Nothing Special   »   [go: up one dir, main page]

JP5824254B2 - Gas engine gas flow measuring device and method - Google Patents

Gas engine gas flow measuring device and method Download PDF

Info

Publication number
JP5824254B2
JP5824254B2 JP2011138306A JP2011138306A JP5824254B2 JP 5824254 B2 JP5824254 B2 JP 5824254B2 JP 2011138306 A JP2011138306 A JP 2011138306A JP 2011138306 A JP2011138306 A JP 2011138306A JP 5824254 B2 JP5824254 B2 JP 5824254B2
Authority
JP
Japan
Prior art keywords
flow rate
value
fuel gas
gas
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011138306A
Other languages
Japanese (ja)
Other versions
JP2013007568A (en
Inventor
洋平 中島
洋平 中島
健二 吉村
健二 吉村
元彦 西村
元彦 西村
英和 岩▲崎▼
英和 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2011138306A priority Critical patent/JP5824254B2/en
Publication of JP2013007568A publication Critical patent/JP2013007568A/en
Application granted granted Critical
Publication of JP5824254B2 publication Critical patent/JP5824254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、ガスエンジンへ供給される燃料ガスの流量を計測するガスエンジンのガス流量計測装置及び方法に関する。   The present invention relates to a gas flow rate measuring apparatus and method for a gas engine that measures the flow rate of fuel gas supplied to a gas engine.

近年、発電プラント等においては、高効率発電に向けた技術開発が加速しており、その駆動源としてのガスエンジンの高効率化も同時に求められている。ガスエンジンの燃費計測には高精度な流量計が必要不可欠であり、電気ノイズ等の影響を受けない容積式流量計が一般的に使用される。しかし、容積式流量計は、ガスエンジンへの燃料ガス供給ラインに設けられた圧力調整弁等によって生じる燃料ガスの脈動の影響を受け易く、計測精度に問題がある。そこで、特許文献1では、圧力調整弁と流量計とを結ぶ配管途中に緩衝手段を設け、圧力調整弁によって生じる脈動の影響を低減させて、流量の計測精度を向上させている。   In recent years, in power plants and the like, technological development for high-efficiency power generation is accelerating, and a high-efficiency gas engine as a driving source is also demanded. A highly accurate flow meter is indispensable for measuring the fuel consumption of a gas engine, and a positive displacement flow meter that is not affected by electrical noise or the like is generally used. However, the positive displacement flowmeter is susceptible to the pulsation of fuel gas generated by a pressure regulating valve or the like provided in the fuel gas supply line to the gas engine, and there is a problem in measurement accuracy. Therefore, in Patent Document 1, a buffer means is provided in the middle of the pipe connecting the pressure regulating valve and the flow meter to reduce the influence of pulsation caused by the pressure regulating valve, thereby improving the flow rate measurement accuracy.

特許第3259820号公報Japanese Patent No. 3259820

しかしながら、特許文献1の緩衝手段は固定されたメッシュ構造であり、この圧力損失が大きい場合にはその影響を無視できない。例えば、メッシュ構造における圧力損失が大きい場合には、その損失分はガス昇圧機の昇圧能力を増加させて補わねばならないため、設備全体のエネルギー消費量が増加し、結果的に発電プラントのエネルギー効率が低下することとなる。   However, the buffer means of Patent Document 1 has a fixed mesh structure, and when the pressure loss is large, the influence cannot be ignored. For example, if the pressure loss in the mesh structure is large, the loss must be compensated by increasing the boosting capacity of the gas booster, which increases the energy consumption of the entire facility, resulting in the energy efficiency of the power plant. Will be reduced.

そこで本発明は、燃料ガスの流量計測精度の向上とエネルギー効率の向上とを両立させることを目的としている。   Accordingly, an object of the present invention is to achieve both improvement in fuel gas flow rate measurement accuracy and improvement in energy efficiency.

本発明は前記事情に鑑みてなされたものであり、本発明に係るガスエンジンのガス流量計測装置は、ガスエンジンへ供給される燃料ガスの流量を計測するガスエンジンのガス流量計測装置であって、燃料ガス供給源から供給される燃料ガスを昇圧する昇圧手段と、前記昇圧手段で昇圧された燃料ガスの流量を計測する第1流量計測手段と、前記第1流量計測手段の下流側に設けられ、前記ガスエンジンへ供給される燃料ガスの供給圧力を調整する圧力調整手段と、前記第1流量計測手段と前記圧力調整手段との間に設けられ、燃料ガスの脈動を抑えるための絞り部を有する緩衝手段と、を備え、前記緩衝手段は、前記絞り部の開度を可変に調整できるよう構成されている。   The present invention has been made in view of the above circumstances, and a gas flow rate measuring device for a gas engine according to the present invention is a gas flow rate measuring device for a gas engine that measures the flow rate of fuel gas supplied to the gas engine. A booster for boosting the fuel gas supplied from the fuel gas supply source; a first flow rate measuring unit for measuring the flow rate of the fuel gas boosted by the booster; and a downstream side of the first flow rate measurer. A pressure adjusting means for adjusting a supply pressure of the fuel gas supplied to the gas engine, and a throttle portion provided between the first flow rate measuring means and the pressure adjusting means for suppressing fuel gas pulsation And the buffer means is configured to variably adjust the opening of the throttle portion.

前記構成によれば、緩衝手段の絞り部の開度を可変に調整できるので、絞り部によって脈動の影響を低減させながらも、絞り部における圧力損失が過大にならないように絞り部の開度を容易に設定することができる。即ち、高精度な流量計測が可能としながらも、緩衝手段における圧力損失を抑制することが可能となり、昇圧手段によって燃料ガスの圧力を無駄に昇圧させる必要がなくなる。したがって、燃料ガスの流量計測精度の向上とエネルギー効率の向上とを両立させることが可能となる。   According to the above configuration, the opening degree of the throttle part of the buffer means can be variably adjusted, so that the throttle part opening degree is set so that pressure loss in the throttle part does not become excessive while reducing the influence of pulsation by the throttle part. It can be set easily. That is, it is possible to suppress the pressure loss in the buffering means while making it possible to measure the flow rate with high accuracy, and it becomes unnecessary to increase the pressure of the fuel gas by the pressure increasing means. Therefore, it is possible to achieve both improvement in fuel gas flow rate measurement accuracy and improvement in energy efficiency.

前記絞り部の開度は、前記絞り部の開度に依存する燃料ガスの流量振幅値と前記第1流量計測手段によって計測される燃料ガスの所定時間当たりの積算流量値との間の相関関係における前記積算流量値の変化率を利用して設定されてもよい。   The opening degree of the throttle part is a correlation between the flow amplitude value of the fuel gas depending on the opening degree of the throttle part and the integrated flow rate value per predetermined time of the fuel gas measured by the first flow rate measuring means. May be set using the rate of change of the integrated flow rate value.

前記構成によれば、流量振幅値と積算流量値との間の相関関係から積算流量値の変化率(流量振幅値が所定量変化したときの積算流量値の変化量)を参照して絞り部の開度を設定することで、絞り部によって脈動の影響を低減させながらも、絞り部における圧力損失が過大にならないように絞り部の開度を好適に設定することができる。   According to the above configuration, the throttle unit refers to the rate of change of the integrated flow value (the amount of change of the integrated flow value when the flow amplitude value changes by a predetermined amount) from the correlation between the flow amplitude value and the integrated flow value. By setting the degree of opening, it is possible to suitably set the degree of opening of the throttle part so that the pressure loss in the throttle part does not become excessive while reducing the influence of pulsation by the throttle part.

前記相関関係において前記積算流量値の変化率が所定値未満であり且つ前記流量振幅値が所定値以上である範囲で前記絞り部の開度が設定されてもよい。   In the correlation, the opening degree of the throttle portion may be set in a range where the rate of change of the integrated flow rate value is less than a predetermined value and the flow rate amplitude value is greater than or equal to a predetermined value.

前記構成によれば、積算流量値の変化率が小さい範囲における流量振幅値(即ち、絞り部の開度)を選んで、脈動の影響を低減させた高精度な流量計測を実現しながらも、流量振幅値が小さくなり過ぎて圧力損失が増大するのを防止することができ、流量計測精度とエネルギー効率との両面で良好な絞り開度を設定することが可能となる。   According to the above configuration, the flow rate amplitude value in the range where the rate of change of the integrated flow rate value is small (i.e., the opening of the throttle portion) is selected, and while realizing highly accurate flow rate measurement with reduced influence of pulsation, It is possible to prevent an increase in pressure loss due to an excessively small flow amplitude value, and it is possible to set a good throttle opening degree in terms of both flow measurement accuracy and energy efficiency.

前記相関関係において前記積算流量値の変化率が所定値未満となる前記流量振幅値のうち最も大きい流量振幅値での開度が前記絞り部の開度に設定されてもよい。   The opening at the largest flow amplitude value among the flow amplitude values at which the rate of change of the integrated flow value is less than a predetermined value in the correlation may be set as the opening of the throttle portion.

前記構成によれば、流量計測精度が良好な範囲内で圧力損失が最も少ない絞り開度を得ることがき、脈動緩衝を必要最小限にして最適な絞り開度を設定することが可能となる。   According to the above-described configuration, it is possible to obtain the throttle opening with the least pressure loss within a range where the flow rate measurement accuracy is good, and it is possible to set the optimum throttle opening with the necessary minimum pulsation buffer.

前記緩衝手段は、前記絞り部の開度を可変に調整できるよう構成されていてもよい。   The buffer means may be configured to variably adjust the opening of the throttle portion.

前記構成によれば、絞り部の開度調整が容易になると共に、絞り部の開度を最適値に設定した後に燃料ガス供給圧が変わった場合にも開度を容易に再調整することができる。   According to the above configuration, the throttle opening can be easily adjusted, and the opening can be easily readjusted even when the fuel gas supply pressure changes after setting the throttle opening to the optimum value. it can.

前記第1流量計測手段に直列に設けられ、燃料ガスの流量振幅値を算出するための第2流量計測手段をさらに備えていてもよい。   The apparatus may further include a second flow rate measuring unit that is provided in series with the first flow rate measuring unit and that calculates a flow amplitude value of the fuel gas.

前記構成によれば、2つの流量計測手段を用いることによって、流量計測手段の故障を早期に把握することができる。また、第2流量計測手段に質量流量計を用いる場合には、流量振幅を容易に算出できると共に、絞りの開度の最適値を更に高精度に設定することができる。   According to the said structure, the failure of a flow measurement means can be grasped | ascertained at an early stage by using two flow measurement means. Further, when a mass flow meter is used as the second flow rate measuring means, the flow rate amplitude can be easily calculated, and the optimum value of the aperture of the throttle can be set with higher accuracy.

また本発明のガスエンジンのガス流量計測方法は、ガスエンジンへ供給される燃料ガスの流量を計測するガスエンジンのガス流量計測方法であって、燃料ガス供給源から供給される燃料ガスを昇圧する昇圧工程と、前記昇圧された燃料ガスの流量を計測する第1流量計測工程と、前記ガスエンジンへ供給される燃料ガスの供給圧力を調整する圧力調整工程と、絞りによって燃料ガスの脈動を抑える緩衝工程と、前記絞りの開度を可変に調整して設定する開度設定工程と、を備えている。   The gas flow rate measuring method for a gas engine according to the present invention is a gas flow rate measuring method for a gas engine for measuring a flow rate of a fuel gas supplied to the gas engine, and boosts the fuel gas supplied from a fuel gas supply source. A pressure increase step, a first flow rate measurement step for measuring the flow rate of the boosted fuel gas, a pressure adjustment step for adjusting the supply pressure of the fuel gas supplied to the gas engine, and suppression of fuel gas pulsation by throttling A buffering step, and an opening degree setting step of variably adjusting and setting the opening degree of the throttle.

前記方法によれば、絞りの開度を調整することで、絞りによって脈動の影響を低減させながらも、絞りにおける圧力損失が過大にならないように絞りの開度を容易に設定することができる。即ち、高精度な流量計測が可能としながらも、緩衝工程における圧力損失を抑制することが可能となり、昇圧工程によって燃料ガスの圧力を無駄に昇圧させる必要がなくなる。したがって、燃料ガスの流量計測精度の向上とエネルギー効率の向上とを両立させることが可能となる。   According to the above method, by adjusting the throttle opening, it is possible to easily set the throttle opening so that the pressure loss in the throttle does not become excessive while reducing the influence of pulsation by the throttle. That is, it is possible to suppress the pressure loss in the buffering process while making it possible to measure the flow rate with high accuracy, and it is not necessary to increase the pressure of the fuel gas unnecessarily in the pressure increasing process. Therefore, it is possible to achieve both improvement in fuel gas flow rate measurement accuracy and improvement in energy efficiency.

前記絞りの開度に応じて燃料ガスの流量振幅値を夫々算出する振幅算出工程と、前記絞りの開度に応じて燃料ガスの所定時間当たりの積算流量値を夫々算出する積算流量算出工程と、をさらに備え、前記開度設定工程では、前記流量振幅値と前記積算流量値との間の相関関係における前記積算流量値の変化率を利用して前記絞りの開度を設定してもよい。   An amplitude calculating step of calculating a flow amplitude value of the fuel gas according to the opening of the throttle, and an integrated flow calculating step of calculating an integrated flow value per predetermined time of the fuel gas according to the opening of the throttle, respectively. In the opening degree setting step, the opening degree of the throttle may be set using the rate of change of the integrated flow value in the correlation between the flow rate amplitude value and the integrated flow value. .

前記方法によれば、流量振幅値と積算流量値との間の相関関係から積算流量値の変化率(流量振幅値が所定量変化したときの積算流量値の変化量)を参照して絞りの開度を設定することで、絞りによって脈動の影響を低減させながらも、絞りにおける圧力損失が過大にならないように絞り部の開度を好適に設定することができる。   According to the above method, the change rate of the integrated flow value (the change amount of the integrated flow value when the flow amplitude value changes by a predetermined amount) is referred to from the correlation between the flow amplitude value and the integrated flow value. By setting the opening, it is possible to suitably set the opening of the throttle portion so that the pressure loss in the throttle does not become excessive while reducing the influence of pulsation by the throttle.

前記開度設定工程では、前記相関関係において前記積算流量値の変化率が所定値未満であり且つ前記流量振幅値が所定値以上である範囲で前記絞り部の開度を設定してもよい。   In the opening degree setting step, the opening degree of the throttle portion may be set in a range where the rate of change of the integrated flow rate value is less than a predetermined value and the flow rate amplitude value is not less than a predetermined value in the correlation.

前記方法によれば、積算流量値の変化率が小さい範囲における流量振幅値(即ち、絞りの開度)を選んで、脈動の影響を低減させた高精度な流量計測を実現しながらも、流量振幅値が小さくなり過ぎて圧力損失が増大するのを防止することができ、流量計測精度とエネルギー効率との両面で良好な絞り開度を設定することが可能となる。   According to the method, the flow rate amplitude value (that is, the opening degree of the throttle) in the range where the change rate of the integrated flow rate value is small is selected, and the flow rate is reduced while realizing the highly accurate flow rate measurement with reduced influence of pulsation. It is possible to prevent the amplitude value from becoming too small and increase the pressure loss, and it is possible to set a favorable throttle opening degree in terms of both flow measurement accuracy and energy efficiency.

前記開度設定工程では、前記相関関係において前記積算流量値の変化率が所定値未満となる前記流量振幅値のうち最も大きい流量振幅値での開度を前記絞りの開度に設定する、
前記方法によれば、流量計測精度が良好な範囲内で圧力損失が最も少ない絞り開度を得ることがき、最適な絞り開度を設定することが可能となる。
In the opening setting step, the opening at the largest flow amplitude value among the flow amplitude values at which the rate of change of the integrated flow value is less than a predetermined value in the correlation is set as the opening of the throttle.
According to the above method, it is possible to obtain a throttle opening with the least pressure loss within a range in which the flow rate measurement accuracy is good, and it is possible to set an optimum throttle opening.

前記振幅算出工程及び前記積算流量算出工程では、前記絞りの開度を大から小へと変化させて各開度における流量振幅値及び積算流量値を算出し、前記開度設定工程では、前記振幅算出工程及び前記積算流量算出工程で前記絞りの開度を大から小へと変化させていくなかで、前記積算流量値の変化率が前記所定値以上から前記所定値未満となったときの直前の開度又はその近傍の開度を前記絞りの開度に設定してもよい。   In the amplitude calculating step and the integrated flow rate calculating step, the flow rate amplitude value and the integrated flow value at each opening are calculated by changing the opening of the throttle from large to small, and in the opening setting step, the amplitude is calculated. Immediately before the rate of change of the integrated flow rate value is less than or equal to the predetermined value while changing the opening of the throttle from large to small in the calculation step and the integrated flow rate calculation step Or an opening in the vicinity thereof may be set as the opening of the throttle.

前記方法によれば、絞りの開度を大から小へと変化させていくにつれて積算流量値の変化率が減少していき、当該変化率が所定値以上から所定値未満になったときの開度又はその近傍の開度を絞りの開度に設定するので、絞りの開度を設定する際に絞りの開度を全開度域で変化させずに済み、開度設定に要する時間を短縮することができる。また、絞りが低開度のときは流量が安定しないが、絞りの開度を大から小へと変化させていくことで、流量が安定した状態で流量振幅値及び積算流量値を算出することができ、最適な絞り開度を精度良く設定することが可能となる。   According to the above method, the rate of change of the integrated flow rate value decreases as the aperture of the throttle is changed from large to small, and the opening when the rate of change becomes greater than a predetermined value and less than a predetermined value. Therefore, when setting the throttle opening, it is not necessary to change the throttle opening in the whole opening range, and the time required for opening setting is shortened. be able to. In addition, the flow rate is not stable when the throttle is low, but by changing the throttle opening from large to small, the flow amplitude value and integrated flow value can be calculated while the flow rate is stable. Therefore, it is possible to set the optimum throttle opening with high accuracy.

以上の説明から明らかなように、本発明によれば、燃料ガスの流量計測精度の向上とエネルギー効率の向上とを両立させることが可能となる。   As is apparent from the above description, according to the present invention, it is possible to achieve both improvement in fuel gas flow rate measurement accuracy and improvement in energy efficiency.

本発明の実施形態に係るガスエンジンのガス流量計測装置を備えた発電プラントを示す構成図である。It is a block diagram which shows the power plant provided with the gas flow measuring device of the gas engine which concerns on embodiment of this invention. 図1に示すガスエンジンに供給される燃料ガスの流量振幅値を表すグラフである。It is a graph showing the flow volume amplitude value of the fuel gas supplied to the gas engine shown in FIG. 図1に示すガスエンジンに供給される燃料ガスの単位時間当たりの積算流量値と図2の流量振幅値と間の相関関係を表すグラフである。3 is a graph showing a correlation between an integrated flow rate value per unit time of fuel gas supplied to the gas engine shown in FIG. 1 and a flow rate amplitude value of FIG. 図1に示す緩衝装置の絞り開度を決定する手順を説明するフローチャートである。It is a flowchart explaining the procedure which determines the aperture opening degree of the shock absorber shown in FIG. 図4の手順中に測定された単位時間当たりの積算流量値と流量振幅値との相関関係を表すグラフである。5 is a graph showing a correlation between an integrated flow rate value per unit time and a flow amplitude value measured during the procedure of FIG.

以下、本発明に係る実施形態を図面を参照して説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態に係るガスエンジン2のガス流量計測装置3を備えた発電プラント1を示す構成図である。図1に示すように、ガスエンジン2は、天然ガスや都市ガス等の燃料ガスを主燃料とするレシプロ型の多気筒4ストロークエンジンであり、発電プラント1の発電機(図示せず)を駆動する原動機として使用されている。気筒4にはピストン5が往復動可能に挿入されており、ピストン5は出力軸であるクランク軸(図示せず)と連結されている。気筒4内におけるピストン5の上方の空間は主燃焼室6である。主燃焼室6には、給気弁7を介して給気ポート8が接続されるとともに、排気弁9を介して排気ポート10が接続されている。給気ポート8内には燃料ガスを噴射する主燃料ガス供給弁11が設けられている。主燃焼室6には副燃焼室12が隔壁13を介して隣接している。副燃焼室12は、隔壁13に形成された連通孔14を介して主燃焼室6と連通している。副燃焼室12には燃料ガスを噴射する副燃料ガス供給弁15と、混合気を燃焼させるための点火プラグ16とが設けられている。   FIG. 1 is a configuration diagram showing a power plant 1 including a gas flow rate measuring device 3 for a gas engine 2 according to an embodiment of the present invention. As shown in FIG. 1, the gas engine 2 is a reciprocating multi-cylinder four-stroke engine that uses fuel gas such as natural gas or city gas as a main fuel, and drives a generator (not shown) of the power plant 1. It is used as a prime mover. A piston 5 is inserted into the cylinder 4 so as to be able to reciprocate. The piston 5 is connected to a crankshaft (not shown) as an output shaft. A space above the piston 5 in the cylinder 4 is a main combustion chamber 6. An air supply port 8 is connected to the main combustion chamber 6 via an air supply valve 7, and an exhaust port 10 is connected via an exhaust valve 9. A main fuel gas supply valve 11 for injecting fuel gas is provided in the air supply port 8. A sub-combustion chamber 12 is adjacent to the main combustion chamber 6 via a partition wall 13. The auxiliary combustion chamber 12 communicates with the main combustion chamber 6 through a communication hole 14 formed in the partition wall 13. The auxiliary combustion chamber 12 is provided with an auxiliary fuel gas supply valve 15 for injecting fuel gas and an ignition plug 16 for burning the air-fuel mixture.

ガスエンジン2によれば、給気行程において、主燃焼室6には給気ポート8から空気と主燃料ガス供給弁11が噴射する燃料ガスとを含む混合気が供給され、副燃焼室12には副燃料ガス供給弁15が噴射する燃料ガスを含む混合気が供給される。圧縮行程において主燃焼室6及び副燃焼室12内の混合気が圧縮された後、点火プラグ16が所定のタイミングで動作して副燃焼室12内の混合気が着火される。副燃焼室12内で発生した火炎は連通孔14を通じて主燃焼室6内に伝播し、主燃焼室6内の混合気が着火される。これによりピストン5が下動して膨張行程が行われる。そして、排気行程において、主燃焼室6内のガスは排気ポート10を介して外部に排出される。   According to the gas engine 2, in the supply stroke, the main combustion chamber 6 is supplied with an air-fuel mixture including air and fuel gas injected by the main fuel gas supply valve 11 from the supply port 8, and is supplied to the sub-combustion chamber 12. Is supplied with an air-fuel mixture containing fuel gas injected by the auxiliary fuel gas supply valve 15. After the air-fuel mixture in the main combustion chamber 6 and the sub-combustion chamber 12 is compressed in the compression stroke, the spark plug 16 operates at a predetermined timing to ignite the air-fuel mixture in the sub-combustion chamber 12. The flame generated in the sub-combustion chamber 12 propagates into the main combustion chamber 6 through the communication hole 14, and the air-fuel mixture in the main combustion chamber 6 is ignited. As a result, the piston 5 moves downward to perform the expansion stroke. In the exhaust stroke, the gas in the main combustion chamber 6 is discharged to the outside through the exhaust port 10.

発電プラント1には、発電機が一定出力で発電するようにガスエンジン2を制御する主制御装置17が設けられている。主制御装置17は、主燃料ガス供給弁11及び副燃料ガス供給弁15を駆動するガス弁制御装置18に接続されている。主制御装置17は、点火プラグ16を駆動する点火プラグドライバ19に接続されている。主制御装置17には、ガスエンジン2により駆動される発電機(図示せず)の出力、給気ポート8に供給される給気の圧力及び温度、ガスエンジン2のクランク角など入力情報が各種センサから入力されている。主制御装置17は、これら入力情報に基づいてガス弁制御装置18及び点火プラグドライバ19に指令信号を出力し、各燃料ガス供給弁11,15及び点火プラグ16の動作を制御する。   The power plant 1 is provided with a main controller 17 that controls the gas engine 2 so that the power generator generates power at a constant output. The main controller 17 is connected to a gas valve controller 18 that drives the main fuel gas supply valve 11 and the auxiliary fuel gas supply valve 15. The main controller 17 is connected to a spark plug driver 19 that drives the spark plug 16. The main controller 17 has various input information such as the output of a generator (not shown) driven by the gas engine 2, the pressure and temperature of the supply air supplied to the supply port 8, and the crank angle of the gas engine 2. Input from the sensor. The main control device 17 outputs a command signal to the gas valve control device 18 and the spark plug driver 19 based on the input information, and controls the operation of the fuel gas supply valves 11 and 15 and the spark plug 16.

発電プラント1には、ガスエンジン2へ供給される燃料ガスの流量を計測するガス流量計測装置3が設けられている。ガス流量計測装置3は、ガスエンジン2に燃料ガスを供給する燃料ガス供給管20を備えている。燃料ガス供給管20は、外部の燃料ガス供給源(図示せず)から供給される燃料ガスを設定圧に昇圧するガス昇圧機24(昇圧手段)が上流側に設けられた燃料ガス共通供給管21を有しており、燃料ガス供給管20は、燃料ガス共通供給管21の下流側で主燃料ガス供給管22と副燃料ガス供給管23とに分岐している。主燃料ガス供給管22には、燃料ガス供給弁11に供給される燃料ガスの供給圧力を調整する主圧力調整弁25(圧力調整手段)が設けられている。副燃料ガス供給管23には、副燃料ガス供給弁15に供給される供給圧力を調整する副圧力調整弁26(圧力調整手段)が設けられている。   The power plant 1 is provided with a gas flow rate measuring device 3 that measures the flow rate of the fuel gas supplied to the gas engine 2. The gas flow rate measuring device 3 includes a fuel gas supply pipe 20 that supplies fuel gas to the gas engine 2. The fuel gas supply pipe 20 is a fuel gas common supply pipe provided with a gas booster 24 (pressure increase means) for increasing the pressure of fuel gas supplied from an external fuel gas supply source (not shown) to a set pressure. The fuel gas supply pipe 20 branches into a main fuel gas supply pipe 22 and a sub fuel gas supply pipe 23 on the downstream side of the fuel gas common supply pipe 21. The main fuel gas supply pipe 22 is provided with a main pressure adjustment valve 25 (pressure adjustment means) for adjusting the supply pressure of the fuel gas supplied to the fuel gas supply valve 11. The auxiliary fuel gas supply pipe 23 is provided with an auxiliary pressure adjusting valve 26 (pressure adjusting means) that adjusts the supply pressure supplied to the auxiliary fuel gas supply valve 15.

燃料ガス共通供給管21には、ガス昇圧機24で設定圧に昇圧された燃料ガスの流量を計測する容積式流量計27(第1流量計測手段)が設けられている。発電プラント稼動時に容積式流量計27で計測されるガス流量は、燃費(発電効率)を算出するために用いられる。容積式流量計27は、燃料ガス共通供給管21を流れる燃料ガスの通過容積量に比例して歯車等の回転子が回転し、その回転数からガス流量を測定する流量計である。ゆえに、容積式流量計27は、発電プラント稼動時の使用環境が悪くても故障確率が低く、電気ノイズの影響も受けない。   The fuel gas common supply pipe 21 is provided with a positive displacement flow meter 27 (first flow rate measuring means) for measuring the flow rate of the fuel gas boosted to the set pressure by the gas booster 24. The gas flow rate measured by the positive displacement flow meter 27 when the power plant is in operation is used to calculate fuel consumption (power generation efficiency). The positive displacement flow meter 27 is a flow meter that measures a gas flow rate from the number of rotations of a rotor such as a gear that rotates in proportion to the passing volume of fuel gas flowing through the common fuel gas supply pipe 21. Therefore, the positive displacement flowmeter 27 has a low failure probability and is not affected by electrical noise even if the usage environment during power plant operation is poor.

燃料ガス共通供給管21には、容積式流量計27と圧力調整弁25,26との間の位置に可変絞り弁28(緩衝手段)が設けられている。可変絞り弁28は、開度調整可能な絞り部を有する弁であり、容積式流量計27が設けられた燃料ガス共通供給管21における燃料ガスの脈動を抑えるための緩衝装置として用いられている。燃料ガス共通供給管21には、容積式流量計27の直ぐ上流側に直列で燃料ガスの流量振幅値を算出するための質量流量計29(第2流量計測手段)が設けられている。質量流量計29は、瞬時流量をパルス出力することで流量振幅値を容易に算出することを可能とするが、発電プラント稼動時の使用環境によってはセンサ故障やノイズの影響を受け得る。   The fuel gas common supply pipe 21 is provided with a variable throttle valve 28 (buffer means) at a position between the positive displacement flow meter 27 and the pressure regulating valves 25 and 26. The variable throttle valve 28 is a valve having a throttle portion whose opening degree can be adjusted, and is used as a buffer device for suppressing pulsation of fuel gas in the fuel gas common supply pipe 21 provided with the positive displacement flow meter 27. . The fuel gas common supply pipe 21 is provided with a mass flow meter 29 (second flow rate measuring means) for calculating the flow amplitude value of the fuel gas in series immediately upstream of the positive displacement flow meter 27. Although the mass flow meter 29 can easily calculate the flow amplitude value by outputting the instantaneous flow rate as a pulse, it may be affected by sensor failure or noise depending on the use environment during operation of the power plant.

図2は、図1に示すガスエンジン2に供給される燃料ガスの流量振幅値を表すグラフである。図2に示すように、質量流量計29で計測される瞬時流量は、燃料ガス供給弁11,15の開閉や圧力調整弁25,26のバネの影響等により周期的に増減し、燃料ガス共通供給管21を流れる燃料ガスは脈動する。その燃料ガスの流量振幅値は、可変絞り弁28の開度に依存する。具体的には、燃料ガスの流量振幅値は、可変絞り弁28の開度が大きい(絞り部の流路断面が大きい)場合に大きくなり、可変絞り弁28の開度が小さい(絞り部の流路断面が小さい)場合に小さくなる。即ち、可変絞り弁28の開度が小さくなると脈動の緩衝効果が大きくなる。   FIG. 2 is a graph showing the flow amplitude value of the fuel gas supplied to the gas engine 2 shown in FIG. As shown in FIG. 2, the instantaneous flow rate measured by the mass flow meter 29 periodically increases and decreases due to the opening and closing of the fuel gas supply valves 11 and 15 and the effects of the springs of the pressure adjustment valves 25 and 26, etc. The fuel gas flowing through the supply pipe 21 pulsates. The flow amplitude value of the fuel gas depends on the opening of the variable throttle valve 28. Specifically, the flow amplitude value of the fuel gas increases when the opening degree of the variable throttle valve 28 is large (the flow passage cross section of the throttle part is large), and the opening degree of the variable throttle valve 28 is small (of the throttle part). It becomes smaller when the flow path cross section is small. That is, when the opening of the variable throttle valve 28 is reduced, the pulsation buffering effect is increased.

図3は、図1に示すガスエンジン2に供給される燃料ガスの単位時間当たりの積算流量値と図2の流量振幅値との間の相関関係を表すグラフである。図3に示すように、可変絞り弁28の開度を増加することで流量振幅値が増加するため、容積式流量計27で計測される単位時間当たりの積算流量値は二次曲線状に増加することとなる。しかし、ガス昇圧機24及び圧力調整弁25,26により燃料ガスの圧力は調整されているので、可変絞り弁28の開度が変わっても実際の積算流量値は略一定となる筈であり、実際に質量流量計29で測定すると積算流量値は略一定となる(但し、可変絞り弁28の開度が極めて小さいときは、燃料ガスの流れが妨げられて実際の積算流量値も減少する。)。即ち、流量振幅値が増加するにつれて、容積式流量計27の測定精度が低下して単位時間当たりの積算流量値が実際よりも多く測定されてしまう。これは、燃料ガスの流れの脈動により、容積式流量計27の回転子に慣性力が作用することで、容積式流量計27の回転子が燃料ガスの通過容積量に対して多めに回転してしまうことによる。よって、流量振幅値が増加するにつれて容積式流量計27の計測精度は悪化し、流量振幅値が減少するにつれて容積式流量計27の計測精度は向上する。   FIG. 3 is a graph showing the correlation between the integrated flow rate value per unit time of the fuel gas supplied to the gas engine 2 shown in FIG. 1 and the flow rate amplitude value of FIG. As shown in FIG. 3, since the flow amplitude value increases by increasing the opening of the variable throttle valve 28, the integrated flow rate value measured by the positive displacement flow meter 27 increases in a quadratic curve. Will be. However, since the pressure of the fuel gas is adjusted by the gas booster 24 and the pressure adjustment valves 25 and 26, the actual integrated flow rate value should be substantially constant even if the opening of the variable throttle valve 28 changes. When actually measured by the mass flow meter 29, the integrated flow value becomes substantially constant (however, when the opening of the variable throttle valve 28 is extremely small, the flow of fuel gas is hindered and the actual integrated flow value also decreases. ). That is, as the flow amplitude value increases, the measurement accuracy of the positive displacement flow meter 27 decreases, and more integrated flow values per unit time are measured than actually. This is because the inertial force acts on the rotor of the positive displacement flow meter 27 due to the pulsation of the flow of the fuel gas, so that the rotor of the positive displacement flow meter 27 rotates more than the passing volume of the fuel gas. Because it ends up. Therefore, as the flow amplitude value increases, the measurement accuracy of the positive displacement flow meter 27 deteriorates, and as the flow amplitude value decreases, the measurement accuracy of the positive displacement flow meter 27 improves.

ところが、流量振幅値を減少すべく可変絞り弁28の開度を減らし過ぎると、可変絞り弁28での圧力損失が増大してしまう。可変絞り弁28での圧力損失が大きい場合には、その損失分はガス昇圧機24の昇圧能力を増加させて補わねばならないため、発電プラント1全体のエネルギー消費量が増加し、結果的に発電プラント1のエネルギー効率が低下することとなる。   However, if the opening of the variable throttle valve 28 is reduced too much to reduce the flow amplitude value, the pressure loss at the variable throttle valve 28 increases. If the pressure loss at the variable throttle valve 28 is large, the loss must be compensated by increasing the pressure boosting capacity of the gas booster 24. Therefore, the energy consumption of the entire power plant 1 increases, resulting in power generation. The energy efficiency of the plant 1 will fall.

ここで、図3のグラフの傾向に着目すれば、容積式流量計27で計測される単位時間当たりの積算流量値は、流量振幅値の増加に対して比例的には増加していない。流量振幅値が小さい範囲では、容積式流量計27で計測される単位時間当たりの積算流量値の増加率は小さく、流量振幅値が大きい範囲では、容積式流量計27で計測される単位時間当たりの積算流量値の増加率は大きくなる。よって、容積式流量計27で計測される単位時間当たりの積算流量値の増加率が小さい範囲内において、できるだけ流量振幅値が大きいときの可変絞り弁28の開度を最終的な設定開度とすれば、流量計測精度とエネルギー効率との両面から見て最適な開度を得ることができることとなる。そこで、ガス流量計測装置3では、質量流量計29から算出される流量振幅値と容積式流量計27によって計測される単位時間当たりの積算流量値との間の相関関係において、積算流量値の変化率が所定値未満であり且つ流量振幅値が所定値以上であるときの可変絞り弁28の開度を通常運転時(発電時)の開度に設定することとする。なお、パルス出力機能付きの容積式流量計でも、流量振幅値を計測することが可能である。   Here, focusing on the tendency of the graph of FIG. 3, the integrated flow rate value measured by the positive displacement flow meter 27 does not increase in proportion to the increase in the flow rate amplitude value. In the range where the flow amplitude value is small, the rate of increase of the integrated flow value per unit time measured by the positive displacement flow meter 27 is small, and in the range where the flow amplitude value is large, per unit time measured by the positive displacement flow meter 27. The increase rate of the integrated flow rate value becomes larger. Therefore, the opening of the variable throttle valve 28 when the flow amplitude value is as large as possible within the range in which the increase rate of the integrated flow value per unit time measured by the positive displacement flow meter 27 is small is the final set opening. If it does so, the optimal opening degree can be obtained in terms of both flow measurement accuracy and energy efficiency. Therefore, in the gas flow rate measuring device 3, the change in the accumulated flow value in the correlation between the flow amplitude value calculated from the mass flow meter 29 and the accumulated flow value per unit time measured by the positive displacement flow meter 27. The opening of the variable throttle valve 28 when the rate is less than the predetermined value and the flow amplitude value is greater than or equal to the predetermined value is set to the opening during normal operation (during power generation). Note that a flow rate amplitude value can also be measured by a positive displacement flow meter with a pulse output function.

図4は、図1に示す緩衝装置の絞り開度を決定する手順を説明するフローチャートである。図5は、図4の手順中に測定された単位時間当たりの積算流量値と流量振幅値との相関関係を表すグラフである。なお、図4の手順は、ガスエンジン2に供給される燃料ガスをガス昇圧機24で所定圧に昇圧してガスエンジン2を試運転した状態で実施される。図4及び5に示すように、まず、可変絞り弁28の開度を初期開度に設定する(ステップS1)。なお、初期開度は、後の工程において可変絞り弁28の開度を大から小へと変化させて各開度における流量振幅値及び積算流量値を算出していくために、最適開度が存在すると予想される開度域よりも大きい開度に決められている。   FIG. 4 is a flowchart for explaining the procedure for determining the throttle opening of the shock absorber shown in FIG. FIG. 5 is a graph showing the correlation between the integrated flow rate value per unit time measured during the procedure of FIG. 4 and the flow rate amplitude value. The procedure of FIG. 4 is performed in a state in which the fuel gas supplied to the gas engine 2 is boosted to a predetermined pressure by the gas booster 24 and the gas engine 2 is trial run. As shown in FIGS. 4 and 5, first, the opening of the variable throttle valve 28 is set to the initial opening (step S1). The initial opening is calculated by changing the opening of the variable throttle valve 28 from large to small in the subsequent process and calculating the flow amplitude value and integrated flow value at each opening. The opening is determined to be larger than the opening that is expected to exist.

次いで、測定回数nに1を代入する(ステップS2)。そして、質量流量計29により第n回目(n=1)の流量振幅値A(n)を測定し(ステップS3)、容積式流量計27により第n回目(n=1)の単位時間当たりの積算流量値F(n)を測定する(ステップS4)。なお、各測定点での積算流量値F(n)は5分以上計測した値の平均値とする。次いで、測定回数nにn+1を代入してnを1つインクリメントし(ステップS5)、可変絞り弁28の開度を減らす(ステップS6)。このとき、今回の流量振幅値A(n−1)から今回の積算流量値F(n−1)の所定パーセント(例えば、5%)以内に相当する値を引いた値が次回の流量振幅値A(n)となるように可変絞り弁28の開度を決める。その際、第n回目の開度と第n+1回目の開度との差は、nが大きくなるにつれて小さくすることで、最適な絞り開度の決定精度を確保しつつ作業時間を短縮することができる。   Next, 1 is substituted for the number of measurements n (step S2). Then, the mass flow meter 29 measures the nth (n = 1) flow amplitude value A (n) (step S3), and the positive displacement flowmeter 27 measures the nth (n = 1) unit time. The integrated flow value F (n) is measured (step S4). The integrated flow rate value F (n) at each measurement point is an average value of values measured for 5 minutes or more. Next, n + 1 is substituted for the number of measurements n and n is incremented by 1 (step S5), and the opening of the variable throttle valve 28 is reduced (step S6). At this time, a value obtained by subtracting a value corresponding to a predetermined percentage (for example, 5%) of the current integrated flow value F (n-1) from the current flow amplitude value A (n-1) is the next flow amplitude value. The opening degree of the variable throttle valve 28 is determined so as to be A (n). At this time, the difference between the n-th opening and the (n + 1) -th opening is reduced as n increases, so that the working time can be shortened while ensuring the optimum throttle opening determination accuracy. it can.

そして、質量流量計29により第n回目(n=2)の流量振幅値A(n)を測定し(ステップS7)、容積式流量計27により第n回目(n=2)の単位時間当たりの積算流量値F(n)を測定する(ステップS8)。そして、図5において、第n−1回目(n=2)に測定された流量振幅値及び積算流量値からなる測定点と、第n回目(n=2)に測定された流量振幅値及び積算流量値からなる測定点との間での積算流量値の変化率が所定値α未満であるか否かを判定する。具体的には、数式1を満たすか否かを判定する(ステップS9)。なお、所定値αは、予め調べておいた図3の最適点付近の変化率であり、本例では、0.05〜0.2の範囲から選ばれる値(例えば、0.1)である。   Then, the n-th (n = 2) flow amplitude value A (n) is measured by the mass flow meter 29 (step S7), and the n-th (n = 2) unit time per unit time is measured by the positive displacement flow meter 27. The integrated flow value F (n) is measured (step S8). In FIG. 5, the measurement point consisting of the flow amplitude value and the integrated flow value measured at the (n-1) th time (n = 2), and the flow amplitude value and the integrated value measured at the nth time (n = 2). It is determined whether or not the rate of change of the integrated flow rate value with respect to the measurement point consisting of the flow rate value is less than a predetermined value α. Specifically, it is determined whether or not Formula 1 is satisfied (step S9). The predetermined value α is a rate of change near the optimum point in FIG. 3 that has been examined in advance, and is a value selected from a range of 0.05 to 0.2 (for example, 0.1) in this example. .

[数式1]
{F(n−1)−F(n)}/{A(n−1)−A(n)} < α
ステップS9で数式1を満たさない場合には、ステップS5に戻って処理を繰り返す。そして、ステップS9で数式1を満たした場合には、可変絞り弁28の開度を第n−1回目のときの開度に決定する(ステップS10)。図5の例では、可変絞り弁28の開度を第5回目の開度としたときに数式1を満たしたため、その直前の第4回目の開度又はその近傍の開度を可変絞り弁28の最適開度に設定する。
[Formula 1]
{F (n-1) -F (n)} / {A (n-1) -A (n)} <α
If Equation 1 is not satisfied in step S9, the process returns to step S5 and is repeated. When Expression 1 is satisfied in Step S9, the opening degree of the variable throttle valve 28 is determined to be the opening degree at the (n-1) th time (Step S10). In the example of FIG. 5, Formula 1 is satisfied when the opening of the variable throttle valve 28 is the fifth opening, so the fourth opening immediately before or the opening in the vicinity thereof is set to the variable throttle valve 28. Set to the optimal opening.

以上によれば、流量振幅値と積算流量値との間の相関関係から積算流量値の変化率を参照し、その変化率が所定値α未満となる流量振幅値のうち最も大きい流量振幅値での開度が可変絞り弁28の開度に設定される。これにより、脈動の影響を低減させた高精度な流量計測を実現しながらも、流量振幅値が小さくなり過ぎて圧力損失が増大することが防止されて、ガス昇圧機24によって燃料ガスを無駄に昇圧させる必要がなくなる。したがって、ガス流量計測精度を確保するために必要最小限の脈動緩衝度合いに最適化して、燃料ガスの流量計測精度の向上とエネルギー効率の向上とを両立させることが可能となる。   According to the above, the rate of change of the integrated flow value is referred to from the correlation between the flow rate amplitude value and the integrated flow value, and the largest flow amplitude value among the flow amplitude values at which the change rate is less than the predetermined value α. Is set to the opening of the variable throttle valve 28. Thereby, while realizing highly accurate flow measurement with reduced influence of pulsation, it is prevented that the flow amplitude value becomes too small and the pressure loss increases, and the gas booster 24 wastes fuel gas. There is no need to boost the voltage. Therefore, it is possible to achieve both improvement in fuel gas flow measurement accuracy and improvement in energy efficiency by optimizing the minimum pulsation buffering degree necessary for ensuring gas flow measurement accuracy.

また、可変絞り弁28の開度を大から小へと変化させていき、積算流量値の変化率が所定値α以上から所定値α未満になったときの開度又はその近傍の開度を可変絞り弁28の最適開度に設定するので、可変絞り弁28の開度を設定する際に可変絞り弁28の開度を全開度域で変化させずに済み、最適開度を決定するのに要する作業時間を短縮することができる。また、可変絞り弁28が極低開度のときは流量が安定しないが、可変絞り弁28の開度を大から小へと変化させていくことで、流量が安定した状態で流量振幅値及び積算流量値を算出することができ、最適な絞り開度を精度良く設定することが可能となる。   Further, the opening degree of the variable throttle valve 28 is changed from large to small, and the opening degree when the rate of change of the integrated flow rate value is greater than or equal to the predetermined value α and less than the predetermined value α is set at or near the opening degree. Since the optimum opening of the variable throttle valve 28 is set, it is not necessary to change the opening of the variable throttle valve 28 in the entire opening range when setting the opening of the variable throttle valve 28, and the optimum opening is determined. The work time required for this can be shortened. In addition, the flow rate is not stable when the variable throttle valve 28 is at a very low opening, but by changing the opening of the variable throttle valve 28 from large to small, the flow amplitude value and The integrated flow rate value can be calculated, and the optimum throttle opening can be set with high accuracy.

さらに、緩衝装置として可変絞り弁28を用いているため、絞り開度の調整が容易になるとともに、絞り開度を最適値に設定した後に燃料ガス供給圧が変わった場合にも開度を容易に再調整することができる。さらに、容積式流量計27に直列に質量流量計29を設けたので、質量流量計29により流量振幅値を容易かつ高精度に算出できると共に、容積式流量計27の故障を早期に把握することができる。しかも、質量流量計29は、主に発電プラント1が本稼動する前の絞り開度決定時に用いられ、燃費計測のためには容積式流量計27を用いているので、使用環境にかかわらず長期にわたって精度良い燃費計測を行うことができる。   Furthermore, since the variable throttle valve 28 is used as a shock absorber, it is easy to adjust the throttle opening, and the opening is also easy when the fuel gas supply pressure changes after the throttle opening is set to the optimum value. Can be readjusted. Further, since the mass flow meter 29 is provided in series with the positive displacement flow meter 27, the flow amplitude value can be easily and accurately calculated by the mass flow meter 29, and the failure of the positive displacement flow meter 27 can be grasped at an early stage. Can do. Moreover, the mass flow meter 29 is mainly used when determining the throttle opening before the power plant 1 is actually operated, and the positive displacement flow meter 27 is used for fuel consumption measurement. Fuel consumption can be measured with high accuracy.

なお、本実施形態では、ステップS9で数式1を満たした場合には、直ちに可変絞り弁28の開度を第n−1回目のときの開度に決定したが(ステップS10)、第n−1回目のときに容積式流量計27で測定された単位時間当たりの積算流量値が、第n−1回目のときに質量流量計29で測定された単位時間当たりの積算流量値から所定の誤差範囲(例えば、±2%)にあるとの条件も満たした場合に、ステップS9からステップS10に進んでもよいことにしてもよい。また、本実施形態では、容積式流量計27で積算流量値を測定し、質量流量計29で流量振幅値を測定したが、質量流量計を廃止してパルス出力付き容積式流量計で流量振幅値と積算流量値の両方を測定してもよい。また、可変絞り弁28の代わりに絞り開度の異なる複数の固定式絞り部材を用意し、それらから最適な絞り開度の絞り部材を選択して設置するようにしてもよい。また、ガスエンジン2には過給機を設けてもよい。また、本発明は前述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲でその構成を変更、追加、又は削除することができる。   In the present embodiment, when Expression 1 is satisfied in Step S9, the opening degree of the variable throttle valve 28 is immediately determined as the opening degree at the (n-1) th time (Step S10). The accumulated flow value per unit time measured with the positive displacement flow meter 27 at the first time is a predetermined error from the accumulated flow value per unit time measured with the mass flow meter 29 at the (n-1) th time. When the condition of being in the range (for example, ± 2%) is also satisfied, the process may proceed from step S9 to step S10. In this embodiment, the integrated flow value is measured by the positive displacement flow meter 27 and the flow amplitude value is measured by the mass flow meter 29. However, the mass flow meter is abolished and the flow amplitude is obtained by the positive displacement flow meter with pulse output. Both the value and the integrated flow value may be measured. Further, instead of the variable throttle valve 28, a plurality of fixed throttle members having different throttle openings may be prepared, and a throttle member having an optimum throttle opening may be selected and installed. The gas engine 2 may be provided with a supercharger. Further, the present invention is not limited to the above-described embodiment, and the configuration can be changed, added, or deleted without departing from the spirit of the present invention.

以上のように、本発明に係るガスエンジンのガス流量計測装置及び方法は、燃料ガスの流量計測精度の向上とエネルギー効率の向上とを両立させることが可能となる優れた効果を有し、この効果の意義を発揮できるガスエンジン発電プラント等に広く適用すると有益である。   As described above, the gas flow rate measuring device and method for a gas engine according to the present invention has an excellent effect that makes it possible to achieve both improvement in fuel gas flow rate measurement accuracy and improvement in energy efficiency. It is beneficial to apply widely to gas engine power plants that can demonstrate the significance of the effect.

1 発電プラント
2 ガスエンジン
3 ガス流量計測装置
20 燃料ガス供給管
24 ガス昇圧機(昇圧手段)
25,26 主圧力調整弁(圧力調整手段)
27 容積式流量計(第1流量計測手段)
28 可変絞り弁(緩衝手段)
29 質量流量計(第2流量計測手段)
DESCRIPTION OF SYMBOLS 1 Power plant 2 Gas engine 3 Gas flow measuring device 20 Fuel gas supply pipe 24 Gas pressure | voltage riser (pressure | voltage riser)
25, 26 Main pressure regulating valve (pressure regulating means)
27 Volumetric flow meter (first flow rate measuring means)
28 Variable throttle valve (buffer means)
29 Mass flow meter (second flow rate measuring means)

Claims (8)

ガスエンジンへ供給される燃料ガスの流量を計測するガスエンジンのガス流量計測装置であって、
燃料ガス供給源から供給される燃料ガスを昇圧する昇圧手段と、
前記昇圧手段で昇圧された燃料ガスの流量を計測する第1流量計測手段と、
前記第1流量計測手段の下流側に設けられ、前記ガスエンジンへ供給される燃料ガスの供給圧力を調整する圧力調整手段と、
前記第1流量計測手段と前記圧力調整手段との間に設けられ、燃料ガスの脈動を抑えるための絞り部を有する緩衝手段と、を備え、
前記緩衝手段は、前記絞り部の開度を可変に調整できるよう構成され
前記絞り部の開度は、前記絞り部の開度に依存する燃料ガスの流量振幅値と前記第1流量計測手段によって計測される燃料ガスの所定時間当たりの積算流量値との間の相関関係における前記積算流量値の変化率を利用して設定される、ガスエンジンのガス流量計測装置。
A gas flow rate measuring device for a gas engine for measuring a flow rate of fuel gas supplied to a gas engine,
Boosting means for boosting the fuel gas supplied from the fuel gas supply source;
First flow rate measuring means for measuring the flow rate of the fuel gas boosted by the boosting means;
Pressure adjusting means provided on the downstream side of the first flow rate measuring means for adjusting the supply pressure of the fuel gas supplied to the gas engine;
A buffer unit provided between the first flow rate measuring unit and the pressure adjusting unit, and having a throttle part for suppressing pulsation of fuel gas;
The buffer means is configured to variably adjust the opening of the throttle portion ,
The opening degree of the throttle part is a correlation between the flow amplitude value of the fuel gas depending on the opening degree of the throttle part and the integrated flow rate value per predetermined time of the fuel gas measured by the first flow rate measuring means. wherein Ru is set by using the rate of change of the integrated flow rate value at a gas flow rate measuring device for a gas engine.
前記相関関係において前記積算流量値の変化率が所定値未満であり且つ前記流量振幅値が所定値以上である範囲で前記絞り部の開度が設定される、請求項に記載のガスエンジンのガス流量計測装置。 2. The gas engine according to claim 1 , wherein, in the correlation, the degree of change of the integrated flow rate value is less than a predetermined value and the opening of the throttle unit is set in a range where the flow rate amplitude value is equal to or greater than a predetermined value. Gas flow measuring device. 前記相関関係において前記積算流量値の変化率が所定値未満となる前記流量振幅値のうち最も大きい流量振幅値での開度が前記絞り部の開度に設定される、請求項又はに記載のガスエンジンのガス流量計測装置。 The rate of change of the integrated flow rate value in correlation opening of the largest flow rate amplitude value of said flow rate amplitude value is less than the predetermined value is set to an opening degree of the throttle portion, to claim 1 or 2 A gas flow measuring device for the gas engine as described. ガスエンジンへ供給される燃料ガスの流量を計測するガスエンジンのガス流量計測装置であって、
燃料ガス供給源から供給される燃料ガスを昇圧する昇圧手段と、
前記昇圧手段で昇圧された燃料ガスの流量を計測する第1流量計測手段と、
前記第1流量計測手段の下流側に設けられ、前記ガスエンジンへ供給される燃料ガスの供給圧力を調整する圧力調整手段と、
前記第1流量計測手段と前記圧力調整手段との間に設けられ、燃料ガスの脈動を抑えるための絞り部を有する緩衝手段と、
前記第1流量計測手段に直列に設けられ、燃料ガスの流量振幅値を算出するための第2流量計測手段と、を備え
前記緩衝手段は、前記絞り部の開度を可変に調整できるよう構成されている、ガスエンジンのガス流量計測装置。
A gas flow rate measuring device for a gas engine for measuring a flow rate of fuel gas supplied to a gas engine,
Boosting means for boosting the fuel gas supplied from the fuel gas supply source;
First flow rate measuring means for measuring the flow rate of the fuel gas boosted by the boosting means;
Pressure adjusting means provided on the downstream side of the first flow rate measuring means for adjusting the supply pressure of the fuel gas supplied to the gas engine;
A buffer means provided between the first flow rate measuring means and the pressure adjusting means, and having a throttle part for suppressing pulsation of fuel gas;
Provided in series with the first flow measuring means comprises a second flow rate measuring means for calculating the flow rate amplitude value of the fuel gas, and
Said buffer means, an opening degree of the throttle portion is configured to be variably adjusted, the gas flow rate measuring device of the gas engine.
ガスエンジンへ供給される燃料ガスの流量を計測するガスエンジンのガス流量計測方法であって、
燃料ガス供給源から供給される燃料ガスを昇圧する昇圧工程と、
前記昇圧された燃料ガスの流量を計測する第1流量計測工程と、
前記ガスエンジンへ供給される燃料ガスの供給圧力を調整する圧力調整工程と、
絞りによって燃料ガスの脈動を抑える緩衝工程と、
前記絞りの開度に応じて燃料ガスの流量振幅値を夫々算出する振幅算出工程と、
前記絞りの開度に応じて燃料ガスの所定時間当たりの積算流量値を夫々算出する積算流量算出工程と、
前記絞りの開度を可変に調整して設定する開度設定工程と、を備え
前記開度設定工程では、前記流量振幅値と前記積算流量値との間の相関関係における前記積算流量値の変化率を利用して前記絞りの開度を設定する、ガスエンジンのガス流量計測方法。
A gas flow rate measuring method for a gas engine for measuring a flow rate of fuel gas supplied to a gas engine,
A boosting step of boosting the fuel gas supplied from the fuel gas supply source;
A first flow rate measuring step for measuring a flow rate of the boosted fuel gas;
A pressure adjusting step for adjusting the supply pressure of the fuel gas supplied to the gas engine;
A buffering process that suppresses fuel gas pulsation by means of a restriction;
An amplitude calculating step for calculating the flow amplitude value of the fuel gas according to the opening of the throttle;
An integrated flow rate calculating step for calculating an integrated flow rate value per predetermined time of the fuel gas according to the opening of the throttle;
An opening setting step of variably adjusting and setting the opening of the throttle ,
In the opening degree setting step, a gas flow rate measuring method for a gas engine, wherein the opening degree of the throttle is set using a rate of change of the integrated flow value in a correlation between the flow amplitude value and the integrated flow value. .
前記開度設定工程では、前記相関関係において前記積算流量値の変化率が所定値未満であり且つ前記流量振幅値が所定値以上である範囲で前記絞りの開度を設定する、請求項に記載のガスエンジンのガス流量計測方法。 In the opening degree setting step, the rate of change of the integrated flow rate value is less than the predetermined value and the flow rate amplitude value sets the aperture size of the diaphragm the range is not less than a predetermined value in the correlation to claim 5 The gas flow rate measuring method of the described gas engine. 前記開度設定工程では、前記相関関係において前記積算流量値の変化率が所定値未満となる前記流量振幅値のうち最も大きい流量振幅値での開度を前記絞りの開度に設定する、請求項又はに記載のガスエンジンのガス流量計測方法。 In the opening degree setting step, the opening degree at the largest flow amplitude value among the flow amplitude values at which the change rate of the integrated flow value is less than a predetermined value in the correlation is set as the opening degree of the throttle. Item 7. A gas flow rate measuring method for a gas engine according to Item 5 or 6 . 前記振幅算出工程及び前記積算流量算出工程では、前記絞りの開度を大から小へと変化させて各開度における流量振幅値及び積算流量値を算出し、
前記開度設定工程では、前記振幅算出工程及び前記積算流量算出工程で前記絞りの開度を大から小へと変化させていくなかで、前記積算流量値の変化率が所定値α以上から所定値α未満となったときの直前の開度又はその近傍の開度を前記絞りの開度に設定する、請求項に記載のガスエンジンのガス流量計測方法。
In the amplitude calculating step and the integrated flow rate calculating step, the flow rate amplitude value and the integrated flow value at each opening are calculated by changing the opening of the throttle from large to small,
Wherein the opening degree setting step, wherein the aperture size of the diaphragm the amplitude calculating step and the integrated flow rate calculation step among going to change to large to small, the integrated flow rate value of the change rate of Tokoro value α or more or al set to an opening or aperture size of the diaphragm the the vicinity of the opening just before when it becomes less than Tokoro value alpha, the gas flow rate measuring method for a gas engine according to claim 5.
JP2011138306A 2011-06-22 2011-06-22 Gas engine gas flow measuring device and method Expired - Fee Related JP5824254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138306A JP5824254B2 (en) 2011-06-22 2011-06-22 Gas engine gas flow measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138306A JP5824254B2 (en) 2011-06-22 2011-06-22 Gas engine gas flow measuring device and method

Publications (2)

Publication Number Publication Date
JP2013007568A JP2013007568A (en) 2013-01-10
JP5824254B2 true JP5824254B2 (en) 2015-11-25

Family

ID=47675052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138306A Expired - Fee Related JP5824254B2 (en) 2011-06-22 2011-06-22 Gas engine gas flow measuring device and method

Country Status (1)

Country Link
JP (1) JP5824254B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092091B2 (en) * 2018-03-19 2021-08-17 Woodward, Inc. Pressure regulating mass flow system for multipoint gaseous fuel injection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121116A (en) * 1979-03-09 1980-09-18 Hitachi Ltd Detector for suction air flow of internal combustion engine
JPH0674807A (en) * 1992-08-28 1994-03-18 Tokyo Gas Co Ltd Gas flow meter
JP2002061800A (en) * 2000-08-17 2002-02-28 Osaka Gas Co Ltd Gas feeding system
JP4059342B2 (en) * 2003-04-15 2008-03-12 東京瓦斯株式会社 Gas fuel supply mechanism
JP4393922B2 (en) * 2004-05-20 2010-01-06 東京瓦斯株式会社 Gas pulsation reduction method, pulsation reduction system, and pulsation reduction piping
JP5275863B2 (en) * 2009-03-23 2013-08-28 ヤンマー株式会社 Fuel gas cooler and gas engine

Also Published As

Publication number Publication date
JP2013007568A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP6262957B2 (en) Operation method of internal combustion engine
RU2384722C2 (en) Method to control airflow in internal combustion engines, device to this end, internal combustion engine operated by said method and internal combustion engine comprising said device
KR101823720B1 (en) Method for operating an internal combustion engine having at least two cylinders
KR101781720B1 (en) Control device for internal combustion engine
CN102052183B (en) Engine control system with algorithm for actuator control
RU2014115622A (en) METHOD FOR OPERATING ENGINE WITH HUMIDITY SENSOR
US20150226144A1 (en) Method for balancing cylinders of an internal combustion engine
JP2009270460A (en) Engine combustion noise reducing method
JP5824254B2 (en) Gas engine gas flow measuring device and method
KR101222176B1 (en) Gas engine controller
US20180355805A1 (en) Internal combustion engine with a regulating device
JP5074255B2 (en) Gas engine control device
JP2004308651A (en) Method of operating internal combustion engine
EP3227542B1 (en) A method of controlling an operation of a variable inlet valve system of an internal combustion piston engine, and an internal combustion piston engine
US9828923B2 (en) Control device for internal combustion engine
RU2678606C2 (en) Methods for engine, having throttle and turbocharger with wastegate and system for engine
JP2020002860A (en) Control device of internal combustion engine
WO2019003806A1 (en) Internal combustion engine control device
WO2019034260A1 (en) A method of controlling combustion of fuel in a multi-cylinder internal combustion engine and a computer control system configured to control combustion process in a multi-cylinder internal combustion piston engine
KR101210758B1 (en) Knocking controlling method of Internal combustion engine
US10724494B2 (en) Internal combustion engine with a regulating device
JP2005248943A (en) Control device for multi-cylinder internal combustion engine
JP2013133801A (en) Control device for internal combustion engine
Yong et al. A Virtual-Cam Control Methodology for Free-Piston Engines
JP2005083284A (en) Fuel injection control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees