガス分析計に関する。 The present invention relates to a multi-component laser gas analyzer that analyzes the presence and concentration of various measurement target gases in a space.
多成分用レーザ式ガス分析計の従来技術として、例えば、特許文献1(特開2000−74830号公報(特許第4038631号公報)、発明の名称「半導体レーザ分光法を用いた温度・濃度・化学種の高速計測方法および計測システム」)に記載の発明が知られている。この計測システムについて図を参照しつつ説明する。 As conventional techniques of multi-component laser gas analyzers, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2000-74830 (Patent No. 4038631)), title of the invention “temperature / concentration / chemistry using semiconductor laser spectroscopy” The invention described in “High-Speed Measurement Method and Measurement System of Species” is known. This measurement system will be described with reference to the drawings.
図15は、従来技術の光ファイバを用いたレーザ式ガス分析計の実施形態を示す全体構成図である。図15において、501,502は発光部としての半導体レーザで、互いに異なる波長λ1(例えば1.996μm)、λ2(例えば2.050μm)のレーザ光を発するものであり、例えば分布帰還型(DFB)半導体レーザよりなる。これらの半導体レーザ501,502は、ファンクションジェネレータ503によってそれぞれ電流制御される。
FIG. 15 is an overall configuration diagram showing an embodiment of a laser gas analyzer using a conventional optical fiber. In FIG. 15,
504,505は半導体レーザ501,502に光ファイバ506,507を介して接続されるファイバカプラ、508は半導体レーザ501,502がそれぞれ発するレーザ光を後述するセル513に測定光として送出するためのファイバカプラで、509,510は光ファイバである。なお、ファイバカプラ504,505には、参照光としてのレーザ光用の光ファイバ511,512がそれぞれ接続されている。
513は前記ファイバカプラ508の後段に設けられるセルである。このセル513の両端部は、2μm付近のレーザ光を透過させるセル窓513a,513bで封止されるとともに、ガス導入口513c、ガス導出口513dを備え、ガス導入口513cには例えばCO2と空気とを適宜の割合で供給できるように開閉弁514,515を備えたガス供給ライン516,517が接続され、ガス導出口513dには開閉弁518および真空ポンプ519を備えたガス排出ライン520が接続されている。
また、セル窓513a,513bの外部にミラー521,522を設け、セル513に入射したレーザ光がセル513内を数回通過した後、出射するように構成されている。
そして、523,524はセル513の前段側および後段側にそれぞれ設けられるコリメータで、後段側のコリメータ524の後段には分波器525が設けられている。この分波器525は、セル513を透過した二つの波長のレーザ光(測定光)を波長λ1,λ2のレーザ光に分離するものである。
In addition, mirrors 521 and 522 are provided outside the
526,527は測定光用のフォトダイオード、528,529は参照光用のフォトダイオードで、これらのフォトダイオード526,527には分波器525によって分離された波長λ1,λ2のレーザ光(測定光)が入射し、フォトダイオード528,529には光ファイバ511,512を経て波長λ1,λ2のレーザ光(参照光)が入射する。
530〜533は前記フォトダイオード526〜529にそれぞれ対応して設けられるプリアンプで、これらのプリアンプ530〜533は、A/D変換器534を経て図示していない信号処理装置(例えばコンピュータ)に入力されるように構成されている。
上述のように構成されたレーザ式ガス分析計においては、セル513にCO2と空気とを適宜の割合で混合したガスが被測定ガスとして供給される。この状態において、半導体レーザ501,502からそれぞれ発せられた二つの波長のレーザ光λ1,λ2が、混合した状態で被測定ガスが充填されたセル513を測定光として透過する。この測定光は、分波器525において元の波長λ1,λ2のレーザ光となり、フォトダイオード526,527に入射する。一方、前記半導体レーザ501,502からそれぞれ発せられた二つの波長のレーザ光λ1,λ2は、そのまま光ファイバ511,512を経て参照光としてフォトダイオード528,529に入射する。
In the laser type gas analyzer configured as described above, a gas in which CO 2 and air are mixed in an appropriate ratio is supplied to the
そして、フォトダイオード526〜529からは、入射する光に応じた信号を出力し、これらの出力信号は、プリアンプ530〜533を経てA/D変換器534に入り、その変換出力がコンピュータに入力され、信号処理される。セル513に供給された被測定ガスの温度・濃度・化学種が求められる。
The
このレーザ式ガス分析計においては、計測に用いるレーザ光を、従来よりも長い波長である2μm付近の相異なる波長λ1,λ2のレーザ光を用いているので、吸収の強い吸収線で計測を行うことができ、必要光路長の短縮や、温度・濃度・化学種の測定におけるS/Nの向上が図れる。従来技術はこのようなものである。 In this laser gas analyzer, the laser light used for the measurement, different wavelengths lambda 1 of 2μm around a longer wavelength than conventional, because of the use of laser beam of lambda 2, measured by absorption of strong absorption lines Thus, the required optical path length can be shortened and the S / N can be improved in the measurement of temperature, concentration and chemical species. The prior art is like this.
この先行技術では、発光側において異なる波長のレーザ光をファイバカプラ508によって1本の光ファイバ上に結合しているが、一般に、ファイバカプラには挿入損失が存在する。例えば、2入力1出力の溶融延伸型ファイバカプラであれば少なくとも一方の入力ポートにおいて3dB以上の挿入損失がある。また、異なる2波長のみを結合する場合は、それら特定の2波長に対して挿入損失を3dB以下に低減するように設計された波長分割多重(WDM)型ファイバカプラを用いることが可能であるが、異なる3波長以上では、波長分割多重方式は適用できない。
In this prior art, laser beams having different wavelengths are coupled onto one optical fiber by the
すなわち、例えば酸素検出用の波長763nmレーザと、二酸化炭素検出用の波長2004nmレーザと、一酸化炭素検出用の波長2330nmレーザの3波長をファイバカプラで1本の光ファイバ上に結合する場合には、波長分割多重型ファイバカプラであらかじめ2波長を1本の光ファイバに結合し、そこでの各挿入損失を3dB以下に抑えたとしても、残りの1波長と前記の2波長を結合するためにもう一段ファイバカプラで結合することとなり、結局少なくとも1波長は3dB以上の挿入損失を生じる。 That is, for example, when combining three wavelengths of a wavelength 763 nm laser for oxygen detection, a wavelength 2004 nm laser for carbon dioxide detection, and a wavelength 2330 nm laser for carbon monoxide detection on one optical fiber by a fiber coupler. Even if two wavelengths are coupled to one optical fiber in advance using a wavelength division multiplexing fiber coupler, and each insertion loss is suppressed to 3 dB or less, the remaining one wavelength is already coupled with the two wavelengths. The coupling is performed by a single-stage fiber coupler, and at least one wavelength eventually causes an insertion loss of 3 dB or more.
このように、発光側において異なる3波長以上のレーザ光をファイバカプラによって1本の光ファイバ上に結合する場合には、レーザ光源から出た光のパワーを受光素子まで効率よく伝送することができず、測定ガスの吸収信号の強度が低下するという問題がある。 As described above, when laser beams having three or more different wavelengths on the light emitting side are coupled onto one optical fiber by the fiber coupler, the power of the light emitted from the laser light source can be efficiently transmitted to the light receiving element. However, there is a problem that the intensity of the absorption signal of the measurement gas is lowered.
そこで、本発明は上記の問題に鑑みてなされたものであり、その目的は、発光側において、異なる複数波長以上のレーザ光源から出た光を、ファイバカプラを使用せずに空間に放射することによって、発光側での挿入損失を無くし、光のパワーを効率よく受光素子まで伝送することで、測定ガスの吸収信号の強度を高める多成分用レーザ式ガス分析計を提供することにある。 Therefore, the present invention has been made in view of the above-described problems, and an object of the present invention is to radiate light emitted from laser light sources having a plurality of different wavelengths on a light emitting side into a space without using a fiber coupler. Accordingly, it is an object of the present invention to provide a multi-component laser gas analyzer that increases the intensity of an absorption signal of a measurement gas by eliminating insertion loss on the light emission side and efficiently transmitting light power to the light receiving element.
上記課題を解決するため、請求項1に係る発明は、レーザ光による検出光を出射する発光部と、複数の測定対象ガスが存在する空間を介して伝播された検出光を受光する受光部と、を備え、複数種類の測定対象ガスの濃度を測定する周波数変調方式の多成分用レーザ式ガス分析計であって、
前記発光部は、
それぞれの測定対象ガス別に設けられる素子であって周波数変調されたレーザ光を出射する複数のピグテール型発光素子と、これらのピグテール型発光素子のレーザ光をそれぞれ伝送する複数のシングルモード型光ファイバと、これらのシングルモード型光ファイバの端部を束ねて各レーザ光の出射点を近接させるためのファイババンドル端部と、このファイババンドル端部から出射された結合光に対して収差の影響を低減しつつ前記空間に検出光として出射する放物面鏡と、を備え、
前記受光部は、
前記空間を透過した検出光を収差の影響を低減しつつ集光する放物面鏡と、この放物面鏡から出力された集光を結合させるマルチモード型光ファイバと、このマルチモード型光ファイバを介して伝送されたレーザ光を分波する分波手段と、分波手段により分波された分波光のうちの可視波長域に感度を有する可視光用受光素子と、分波手段により分波された分波光のうちの近赤外波長域に感度を有する近赤外光用受光素子と、可視光用受光素子からの検出信号に基づいてガス分析を行う可視光用処理回路と、近赤外光用受光素子からの検出信号に基づいてガス分析を行う近赤外光用処理回路と、を備え、
前記ピグテール型発光素子は、
発光素子本体と、この発光素子本体の温度検出手段と、前記発光素子本体の加熱冷却手段と、前記発光素子本体からの出射波長が所定値になるように前記温度検出手段による検出温度に応じて前記加熱冷却手段を制御する温度制御手段と、前記発光素子本体への供給電流を変化させて測定対象ガスの吸光特性を走査するための波長走査駆動信号およびトリガ信号を生成する波長走査駆動信号発生手段と、高周波変調信号を生成する高周波変調信号発生手段と、前記波長走査駆動信号を前記高周波変調信号により変調して前記発光素子本体に対する駆動信号を生成する駆動信号発生手段と、をそれぞれ備えると共に、
前記可視光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記可視光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備え、
前記近赤外光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記近赤外光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備えたことを特徴とする。
In order to solve the above-described problem, an invention according to
The light emitting unit
A plurality of pigtail-type light-emitting elements that are provided for each measurement target gas and emit frequency-modulated laser light, and a plurality of single-mode optical fibers that respectively transmit laser light of these pigtail-type light-emitting elements, , Fiber bundle end for bundling the ends of these single-mode optical fibers and bringing the laser beam exit points close to each other, and reducing the influence of aberration on the combined light emitted from the fiber bundle end And a parabolic mirror that emits as detection light in the space,
The light receiving unit is
A parabolic mirror that condenses the detection light transmitted through the space while reducing the influence of aberration, a multimode optical fiber that combines the condensed light output from the parabolic mirror, and the multimode light Demultiplexing means for demultiplexing the laser light transmitted through the fiber, a visible light receiving element having sensitivity in the visible wavelength region of the demultiplexed light demultiplexed by the demultiplexing means, and demultiplexing by the demultiplexing means. A near-infrared light receiving element having sensitivity in the near-infrared wavelength region of the demultiplexed light, a visible light processing circuit for performing gas analysis based on a detection signal from the visible light receiving element, A near infrared light processing circuit that performs gas analysis based on a detection signal from the infrared light receiving element,
The pigtail type light emitting element is
According to the temperature detected by the temperature detecting means, the temperature detecting means of the light emitting element main body, the heating / cooling means of the light emitting element main body, and the emission wavelength from the light emitting element main body become a predetermined value. Temperature control means for controlling the heating / cooling means, and wavelength scanning drive signal generation for generating a wavelength scanning drive signal and a trigger signal for scanning the light absorption characteristics of the measurement target gas by changing a supply current to the light emitting element body And a drive signal generating means for generating a drive signal for the light emitting element body by modulating the wavelength scanning drive signal with the high frequency modulation signal. ,
The visible light processing circuit comprises:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronous detection means for detecting the double frequency component from the output signal of the visible light receiving element, respectively. And a calculation means for calculating the concentration of the measurement target gas based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal,
The near infrared light processing circuit is:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronization for detecting the double frequency component from the output signal of the near-infrared light receiving element. It is characterized by comprising detection means and calculation means for calculating the concentration of the gas to be measured based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal.
請求項2に係る発明は、レーザ光による検出光を出射する発光部と、複数の測定対象ガスが存在する空間を介して伝播された検出光を受光する受光部と、を備え、複数種類の測定対象ガスの濃度を測定する周波数変調方式の多成分用レーザ式ガス分析計であって、
前記発光部は、
それぞれの測定対象ガス別に設けられる素子であって周波数変調されたレーザ光を出射する複数のピグテール型発光素子と、これらのピグテール型発光素子のレーザ光をそれぞれ伝送する複数のシングルモード型光ファイバと、これらのシングルモード型光ファイバの端部を束ねて各レーザ光の出射点を近接させるためのファイババンドル端部と、このファイババンドル端部から出射された結合光に対して収差の影響を低減しつつ前記空間に検出光として出射する放物面鏡と、を備え、
前記受光部は、
前記空間を透過した検出光を収差の影響を低減しつつ集光する放物面鏡と、可視波長域に感度を有する可視光用受光素子および近赤外波長域に感度を有する近赤外光用受光素子が一体化されており受光側光学部から出力された集光について両者が検出信号を出力する受光素子と、受光素子のうちの可視光用受光素子からの検出信号に基づいてガス分析を行う可視光用処理回路と、受光素子のうちの近赤外光用受光素子からの検出信号に基づいてガス分析を行う近赤外光用処理回路と、を備え、
前記ピグテール型発光素子は、
発光素子本体と、この発光素子本体の温度検出手段と、前記発光素子本体の加熱冷却手段と、前記発光素子本体からの出射波長が所定値になるように前記温度検出手段による検出温度に応じて前記加熱冷却手段を制御する温度制御手段と、前記発光素子本体への供給電流を変化させて測定対象ガスの吸光特性を走査するための波長走査駆動信号およびトリガ信号を生成する波長走査駆動信号発生手段と、高周波変調信号を生成する高周波変調信号発生手段と、前記波長走査駆動信号を前記高周波変調信号により変調して前記発光素子本体に対する駆動信号を生成する駆動信号発生手段と、をそれぞれ備えると共に、
前記可視光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記可視光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備え、
前記近赤外光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記近赤外光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備えたことを特徴とする。
請 Motomeko 2 according the invention comprises a light emitting unit for emitting detecting light by a laser beam, a light receiving unit that receives the detection light that is propagated through a space in which a plurality of measurement target gas is present, a plurality of types A multi-component laser gas analyzer for frequency modulation that measures the concentration of the gas to be measured,
The light emitting unit
A plurality of pigtail-type light-emitting elements that are provided for each measurement target gas and emit frequency-modulated laser light, and a plurality of single-mode optical fibers that respectively transmit laser light of these pigtail-type light-emitting elements, , Fiber bundle end for bundling the ends of these single-mode optical fibers and bringing the laser beam exit points close to each other, and reducing the influence of aberration on the combined light emitted from the fiber bundle end And a parabolic mirror that emits as detection light in the space,
The light receiving unit is
A parabolic mirror that condenses detection light transmitted through the space while reducing the influence of aberration, a visible light receiving element having sensitivity in the visible wavelength range, and near infrared light having sensitivity in the near infrared wavelength range The light receiving element for integrating the light receiving element for outputting light from the light receiving side optical unit and gas analysis based on the detection signal from the light receiving element for visible light of the light receiving elements. includes a visible light processing circuit for performing, and a near-infrared light processing circuit for performing gas analysis based on the detection signal from the near-infrared light-receiving element of the light receiving element,
The pigtail type light emitting element is
According to the temperature detected by the temperature detecting means, the temperature detecting means of the light emitting element main body, the heating / cooling means of the light emitting element main body, and the emission wavelength from the light emitting element main body become a predetermined value. Temperature control means for controlling the heating / cooling means, and wavelength scanning drive signal generation for generating a wavelength scanning drive signal and a trigger signal for scanning the light absorption characteristics of the measurement target gas by changing a supply current to the light emitting element body And a drive signal generating means for generating a drive signal for the light emitting element body by modulating the wavelength scanning drive signal with the high frequency modulation signal. ,
The visible light processing circuit comprises:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronous detection means for detecting the double frequency component from the output signal of the visible light receiving element, respectively. And a calculation means for calculating the concentration of the measurement target gas based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal,
The near infrared light processing circuit is:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronization for detecting the double frequency component from the output signal of the near-infrared light receiving element. It is characterized by comprising detection means and calculation means for calculating the concentration of the gas to be measured based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal .
請求項3に係る発明は、レーザ光による検出光を出射する発光部と、複数の測定対象ガスが存在する空間を介して伝播された検出光を受光する受光部と、を備え、複数種類の測定対象ガスの濃度を測定する周波数変調方式の多成分用レーザ式ガス分析計であって、
前記発光部は、
それぞれの測定対象ガス別に設けられる素子であって周波数変調されたレーザ光を出射する複数のピグテール型発光素子と、これらのピグテール型発光素子のレーザ光をそれぞれ伝送する複数のシングルモード型光ファイバと、これらのシングルモード型光ファイバの端部を束ねて各レーザ光の出射点を近接させるためのファイババンドル端部と、このファイババンドル端部から出射された結合光に対して収差の影響を低減しつつ前記空間に検出光として出射する放物面鏡と、を備え、
前記受光部は、
前記空間を透過した検出光を収差の影響を低減しつつ集光する放物面鏡と、受光側光学部から出力された集光について検出信号を出力する近赤外波長域に感度のピークを持ちかつ可視波長域にも感度を有する広帯域近赤外光用受光素子と、広帯域近赤外光用受光素子からの検出信号に基づいてガス分析を行う近赤外光用処理回路と、を備え、
前記ピグテール型発光素子は、
発光素子本体と、この発光素子本体の温度検出手段と、前記発光素子本体の加熱冷却手段と、前記発光素子本体からの出射波長が所定値になるように前記温度検出手段による検出温度に応じて前記加熱冷却手段を制御する温度制御手段と、前記発光素子本体への供給電流を変化させて測定対象ガスの吸光特性を走査するための波長走査駆動信号およびトリガ信号を生成する波長走査駆動信号発生手段と、高周波変調信号を生成する高周波変調信号発生手段と、前記波長走査駆動信号を前記高周波変調信号により変調して前記発光素子本体に対する駆動信号を生成する駆動信号発生手段と、をそれぞれ備えると共に、
前記可視光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記可視光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備え、
前記近赤外光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記近赤外光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備えたことを特徴とする。
請 Motomeko according to 3 invention includes a light emitting portion for emitting detecting light by a laser beam, a light receiving unit that receives the detection light that is propagated through a space in which a plurality of measurement target gas is present, a plurality of types A multi-component laser gas analyzer for frequency modulation that measures the concentration of the gas to be measured,
The light emitting unit
A plurality of pigtail-type light-emitting elements that are provided for each measurement target gas and emit frequency-modulated laser light, and a plurality of single-mode optical fibers that respectively transmit laser light of these pigtail-type light-emitting elements, , Fiber bundle end for bundling the ends of these single-mode optical fibers and bringing the laser beam exit points close to each other, and reducing the influence of aberration on the combined light emitted from the fiber bundle end And a parabolic mirror that emits as detection light in the space,
The light receiving unit is
A parabolic mirror that condenses the detection light transmitted through the space while reducing the influence of aberration, and a peak of sensitivity in the near-infrared wavelength region that outputs a detection signal for the light collected from the light receiving side optical unit. A broadband near-infrared light receiving element having sensitivity in the visible wavelength range, and a near-infrared light processing circuit for performing gas analysis based on a detection signal from the broadband near-infrared light receiving element. ,
The pigtail type light emitting element is
According to the temperature detected by the temperature detecting means, the temperature detecting means of the light emitting element main body, the heating / cooling means of the light emitting element main body, and the emission wavelength from the light emitting element main body become a predetermined value. Temperature control means for controlling the heating / cooling means, and wavelength scanning drive signal generation for generating a wavelength scanning drive signal and a trigger signal for scanning the light absorption characteristics of the measurement target gas by changing a supply current to the light emitting element body And a drive signal generating means for generating a drive signal for the light emitting element body by modulating the wavelength scanning drive signal with the high frequency modulation signal. ,
The visible light processing circuit comprises:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronous detection means for detecting the double frequency component from the output signal of the visible light receiving element, respectively. And a calculation means for calculating the concentration of the measurement target gas based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal,
The near infrared light processing circuit is:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronization for detecting the double frequency component from the output signal of the near-infrared light receiving element. It is characterized by comprising detection means and calculation means for calculating the concentration of the gas to be measured based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal .
本発明によれば、発光側において、異なる複数波長以上のレーザ光源から出た光を、ファイバカプラを使用せずに空間に放射することによって、発光側での挿入損失を無くし、光のパワーを効率よく受光素子まで伝送することで、測定ガスの吸収信号の強度を高めることができる。 According to the present invention, on the light emitting side, light emitted from laser light sources having a plurality of different wavelengths or more is emitted to the space without using a fiber coupler, thereby eliminating insertion loss on the light emitting side and reducing the light power. By efficiently transmitting to the light receiving element, the intensity of the absorption signal of the measurement gas can be increased.
続いて、本発明を実施するための形態に係る多成分用レーザ式ガス分析計について図を参照しつつ以下に説明する。図1は、本形態の多成分用レーザ式ガス分析計の全体構成図である。
本形態の多成分用レーザ式ガス分析計1は、周波数変調方式を採用している。この多成分用レーザ式ガス分析計1は、変調光生成部10、発光側光学部20、受光側光学部30、分析部40を備えている。このうち、図1でも示すように、変調光生成部10、発光側光学部20で本発明の発光部100を構成する。また、受光側光学部30、分析部40で本発明の受光部200を構成する。
Next, a multi-component laser gas analyzer according to an embodiment for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of a multi-component laser gas analyzer according to the present embodiment.
The multi-component
変調光生成部10は、さらにピグテール型発光素子11a,11b,11c,11dと、シングルモード型ファイバ(ピグテール)12a,12b,12c,12dと、を備える。
発光側光学部20は、さらにファイババンドル端部21と、コリメート放物面鏡22と、発光側ウェッジ付窓板23と、を備える。
The modulated
The light emitting side
受光側光学部30は、さらに集光放物面鏡31と、ファイバ端部32と、受光側ウェッジ付窓板33と、を備える。
分析部40は、さらにマルチモード型光ファイバ41,43a,43bと、分波器42と、可視光用受光素子44aと、近赤外用受光素子44bと、可視光用処理回路45aと、近赤外用処理回路45bと、を備える。
The light receiving side
The
発光側光学部20、受光側光学部30は、図1に示すように、複数の測定対象ガスからなるガスが流通する配管等の壁71a,71bに、溶接等により固定されたフランジ72a,72b及び光軸調整フランジ73a,73bを介して取り付けられる。ここで、光軸調整フランジ73a,73bは、発光側光学部20から出射される検出光60が受光側光学部30において最大の光量で受光されるように光軸を調整するためのものである。
As shown in FIG. 1, the light-emitting side
なお、発光側ウェッジ付窓板23、受光側ウェッジ付窓板33は、光路内にあり、検出光60を透過させつつ、複数の測定対象ガスを含むガスが発光側光学部20や受光側光学部30の内部に進入しないようにし、コリメート放物面鏡22、集光放物面鏡31やファイババンドル端部21、ファイバ端部32が直接ガスに触れないよう保護する役割を果たす。
Note that the
次に、発光部100、および、受光部200の詳細構成について説明する。まず、発光部100について図1〜図4を参照しつつ詳細に説明する。
変調光生成部10は、測定対象ガスの吸光特性に応じたレーザ光の発光素子を複数設けて、測定対象ガスの個数のレーザ光を照射するようになされており、これらレーザ光に対して周波数を変調した変調光を複数生成し、これら複数の変調光を発光側光学部20へと伝送するユニットである。
Next, detailed configurations of the light emitting unit 100 and the
The modulated
変調光生成部10は、図1で示すように、さらに測定対象ガスの種類の数に等しい個数(本形態では例示的に4個として説明する)のピグテール型発光素子11a,11b,11c,11dと、ピグテール型発光素子と同じ本数(本形態では例示的に4本として説明する)のシングルモード型光ファイバ(ピグテール)12a,12b,12c,12dとを備えている。なお、ピグテール型発光素子11a,11b,11c,11dと、シングルモード型光ファイバ12a,12b,12c,12dとは、それぞれ、予め光学的に接続された状態でピグテール型レーザ素子として市販されているものもあり、この場合、光学的な調整が不要である。
As shown in FIG. 1, the modulated
ピグテール型発光素子11a,11b,11c,11dは、詳しくは後述するが、図2で示すような構成としている。
ピグテール型発光素子11a,11b,11c,11dは、それぞれ発光素子本体111a,111b,111c,111dを内蔵している。これら発光素子本体111a,111b,111c,111dは、測定対象ガス1成分につき1個の発光素子を用いるように構成している。これらは、例えば、DFBレーザ(Distributed Feedback Laser)、もしくはVCSEL(Vertical Cavity Surface Emitting Laser)といわれるレーザ素子である。
The pigtail-type
The pigtail type
これらレーザ素子は、発光波長がガスの吸光特性に一致する可視領域や近赤外領域にて発光が可能であり、かつ、電流と温度により、発光波長を可変可能である。本形態では説明の具体化のため、可視領域を発するのはピグテール型発光素子11aであるとし、また、近赤外領域を発するのはピグテール発光素子11b,11c,11dであるものとして説明する。
These laser elements can emit light in the visible region or near-infrared region where the emission wavelength matches the light absorption characteristic of the gas, and the emission wavelength can be varied by current and temperature. In this embodiment, for the sake of concrete explanation, it is assumed that the visible region emits the pigtail
なお、このような構成は測定対象ガスの実状に応じて決定されるものであり、例えば、可視領域を発するピグテール型発光素子を2個、近赤外領域を発するピグテール型発光素子を4個というように適宜選択することができる。一般に可視領域を発するm個のピグテール型発光素子および近赤外領域を発するn個のピグテール型発光素子を配置するものである。 Such a configuration is determined according to the actual state of the measurement target gas. For example, two pigtail light emitting elements emitting a visible region and four pigtail light emitting elements emitting a near infrared region are referred to as, for example. It can be selected as appropriate. In general, m pigtail light emitting elements emitting a visible region and n pigtail light emitting devices emitting a near infrared region are arranged.
本形態では測定対象ガスとして酸素ガス(O2ガス)、塩素ガス(HClガス)、二酸化炭素ガス(CO2ガス)、一酸化炭素ガス(COガス)を測定するものとする。
可視領域として、例えば、酸素ガス(O2ガス)を検出するために波長763nmを発光するピグテール型発光素子11aとし、近赤外領域として、例えば塩素ガス(HClガス)を検出するために波長1780nmを発光するピグテール型発光素子11bとし、二酸化炭素ガス(CO2ガス)を検出するために波長2004nmを発光するピグテール型発光素子11cとし、一酸化炭素ガス(COガス)を検出するために波長2330nmを発光するレーザ素子11dとする。
In this embodiment, oxygen gas (O 2 gas), chlorine gas (HCl gas), carbon dioxide gas (CO 2 gas), and carbon monoxide gas (CO gas) are measured as measurement target gases.
The visible region is, for example, a pigtail
これらのピグテール型発光素子11a,11b,11c,11dは、ガスの吸収特性に一致する可視領域・近赤外領域の波長にて発光が可能であり、さらに、図3(a)に示したようにドライブ電流により発光波長を可変とすることができる。また、図3(b)に示したように温度によって発光波長を可変とすることができる。このように温度と電流で、レーザの発光波長を可変可能である。なお、レーザ素子以外でも上記の条件を満たす、つまり測定対象ガスの吸収波長帯域で波長掃引できるものであれば他種の発光素子を用いてもよい。
These pigtail-type
続いてピグテール型発光素子11a,11b,11c,11d内の制御について説明する。
図2において、発光素子本体111a,111b,111c,111dの温度は、サーミスタ等の温度検出素子112a,112b,112c,112dを用いて検出される。これらの温度検出素子112a,112b,112c,112dは温度制御回路113a,113b,113c,113dに接続されている。これら、温度制御回路113a,113b,113c,113dは、発光素子本体111a,111b,111c,111dの発光波長を安定化させるため、温度検出素子112a,112b,112c,112dの抵抗値がそれぞれ一定になるようにPID制御等を行ってペルチェ素子114a,114b,114c,114dの温度制御を行い、発光素子本体111a,111b,111c,111dの温度を調節する。
Next, control in the pigtail type
In FIG. 2, the temperatures of the light emitting
また、発光波長を変化させる波長走査駆動信号発生回路115a,115b,115c,115dの出力信号と、発光波長を周波数変調させるための高周波変調信号発生回路1116a,116b,116c,116dの出力信号とを、駆動信号発生回路117a,117b,117c,117dにより合成して駆動信号を生成し、この駆動信号をV−I変換して発光素子本体111a,111b,111c,111dに供給する。これにより、発光素子本体111a,111b,111c,111dからは、それぞれ異なる種類の測定対象ガスの吸光特性を走査するための、周波数変調された所定波長のレーザ光が出射される。したがって、ピグテール型発光素子11a,11b,11c,11dから所定波長のレーザ光が出射される。
Further, output signals from the wavelength scanning drive
そして、波長走査駆動信号発生回路115a,115b,115c,115dからはそれぞれトリガ信号a,トリガ信号b,トリガ信号c,トリガ信号dが出力される。これらトリガ信号aは、通信線50を介して可視光用処理回路45aの演算回路455aへ入力され(図7(a)参照)、また、トリガ信号b,トリガ信号c,トリガ信号dは近赤外光処理回路45bの演算回路455b,455c,455dへ入力される(図7(b)参照)。これらトリガ信号については後述する。
The wavelength scanning drive
図1にもどるが、ピグテール型発光素子11a,11b,11c,11dから出射したレーザ光は、それぞれシングルモード型光ファイバ12a,12b,12c,12d内を伝送される。これらシングルモード型光ファイバ12a,12b,12c,12dは、ピグテール型発光素子11a,11b,11c,11dの各々の発光波長に応じた適切なコア径や屈折率のものを選ぶことができる。
Returning to FIG. 1, the laser beams emitted from the pigtail type
このことにより、マルチモード型光ファイバを用いて複数の波長をまとめて伝送する場合と比較して、伝送損失を小さく抑えることができる。また、途中に光ファイバカプラを使用しないため、挿入損失が発生せず、効率よく光を伝送できるという利点がある。こうしてピグテール型レーザ素子11a,11b,11c,11dから出射したレーザ光は、発光側光学部30内にあるファイババンドル端部21へと効率よく伝送される。
As a result, the transmission loss can be reduced compared to the case where a plurality of wavelengths are transmitted together using a multimode optical fiber. Further, since no optical fiber coupler is used in the middle, there is an advantage that no insertion loss occurs and light can be transmitted efficiently. Thus, the laser light emitted from the pigtail
次に、ファイババンドル端部21の詳細を説明する。ファイババンドル端部21は、図4に示すように、フェルール211により、シングルモード型光ファイバ12a,12b,12c,12dの端部を束ねて、各レーザ光の出射点を近接させる役割を果たす。図4では、4本の光ファイバを束ねた場合の断面の一例を示す。
Next, details of the fiber
フェルール211は、その中心部に、断面が正方形状の中空穴212を備えている。中空穴212の大きさは、シングルモード型光ファイバ12a,12b,12c,12dを断面が正方格子状に接するように並べたときに、内接する大きさとしており、そのため光ファイバ同士の位置関係は固定される。
The
例えば、典型的なシングルモード型光ファイバの直径は125μmであるから、正方形状の中空穴212の一辺の長さを250μmとして、光ファイバ同士の位置関係を固定する。このようにシングルモード型光ファイバ12a,12b,12c,12dを近接させることにより、レーザ素子からの発光点を近接させる。
For example, since the diameter of a typical single mode type optical fiber is 125 μm, the length of one side of the square
図4の場合においては、シングルモード型光ファイバ12a,12b,12c,12dは正方格子状に並んでいるため、発光点の間隔は最近接で125μmとなる。これにより複数のシングルモード型光ファイバ12a,12b,12c,12dから発せられる各レーザ光をファイババンドル端部21で近接させつつ出射することで結合して結合光を生成することができる。
In the case of FIG. 4, since the single mode type
また、ファイババンドル端部21の先端は、断面での反射による戻り光の影響を低減するために、斜め研磨あるいは斜め球面研磨とすることができる。なお、中空穴212の形状は正方形に限定されるものではなく、例えば円形であってもよく、光ファイバ同士の位置関係が固定できればよい。また、シングルモード型光ファイバが2本,3本,5本、6本という場合でも適宜形状の中空穴212を形成してファイババンドル端部21で把持することが可能である。
Further, the tip of the fiber
図1に戻って説明する。ファイババンドル端部21から出射したレーザ光は、コリメート放物面鏡22により平行光に変換される。ここで、放物面鏡について説明する。放物面鏡とは、その反射面が回転放物面の一部からなる鏡である。放物面鏡の回転軸に対して平行に反射面に入射した光は、放物面鏡の焦点に集光する。一方、放物面鏡の焦点から発し反射面に入射した光は、放物面鏡の回転軸に対して平行な光に変換される。上記の性質を利用して、以下のようにコリメート光学系を構成する。
Returning to FIG. Laser light emitted from the
すなわち、ファイババンドル端部21をコリメート放物面鏡22の焦点に配置することにより、ファイババンドル端部21から出射した結合光24はコリメート放物面鏡22によって反射され、検出光60は平行光となる。実際には、光ファイババンドル端部21を焦点に配置しても、シングルモード型光ファイバ12a,12b,12c,12dの発光点のすべてを焦点と完全に一致させることはできず、光ファイバの半径程度の距離をもって離れることとなる。
That is, by arranging the
この影響は、検出光60に含まれる複数のレーザ光の断面形状が非円形状となることや、光軸に対して若干の角度をもつこととなって現れるが、光路長が数m程度であればその影響は十分に小さい。なお、レーザ光のコリメートにレンズではなく放物面鏡を採用した理由を説明すると、レンズはコリメートの原理に屈折を利用するために色収差の影響があり、波長760nmから2330nmに渡る広帯域なレーザ光を等しく平行にすることが困難であるからである。放物面鏡であればコリメートの原理に反射を利用するために、レンズの場合のような色収差は発生しないので、波長によらずレーザ光を等しくコリメートすることが可能である。
This effect appears because the cross-sectional shape of the plurality of laser beams included in the
上記のように平行光となった検出光60は、発光側ウェッジ付窓板23を透過し、壁71a,71bの内部区間(複数の測定対象ガスが流通する空間)を伝播し、受光側ウェッジ付窓板33を透過する。ここで平行平面窓板ではなく、ウェッジ付窓板を採用する理由を説明する。
一般に、窓板の表面あるいは裏面では、レーザ光が多少の反射を起こす。このため、窓板の表面あるいは裏面(本実施形態の場合は、発光側ウェッジ付窓板23の表面と裏面および受光側ウェッジ付窓板33の表面と裏面の合計4面ある)のうち、複数の面が光軸に対して垂直に配置されていると、多重反射を生じ光学干渉ノイズを引き起こす。その結果、受光信号の強度を変調させ、ガス濃度の計測が不正確となってしまう。この現象を避けるために、平行平面窓板を採用せず、ウェッジ付窓板を採用する。また、ウェッジ付窓板の表面、裏面はそれらのどれもが光軸に対して垂直とならないように配置することが望ましい。
The
In general, laser light causes some reflection on the front or back surface of the window plate. For this reason, among the front surface or the back surface of the window plate (in the case of this embodiment, there are a total of four surfaces including the front surface and the back surface of the window plate with light emitting
続いて、受光部200について説明する。受光部200は、検出光60を受光し、測定対象ガスの吸光特性により吸収された光について分析するユニットである。すなわち、受光側光学部30では、図1で示すように、受光側ウェッジ付窓板33を透過した平行光である検出光60は、集光放物面鏡31に入射し、反射してファイバ端部32へと集束する集光34となり、マルチモード型光ファイバ41に結合する。ファイバ端部32を集光放物面鏡31の焦点に配置し、集光放物面鏡31の回転軸を検出光60に対して平行に配置することにより、検出光60はマルチモード型光ファイバ41に効率よく結合する。従って、この形態によれば、レーザ光の波長に依存せずにコリメート及び集光が可能であるため、確実に検出光60をマルチモード型光ファイバ41に入力することが可能になる。
Next, the
続いて、分析部40について説明する。分析部40は、検出光60をマルチモード型光ファイバ41を介して受光し、測定対象ガスの吸光特性により吸収された光について分析するユニットである。
Next, the
ここで、マルチモード型光ファイバ41を採用した理由(シングルモード型ではなくマルチモード型である理由)を説明する。それは、マルチモード型光ファイバの方が、シングルモード型光ファイバに比べてコアの直径が大きく、レーザ光の結合効率が高いからである。集光放物面鏡31によって集光されたレーザ光は、必ずしも1点に集光されるわけではなく、有限の広がりをもつて集光する。シングルモード型光ファイバ12a,12b,12c,12dの発光点が、コリメート放物面鏡22の焦点からずれて配置される影響や、コリメート放物面鏡22および集光放物面鏡31の反射面の品質の影響により、集光されたレーザ光の断面形状はある程度の広がりをもつこととなる。
さらに、装置周辺の振動や温度変化によって徐々に光軸調整がずれた場合に、集光されたレーザ光が光ファイバ端部32から外れるため、コアの直径は十分に大きくして余裕をもたせることが望ましい。
Here, the reason why the multimode
Furthermore, when the optical axis adjustment gradually shifts due to vibrations or temperature changes around the device, the focused laser beam is detached from the
そのため、シングルモード型光ファイバのようにコアの直径が10μm程度の光ファイバではなく、マルチモード型光ファイバのように、コアの直径が50μm以上あるような光ファイバを採用し、集光されたレーザ光を効率よく結合させ、かつ光軸調整のずれに対する余裕を与える。なお、マルチモード型光ファイバ41のコアの直径は、適当な値を選ぶことができるが、大きくするほど、伝送損失が大きくなることには注意が必要である。
For this reason, an optical fiber having a core diameter of 50 μm or more, such as a multimode optical fiber, is used instead of an optical fiber having a core diameter of about 10 μm as in a single mode optical fiber. The laser beam is efficiently combined, and a margin for deviation in optical axis adjustment is given. Note that an appropriate value can be selected for the core diameter of the multimode
そして、分析部40では、マルチモード型光ファイバ41を伝送したレーザ光を分波器42が適当な分岐比で分波する。この分波器42は、分波機能を有しているものであればよく、具体的には、マルチモード型光ファイバカプラ、または、マルチモード型の光ファイバスイッチを採用することができる。
In the analyzing
これら分波光はマルチモード型光ファイバ43a,43bを介してそれぞれ可視光用受光素子44a、近赤外光用受光素子44bにてそれぞれ受光される。測定対象ガスとして酸素ガス(O2ガス)、塩素ガス(HClガス)、二酸化炭素ガス(CO2ガス)、一酸化炭素ガス(COガス)を測定するが、可視光用受光素子44aは、酸素ガス(O2ガス)を検出するために、図5に示すように400nm〜1000nmに感度をもつ可視波長域に感度をもつSiフォトダイオードを採用することができる。また、近赤外光用受光素子44bは、塩素ガス(HClガス)、二酸化炭素ガス(CO2ガス)、一酸化炭素ガス(COガス)を検出するために、図6に示すように1200nm〜2500nmに感度をもつ近赤外波長域に感度をもつInGaAsフォトダイオードを採用することができる。
These demultiplexed lights are respectively received by the visible
なお、分波器41により分波された分波光は、全ての波長のレーザ光が含まれているが、可視光用受光素子44a、近赤外光用受光素子44bは、波長に対して感度をもつ波長領域がそれぞれ決まっているため、それぞれ異なる領域の受光が可能となる。例えば、検出光のうち波長が763nmの光は可視光用受光素子44aでのみ検出される。また、検出光のうち波長が1780nm,2004nm,2330nmの光は近赤外光用受光素子44bでのみで検出される。
The demultiplexed light demultiplexed by the
これら可視光用受光素子44a、近赤外光用受光素子44bは、受光量に応じて、電気信号による検出信号に変換して可視光用処理回路45a,近赤外光用処理回路45bに送る。これら可視光用処理回路45a,近赤外光用処理回路45bは、例えば、検出信号に対して増幅やノイズのフィルタリングを行い、濃度を検出する。
The visible
図7(a)は、可視光用処理回路45aの内部構成図である。可視光用受光素子44aから可視光用処理回路45aへ入力された検出信号は、I−V変換回路451aによって電流信号から電圧信号に変換される。また、参照信号発生回路(発振回路)452aは、前記高周波変調信号発生回路116aによる高周波変調信号の2倍周波数の信号を参照信号として出力する。I−V変換回路451aにより変換された電圧信号と前記参照信号とは同期検波回路453aに入力され、前記電圧信号から2倍周波数成分の信号が抽出される。これらの信号はフィルタ454aに入力され、ノイズ除去、増幅等の処理が行われて演算回路455aに入力されると共に、この演算回路455aにおいて測定対象ガス(詳しくは酸素ガス(O2ガス))の濃度が演算されることになる。
FIG. 7A is an internal configuration diagram of the visible
また、図7(b)は、近赤外光用処理回路45bの内部構成図である。近赤外光用受光素子44bから近赤外光用処理回路45bへ入力された検出信号は、I−V変換回路451bによって電流信号から電圧信号に変換される。また、参照信号発生回路(発振回路)452b,452c,452dは、高周波変調信号発生回路116b,116c,116dによる高周波変調信号の2倍周波数の信号を参照信号として出力する。I−V変換回路451bにより変換された電圧信号と前記参照信号とは同期検波回路453b,453c,453dに入力され、前記電圧信号から2倍周波数成分の信号が抽出される。これらの信号はフィルタ454b,454c,454dに入力され、ノイズ除去、増幅等の処理が行われて演算回路455b,455c,455dに入力されると共に、この演算回路455b,455c,455dにおいて測定対象ガス(詳しくは、塩素ガス(HClガス)、二酸化炭素ガス(CO2ガス)、一酸化炭素ガス(COガス))の濃度が演算されることになる。
FIG. 7B is an internal configuration diagram of the near-infrared
次に、上記の構成において、測定対象ガスの濃度を検出する原理について説明する。ここでは可視領域にある酸素ガス(O2ガス)と近赤外領域にある塩素ガス(HClガス)、二酸化炭素ガス(CO2ガス)、一酸化炭素ガス(COガス)について検出する。酸素は、図8に示すように760nm〜768nmで吸光特性を有する。酸素検出するために、可視領域として、波長763nmを発光するピグテール型発光素子11aとする。同様に、近赤外領域として、例えば、塩素ガスを検出するために波長1780nmを発光するピグテール型発光素子11bとし、二酸化炭素ガスを検出するために波長2004nmを発光するピグテール型発光素子11cとし、一酸化炭素ガスを検出するために波長2330nmを発光するピグテール型発光素子11dとする。本発明では500〜2500nmまでの光が光ファイバ、分波器を伝播されるようにしたため、検出は可能である。
Next, the principle of detecting the concentration of the measurement target gas in the above configuration will be described. Here, oxygen gas (O 2 gas) in the visible region and chlorine gas (HCl gas), carbon dioxide gas (CO 2 gas), and carbon monoxide gas (CO gas) in the near infrared region are detected. As shown in FIG. 8, oxygen has a light absorption characteristic at 760 nm to 768 nm. In order to detect oxygen, a pigtail
まず、変調光生成部10から出射した検出光60は、測定対象ガスが流通する壁71a,71b内の空間を透過し、吸光されたものとする。これらの検出光は分析部40に入射する。
そして、可視光に感度をもつ可視光用受光素子(Siフォトダイオード)44aでは、763nmのピグテール型発光素子11aからの光のみを受光し、また、近赤外波長域に感度をもつ近赤外光用受光素子(InGaAsフォトダイオード)44bは、波長1780nmのピグテール型発光素子11bからのレーザ光、2004nmのピグテール型発光素子11cからのレーザ光、波長2330nmのピグテール型発光素子11dからのレーザ光を受光する。
First, it is assumed that the
The visible light receiving element (Si photodiode) 44a having sensitivity to visible light receives only light from the 763 nm pigtail type
図9(a)は、例えばピグテール型発光素子11aの駆動電流波形の一例を示している。
測定対象ガスの吸光特性を走査する波長走査駆動信号S1は、ピグテール型発光素子11aの駆動電流値を直線的に変化させてピグテール型発光素子11aの発光波長を徐々に変化させ、例えば、0.2nm程度の吸光特性を走査する。一方、信号S2は、駆動電流値をピグテール型発光素子11aが安定するスレッショルドカレント以上に保ち、一定波長で発光させるためのものである。さらに、信号S3では、駆動電流値を0mAにしておく。
FIG. 9A shows an example of a drive current waveform of the pigtail type
The wavelength scanning drive signal S 1 for scanning the light absorption characteristics of the measurement target gas gradually changes the emission current of the pigtail
図9(b)は、図2の高周波変調信号発生回路116aから出力される変調信号の波形図であり、測定対象ガスの吸光特性を検出するための信号S4は、例えば周波数が10kHzの正弦波とし、波長幅を0.02nm程度変調する。
図9(c)は、図2の駆動信号発生回路117aから出力される駆動信号(波長走査駆動信号発生回路115aの出力信号と高周波変調信号発生回路116aの出力信号との合成信号)の波形図であり、この駆動信号S5を発光素子本体111aに供給すると、発光素子本体111aからは、測定対象ガスの0.2nm程度の吸光特性を波長幅0.02nm程度で検出可能な変調光が出力される。
9 (b) is a waveform diagram of the modulation signal output from the high-frequency modulation
FIG. 9C is a waveform diagram of the drive signal (the combined signal of the output signal of the wavelength scanning drive
他の発光素子本体111b,111c,111dも、上記と同様にして、測定対象ガスの吸光特性に応じて分析される。
4個の発光素子本体111a,111b,111c,111dの変調波周波数を、例えば10kHz,12.5kHz,15kHz,17.5kHzとすると、変調信号の2倍周波数成分はそれぞれ20kHz,25kHz,30kHz,35kHzとなり、参照信号発生回路452a,452b,452c,452dがこれらの周波数の参照信号を出力することで、同期検波回路453a,453b,453c,453dは上記2倍周波数成分に吸光特性を有する測定対象ガス、すなわち、O2ガス、CO2ガス、HClガス、COガスの吸光特性のみをそれぞれ検出して出力することができる。
The other light emitting
When the modulation wave frequencies of the four light emitting
測定対象ガス、すなわちO2ガス、CO2ガス、HClガス、COガスに吸光特性がある場合、同期検波回路453a,453b,453c,453dからは図10に示すような吸光特性が得られる。なお、検出光60の光路上に測定対象ガスが存在しない場合には、同期検波回路453a,453b,453c,453dの出力に図10のような吸光特性は現れず、図11で示すような出力となる。
When the measurement target gas, that is, O 2 gas, CO 2 gas, HCl gas, and CO gas has an absorption characteristic, the absorption characteristics as shown in FIG. 10 are obtained from the
続いて演算回路による濃度算出方法について説明する。ここではO2ガスについて例示的に説明する。
演算回路455aには、波長走査駆動信号発生回路115aからトリガ信号aが入力される。
図9(a)におけるトリガ信号は、上記S1,S2,S3を含めた1周期ごとに出力される信号であり、波長走査駆動信号発生回路116aより出力され、通信線50を介して、演算回路455aへ入力される。トリガ信号は、波長走査駆動信号のS3と同期がとれている。図10で示すように、トリガ信号から所定時間tb,tc,td経過したときに同期検波回路出力波形でB点の最小値B、C点の最大値C、D点の最小値Dが登場する。これら所定時間tb,tc,tdは工場出荷前や校正時に実験的に予め算出しておいて、図示しないメモリに登録しておく。この値を用いて濃度を算出する。
Next, a concentration calculation method using an arithmetic circuit will be described. Here, the O 2 gas will be described as an example.
The trigger signal a is input from the wavelength scanning drive
The trigger signal in FIG. 9A is a signal that is output every one cycle including the above S1, S2, and S3, and is output from the wavelength scanning drive
演算回路455aとしては、トリガ信号から所定時間tb,tc,td経過するときに同期検波回路出力波形の値を読みとって記憶し、その後に濃度を算出する処理を行う。この同期検波回路出力波形はその波形のピークにある最大値がそのままガス濃度を表すため、例えば、最大値を濃度として出力する。または最大値から最小値を減じた差分値を濃度とするというものである。他の測定対象ガス(CO2ガス、HCLガス、COガス)の濃度検出動作についても、同様に行えばよい。
The
特にガス濃度が低くなると、光学窓材料やレンズなどによるレーザ光の干渉による影響のノイズの影響が強くなり、これらのノイズがピークとなって検出されてしまうなど、ピークの発見が困難であるが、本発明ではこのようにガス吸収が発生する部分をあらかじめ設定しトリガ信号を基準にガス吸収のピークを検出するようにしたため、ノイズ等に影響されることなく正確なガス濃度検出ができるという利点がある。 In particular, when the gas concentration is low, the influence of noise caused by interference of laser light from optical window materials and lenses becomes stronger, and these noises are detected as peaks, making it difficult to find peaks. In the present invention, since the portion where gas absorption occurs is set in advance and the peak of gas absorption is detected based on the trigger signal, it is possible to accurately detect the gas concentration without being affected by noise or the like. There is.
このような装置構成によって、従来技術と同様に、2倍周波数の信号を検出することでガス濃度が計測可能となる。本発明では特に光ファイバとしてマルチモード光ファイバを用いているので、500〜2500nmという広い波長域で計測可能となる。したがって、本形態で例示したピグテール型発光素子11a,11b,11c,11dだけでなく、変調周波数を変えるか、レーザの発光をシリーズに発光させることで、受光素子の波長領域が同一の場合も分離して計測可能である。
With such an apparatus configuration, the gas concentration can be measured by detecting a double frequency signal, as in the prior art. In the present invention, since a multimode optical fiber is used as an optical fiber in particular, measurement is possible in a wide wavelength range of 500 to 2500 nm. Therefore, not only the pigtail type
また、低損失であるためピークが確実に表れるようにして低濃度のガスの検出能力を向上させた。加えて同期によりピーク位置を正確に検出できるようにしたため、やはり低濃度のガスの検出能力を向上させた。
このような装置構成によって、ガス濃度が計測可能となる。本発明では500〜2500nmという広い波長域で計測可能となる。
In addition, since the loss is low, the peak can be surely displayed to improve the detection ability of the low concentration gas. In addition, since the peak position can be accurately detected by synchronization, the detection ability of the low concentration gas is also improved.
With such an apparatus configuration, the gas concentration can be measured. In the present invention, measurement is possible in a wide wavelength range of 500 to 2500 nm.
以上本発明の多成分レーザ式ガス分析計について説明した。この多成分レーザ式ガス分析計では各種の変形形態が可能である。
続いて他の形態について説明する。この形態では、先の形態のうち、分析部40のみを変更するものである。先の形態の分析部40は、詳しくは、図1で示したように、分波器41を用いる構成であったが、本形態では、分析部40側は、図12に示すような可視光領域に感度をもつSiフォトダイオードと、近赤外領域に感度をもつInGaAsフォトダイオードとが一体化された可視光・近赤外光用受光素子46を用い、図13で示すように、分波器を用いずに、マルチモード型光ファイバ41から直接照射されるレーザ光を可視光・近赤外受光素子46が受光し、Siフォトダイオードからは可視光用処理回路45aへ出力し、また、InGaAsフォトダイオードからは近赤外光用処理回路45bへ出力し、可視光用処理回路45や近赤外光用処理回路45bのそれぞれが信号処理するようにしてもよい。このような構成を採用しても本発明の実施は可能である。
The multicomponent laser gas analyzer of the present invention has been described above. This multi-component laser gas analyzer can be modified in various ways.
Next, another embodiment will be described. In this form, only the
続いて他の形態について説明する。この形態では、図1〜図11を用いて説明した第1の形態のうち、発光部100は同じ構成とするが、受光部200を変更するものである。
第1の形態の受光部200は、詳しくは、図1で示したように、分析部40において分波器42を用いる構成であったが、本形態では、受光部200の分析部40において、図14に示すように分波器を用いずに、広帯域近赤外光用受光素子47、近赤外光用処理回路45bを備える構成とした。近赤外波長域に感度のピークを持ちかつ可視波長域にも感度を有する広帯域近赤外光用受光素子47を用い、マルチモード型光ファイバ41から直接照射される集光を広帯域近赤外光用受光素子47が受光し、広帯域近赤外光用受光素子47から出力される検出信号を、近赤外光用処理回路45bが受信して近赤外波長域の信号と可視波長域の信号とをそれぞれ信号処理する。このような構成を採用しても本発明の実施は可能である。
Next, another embodiment will be described. In this embodiment, the light emitting unit 100 has the same configuration as the first embodiment described with reference to FIGS. 1 to 11, but the
In detail, the
続いて他の形態について説明する。先に説明した各形態では、周波数が異なる複数光線を結合した検出光であるものとして説明した。本形態では、それぞれのピグテール型光素子を、時分割で動作させるものとした。そして検波手段では、受光手段の信号から、高周波変調の基本波成分と2倍波成分を、動作中のピグテール型発光素子と同期しながら検波することとした。例えば、図8の発光素子本体111a,111b,111c,111dと、参照信号発生回路452a,452b,452c,452dと、それぞれ演算回路455a,455b,455c,455dに接続し、ともに一個ずつ動作するように同期させて検波手段の信号から変調周波数成分を測定する。このように複数のガス成分を時分割で測定するような多成分用レーザ式ガス分析計としてもよい。
Next, another embodiment will be described. In each of the embodiments described above, it has been described that the detection light is a combination of a plurality of light beams having different frequencies. In this embodiment, each pigtail type optical element is operated in a time division manner. In the detection means, the fundamental wave component and the second harmonic wave component of the high frequency modulation are detected from the signal of the light receiving means in synchronization with the operating pigtail light emitting element. For example, the light emitting
続いて他の形態について説明する。先に説明した各形態では、ファイバ端部32の端面については限定していなかったが、本形態ではファイババンドル端部21やファイバ端部32をともに斜め研磨端とする。このように構成することで、戻り光は斜め研磨端での反射により光ファイバ内に戻ることがなく戻り光の影響を除去することが可能になる。
Next, another embodiment will be described. In each embodiment described above, the end face of the
続いて他の形態について説明する。先に説明した各形態では、受光側はマルチモード光ファイバカプラであったが、分枝カプラとしてもよい。この場合、変調周波数をそれぞれ、分けなくてもよい。 Next, another embodiment will be described. In each of the embodiments described above, the light receiving side is a multimode optical fiber coupler, but it may be a branch coupler. In this case, the modulation frequencies may not be divided.
続いて他の形態について説明する。先に説明した各形態では、例示的に酸素ガス(O2ガス)、塩素ガス(HClガス)、二酸化炭素ガス(CO2ガス)、一酸化炭素ガス(COガス)を測定するものとして説明したが、これらガスのみに限定される趣旨ではなく、他の成分のガスを含んでいても良い。その場合、他の成分のガスを検出できるような波長を有するピグテール型発光素子が追加され、この波長で検出できるように演算回路の演算処理内容が変更されて用いられるというものである。例えば、可視領域の波長を有するmのガスや近赤外領域を発するnのガスを検出するため、可視領域を発するm個のピグテール型発光素子および近赤外領域を発するn個のピグテール型発光素子を配置した場合でも、ファイババンドル端部21でm+n個のシングルモード型光ファイバを近接させた状態で固定し、受光部側ではm組のI−V変換回路、参照信号発生回路、同期検波回路、フィルタ、演算回路による可視光用処理回路とし、また、n組のI−V変換回路、参照信号発生回路、同期検波回路、フィルタ、演算回路による近赤外光用処理回路とするというものである。実状に応じて適宜変更される。
Next, another embodiment will be described. In the embodiments described above, the oxygen gas (O 2 gas), the chlorine gas (HCl gas), the carbon dioxide gas (CO 2 gas), and the carbon monoxide gas (CO gas) are described as examples. However, it is not limited to these gases, and may contain other component gases. In that case, a pigtail light-emitting element having a wavelength capable of detecting other component gases is added, and the arithmetic processing content of the arithmetic circuit is changed and used so that detection can be performed at this wavelength. For example, in order to detect m gas having a wavelength in the visible region and n gas emitting in the near infrared region, m pigtail light emitting elements emitting in the visible region and n pigtail light emitting in the near infrared region are used. Even when the elements are arranged, m + n single-mode optical fibers are fixed in close proximity at the
以上本発明について説明した。本発明のレーザ式ガス分析計によれば、可視光および近赤外光に渉って吸光する複数のガスを含む測定対象ガスに対してガス成分を正確に検出することが可能となる。特に、波長500nmから2500nmまでの広い波長範囲にわたる異なる3波長以上のレーザ光源から出た光を、ファイバカプラを使用せずに空間に放射し、受光側で1本の光ファイバ上に結合することによって、発光側での挿入損失を無くし、光のパワーを効率よく受光素子まで伝送することで、測定ガスの吸収信号の強度を高めることができる。 The present invention has been described above. According to the laser gas analyzer of the present invention, it is possible to accurately detect a gas component with respect to a measurement target gas including a plurality of gases that absorb light in the visible light and near infrared light. In particular, light emitted from laser light sources having three or more different wavelengths over a wide wavelength range from 500 nm to 2500 nm is radiated into space without using a fiber coupler, and is combined on a single optical fiber on the light receiving side. Thus, the insertion loss on the light emission side is eliminated, and the intensity of the absorption signal of the measurement gas can be increased by efficiently transmitting the light power to the light receiving element.
また、半導体レーザを用いた吸収分光法に基づくレーザ式ガス分析計において、従来の光ファイバ式ガス分析計では、ガスの吸収スペクトル波形のピークを検出するように信号処理していたが、信号強度が電気信号ノイズよりも大きくなければならず、濃度が低いガス濃度検出が困難であったが、本願提案では低損失であるためピークが確実に表れるようにして低濃度のガスの検出能力を向上させた。さらに波長走査信号のトリガ信号をもとに、ガス吸収ピークを検出することで、低濃度ガス検出が可能となった。加えて同時に複数成分測定が可能となる。 In addition, in a laser gas analyzer based on absorption spectroscopy using a semiconductor laser, the conventional optical fiber gas analyzer performs signal processing to detect the peak of the absorption spectrum waveform of the gas. However, it is difficult to detect the gas concentration at low concentration. However, in the proposal of this application, the loss is low, so that the peak appears reliably and the detection capability of the low concentration gas is improved. I let you. Furthermore, by detecting the gas absorption peak based on the trigger signal of the wavelength scanning signal, the low concentration gas can be detected. In addition, simultaneous measurement of multiple components is possible.
本発明の多成分用レーザ式ガス分析計は、ボイラ、ゴミ焼却等の燃焼排ガス測定用として最適である。その他、鉄鋼用ガス分析[高炉、転炉、熱処理炉、焼結(ペレット設備)、コークス炉]、青果貯蔵及び熟成、生化学(微生物)[発酵]、大気汚染[焼却炉、排煙脱硫・脱硝]、自動車排ガス(除テスタ)、防災[爆発性ガス検知、有毒ガス検知、新建築材燃焼ガス分析]、植物育成用、化学用分析[石油精製プラント、石油化学プラント、ガス発生プラント]、環境用[着地濃度、トンネル内濃度、駐車場、ビル管理]、理化学各種実験用などの分析計としても有用である。 The multi-component laser gas analyzer of the present invention is optimal for measuring flue gas such as boilers and garbage incineration. In addition, gas analysis for steel [blast furnace, converter, heat treatment furnace, sintering (pellet equipment), coke oven], fruit and vegetable storage and ripening, biochemistry (microorganism) [fermentation], air pollution [incinerator, flue gas desulfurization / Denitration], automobile exhaust gas (remove tester), disaster prevention [explosive gas detection, toxic gas detection, new building material combustion gas analysis], plant growth, chemical analysis [oil refinery plant, petrochemical plant, gas generation plant], It is also useful as an analyzer for environmental [landing concentration, tunnel concentration, parking lot, building management], and various physics and chemistry experiments.
100:発光部
10:変調光生成部
11a,11b,11c,11d:ピグテール型発光素子
111a,111b,111c,111d:発光素子本体
112a,112b,112c,112d:温度検出素子
113a,113b,113c,113d:温度制御回路
114a,114b,114c,114d:ペルチェ素子
115a,115b,115c,115d:波長走査駆動信号発生回路
116a,116b,116c,116d:高周波変調信号発生回路
117a,117b,117c,117d:駆動信号発生回路
12a,12b,12c,12d:シングルモード型光ファイバ(ピグテール)
20:発光側光学部
21:ファイババンドル端部
22:コリメート放物面鏡
23:発光側ウェッジ付窓板
24:結合光
200:受光部
30:受光側光学部
31:集光放物面鏡
32:ファイバ端部
33:発光側ウェッジ付窓板
34:集光
40:分析部
41:マルチモード型光ファイバ
42:分波器
43a,43b:マルチモード型光ファイバ
44a:可視光用受光素子
44b:近赤外光用受光素子
45a:可視光用処理回路
45b:近赤外光用処理回路
46:可視光・近赤外光用受光素子
47:広帯域近赤外光用受光素子
50:通信線
60:検出光
71a,71b:壁
72a,72b:フランジ
73a,73b:光軸調整フランジ
100: light emitting unit 10: modulated
20: Light emitting side optical unit 21: Fiber bundle end 22: Collimated parabolic mirror 23: Window plate with light emitting side wedge 24: Coupled light 200: Light receiving unit 30: Light receiving side optical unit 31: Condensing parabolic mirror 32 : Fiber end 33: Window plate with light emitting side wedge 34: Condensing 40: Analyzing unit 41: Multimode type optical fiber 42: Demultiplexers 43 a and 43 b: Multimode type
Claims (3)
前記発光部は、
それぞれの測定対象ガス別に設けられる素子であって周波数変調されたレーザ光を出射する複数のピグテール型発光素子と、これらのピグテール型発光素子のレーザ光をそれぞれ伝送する複数のシングルモード型光ファイバと、これらのシングルモード型光ファイバの端部を束ねて各レーザ光の出射点を近接させるためのファイババンドル端部と、このファイババンドル端部から出射された結合光に対して収差の影響を低減しつつ前記空間に検出光として出射する放物面鏡と、を備え、
前記受光部は、
前記空間を透過した検出光を収差の影響を低減しつつ集光する放物面鏡と、この放物面鏡から出力された集光を結合させるマルチモード型光ファイバと、このマルチモード型光ファイバを介して伝送されたレーザ光を分波する分波手段と、分波手段により分波された分波光のうちの可視波長域に感度を有する可視光用受光素子と、分波手段により分波された分波光のうちの近赤外波長域に感度を有する近赤外光用受光素子と、可視光用受光素子からの検出信号に基づいてガス分析を行う可視光用処理回路と、近赤外光用受光素子からの検出信号に基づいてガス分析を行う近赤外光用処理回路と、を備え、
前記ピグテール型発光素子は、
発光素子本体と、この発光素子本体の温度検出手段と、前記発光素子本体の加熱冷却手段と、前記発光素子本体からの出射波長が所定値になるように前記温度検出手段による検出温度に応じて前記加熱冷却手段を制御する温度制御手段と、前記発光素子本体への供給電流を変化させて測定対象ガスの吸光特性を走査するための波長走査駆動信号およびトリガ信号を生成する波長走査駆動信号発生手段と、高周波変調信号を生成する高周波変調信号発生手段と、前記波長走査駆動信号を前記高周波変調信号により変調して前記発光素子本体に対する駆動信号を生成する駆動信号発生手段と、をそれぞれ備えると共に、
前記可視光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記可視光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備え、
前記近赤外光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記近赤外光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備えたことを特徴とする多成分用レーザ式ガス分析計。 A light emitting unit that emits detection light by laser light and a light receiving unit that receives detection light propagated through a space in which a plurality of measurement target gases exist, and measure the concentration of a plurality of types of measurement target gases A frequency modulation type multi-component laser gas analyzer,
The light emitting unit
A plurality of pigtail-type light-emitting elements that are provided for each measurement target gas and emit frequency-modulated laser light, and a plurality of single-mode optical fibers that respectively transmit laser light of these pigtail-type light-emitting elements, , Fiber bundle end for bundling the ends of these single-mode optical fibers and bringing the laser beam exit points close to each other, and reducing the influence of aberration on the combined light emitted from the fiber bundle end And a parabolic mirror that emits as detection light in the space,
The light receiving unit is
A parabolic mirror that condenses the detection light transmitted through the space while reducing the influence of aberration, a multimode optical fiber that combines the condensed light output from the parabolic mirror, and the multimode light Demultiplexing means for demultiplexing the laser light transmitted through the fiber, a visible light receiving element having sensitivity in the visible wavelength region of the demultiplexed light demultiplexed by the demultiplexing means, and demultiplexing by the demultiplexing means. A near-infrared light receiving element having sensitivity in the near-infrared wavelength region of the demultiplexed light, a visible light processing circuit for performing gas analysis based on a detection signal from the visible light receiving element, A near infrared light processing circuit that performs gas analysis based on a detection signal from the infrared light receiving element,
The pigtail type light emitting element is
According to the temperature detected by the temperature detecting means, the temperature detecting means of the light emitting element main body, the heating / cooling means of the light emitting element main body, and the emission wavelength from the light emitting element main body become a predetermined value. Temperature control means for controlling the heating / cooling means, and wavelength scanning drive signal generation for generating a wavelength scanning drive signal and a trigger signal for scanning the light absorption characteristics of the measurement target gas by changing a supply current to the light emitting element body And a drive signal generating means for generating a drive signal for the light emitting element body by modulating the wavelength scanning drive signal with the high frequency modulation signal. ,
The visible light processing circuit comprises:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronous detection means for detecting the double frequency component from the output signal of the visible light receiving element, respectively. And a calculation means for calculating the concentration of the measurement target gas based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal,
The near infrared light processing circuit is:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronization for detecting the double frequency component from the output signal of the near-infrared light receiving element. A multi-component laser comprising: a detection unit; and a calculation unit that calculates a concentration of a measurement target gas based on a value of an output signal of the synchronous detection unit when a predetermined time has elapsed with reference to a trigger signal. Gas analyzer.
前記発光部は、
それぞれの測定対象ガス別に設けられる素子であって周波数変調されたレーザ光を出射する複数のピグテール型発光素子と、これらのピグテール型発光素子のレーザ光をそれぞれ伝送する複数のシングルモード型光ファイバと、これらのシングルモード型光ファイバの端部を束ねて各レーザ光の出射点を近接させるためのファイババンドル端部と、このファイババンドル端部から出射された結合光に対して収差の影響を低減しつつ前記空間に検出光として出射する放物面鏡と、を備え、
前記受光部は、
前記空間を透過した検出光を収差の影響を低減しつつ集光する放物面鏡と、可視波長域に感度を有する可視光用受光素子および近赤外波長域に感度を有する近赤外光用受光素子が一体化されており受光側光学部から出力された集光について両者が検出信号を出力する受光素子と、受光素子のうちの可視光用受光素子からの検出信号に基づいてガス分析を行う可視光用処理回路と、受光素子のうちの近赤外光用受光素子からの検出信号に基づいてガス分析を行う近赤外光用処理回路と、を備え、
前記ピグテール型発光素子は、
発光素子本体と、この発光素子本体の温度検出手段と、前記発光素子本体の加熱冷却手段と、前記発光素子本体からの出射波長が所定値になるように前記温度検出手段による検出温度に応じて前記加熱冷却手段を制御する温度制御手段と、前記発光素子本体への供給電流を変化させて測定対象ガスの吸光特性を走査するための波長走査駆動信号およびトリガ信号を生成する波長走査駆動信号発生手段と、高周波変調信号を生成する高周波変調信号発生手段と、前記波長走査駆動信号を前記高周波変調信号により変調して前記発光素子本体に対する駆動信号を生成する駆動信号発生手段と、をそれぞれ備えると共に、
前記可視光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記可視光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備え、
前記近赤外光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記近赤外光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備えたことを特徴とする多成分用レーザ式ガス分析計。 A light emitting unit that emits detection light by laser light and a light receiving unit that receives detection light propagated through a space in which a plurality of measurement target gases exist, and measure the concentration of a plurality of types of measurement target gases A frequency modulation type multi-component laser gas analyzer,
The light emitting unit
A plurality of pigtail-type light-emitting elements that are provided for each measurement target gas and emit frequency-modulated laser light, and a plurality of single-mode optical fibers that respectively transmit laser light of these pigtail-type light-emitting elements, , Fiber bundle end for bundling the ends of these single-mode optical fibers and bringing the laser beam exit points close to each other, and reducing the influence of aberration on the combined light emitted from the fiber bundle end And a parabolic mirror that emits as detection light in the space,
The light receiving unit is
A parabolic mirror that condenses detection light transmitted through the space while reducing the influence of aberration, a visible light receiving element having sensitivity in the visible wavelength range, and near infrared light having sensitivity in the near infrared wavelength range The light receiving element for integrating the light receiving element for outputting light from the light receiving side optical unit and gas analysis based on the detection signal from the light receiving element for visible light of the light receiving elements. includes a visible light processing circuit for performing, and a near-infrared light processing circuit for performing gas analysis based on the detection signal from the near-infrared light-receiving element of the light receiving element,
The pigtail type light emitting element is
According to the temperature detected by the temperature detecting means, the temperature detecting means of the light emitting element main body, the heating / cooling means of the light emitting element main body, and the emission wavelength from the light emitting element main body become a predetermined value. Temperature control means for controlling the heating / cooling means, and wavelength scanning drive signal generation for generating a wavelength scanning drive signal and a trigger signal for scanning the light absorption characteristics of the measurement target gas by changing a supply current to the light emitting element body And a drive signal generating means for generating a drive signal for the light emitting element body by modulating the wavelength scanning drive signal with the high frequency modulation signal. ,
The visible light processing circuit comprises:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronous detection means for detecting the double frequency component from the output signal of the visible light receiving element, respectively. And a calculation means for calculating the concentration of the measurement target gas based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal,
The near infrared light processing circuit is:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronization for detecting the double frequency component from the output signal of the near-infrared light receiving element. A multi-component laser comprising: a detection unit; and a calculation unit that calculates a concentration of a measurement target gas based on a value of an output signal of the synchronous detection unit when a predetermined time has elapsed with reference to a trigger signal. Gas analyzer.
前記発光部は、
それぞれの測定対象ガス別に設けられる素子であって周波数変調されたレーザ光を出射する複数のピグテール型発光素子と、これらのピグテール型発光素子のレーザ光をそれぞれ伝送する複数のシングルモード型光ファイバと、これらのシングルモード型光ファイバの端部を束ねて各レーザ光の出射点を近接させるためのファイババンドル端部と、このファイババンドル端部から出射された結合光に対して収差の影響を低減しつつ前記空間に検出光として出射する放物面鏡と、を備え、
前記受光部は、
前記空間を透過した検出光を収差の影響を低減しつつ集光する放物面鏡と、受光側光学部から出力された集光について検出信号を出力する近赤外波長域に感度のピークを持ちかつ可視波長域にも感度を有する広帯域近赤外光用受光素子と、広帯域近赤外光用受光素子からの検出信号に基づいてガス分析を行う近赤外光用処理回路と、を備え、
前記ピグテール型発光素子は、
発光素子本体と、この発光素子本体の温度検出手段と、前記発光素子本体の加熱冷却手段と、前記発光素子本体からの出射波長が所定値になるように前記温度検出手段による検出温度に応じて前記加熱冷却手段を制御する温度制御手段と、前記発光素子本体への供給電流を変化させて測定対象ガスの吸光特性を走査するための波長走査駆動信号およびトリガ信号を生成する波長走査駆動信号発生手段と、高周波変調信号を生成する高周波変調信号発生手段と、前記波長走査駆動信号を前記高周波変調信号により変調して前記発光素子本体に対する駆動信号を生成する駆動信号発生手段と、をそれぞれ備えると共に、
前記可視光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記可視光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備え、
前記近赤外光用処理回路は、
各ピグテール型発光素子における高周波変調信号の2倍周波数成分を有する参照信号をそれぞれ生成する参照信号発生手段と、前記近赤外光用受光素子の出力信号から前記2倍周波数成分をそれぞれ検出する同期検波手段と、トリガ信号を基準として所定時間経過したときの同期検波手段の出力信号の値に基づいて測定対象ガスの濃度を演算する演算手段と、を備えたことを特徴とする多成分用レーザ式ガス分析計。 A light emitting unit that emits detection light by laser light and a light receiving unit that receives detection light propagated through a space in which a plurality of measurement target gases exist, and measure the concentration of a plurality of types of measurement target gases A frequency modulation type multi-component laser gas analyzer,
The light emitting unit
A plurality of pigtail-type light-emitting elements that are provided for each measurement target gas and emit frequency-modulated laser light, and a plurality of single-mode optical fibers that respectively transmit laser light of these pigtail-type light-emitting elements, , Fiber bundle end for bundling the ends of these single-mode optical fibers and bringing the laser beam exit points close to each other, and reducing the influence of aberration on the combined light emitted from the fiber bundle end And a parabolic mirror that emits as detection light in the space,
The light receiving unit is
A parabolic mirror that condenses the detection light transmitted through the space while reducing the influence of aberration, and a peak of sensitivity in the near-infrared wavelength region that outputs a detection signal for the light collected from the light receiving side optical unit. A broadband near-infrared light receiving element having sensitivity in the visible wavelength range, and a near-infrared light processing circuit for performing gas analysis based on a detection signal from the broadband near-infrared light receiving element. ,
The pigtail type light emitting element is
According to the temperature detected by the temperature detecting means, the temperature detecting means of the light emitting element main body, the heating / cooling means of the light emitting element main body, and the emission wavelength from the light emitting element main body become a predetermined value. Temperature control means for controlling the heating / cooling means, and wavelength scanning drive signal generation for generating a wavelength scanning drive signal and a trigger signal for scanning the light absorption characteristics of the measurement target gas by changing a supply current to the light emitting element body And a drive signal generating means for generating a drive signal for the light emitting element body by modulating the wavelength scanning drive signal with the high frequency modulation signal. ,
The visible light processing circuit comprises:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronous detection means for detecting the double frequency component from the output signal of the visible light receiving element, respectively. And a calculation means for calculating the concentration of the measurement target gas based on the value of the output signal of the synchronous detection means when a predetermined time has elapsed with reference to the trigger signal,
The near infrared light processing circuit is:
Reference signal generating means for generating a reference signal having a double frequency component of the high frequency modulation signal in each pigtail light emitting element, and synchronization for detecting the double frequency component from the output signal of the near-infrared light receiving element. A multi-component laser comprising: a detection unit; and a calculation unit that calculates a concentration of a measurement target gas based on a value of an output signal of the synchronous detection unit when a predetermined time has elapsed with reference to a trigger signal. Gas analyzer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011232698A JP5834765B2 (en) | 2011-01-05 | 2011-10-24 | Multi-component laser gas analyzer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011000402 | 2011-01-05 | ||
JP2011000402 | 2011-01-05 | ||
JP2011232698A JP5834765B2 (en) | 2011-01-05 | 2011-10-24 | Multi-component laser gas analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012154915A JP2012154915A (en) | 2012-08-16 |
JP5834765B2 true JP5834765B2 (en) | 2015-12-24 |
Family
ID=46836767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011232698A Active JP5834765B2 (en) | 2011-01-05 | 2011-10-24 | Multi-component laser gas analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5834765B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103091285B (en) * | 2012-12-29 | 2016-04-27 | 聚光科技(杭州)股份有限公司 | Laser gas analysis device and method |
US10352852B2 (en) | 2014-12-23 | 2019-07-16 | John Zink Company, Llc | TDLAS architecture for widely spaced wavelengths |
JP7128733B2 (en) * | 2018-12-05 | 2022-08-31 | 株式会社堀場エステック | Absorption analyzer |
JPWO2020196442A1 (en) * | 2019-03-28 | 2020-10-01 | ||
CN116783468A (en) * | 2021-11-29 | 2023-09-19 | 富士电机株式会社 | Gas analyzer and multiple reflection unit |
-
2011
- 2011-10-24 JP JP2011232698A patent/JP5834765B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012154915A (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013127414A (en) | Laser multigas analyzer | |
JP5641301B2 (en) | Multi-component laser gas analyzer | |
JP6128361B2 (en) | Multi-component laser gas analyzer | |
AU2004227359B2 (en) | Method and apparatus for the monitoring and control of combustion | |
US7005645B2 (en) | Apparatus and methods for launching and receiving a broad wavelength range source | |
JP5834765B2 (en) | Multi-component laser gas analyzer | |
WO2009119790A1 (en) | Optical analyzer and wavelength stabilized laser device for analyzer | |
JP5532608B2 (en) | Laser gas analysis method | |
JP2012108095A (en) | Laser type gas analyzer for multicomponent | |
TWI567471B (en) | A light source device, an analyzing device, and a light generating method | |
WO2014162536A1 (en) | Multicomponent laser gas analyzer | |
US7079249B2 (en) | Modulated reflectance measurement system with fiber laser technology | |
US11193880B2 (en) | Gas analyzer and gas analysis method | |
JPH0450639A (en) | Optical sample analyzer | |
JP2006324636A (en) | Method for detecting laser oscillation wavelength, control method, and apparatus | |
CN116249888A (en) | Combustion zone chemical sensing systems and related methods | |
JP2005083874A (en) | Measuring instrument for measuring concentration of specific gas in tunnel and exhaustion method in tunnel | |
JP2010245483A (en) | Light output device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140912 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5834765 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |