Nothing Special   »   [go: up one dir, main page]

JP2006324636A - Method for detecting laser oscillation wavelength, control method, and apparatus - Google Patents

Method for detecting laser oscillation wavelength, control method, and apparatus Download PDF

Info

Publication number
JP2006324636A
JP2006324636A JP2006057631A JP2006057631A JP2006324636A JP 2006324636 A JP2006324636 A JP 2006324636A JP 2006057631 A JP2006057631 A JP 2006057631A JP 2006057631 A JP2006057631 A JP 2006057631A JP 2006324636 A JP2006324636 A JP 2006324636A
Authority
JP
Japan
Prior art keywords
laser
wavelength
light
light receiving
oscillation wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057631A
Other languages
Japanese (ja)
Inventor
Tatsuya Ueno
達也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006057631A priority Critical patent/JP2006324636A/en
Publication of JP2006324636A publication Critical patent/JP2006324636A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser oscillation wavelength control method which is suitable for detecting the oscillation wavelength of an emission beam from a laser element and controlling the oscillation wavelength with high definition. <P>SOLUTION: The laser beam to be emitted from the one laser element is received by respectively using the two light receiving means which are mutually different in wavelength response characteristic. The beam receiving amounts by the respective light receiving means are mutually compared so as to detect the oscillation wavelength of the laser beam. Specifically, the emission beam from the laser element is received via a wavelength selectable optical filter. The driving electric current of the laser element is varied in response to the beam receiving amounts so as to control the oscillation wavelength. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レーザ素子から波長変調して出力されるレーザ光の発振波長を高精度に検出し、更にはその発振波長を制御するに好適なレーザ発振波長検出方法、制御方法および装置に関する。   The present invention relates to a laser oscillation wavelength detection method, a control method, and an apparatus suitable for detecting an oscillation wavelength of laser light that is output after being wavelength-modulated from a laser element with high accuracy, and for controlling the oscillation wavelength.

光学的な状態検知技術の1つにレーザ光の自己結合効果(自己混合効果ともいう)を利用したものがある(例えば特許文献1,2を参照)。この手法は、図8に示すように所定の変調信号を用いて駆動したレーザ素子(以下、LD)1から計測対象物2にレーザ光を照射すると共に、計測対象物2により反射されて前記レーザ素子1に戻った反射光と前記照射光との自己結合効果により生じた干渉信号が重畳した照射光を受光器(以下、PD)3にて受光し、その出力を周波数分析する等して前記計測対象物2の状態を検知するものである。   One of optical state detection techniques uses a self-coupling effect (also referred to as a self-mixing effect) of laser light (see, for example, Patent Documents 1 and 2). As shown in FIG. 8, this technique irradiates a laser beam to a measurement object 2 from a laser element (hereinafter referred to as LD) 1 driven using a predetermined modulation signal, and reflects the laser beam reflected by the measurement object 2. The irradiation light on which the interference signal generated by the self-coupling effect between the reflected light returning to the element 1 and the irradiation light is superimposed is received by a light receiver (hereinafter referred to as PD) 3 and the output thereof is subjected to frequency analysis or the like. The state of the measurement object 2 is detected.

即ち、レーザ素子1から出力光の発振波長を連続的に変化させると、検出対象物2により反射した戻り光と上記レーザ素子1の出力光とが干渉を生じ、共振条件を満たす波長においてはレーザ素子1の増幅効率が僅かに上がり、また減衰条件を満たす波長においては増幅効率が僅かに下がり、この結果、受光器3の出力が増減を繰り返す。例えば付与した電流値に応じてレーザ光の発振波長が変化するタイプの半導体レーザ素子を、時間経過に伴って電流値が変化する三角波αを用いて波長変調すれば、電流値の連続的な増加に伴ってレーザ光の波長が連続的に増加し、また電流値がピークに達した後の上記電流値の連続的な減少に伴って上記レーザ光の波長が連続的に減少する。   That is, when the oscillation wavelength of the output light from the laser element 1 is continuously changed, the return light reflected by the detection target 2 and the output light of the laser element 1 interfere with each other, and the laser is used at a wavelength that satisfies the resonance condition. The amplification efficiency of the element 1 is slightly increased, and the amplification efficiency is slightly decreased at a wavelength satisfying the attenuation condition. As a result, the output of the light receiver 3 repeatedly increases and decreases. For example, if a semiconductor laser device whose type changes the oscillation wavelength of the laser light according to the applied current value is wavelength-modulated using a triangular wave α whose current value changes over time, the current value will increase continuously. Accordingly, the wavelength of the laser light continuously increases, and the wavelength of the laser light continuously decreases as the current value continuously decreases after the current value reaches the peak.

このようにしてレーザ光の波長が連続的に増減する中で、上記照射光とその戻り光(反射光)との間の共振条件と減衰条件が何度も満たされる。この結果、前記受光器3からは上記三角波αに微小な干渉成分が重畳したビート波形(変調光)βが得られる。この干渉成分は、レーザ素子1と検出対象物2との距離L等の情報を含んでいる。従ってこのビート波形βを解析すれば、上記共振成分の周波数から対象物2までの距離Lや速度、振動等の状態を検知することが可能となる。例えば上記ビート波形βを微分して三角波αに重畳した信号成分を抽出し、この信号成分を計数することによって測定対象物の状態を検知することが可能となる。
特開平10−246782号公報 特開平11−287859号公報
In this way, while the wavelength of the laser light continuously increases and decreases, the resonance condition and the attenuation condition between the irradiation light and the return light (reflected light) are satisfied many times. As a result, a beat waveform (modulated light) β in which a minute interference component is superimposed on the triangular wave α is obtained from the light receiver 3. This interference component includes information such as the distance L between the laser element 1 and the detection target 2. Therefore, if this beat waveform β is analyzed, it is possible to detect the state such as the distance L, speed, vibration, etc. from the frequency of the resonance component to the object 2. For example, it is possible to detect the state of the measurement object by differentiating the beat waveform β and extracting a signal component superimposed on the triangular wave α and counting the signal component.
JP 10-246782 A JP-A-11-287859

ところでレーザ素子1からの出力光の強度(光量)Pは、その駆動電流Iによって変化し、またその発振波長λも上記駆動電流Iによって変化する。即ち、駆動電流Iの増減によりレーザ素子1に僅かな熱膨張・収縮が生じ、これに伴ってレーザ光の発振波長λが僅かに増減する。そこで従来一般的には、例えばレーザ素子1からの出力光を受光器(フォトダイオード)にて受光してその強度(光量)Pをモニタし、その受光量Pに応じて駆動電流Iを可変して発振波長λを制御している。   Incidentally, the intensity (light quantity) P of the output light from the laser element 1 varies with the drive current I, and the oscillation wavelength λ also varies with the drive current I. That is, a slight thermal expansion / contraction occurs in the laser element 1 due to the increase / decrease of the drive current I, and the oscillation wavelength λ of the laser light slightly increases / decreases accordingly. Therefore, in general, for example, the output light from the laser element 1 is received by a light receiver (photodiode), the intensity (light quantity) P is monitored, and the drive current I is varied according to the received light quantity P. Thus, the oscillation wavelength λ is controlled.

しかしながらレーザ素子1からの出力光の強度(光量)Pおよび発振波長λは、レーザ素子1の温度Tによっても変化するので、その発振波長λを精度良く制御するにはレーザ素子1の温度Tもモニタすることが必要となる。しかも出力光の強度(光量)Pとレーザ素子1の温度Tとに従って駆動電流Iを制御することが必要となるので、その制御系が複雑化することが否めない。また量産されたレーザ素子1においては、個体毎にその出力光の強度Pと発振波長λとの関係にバラツキがあることが否めない。このような個体毎の上記特性のバラツキは、レーザ素子1の発振波長λを高精度に制御する上での妨げとなっている。   However, since the intensity (light quantity) P and the oscillation wavelength λ of the output light from the laser element 1 also change depending on the temperature T of the laser element 1, the temperature T of the laser element 1 is also required to accurately control the oscillation wavelength λ. It is necessary to monitor. Moreover, since it is necessary to control the drive current I according to the intensity (light quantity) P of the output light and the temperature T of the laser element 1, it is unavoidable that the control system becomes complicated. In the mass produced laser element 1, it cannot be denied that the relationship between the intensity P of the output light and the oscillation wavelength λ varies for each individual. Such a variation in the above-mentioned characteristics for each individual is an obstacle to controlling the oscillation wavelength λ of the laser element 1 with high accuracy.

本発明はこのような事情を考慮してなされたもので、その目的は、レーザ素子から出力されるレーザ光の発振波長を簡易に、しかも高精度に検出することのできるレーザ発振波長検出方法を提供することにある。
また本発明の別の目的は、レーザ素子から波長変調して出力されるレーザ光の発振波長を高精度に検出して、その発振波長のずれを効果的に補正することのできるレーザ発振波長制御方法を提供することにある。
The present invention has been made in view of such circumstances, and the object of the present invention is to provide a laser oscillation wavelength detection method capable of easily and accurately detecting the oscillation wavelength of laser light output from a laser element. It is to provide.
Another object of the present invention is to provide laser oscillation wavelength control that can detect the oscillation wavelength of laser light that is output after being wavelength-modulated from a laser element with high accuracy and can effectively correct the deviation of the oscillation wavelength. It is to provide a method.

また本発明は、レーザ素子から波長変調したレーザ光を安定に出力することのできるレーザ発振波長制御装置を提供することを目的としている。   Another object of the present invention is to provide a laser oscillation wavelength control device that can stably output a wavelength-modulated laser beam from a laser element.

上述した目的を達成するべく本発明に係るレーザ発振波長検出方法は、互いに波長応答特性の異なる2つの受光手段を用いて1つのレーザ素子から出力されるレーザ光をそれぞれ受光し、上記各受光手段による受光量を相互に比較して前記レーザ光の発振波長を検出することを特徴としている[請求項1]。
好ましくは前記受光手段の少なくとも一方は、既知の波長応答特性を有する光学フィルタと、この光学フィルタを通して前記レーザ光を受光する受光素子とを備えたものからなる。また前記レーザ素子は、前記レーザ光の波長を経時的に変化させるものである。
In order to achieve the above-described object, a laser oscillation wavelength detection method according to the present invention receives laser beams output from one laser element using two light receiving means having different wavelength response characteristics, and each of the light receiving means. The amount of received light is compared with each other to detect the oscillation wavelength of the laser beam [Claim 1].
Preferably, at least one of the light receiving means includes an optical filter having a known wavelength response characteristic and a light receiving element that receives the laser light through the optical filter. The laser element changes the wavelength of the laser light with time.

また本発明に係る別のレーザ発振波長検出方法は、レーザ素子から出力されるレーザ光の波長を経時的に変化させると共に、既知の波長応答特性を有する受光手段を用いて上記レーザ光を受光し、前記受光手段による受光量と該受光手段の予め想定された受光特性とを比較して前記レーザ光の発振波長を検出することを特徴としている[請求項3]。
好ましくは前記受光手段は、既知の波長応答性を有する光学フィルタと、この光学フィルタを通して前記レーザ光を受光する受光素子とを備えたものからなる。また前記受光手段の受光特性は、例えば前記レーザ光の発振波長を所定の帯域幅に亘って変化させたときの前記受光手段による受光量の変化から推定されるものである。
In another laser oscillation wavelength detection method according to the present invention, the wavelength of the laser beam output from the laser element is changed over time, and the laser beam is received using a light receiving means having a known wavelength response characteristic. In addition, the oscillation wavelength of the laser beam is detected by comparing the amount of light received by the light receiving means with a light receiving characteristic assumed in advance of the light receiving means [Claim 3].
Preferably, the light receiving means includes an optical filter having a known wavelength response and a light receiving element that receives the laser light through the optical filter. The light receiving characteristics of the light receiving means are estimated from changes in the amount of light received by the light receiving means when, for example, the oscillation wavelength of the laser light is changed over a predetermined bandwidth.

一方、本発明に係るレーザ発振波長制御方法は、上述したレーザ波長検出方法を用いてレーザ素子から出力されるレーザ光の発振波長を検出し、検出した上記レーザ光の波長情報に基づいて前記レーザ光の発振波長をフィードバック制御することを特徴としている[請求項7]。ちなみに前記レーザ光の発振波長のフィードバック制御は、例えば前記レーザ素子を発振駆動する駆動電流をフィードバック制御して行うようにすれば良い。   On the other hand, the laser oscillation wavelength control method according to the present invention detects the oscillation wavelength of the laser beam output from the laser element using the laser wavelength detection method described above, and based on the detected wavelength information of the laser beam, the laser The present invention is characterized in that the oscillation wavelength of light is feedback-controlled [Claim 7]. Incidentally, the feedback control of the oscillation wavelength of the laser beam may be performed, for example, by feedback control of a drive current for driving the laser element to oscillate.

また本発明に係るレーザ発振波長制御装置は、半導体レーザ素子と、この半導体レーザ素子に駆動電流を与えて該半導体レーザ素子からレーザ光を発振出力させる駆動手段と、互いに異なる波長応答特性を有して前記半導体レーザ素子から出力されたレーザ光をそれぞれ受光する2つの受光手段と、上記各受光手段による受光量を相互に比較して前記レーザ光の発振波長を検出する波長検出手段と、この波長検出手段により検出された前記レーザ光の波長情報に基づいて前記駆動電流を調節して前記レーザ光の発振波長をフィードバック制御する波長制御手段とを具備したことを特徴としている[請求項9]。   The laser oscillation wavelength control device according to the present invention has a wavelength response characteristic different from that of a semiconductor laser element and a driving means for supplying a driving current to the semiconductor laser element to oscillate and output laser light from the semiconductor laser element. Two light receiving means for receiving the laser beams output from the semiconductor laser element, a wavelength detecting means for detecting the oscillation wavelength of the laser light by comparing the amounts of light received by the respective light receiving means with each other, and this wavelength Wavelength control means for adjusting the drive current based on wavelength information of the laser light detected by the detection means to feedback control the oscillation wavelength of the laser light is provided [claim 9].

好ましくは前記駆動手段は、前記レーザ素子の駆動電流を可変して該レーザ素子から出力されるレーザ光の発振波長を所定の帯域に亘って経時的に変化させるものであって、前記受光手段の少なくとも一方は、既知の波長応答特性を有する光学フィルタと、この光学フィルタを通して前記レーザ光を受光する受光素子とを備えたものからなる。そして前記波長制御手段においては、波長検出手段により検出された前記レーザ光の発振波長と、前記レーザ素子の駆動電流によって定まる理論的な発振波長とのずれを求め、その波長のずれを補正するようにレーザ素子の駆動電流を制御するように構成される。   Preferably, the driving unit is configured to change a driving current of the laser element and change an oscillation wavelength of laser light output from the laser element over time over a predetermined band. At least one includes an optical filter having a known wavelength response characteristic and a light receiving element that receives the laser light through the optical filter. The wavelength control means obtains a deviation between the oscillation wavelength of the laser beam detected by the wavelength detection means and a theoretical oscillation wavelength determined by the driving current of the laser element, and corrects the deviation of the wavelength. Further, it is configured to control the drive current of the laser element.

また本発明に係る別のレーザ発振波長制御装置は、レーザ光を出力する半導体レーザ素子と、この半導体レーザ素子の駆動電流を変化させて前記レーザ光の波長を経時的に変化させる駆動手段と、既知の波長応答特性を有して前記半導体レーザ素子から出力されたレーザ光を受光する受光手段と、上記受光手段による受光量と予め想定された前記受光手段の受光特性とを比較して前記レーザ光の発振波長を検出する波長検出手段と、この波長検出手段により検出された前記レーザ光の波長情報に基づいて前記駆動電流を調節して前記レーザ光の発振波長をフィードバック制御する波長制御手段とを具備したことを特徴としている[請求項11]。   Further, another laser oscillation wavelength control device according to the present invention includes a semiconductor laser element that outputs laser light, and a drive unit that changes the wavelength of the laser light with time by changing the drive current of the semiconductor laser element, A light receiving means for receiving a laser beam having a known wavelength response characteristic and outputted from the semiconductor laser element, and comparing the amount of light received by the light receiving means with a light receiving characteristic of the light receiving means assumed in advance. Wavelength detecting means for detecting the oscillation wavelength of light, and wavelength control means for feedback-controlling the oscillation wavelength of the laser light by adjusting the drive current based on the wavelength information of the laser light detected by the wavelength detecting means; (Claim 11).

好ましくは前記受光手段は、既知の波長応答性を有する光学フィルタと、この光学フィルタを通して前記レーザ光を受光する受光素子とを備えたものであって、前記波長検出手段は、前記レーザ光の発振波長を所定の帯域幅に亘って変化させたときの前記受光素子による受光量の変化から前記受光手段の受光特性を推定して波長検出に用いるように構成される。   Preferably, the light receiving means includes an optical filter having a known wavelength responsiveness and a light receiving element that receives the laser light through the optical filter, and the wavelength detecting means oscillates the laser light. The light receiving characteristic of the light receiving means is estimated from the change in the amount of light received by the light receiving element when the wavelength is changed over a predetermined bandwidth, and is used for wavelength detection.

本発明に係るレーザ発振波長制御方法によれば、或る波長応答特性を有する受光手段を用いてレーザ素子から出力されるレーザ光を受光すれば、その受光量がレーザ光の発振波長によって変化することに着目しているので、上述した簡単な手法により前記レーザ光の発振波長を高精度に検出することができる。そしてその検出結果(発振波長の情報)に基づいて前記レーザ素子に与える駆動電流を調節することで、前記レーザ素子から出力されるレーザ光の発振波長を高精度に制御することが可能となる。   According to the laser oscillation wavelength control method of the present invention, when the laser beam output from the laser element is received using the light receiving means having a certain wavelength response characteristic, the amount of received light changes depending on the oscillation wavelength of the laser beam. Therefore, the oscillation wavelength of the laser beam can be detected with high accuracy by the simple method described above. Then, by adjusting the drive current applied to the laser element based on the detection result (oscillation wavelength information), the oscillation wavelength of the laser beam output from the laser element can be controlled with high accuracy.

従ってレーザ素子から出力されるレーザ光の発振波長を所定の帯域に亘って変化させながら、例えばその出力光を計測対象物に照射し、その反射光(戻り光)を前記レーザ素子に再注入してレーザ素子における自己結合効果を生起し、これによって生じた変調レーザ光から計測対象物の状態を検出する状態検出装置やレーザ測長器等に適用すれば、上記所定の帯域に亘って可変される出力光の発振波長を安定化することができるので、その検出精度を高め得る等の実用上絶大なる効果が奏せられる。   Therefore, while changing the oscillation wavelength of the laser light output from the laser element over a predetermined band, for example, the output light is irradiated onto the measurement object, and the reflected light (return light) is reinjected into the laser element. If this is applied to a state detection device or a laser length measuring device that generates a self-coupling effect in the laser element and detects the state of the measurement object from the modulated laser light generated thereby, it can be varied over the predetermined band. Since the oscillation wavelength of the output light can be stabilized, it is possible to achieve a great practical effect such as an increase in detection accuracy.

以下、図面を参照して本発明の実施形態に係るレーザ発振波長検出方法、並びにその波長制御方法と波長制御装置とについて説明する。
図1は本発明の第1の実施形態に係るレーザ発振波長検出方法と波長制御方法を適用して構成されるレーザ装置の要部概略構成を示す図で、10はレーザ素子(レーザダイオードLD)、20はその駆動回路である。
Hereinafter, a laser oscillation wavelength detection method, a wavelength control method thereof, and a wavelength control device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a main part of a laser device configured by applying a laser oscillation wavelength detection method and a wavelength control method according to a first embodiment of the present invention. Reference numeral 10 denotes a laser element (laser diode LD). , 20 is the drive circuit.

レーザ素子10は、図2の特性図Aに示すように数nmの帯域幅wを持つ急峻な山形の波長分布を有する単色レーザ光(以下、その中心波長λをもってこの波長分布を代表し、これをレーザ光の発振波長λと称する)を発振出力するものである。このレーザ光(出力光)の発振波長λは、レーザ素子10の駆動電流I(Imin〜Imax)に応じて、例えば図2の特性図Bに示すように変動領域R(λmin〜λmax)の範囲で変化する。このレーザ素子10から出力されるレーザ光は、例えば集光レンズ11を介して計測対象物(図示せず)に照射されて、該計測対象物までの距離計測等に用いられる。   As shown in the characteristic diagram A of FIG. 2, the laser element 10 represents a monochromatic laser beam having a steep mountain-shaped wavelength distribution having a bandwidth w of several nm (hereinafter, this wavelength distribution is represented by its center wavelength λ, Is called an oscillation wavelength λ of laser light). The oscillation wavelength λ of this laser light (output light) is in the range of the fluctuation region R (λmin to λmax) as shown in the characteristic diagram B of FIG. 2, for example, according to the drive current I (Imin to Imax) of the laser element 10. It changes with. The laser beam output from the laser element 10 is irradiated to a measurement object (not shown) via, for example, the condenser lens 11 and used for distance measurement to the measurement object.

さて上述した集光レンズ11と前記レーザ素子10の出力光出射端面との間には、所定の波長選択性を有する透過形の光学フィルタ12が設けられている。この光学フィルタ12は、例えばレーザ光の発振波長λの上述した変動領域Rに対して狭い波長選択性を示すバンドパスフィルタ(帯域通過フィルタ)からなる。この種の光学フィルタ12は一般に市販されている透過型のものであり、ガラス等の透明体の吸光特性がバンドパス型の波長選択性を示す。   A transmissive optical filter 12 having a predetermined wavelength selectivity is provided between the condenser lens 11 described above and the output light emitting end face of the laser element 10. The optical filter 12 is composed of, for example, a bandpass filter (bandpass filter) showing a narrow wavelength selectivity with respect to the above-described fluctuation region R of the oscillation wavelength λ of the laser light. This type of optical filter 12 is a transmission type that is generally commercially available, and the light absorption characteristics of a transparent body such as glass exhibit bandpass wavelength selectivity.

またこのレーザ装置には、前記光学フィルタ12を間にして第1の受光素子(フォトダイオードPD1)13と第2の受光素子(フォトダイオードPD2)14とが設けられている。これらの受光素子13,14は、好ましくはいずれもその受光対象である前記レーザ光の中心波長λの変動領域Rを含む十分に広い波長帯域において平坦な受光特性を有することが望ましい。即ち、受光素子13,14は、波長によらず同一強度の入射光に対して同一の出力を得る特性を有するものであることが望ましい。またこれらの受光素子13,14は、受光するレーザ光の強度(受光量)に比例した出力特性を有するものであることが望ましい。より具体的には上記各受光素子13,14としては、同一仕様の製品で特性の揃ったものを用いることが望ましい。   Further, the laser device is provided with a first light receiving element (photodiode PD1) 13 and a second light receiving element (photodiode PD2) 14 with the optical filter 12 therebetween. These light receiving elements 13 and 14 preferably each have a flat light receiving characteristic in a sufficiently wide wavelength band including the fluctuation region R of the center wavelength λ of the laser light to be received. That is, it is desirable that the light receiving elements 13 and 14 have a characteristic of obtaining the same output with respect to incident light having the same intensity regardless of the wavelength. Further, it is desirable that these light receiving elements 13 and 14 have output characteristics proportional to the intensity (amount of received light) of the received laser beam. More specifically, as each of the light receiving elements 13 and 14, it is desirable to use products having the same specifications and having the same characteristics.

尚、上記各受光素子13,14が上述した望ましい受光特性を備えていなくても、或いはその特性が揃っていなくても、適宜、補正処理を施してその受光特性を最適化して使用することが可能なことは言うまでもない。また当然のことながら光学フィルタ12や受光素子13,14については、その環境変化や経年劣化に関して前記発光素子10よりも安定しているものを用いることが望ましい。   Even if each of the light receiving elements 13 and 14 does not have the above-described desirable light receiving characteristics or the characteristics are not uniform, it is possible to use the light receiving characteristics by optimizing the light receiving characteristics as appropriate. It goes without saying that it is possible. As a matter of course, it is desirable that the optical filter 12 and the light receiving elements 13 and 14 are more stable than the light emitting element 10 with respect to environmental changes and deterioration over time.

ところで前述した第1の受光素子13は、前記レーザ素子10から出力されたレーザ光(出力光)を直接または間接的に受光するように設けられており、並列に設けられた2つの受光手段の内の一方の受光手段を構成する。また第2の受光素子14は前記レーザ素子10から出力されて前記光学フィルタ12を介した出力光を受光するように設けられている。即ち、前記光学フィルタ12および第2の受光素子14は、上述した2つの受光手段の内の他方の受光手段を構成する。そしてこれらの各受光素子13,14にてそれぞれ検出された受光量Q1,Q2の情報は、前記レーザ素子1の発振波長λを制御する為の情報として前記駆動回路20に入力されるようになっている。   By the way, the first light receiving element 13 described above is provided so as to receive the laser light (output light) output from the laser element 10 directly or indirectly, and two light receiving means provided in parallel are provided. One of the light receiving means is configured. The second light receiving element 14 is provided so as to receive the output light output from the laser element 10 and passing through the optical filter 12. That is, the optical filter 12 and the second light receiving element 14 constitute the other light receiving means of the two light receiving means described above. Information on the received light amounts Q1 and Q2 detected by the light receiving elements 13 and 14 is input to the drive circuit 20 as information for controlling the oscillation wavelength λ of the laser element 1. ing.

一方、前述した駆動回路20は、基本的にはレーザ素子10に駆動電流Iを与えて該レーザ素子10を発振駆動する電流駆動源21と、この電流駆動源21に、前述した三角波や鋸歯状波等の変調信号を与えて、例えば図2に示すように前記駆動電流Iを(Imin〜Imax)の範囲で周期的に増減させる変調回路22とを備える。このようにして増減制御される駆動電流Iにより図2に特性A,Bとしてそれぞれ示すように前記レーザ素子10の発振波長λが変化すると共に、その出力強度(発光量)P、受光量Qが変化する。   On the other hand, the drive circuit 20 described above basically supplies a drive current I to the laser element 10 to drive the laser element 10 to oscillate, and the current drive source 21 includes the above-described triangular wave or sawtooth shape. For example, as shown in FIG. 2, a modulation circuit 22 that periodically increases or decreases the drive current I in the range of (Imin to Imax) is provided. The oscillation wavelength λ of the laser element 10 changes as shown by the characteristics A and B in FIG. 2 by the drive current I that is controlled to increase or decrease in this way, and its output intensity (light emission amount) P and light reception amount Q are Change.

またこの駆動回路20は、前述した受光素子13,14によりそれぞれ検出された受光量Q1,Q2、つまりレーザ素子10から出力されたレーザ光の強度Q1と前記光学フィルタ12を透過した上記出力光の強度Q2とから該出力光の発振波長を検出する波長検出回路23と、検出された波長に応じて前記レーザ素子10に対する駆動電流Iを補正し、これによってレーザ光の発振波長のずれを補正する補正回路24とを備える。そして駆動回路20は上記波長のずれに応じて駆動電流Iを調整することにより、前記レーザ素子10が発振出力する出力光(レーザ光)の発振波長λを制御し、そのずれ補正を行うものとなっている。   The drive circuit 20 receives the received light amounts Q1 and Q2 detected by the light receiving elements 13 and 14, that is, the intensity Q1 of the laser light output from the laser element 10 and the output light transmitted through the optical filter 12, respectively. A wavelength detection circuit 23 for detecting the oscillation wavelength of the output light from the intensity Q2 and a drive current I for the laser element 10 are corrected according to the detected wavelength, thereby correcting a shift in the oscillation wavelength of the laser light. And a correction circuit 24. The drive circuit 20 controls the oscillation wavelength λ of the output light (laser light) oscillated and output from the laser element 10 by adjusting the drive current I according to the wavelength shift, and corrects the shift. It has become.

ここで前記レーザ素子10から出力されたレーザ光の強度(受光量)Q1と、前記光学フィルタ12を透過した上記レーザ光の強度(受光量)Q2とに基づく前記レーザ光の発振波長λの検出(本発明に係るレーザ発振波長検出方法)について説明する。
レーザ素子10が発振出力するレーザ光(出力光)の強度は、その駆動電流Iに応じて変化するので、上記出力光を直接受光する第1の受光素子13による受光量Q1は、例えば図2の特性図Bに実線で示すように変化する。またレーザ素子10の駆動電流Iに応じて該レーザ素子10が発振出力する出力光の発振波長λも変化するので、上記受光素子13による受光量Q1の変化は、発振波長λの変化をも表していると言える。
Here, the detection of the oscillation wavelength λ of the laser light based on the intensity (light reception amount) Q1 of the laser light output from the laser element 10 and the intensity (light reception amount) Q2 of the laser light transmitted through the optical filter 12 is performed. (Laser wavelength detection method according to the present invention) will be described.
Since the intensity of the laser light (output light) oscillated and output by the laser element 10 changes according to the drive current I, the amount of light received Q1 by the first light receiving element 13 that directly receives the output light is, for example, FIG. As shown by the solid line in the characteristic diagram B of FIG. Further, since the oscillation wavelength λ of the output light oscillated and output by the laser element 10 also changes in accordance with the drive current I of the laser element 10, the change in the amount of received light Q1 by the light receiving element 13 also represents the change in the oscillation wavelength λ. It can be said that.

これに対して光学フィルタ12を介して第2の受光素子14により受光されるレーザ光は上記光学フィルタ12の光学特性の影響を受ける。従って光学フィルタ12が所定の波長帯域の成分を透過するバンドパスフィルタ特性を有する場合、第2の受光素子14による受光量Q2は図2の特性図Bに破線で示すように変化する。即ち、光学フィルタ12の透過波長帯域における波長成分のレーザ光は、光学フィルタ12の存在に拘わりなくそのまま透過し、上記波長帯域以外(減衰帯域)の波長成分のレーザ光は光学フィルタ12により大きく減衰されるので、上記第2の受光素子14は主として上記所定の波長帯域のレーザ光だけを受光することになる。従って上記各受光量Q1,Q2の比である受光量比L(=Q2/Q1)は、図2の特性図Cに示すように光学フィルタ12の光学特性(透過波長の選択性)そのものを示していることになる。   On the other hand, the laser beam received by the second light receiving element 14 via the optical filter 12 is affected by the optical characteristics of the optical filter 12. Therefore, when the optical filter 12 has a band-pass filter characteristic that transmits a component in a predetermined wavelength band, the amount of light received Q2 by the second light receiving element 14 changes as indicated by a broken line in the characteristic diagram B of FIG. That is, the laser light of the wavelength component in the transmission wavelength band of the optical filter 12 is transmitted as it is regardless of the presence of the optical filter 12, and the laser light of the wavelength component other than the above wavelength band (attenuation band) is greatly attenuated by the optical filter 12. Therefore, the second light receiving element 14 mainly receives only the laser beam having the predetermined wavelength band. Therefore, the received light amount ratio L (= Q2 / Q1), which is the ratio of the received light amounts Q1 and Q2, indicates the optical characteristics (selectivity of transmission wavelength) of the optical filter 12 itself as shown in the characteristic diagram C of FIG. Will be.

従って短波長側の減衰帯域における波長λminに対応する受光量比Lmin、および長波長側の減衰帯域における波長λmaxに対応する受光量比Lmaxをそれぞれ求めれば、これらの受光量比Lmin,Lmaxと光学フィルタ12の透過率特性とからその発振波長λのずれ(量および方向)を検出することが可能となる。例えばレーザ光の波長λが全体的に短波長側にシフトした場合には受光量比Lminの値が減少し、また受光量比Lmaxの値が増加する。逆にレーザ光の波長λが全体的に長波長側にシフトした場合には受光量比Lminの値が増加し、また受光量比Lmaxの値が減少する。そして光学フィルタ12の透過率特性である受光量比Lの特性曲線は既知であるから、上記受光量比Lmin,Lmaxのずれ量から波長λmin,λmaxのずれ量Δλを検出することができる。   Therefore, if the received light amount ratio Lmin corresponding to the wavelength λmin in the short wavelength side attenuation band and the received light amount ratio Lmax corresponding to the wavelength λmax in the long wavelength side attenuation band are respectively obtained, these received light amount ratios Lmin, Lmax and the optical The deviation (amount and direction) of the oscillation wavelength λ can be detected from the transmittance characteristics of the filter 12. For example, when the wavelength λ of the laser beam is shifted to the short wavelength side as a whole, the value of the received light amount ratio Lmin decreases and the value of the received light amount ratio Lmax increases. Conversely, when the wavelength λ of the laser beam is shifted to the longer wavelength side as a whole, the value of the received light amount ratio Lmin increases, and the value of the received light amount ratio Lmax decreases. Since the characteristic curve of the received light amount ratio L, which is the transmittance characteristic of the optical filter 12, is known, the shift amount Δλ of the wavelengths λmin and λmax can be detected from the shift amount of the received light amount ratios Lmin and Lmax.

尚、一般的には光学フィルタ12の受光量比Lと受光器14の受光特性P2、および受光器13の受光特性P1との関係[L×(P2/P1)]が波長の関数f(λ)で表現できれば、これらの関係からレーザ光の発振波長λを計測することが可能となる。但し、上記関数f(λ)の傾きが[0]の領域では波長制御を行うことができないので、関数f(λ)の傾きが[0]でないことが波長制御条件となる。   In general, the relationship [L × (P2 / P1)] between the light reception amount ratio L of the optical filter 12 and the light reception characteristic P2 of the light receiver 14 and the light reception characteristic P1 of the light receiver 13 is a function f (λ ), The oscillation wavelength λ of the laser beam can be measured from these relationships. However, since wavelength control cannot be performed in the region where the slope of the function f (λ) is [0], the wavelength control condition is that the slope of the function f (λ) is not [0].

従って上述したようにして検出される波長のずれ量Δλに応じてレーザ素子10の駆動電流Iを調整すれば、これによってレーザ素子10の発振波長λを補正することができる。換言すれば波長のずれ量Δλに応じた駆動電流Iの調整によってレーザ素子10の発振波長を高精度に制御することが可能となる。故に、光学フィルタ12を介してレーザ素子10が発振出力したレーザ光を受光し、上記レーザ素子10を特定の駆動電流Iで発振駆動したときの受光量を調べるだけでその発振波長λのずれを簡易に求め、そのずれを効果的に補正することが可能となる。   Therefore, if the drive current I of the laser element 10 is adjusted according to the wavelength shift amount Δλ detected as described above, the oscillation wavelength λ of the laser element 10 can be corrected thereby. In other words, the oscillation wavelength of the laser element 10 can be controlled with high accuracy by adjusting the drive current I according to the wavelength shift amount Δλ. Therefore, the laser beam oscillated and output by the laser element 10 is received through the optical filter 12, and the deviation of the oscillation wavelength λ is detected only by examining the amount of light received when the laser element 10 is driven to oscillate with the specific drive current I. It is possible to obtain easily and correct the deviation effectively.

尚、上述の実施形態においては説明の簡略化のために、駆動電流Iの最大値Imaxおよび最小値Iminに対応する透過率の最大値Lmaxおよび最小値Lminを検出対象として説明したが、これに限るものではない。即ち、所定の駆動電流値Iに対する受光量比Lを検出対象とすれば十分である。また上述の実施形態においては、第1の受光素子(PD1)13は前記レーザ素子10から出力されたレーザ光を直接受光するものとしているが、更に別の光学フィルタ(図示せず)を前記レーザ素子10と受光素子13との間に追加して、その光学フィルタを介して第1の受光素子13が前記レーザ素子10から出力されたレーザ光を受光するように構成することも可能である。この場合、上記追加する光学フィルタとしては、前述した光学フィルタ12とは異なる波長応答性(透過波長の選択性)を有するものを用いることは言うまでもない。   In the above-described embodiment, for the sake of simplicity of explanation, the maximum value Lmax and the minimum value Lmin of the transmittance corresponding to the maximum value Imax and the minimum value Imin of the drive current I have been described as detection targets. It is not limited. That is, it is sufficient that the received light amount ratio L with respect to the predetermined drive current value I is a detection target. In the above-described embodiment, the first light receiving element (PD1) 13 directly receives the laser beam output from the laser element 10. However, another optical filter (not shown) is used as the laser. In addition to the element 10 and the light receiving element 13, the first light receiving element 13 may be configured to receive the laser beam output from the laser element 10 through the optical filter. In this case, it goes without saying that an optical filter having a wavelength response (selectivity of transmission wavelength) different from that of the optical filter 12 is used as the additional optical filter.

ところで上述した実施形態においては光学フィルタ12を通す前のレーザ光と、光学フィルタ12を通した後のレーザ光の各強度(受光量)をそれぞれ求め、受光量Q1,Q2の比(受光量比L)に着目して発振波長λのずれを検出した。しかし受光素子13が環境変化や経年劣化に関して安定した性能を有するものであれば、例えば図3に示すように光学フィルタ12を通した後のレーザ光の強度(受光量)を第2の受光素子14にて検出するだけでも同様にしてその発振波長のずれを求めることができる。   By the way, in the above-described embodiment, the respective intensities (light reception amounts) of the laser light before passing through the optical filter 12 and the laser light after passing through the optical filter 12 are respectively obtained, and the ratio of the light reception amounts Q1 and Q2 (light reception amount ratio). Focusing on L), the shift of the oscillation wavelength λ was detected. However, if the light receiving element 13 has stable performance with respect to environmental changes and aging deterioration, for example, as shown in FIG. 3, the intensity (light receiving amount) of the laser light after passing through the optical filter 12 is set to the second light receiving element. The shift of the oscillation wavelength can be obtained in the same manner simply by detecting at 14.

即ち、レーザ素子10の駆動電流Iを変化させてその発振波長λを所定の波長範囲(但し、光学フィルタ12の短波長側および長波長側における減衰帯域の少なくとも一部を含む)に亘って連続的に変化させ、そのときの前記光学フィルタ12を介して得られる受光量を求める。すると図4に示すように該光学フィルタ12の波長透過帯域においては該光学フィルタ12の光学特性の影響を受けることのないレーザ光の強度、つまりレーザ素子10から出力されたレーザ光の強度を検出することができる。従ってこの帯域における強度変化から、図4に一点鎖線で示すようにレーザ素子10の発振波長λに対するレーザ光の出力強度の変化を推定することができる。   That is, by changing the drive current I of the laser element 10, the oscillation wavelength λ is continuous over a predetermined wavelength range (however, including at least part of the attenuation band on the short wavelength side and the long wavelength side of the optical filter 12). The amount of light received through the optical filter 12 at that time is obtained. Then, as shown in FIG. 4, in the wavelength transmission band of the optical filter 12, the intensity of the laser light that is not affected by the optical characteristics of the optical filter 12, that is, the intensity of the laser light output from the laser element 10 is detected. can do. Therefore, from the intensity change in this band, the change in the output intensity of the laser beam with respect to the oscillation wavelength λ of the laser element 10 can be estimated as shown by the one-dot chain line in FIG.

またこのようにしてレーザ素子10の出力特性を推定しなくても、例えば予めレーザ素子10の出荷検査等においてその発振出力特性を調べておけば、その出力特性と光学フィルタ12を介して受光されるレーザ光の強度(受光量)とから、前述したようにレーザ素子10を電流Iで発振駆動したときの受光量に従ってその発振波長のずれを求めることができる。故に光学フィルタ12を介したレーザ光を受光するだけでも、前述した実施形態と同様にしてレーザ素子10の発振波長λを高精度に制御することができる。しかも前述した実施形態に比べて、第1の受光素子13を省略し得る分、その構成の簡素化を図ることができる等の効果が奏せられる。   Even if the output characteristics of the laser element 10 are not estimated in this way, if the oscillation output characteristics are examined in advance, for example, in a shipping inspection of the laser element 10, the light is received via the output filter and the optical filter 12. The deviation of the oscillation wavelength can be obtained from the intensity of the laser beam (the amount of received light) according to the amount of received light when the laser element 10 is driven to oscillate with the current I as described above. Therefore, the oscillation wavelength λ of the laser element 10 can be controlled with high accuracy just by receiving the laser beam through the optical filter 12 as in the above-described embodiment. In addition, compared to the above-described embodiment, effects such as simplification of the configuration can be achieved because the first light receiving element 13 can be omitted.

以上説明したレーザ発振波長の検出方法とその制御方法についてまとめると、レーザ素子10の発振波長λは、その駆動電流Iの変化に伴って略1次直線的に伸び、光出力(レーザ光強度)Pも上記駆動電流Iに略比例する。従ってレーザ素子10の上記駆動電流I、発振波長λ、および出力強度Pとの関係は図5(a)(b)(c)にそれぞれ示すようになる。   The laser oscillation wavelength detection method and its control method described above are summarized. The oscillation wavelength λ of the laser element 10 extends approximately linearly as the drive current I changes, and the light output (laser light intensity). P is also substantially proportional to the drive current I. Accordingly, the relationship between the drive current I, the oscillation wavelength λ, and the output intensity P of the laser element 10 is as shown in FIGS. 5 (a), 5 (b), and 5 (c), respectively.

ここで上記レーザ光の発振波長λ(λ1〜λ2)に対して、図6(a)に示すように受光量比Lが平坦な第1の光学フィルタ(実質的にはフィルタなし)と、上記発振波長λ(λ1〜λ2)に対してのみ選択的な受光量比Lを示すバンドパス型の第2の光学フィルタとを用い、これらの各光学フィルタをそれぞれ介して上記レーザ光を受光した場合、前述したようにレーザ光自体の出力強度が発振波長λに応じて変化しているので、その受光強度P1,P2は図6(b)に示すようになる。そしてこれらの受光強度の比(Q2/Q1)に着目すると、上述した波長(λ1〜λ2)の範囲においては上記各受光量Q1,Q2が互いに等しいので受光量の比(Q2/Q1)は[1]となり、上記波長(λ1〜λ2)の範囲を外れると受光量Q2が減少するので、上記受光量の比(Q2/Q1)は図6(c)に示すように或る勾配をもって減少する。この減衰勾配は、前述した第2の光学フィルタの光学特性(バンドバスフィルタ特性)に依存する。   Here, with respect to the oscillation wavelength λ (λ1 to λ2) of the laser beam, as shown in FIG. 6A, a first optical filter (substantially no filter) having a flat received light amount ratio L, and When the laser beam is received through each of these optical filters using a bandpass type second optical filter exhibiting a selective light reception amount ratio L only for the oscillation wavelength λ (λ1 to λ2) As described above, since the output intensity of the laser beam itself changes according to the oscillation wavelength λ, the received light intensity P1 and P2 are as shown in FIG. When attention is paid to the ratio (Q2 / Q1) of these received light intensities, the received light amounts Q1 and Q2 are equal to each other in the above-mentioned wavelength (λ1 to λ2) range, so the received light amount ratio (Q2 / Q1) is [ 1], the amount of received light Q2 decreases when the wavelength (λ1 to λ2) is out of the range, and the ratio (Q2 / Q1) of the amount of received light decreases with a certain gradient as shown in FIG. 6 (c). . This attenuation gradient depends on the optical characteristic (band bus filter characteristic) of the second optical filter described above.

従ってレーザ素子10から発振波長λ1,λ2のレーザ光を発振出力させるべくその駆動電流I1,I2を与えたときの上記受光量の比(Q2/Q1)を調べ、その比の減少量を求めれば、既知である第2の光学フィルタの光学特性(バンドバスフィルタ特性)から上記駆動電流I1,I2を与えたときにレーザ素子10から出力されるレーザ光の発振波長λ1’,λ2’を検出することが可能となり、ひいては前記レーザ素子10から得ようとしている発振波長λ1,λ2からのずれを検出することが可能となる。   Accordingly, the ratio (Q2 / Q1) of the received light amount when the drive currents I1 and I2 are applied to oscillate and output the laser beams having the oscillation wavelengths λ1 and λ2 from the laser element 10 and the reduction amount of the ratio is obtained. The oscillation wavelengths λ1 ′ and λ2 ′ of the laser light output from the laser element 10 when the drive currents I1 and I2 are applied are detected from the known optical characteristics (band bus filter characteristics) of the second optical filter. As a result, it is possible to detect a deviation from the oscillation wavelengths λ1 and λ2 to be obtained from the laser element 10.

ところで第1および第2の光学フィルタがレーザ光の発振波長λ(λ1〜λ2)に対して、例えば図7(a)に示すように互いに異なる透過率(光学特性)を有する場合、これらの各光学フィルタを介してそれぞれ受光される上記レーザ光の受光量Q1,Q2は、例えば図7(b)に示すようになる。この場合、一般的には上述した波長(λ1〜λ2)の範囲において上記受光量Q1,Q2が等しくなることはない。しかしこれらの受光量Q1,Q2の比(Q2/Q1)に着目すると、図7(c)に示すように波長の変化に対して一次元的な何らかの関係を有する。従ってこの関係を予め関数F(λ)として求めておけば、この関数F(λ)に従って上記受光量Q1,Q2の比(Q2/Q1)からレーザ光の発振波長λを求めることができる。   When the first and second optical filters have different transmittances (optical characteristics) as shown in FIG. 7A, for example, with respect to the oscillation wavelength λ (λ1 to λ2) of the laser light, The received light amounts Q1 and Q2 of the laser light respectively received through the optical filter are as shown in FIG. 7B, for example. In this case, generally, the received light amounts Q1 and Q2 do not become equal in the above-described wavelength range (λ1 to λ2). However, paying attention to the ratio (Q2 / Q1) of these received light quantities Q1 and Q2, as shown in FIG. 7C, there is some one-dimensional relationship with respect to the change in wavelength. Therefore, if this relationship is obtained in advance as a function F (λ), the oscillation wavelength λ of the laser beam can be obtained from the ratio (Q2 / Q1) of the received light amounts Q1 and Q2 according to the function F (λ).

故に前述した図5(a)に示すレーザ素子10の駆動電流Iとその発振波長λとの関係、およびレーザ素子10に駆動電流Iを与えた状態において上述した如く検出されるレーザ光の発振波長λ’とから、その発振波長のずれを検出することができる。そしてこの波長のずれに応じてレーザ素子10に与える駆動電流Iを調整することで、その発振波長λを高精度に制御することが可能となる。即ち、本発明によれば、或る光学特性を有する光学フィルタを通してレーザ光を受光し、例えば上記光学フィルタを通さないレーザ光の受光量との比を求めることで、簡易にその発振波長を検出し、検出した発振波長に従ってレーザ素子に対する駆動電流を調節することで、その発振波長を高精度に制御することが可能となる。   Therefore, the relationship between the driving current I of the laser element 10 and its oscillation wavelength λ shown in FIG. 5A and the oscillation wavelength of the laser beam detected as described above in the state where the driving current I is applied to the laser element 10. The shift of the oscillation wavelength can be detected from λ ′. Then, by adjusting the drive current I applied to the laser element 10 in accordance with the wavelength shift, the oscillation wavelength λ can be controlled with high accuracy. That is, according to the present invention, laser light is received through an optical filter having certain optical characteristics, and the oscillation wavelength can be easily detected by, for example, obtaining a ratio with the amount of received laser light that does not pass through the optical filter. Then, by adjusting the drive current for the laser element in accordance with the detected oscillation wavelength, the oscillation wavelength can be controlled with high accuracy.

尚、本発明は上述した実施形態に限定されるものではない。図1,2に示した実施形態においてはレーザ素子10から出力したレーザ光を、光学フィルタ12を通過した後にレンズ11を通過するように構成したが、光学フィルタ12を通過することなくレンズ11を直接通過するようにしても良い。即ち、光学フィルタ12を受光素子13の受光面のみを覆う面積に形成して受光素子13の直前に配置するようにしても良い。また集光レンズ11と光学フィルタ12とを別体として構成したが、レンズ11自体に波長選択性フィルタとしての機能を兼用させることもできる。   The present invention is not limited to the embodiment described above. In the embodiment shown in FIGS. 1 and 2, the laser light output from the laser element 10 is configured to pass through the lens 11 after passing through the optical filter 12, but the lens 11 is not passed through the optical filter 12. You may make it pass directly. That is, the optical filter 12 may be formed in an area that covers only the light receiving surface of the light receiving element 13 and may be disposed immediately before the light receiving element 13. Further, although the condensing lens 11 and the optical filter 12 are configured as separate bodies, the lens 11 itself can also function as a wavelength selective filter.

また実施形態においては透過型の光学フィルタ12を用いたが、反射形の光学フィルタを用いても同様に実施し得ることは言うまでもない。反射形の光学フィルタを用いる場合、平面鏡形状のフィルタのみならず凹面鏡形状や凸面鏡形状のフィルタを用いて集光レンズ11の機能を兼用させることもできる。また光学フィルタ12の光学特性については、例えば計測に使用する波長帯域のレーザ光に対して十分に高い透過率(反射率)を有するものであれば十分である。また発振波長に対する透過率(反射率)の変化(出力の変化)ΔPに着目して発振波長のずれを検出するように構成することも可能である。   In the embodiment, the transmission type optical filter 12 is used. However, it goes without saying that a reflection type optical filter may be used in the same manner. When a reflective optical filter is used, the function of the condensing lens 11 can be shared by using not only a plane mirror filter but also a concave mirror or convex mirror filter. As for the optical characteristics of the optical filter 12, it is sufficient if it has a sufficiently high transmittance (reflectance) for laser light in a wavelength band used for measurement, for example. Further, it is also possible to configure so as to detect the shift of the oscillation wavelength by paying attention to the change (output change) ΔP of the transmittance (reflectance) with respect to the oscillation wavelength.

更には光学フィルタ12の前後においてレーザ光の強度(受光量)をそれぞれ検出する場合には、これらの受光量から光学フィルタ12での減衰量を求め得るので、レーザ素子10を波長変調しない(即ち、一定の波長で用いる)レーザ装置にも適用可能である。また上述の実施形態においては平坦な波長応答特性を有する受光素子と、減衰帯域を有する光学フィルタとの組み合わせによって受光手段の波長応答特性を実現していたが、受光素子自体が減衰波長帯域を有するものであれば光学フィルタを用いることなく受光素子単体にて受光手段を構成することも可能である。   Furthermore, when detecting the intensity (amount of received light) of the laser light before and after the optical filter 12, the amount of attenuation at the optical filter 12 can be obtained from the amount of received light, so that the laser element 10 is not wavelength-modulated (that is, It is also applicable to laser devices (used at a certain wavelength). In the above embodiment, the wavelength response characteristic of the light receiving means is realized by a combination of a light receiving element having a flat wavelength response characteristic and an optical filter having an attenuation band. However, the light receiving element itself has an attenuation wavelength band. If it is a thing, it is also possible to comprise a light-receiving means by a single light-receiving element without using an optical filter.

更にまた、上述した実施形態ではレーザ素子10として半導体型レーザ素子を用いてその発振波長を駆動電流で制御する例を説明したが、これに限らない。例えばレーザ素子10として波長可変型レーザ素子を用いれば、その発振波長λを電圧信号で制御することもできる。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   Furthermore, in the above-described embodiment, an example in which a semiconductor laser element is used as the laser element 10 and its oscillation wavelength is controlled by a drive current has been described, but the present invention is not limited to this. For example, if a wavelength tunable laser element is used as the laser element 10, the oscillation wavelength λ can be controlled by a voltage signal. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の第1の実施形態に係るレーザ発振波長制御方法を適用したレーザ装置の要部概略構成図。The principal part schematic block diagram of the laser apparatus to which the laser oscillation wavelength control method which concerns on the 1st Embodiment of this invention is applied. 図1に示すレーザ装置において光学フィルタを透過する前と透過した後のレーザ光の受光強度の変化。更には駆動電流波形、レーザ素子の出力特性および光学フィルタの波長透過特性を示す図。Changes in the light receiving intensity of laser light before and after passing through the optical filter in the laser apparatus shown in FIG. Furthermore, the figure which shows the drive current waveform, the output characteristic of a laser element, and the wavelength transmission characteristic of an optical filter. 本発明の第2の実施形態に係るレーザ発振波長制御方法を適用したレーザ装置の要部概略構成図。The principal part schematic block diagram of the laser apparatus to which the laser oscillation wavelength control method which concerns on the 2nd Embodiment of this invention is applied. 図3に示すレーザ装置において光学フィルタを透過した後のレーザ光の受光強度の変化と、この変化から推定されるレーザ素子の出力レーザ光の受光強度の変化を示す図。The figure which shows the change of the light reception intensity | strength of the laser beam after permeate | transmitting an optical filter in the laser apparatus shown in FIG. 3, and the change of the light reception intensity | strength of the output laser beam of the laser element estimated from this change. レーザ素子における駆動電流I、発振波長λ、および出力強度Pの関係を示す図。The figure which shows the relationship between the drive current I, the oscillation wavelength (lambda), and the output intensity P in a laser element. バンドパス型の光学フィルタを用いた場合の波長検出の原理を説明するための図。The figure for demonstrating the principle of the wavelength detection at the time of using a band pass type optical filter. 光学特性の異なる2枚の光学フィルタを用いた場合における、一般的な波長検出の原理を説明するための図。The figure for demonstrating the principle of a general wavelength detection in the case of using the two optical filters from which an optical characteristic differs. 半導体レーザ素子の自己結合効果を利用したレーザ装置の要部概略構成図。The principal part schematic block diagram of the laser apparatus using the self-coupling effect of a semiconductor laser element.

符号の説明Explanation of symbols

10 レーザ素子
11 集光レンズ
12 光学フィルタ
13,14 受光器
20 レーザ駆動回路
21 電流駆動源
22 変調回路
23 波長検出回路
24 補正回路
DESCRIPTION OF SYMBOLS 10 Laser element 11 Condensing lens 12 Optical filter 13,14 Light receiver 20 Laser drive circuit 21 Current drive source 22 Modulation circuit 23 Wavelength detection circuit 24 Correction circuit

Claims (12)

互いに波長応答特性の異なる2つの受光手段を用いて1つのレーザ素子から出力されるレーザ光をそれぞれ受光し、上記各受光手段による受光量を相互に比較して前記レーザ光の発振波長を検出することを特徴とするレーザ発振波長検出方法。   Two light receiving means having different wavelength response characteristics are used to receive laser beams output from one laser element, and the amounts of light received by the respective light receiving means are compared with each other to detect the oscillation wavelength of the laser light. And a laser oscillation wavelength detecting method. 前記受光手段の少なくとも一方は、既知の波長応答特性を有する光学フィルタと、この光学フィルタを通して前記レーザ光を受光する受光素子とを備えたものである請求項1に記載のレーザ発振波長検出方法。   2. The laser oscillation wavelength detecting method according to claim 1, wherein at least one of the light receiving means includes an optical filter having a known wavelength response characteristic and a light receiving element that receives the laser light through the optical filter. 前記レーザ素子は、前記レーザ光の波長を経時的に変化させるものである請求項1または2に記載のレーザ発振波長検出方法。   The laser oscillation wavelength detection method according to claim 1 or 2, wherein the laser element changes the wavelength of the laser light with time. レーザ素子から出力されるレーザ光の波長を経時的に変化させると共に、既知の波長応答特性を有する受光手段を用いて上記レーザ光を受光し、前記受光手段による受光量と該受光手段の予め想定された受光特性とを比較して前記レーザ光の発振波長を検出することを特徴とするレーザ発振波長検出方法。   The wavelength of the laser beam output from the laser element is changed over time, and the laser beam is received using a light receiving unit having a known wavelength response characteristic. The amount of light received by the light receiving unit and the light receiving unit are assumed in advance. And detecting the oscillation wavelength of the laser beam by comparing the received light receiving characteristics. 前記受光手段は、既知の波長応答性を有する光学フィルタと、この光学フィルタを通して前記レーザ光を受光する受光素子とを備えたものである請求項4に記載のレーザ発振波長検出方法。   5. The laser oscillation wavelength detection method according to claim 4, wherein the light receiving means includes an optical filter having a known wavelength response and a light receiving element that receives the laser light through the optical filter. 前記受光手段の受光特性は、前記レーザ光の発振波長を所定の帯域幅に亘って変化させたときの前記受光手段による受光量の変化から推定されるものである請求項4に記載のレーザ発振波長検出方法。   5. The laser oscillation according to claim 4, wherein the light receiving characteristic of the light receiving means is estimated from a change in the amount of light received by the light receiving means when the oscillation wavelength of the laser light is changed over a predetermined bandwidth. Wavelength detection method. 請求項1〜6のいずれかに記載のレーザ発振波長検出方法を用いてレーザ素子から出力されるレーザ光の発振波長を検出し、検出した上記レーザ光の波長情報に基づいて前記レーザ光の発振波長をフィードバック制御することを特徴とするレーザ発振波長制御方法。   An oscillation wavelength of a laser beam output from a laser element is detected using the laser oscillation wavelength detection method according to any one of claims 1 to 6, and the oscillation of the laser beam is performed based on the detected wavelength information of the laser beam. A laser oscillation wavelength control method, wherein the wavelength is feedback-controlled. 前記レーザ光の発振波長のフィードバック制御は、前記レーザ素子を発振駆動する駆動電流をフィードバック制御して行われるものである請求項7に記載のレーザ発振波長制御方法。   The laser oscillation wavelength control method according to claim 7, wherein the feedback control of the oscillation wavelength of the laser beam is performed by feedback control of a drive current for oscillating and driving the laser element. 半導体レーザ素子と、
この半導体レーザ素子に駆動電流を与えて該半導体レーザ素子からレーザ光を発振出力させる駆動手段と、
互いに異なる波長応答特性を有して前記半導体レーザ素子から出力されたレーザ光をそれぞれ受光する2つの受光手段と、
上記各受光手段による受光量を相互に比較して前記レーザ光の発振波長を検出する波長検出手段と、
この波長検出手段により検出された前記レーザ光の波長情報に基づいて前記駆動電流を調節して前記レーザ光の発振波長をフィードバック制御する波長制御手段と
を具備したことを特徴とするレーザ発振波長制御装置。
A semiconductor laser element;
Drive means for applying a drive current to the semiconductor laser element to oscillate and output laser light from the semiconductor laser element;
Two light receiving means for receiving laser beams output from the semiconductor laser elements having different wavelength response characteristics, respectively;
A wavelength detection means for detecting the oscillation wavelength of the laser light by comparing the amounts of light received by the light receiving means with each other;
A laser oscillation wavelength control comprising: wavelength control means for adjusting the drive current based on wavelength information of the laser light detected by the wavelength detection means to feedback control the oscillation wavelength of the laser light. apparatus.
前記駆動手段は、前記レーザ素子の駆動電流を可変して該レーザ素子から出力されるレーザ光の発振波長を経時的に変化させるものであって、
前記受光手段の少なくとも一方は、既知の波長応答特性を有する光学フィルタと、この光学フィルタを通して前記レーザ光を受光する受光素子とを備えたものである請求項9に記載のレーザ発振波長制御装置。
The driving means changes the oscillation wavelength of laser light output from the laser element by changing the drive current of the laser element over time,
The laser oscillation wavelength control device according to claim 9, wherein at least one of the light receiving means includes an optical filter having a known wavelength response characteristic and a light receiving element that receives the laser light through the optical filter.
レーザ光を出力する半導体レーザ素子と、
この半導体レーザ素子の駆動電流を変化させて前記レーザ光の波長を経時的に変化させる駆動手段と、
既知の波長応答特性を有して前記半導体レーザ素子から出力されたレーザ光を受光する受光手段と、
上記受光手段による受光量と予め想定された前記受光手段の受光特性とを比較して前記レーザ光の発振波長を検出する波長検出手段と、
この波長検出手段により検出された前記レーザ光の波長情報に基づいて前記駆動電流を調節して前記レーザ光の発振波長をフィードバック制御する波長制御手段と
を具備したことを特徴とするレーザ発振波長制御装置。
A semiconductor laser element for outputting laser light;
Drive means for changing the wavelength of the laser beam over time by changing the drive current of the semiconductor laser element;
A light receiving means for receiving a laser beam having a known wavelength response characteristic and output from the semiconductor laser element;
A wavelength detecting means for detecting the oscillation wavelength of the laser light by comparing the amount of light received by the light receiving means with a light receiving characteristic of the light receiving means assumed in advance;
A laser oscillation wavelength control comprising: wavelength control means for adjusting the drive current based on wavelength information of the laser light detected by the wavelength detection means to feedback control the oscillation wavelength of the laser light. apparatus.
前記受光手段は、既知の波長応答性を有する光学フィルタと、この光学フィルタを通して前記レーザ光を受光する受光素子とを備えたものであって、
前記波長検出手段は、前記レーザ光の発振波長を所定の帯域幅に亘って変化させたときの前記受光素子による受光量の変化から前記受光手段の受光特性を推定して波長検出に用いるものである請求項11に記載のレーザ発振波長制御装置。
The light receiving means includes an optical filter having a known wavelength response, and a light receiving element that receives the laser light through the optical filter,
The wavelength detecting means estimates the light receiving characteristics of the light receiving means from the change in the amount of light received by the light receiving element when the oscillation wavelength of the laser light is changed over a predetermined bandwidth, and is used for wavelength detection. The laser oscillation wavelength control device according to claim 11.
JP2006057631A 2006-03-03 2006-03-03 Method for detecting laser oscillation wavelength, control method, and apparatus Pending JP2006324636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057631A JP2006324636A (en) 2006-03-03 2006-03-03 Method for detecting laser oscillation wavelength, control method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057631A JP2006324636A (en) 2006-03-03 2006-03-03 Method for detecting laser oscillation wavelength, control method, and apparatus

Publications (1)

Publication Number Publication Date
JP2006324636A true JP2006324636A (en) 2006-11-30

Family

ID=37544047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057631A Pending JP2006324636A (en) 2006-03-03 2006-03-03 Method for detecting laser oscillation wavelength, control method, and apparatus

Country Status (1)

Country Link
JP (1) JP2006324636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209371A (en) * 2010-03-29 2011-10-20 Mitsubishi Electric Corp Optical modulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251673A (en) * 1998-02-27 1999-09-17 Nec Corp Wavelength control circuit for laser signal circuit
JP2001257419A (en) * 2000-03-10 2001-09-21 Nec Corp Wavelength stabilized laser module
JP2004364033A (en) * 2003-06-05 2004-12-24 Mitsubishi Electric Corp System and apparatus for optical multiplex transmission and optical multiplex reception apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251673A (en) * 1998-02-27 1999-09-17 Nec Corp Wavelength control circuit for laser signal circuit
JP2001257419A (en) * 2000-03-10 2001-09-21 Nec Corp Wavelength stabilized laser module
JP2004364033A (en) * 2003-06-05 2004-12-24 Mitsubishi Electric Corp System and apparatus for optical multiplex transmission and optical multiplex reception apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209371A (en) * 2010-03-29 2011-10-20 Mitsubishi Electric Corp Optical modulator

Similar Documents

Publication Publication Date Title
JPH0315742A (en) Gas detector
US8273567B2 (en) Portable measurement system having biophotonic sensor
JP6165074B2 (en) Wavelength monitor and wavelength monitoring method
JP5308198B2 (en) Optical pulse generator and optical measuring instrument using the same
JP5196962B2 (en) Lightwave radar device
US6856723B1 (en) Group velocity dispersion measuring device and group velocity dispersion measuring method
US7103075B2 (en) Solid laser apparatus
JP2009004525A (en) Light source module
JP2006322917A (en) Laser device
JP4222469B2 (en) Wavelength monitor and semiconductor laser module
JP5653850B2 (en) Semiconductor laser module and control method thereof
JP2006324636A (en) Method for detecting laser oscillation wavelength, control method, and apparatus
US20090141748A1 (en) Tunable laser light source and controlling method of the same
JP5362169B2 (en) LASER DEVICE, OPTICAL DEVICE CONTROL METHOD, AND LASER DEVICE CONTROL METHOD
JP2003258374A (en) Wavelength-stabilized semiconductor laser module
WO2019208575A1 (en) Optical semiconductor device and method of controlling same
WO2017164033A1 (en) Gas measuring device
KR20220004432A (en) LiDAR apparatus having improvded signal-to-noise ratio
US20220102931A1 (en) Laser device and method for operating laser device
US8290007B2 (en) Apparatus and method for stabilizing frequency of laser
JP2003204111A (en) Wavelength locker module and method of stabilizing light emitting wavelength of laser light source using the same
JP2010216959A (en) Laser-type gas analyzer
US20230081609A1 (en) Fmcw lidar laser system and operating method for such a laser system
US20240295698A1 (en) Photonic beam steering device with wavelength sweep
WO2024150752A1 (en) Measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A02 Decision of refusal

Effective date: 20110427

Free format text: JAPANESE INTERMEDIATE CODE: A02