Nothing Special   »   [go: up one dir, main page]

JP5800549B2 - 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム - Google Patents

画像処理装置、画像処理装置の作動方法、及び画像処理プログラム Download PDF

Info

Publication number
JP5800549B2
JP5800549B2 JP2011080911A JP2011080911A JP5800549B2 JP 5800549 B2 JP5800549 B2 JP 5800549B2 JP 2011080911 A JP2011080911 A JP 2011080911A JP 2011080911 A JP2011080911 A JP 2011080911A JP 5800549 B2 JP5800549 B2 JP 5800549B2
Authority
JP
Japan
Prior art keywords
approximate
region
pixel
area
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011080911A
Other languages
English (en)
Other versions
JP2012213518A (ja
JP2012213518A5 (ja
Inventor
大和 神田
大和 神田
北村 誠
誠 北村
隆志 河野
隆志 河野
昌士 弘田
昌士 弘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011080911A priority Critical patent/JP5800549B2/ja
Priority to CN201210018136.6A priority patent/CN102737388B/zh
Priority to US13/404,470 priority patent/US8774521B2/en
Priority to EP12001516.9A priority patent/EP2506212B1/en
Publication of JP2012213518A publication Critical patent/JP2012213518A/ja
Publication of JP2012213518A5 publication Critical patent/JP2012213518A5/ja
Application granted granted Critical
Publication of JP5800549B2 publication Critical patent/JP5800549B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30021Catheter; Guide wire
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Endoscopes (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

本発明は、画像から異常部を検出する画像処理装置、画像処理方法、及び画像処理プログラムに関するものである。
従来から、内視鏡やカプセル内視鏡等によって被検者の体内(管腔内)を撮像した生体内画像の観察にかかる医師等の負担を軽減するための技術の1つとして、画像から出血部位等の異常部を検出する技術が知られている(例えば特許文献1を参照)。特許文献1においては、先ず、画像内の各画素、または画像を矩形分割した各領域を、その色情報(色度=R/(R+G+B)、G/(R+G+B)、色比=R/G等)に基づく特徴空間に写像する。そして、特徴空間内でクラスタリングを行った後に、各クラスタの大きさや重心座標等の情報をもとに正常粘膜クラスタと異常部クラスタとを特定し、異常部クラスタに属する画素または矩形領域を異常部として検出している。
特開2005−192880号公報
ところで、特徴空間において、正常粘膜の画素値分布は、撮影状態や個体差のばらつき等により、ある程度の広がりを持っている。一方、生体内画像の中には、このような正常粘膜の画素値分布から外れない画素値を有しつつ、画素値変化(画像の座標の変化に伴う画素値の変化)が周囲(正常粘膜領域)における画素値変化とは異なる異常部も存在する。ところが、特徴空間においては、写像の際に画像空間における位置情報が失われるため、このような異常部を検出することができない。
本発明は、上記に鑑みて為されたものであって、周囲とは異なる画素値変化を示す異常部を精度良く検出することができる画像処理装置、画像処理方法、及び画像処理プログラムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る画像処理装置は、画像内の検査対象領域に含まれる画素の画素値を近似する複数の近似面を算出する近似面算出手段と、前記検査対象領域内の画素の画素値と前記複数の近似面との関係に基づいて、前記複数の近似面の内から少なくとも1つの近似面を選択する近似面選択手段と、前記少なくとも1つの近似面によって前記画素の画素値が近似される近似領域を決定する近似領域決定手段と、前記近似領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値とに基づいて異常部を検出する異常部検出手段とを備えることを特徴とする。
本発明に係る画像処理方法は、画像内の検査対象領域に含まれる画素の画素値を近似する複数の近似面を算出する近似面算出ステップと、前記検査対象領域内の画素の画素値と前記複数の近似面との関係に基づいて、前記複数の近似面から少なくとも1つの近似面を選択する近似面選択ステップと、前記少なくとも1つの近似面によって前記画素の画素値が近似される近似領域を決定する近似領域決定ステップと、前記近似領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値とに基づいて異常部を検出する異常部検出ステップとを含むことを特徴とする。
本発明に係る画像処理プログラムは、画像内の検査対象領域に含まれる画素の画素値を近似する複数の近似面を算出する近似面算出ステップと、前記検査対象領域内の画素の画素値と前記複数の近似面との関係に基づいて、前記複数の近似面から少なくとも1つの近似面を選択する近似面選択ステップと、前記少なくとも1つの近似面によって前記画素の画素値が近似される近似領域を決定する近似領域決定ステップと、前記近似領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値とに基づいて異常部を検出する異常部検出ステップとをコンピュータに実行させることを特徴とする。
本発明によれば、検査対象領域に含まれる画素の画素値を近似する近似面と、該近似面によって近似される近似領域とを取得し、近似領域内の画素の画素値と、該画素の座標における近似面上の値とに基づいて異常部を検出するので、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
図1は、本発明の実施の形態1に係る画像処理装置の構成を示すブロック図である。 図2は、図1に示す画像処理装置の動作を示すフローチャートである。 図3は、図1に示す画像処理装置に取り込まれた画像の一例を示す模式図である。 図4は、図3に示すy=yにおけるx方向に沿った画素値zを表すグラフである。 図5は、近似面の算出処理を説明する図である。 図6は、近似面の選択及び近似領域の決定処理を説明する図である。 図7は、近似面の選択処理を説明する図である。 図8は、近似領域の決定処理を説明する図である。 図9は、異常部の検出処理を説明する図である。 図10は、近似面算出部の動作を示すフローチャートである。 図11は、近似面選択部の動作を示すフローチャートである。 図12は、近似領域決定部の動作を示すフローチャートである。 図13は、変形例1−1における近似面選択部の構成を示すブロック図である。 図14は、変形例1−1における近似面選択部の動作を示すフローチャートである。 図15は、変形例1−2における近似面選択部の構成を示すブロック図である。 図16は、変形例1−2における近似面選択部の動作を示すフローチャートである。 図17は、変形例1−3における近似領域決定部の構成を示すブロック図である。 図18は、変形例1−3における近似領域決定部の動作を示すフローチャートである。 図19は、変形例1−4における近似領域決定部の構成を示すブロック図である。 図20は、変形例1−4における近似領域決定部の動作を示すフローチャートである。 図21は、実施の形態2に係る画像処理装置の構成を示すブロック図である。 図22は、図21に示す近似面算出部の動作を示すフローチャートである。 図23は、変形例2−1における算出回数設定部の構成を示すブロック図である。 図24は、変形例2−2における画素抽出部の構成を示すブロック図である。 図25は、実施の形態3に係る画像処理装置の構成を示すブロック図である。 図26は、実施の形態3に係る画像処理を説明する図である。 図27は、図25に示す画像処理装置の動作を示すフローチャートである。 図28は、図25に示す近似面再算出部の動作を示すフローチャートである。
以下、本発明の実施の形態に係る画像処理装置について、図面を参照しながら説明する。なお、これら実施の形態によって本発明が限定されるものではない。また、各図面の記載において、同一部分には同一の符号を付して示している。
以下に説明する実施の形態に係る画像処理装置は、例えば内視鏡やカプセル内視鏡等の医用観察装置によって被検者の体内(管腔内)を撮像した生体内画像を処理するものであり、具体的には、生体内画像から、周囲の画素における画素値変化とは異なる変化を示す領域(異常部)を検出する処理を行う。また、以下の実施の形態において画像処理を施される生体内画像は、例えば、各画素においてR(赤)、G(緑)、B(青)の各色成分に対する画素レベル(画素値)を持つカラー画像である。
(実施の形態1)
図1は、本発明の実施の形態1に係る画像処理装置の構成を示すブロック図である。図1に示す画像処理装置1は、画像処理装置1全体の動作を制御する制御部10と、医用観察装置によって撮像された生体内画像の画像データを取得する画像取得部11と、外部から入力される入力信号を受け付ける入力部12と、各種表示を行う表示部13と、画像取得部11によって取得された画像データや種々のプログラムを格納する記憶部14と、画像データに対して所定の画像処理を実行する演算部15とを備える。
制御部10は、CPU等のハードウェアによって実現され、記憶部14に格納された各種プログラムを読み込むことにより、画像取得部11から入力される画像データや入力部12から入力される操作信号等に従って、画像処理装置1を構成する各部への指示やデータの転送等を行い、画像処理装置1全体の動作を統括的に制御する。
画像取得部11は、医用観察装置を含むシステムの態様に応じて適宜構成される。例えば、医用観察装置がカプセル内視鏡であり、医用観察装置との間の画像データの受け渡しに可搬型の記録媒体が使用される場合、画像取得部11は、この記録媒体を着脱自在に装着し、保存された生体内画像の画像データを読み出すリーダ装置で構成される。また、医用観察装置によって撮像された生体内画像の画像データを保存しておくサーバを設置する場合、画像取得部11は、サーバと接続される通信装置等で構成され、サーバとデータ通信を行って生体内画像の画像データを取得する。或いは、画像取得部11を、内視鏡等の医用観察装置から、ケーブルを介して画像信号を入力するインターフェース装置等で構成しても良い。
入力部12は、例えばキーボードやマウス、タッチパネル、各種スイッチ等の入力デバイスによって実現され、受け付けた入力信号を制御部10に出力する。
表示部13は、LCDやELディスプレイ等の表示装置によって実現され、制御部10の制御の下で、生体内画像を含む各種画面を表示する。
記憶部14は、更新記録可能なフラッシュメモリ等のROMやRAMといった各種ICメモリ、内蔵若しくはデータ通信端子で接続されたハードディスク、又は、CD−ROM等の情報記録媒体及びその読取装置等によって実現される。記憶部14は、画像取得部11によって取得された生体内画像の画像データの他、画像処理装置1を動作させると共に、種々の機能を画像処理装置1に実行させるためのプログラムや、このプログラムの実行中に使用されるデータ等を格納する。具体的には、記憶部14は、生体内画像から異常部を検出する処理を実行するための画像処理プログラム141を格納する。
演算部15は、CPU等のハードウェアによって実現され、画像処理プログラム141を読み込むことによって生体内画像の画像データを処理し、生体内画像から異常部を検出するための種々の演算処理を行う。
次に、演算部15の詳細な構成について説明する。
演算部15は、生体内画像内の検査対象領域に含まれる画素の画素値(例えば、G成分の画素値)に基づいて、検査対象領域に含まれる画素の画素値を近似する複数の近似面を算出する近似面算出部16と、複数の近似面から少なくとも1つの近似面を選択する近似面選択部17と、選択された近似面によって近似される近似領域を決定する近似領域決定部18と、決定された近似領域以外の生体内画像内の領域を新たな検査対象領域に設定して、近似面の算出から近似領域の決定に至る一連の処理の繰り返しを制御する対象領域再設定部19と、近似領域内の画素の画素値と、この画素の座標における近似面上の値とに基づいて、生体内画像から異常部を検出する異常部検出部20とを備える。
近似面算出部16は、近似面の算出回数を設定する算出回数設定部161と、各近似面の算出に用いる複数の画素を検査対象領域内から抽出する画素抽出部162と、抽出された複数の画素の画素値を近似する近似関数を算出する近似関数算出部163とを有し、算出された近似関数に基づいて近似面を取得する。
近似面選択部17は、検査対象領域内の画素の画素値と、各画素の座標における近似面上の値(以下、単に近似値という)とが近接する領域(以下、近似面近接領域という)を、近似面毎に検出する近似面近接領域検出部171と、近似面近接領域における近似面の近似度合いを評価するための評価値を算出する近似評価値算出部172とを有し、算出された評価値に基づいて、複数の近似面の内から少なくとも1つの近似面を選択する。上記近似面近接領域検出部171は、画素値と近似値との差分値を算出する差分値算出部171aを含み、この差分値に基づいて近似面近接領域を検出する。また、上記近似評価値算出部172は、近似面近接領域の面積を算出する面積算出部172aを含み、この面積を評価値として用いる。
近似領域決定部18は、検査対象領域内から所定の画素の領域を近似領域の候補領域(以下、近似候補領域という)として検出する候補領域検出部181と、近似候補領域内の特定の領域や、近似候補領域に隣接する近似候補領域外の領域を含むように、近似候補領域を変形する候補領域変形部182とを有し、変形された近似候補領域を近似領域として決定する。候補領域検出部181は、各画素の座標における近似値z’との差分値Δzを算出する差分値算出部181aを含み、この差分値に基づいて候補領域を検出する。この候補領域変形部182は、候補領域に対してモルフォロジ処理を行うモロフォロジ処理部182aを含む。
異常部検出部20は、画素値と近似値との差分値を算出する差分値算出部201を含み、この差分値に基づいて異常部を検出する。
次に、画像処理装置1の動作について説明する。図2は、画像処理装置1の動作を示すフローチャートである。
まず、ステップS101において、画像取得部11は、外部から生体内画像群を取得し、記憶部14に格納する。演算部15は、画像処理を施す画像を記憶部14から順次読み出す。図3は、記憶部14から読み出された画像の一例を示す模式図である。以下において、図3に示す画像100を構成する各画素の座標を(x,y)によって示す。また、図4は、図3のy=yにおけるx方向に沿った画素値zを表すグラフである。以下においては、動作原理の理解を助けるために、画素の1次元座標(x座標)及び画素値zからなる2次元表示した図を参照しながら説明する。なお、画素値zは、最大値が1となるように規格化されている。
ステップS102において、近似面算出部16は、図5に示すように、検査対象領域内の画素の画素値を近似する複数の近似面S、S、…を算出する。なお、初回は、画像100の全体(x方向においては領域Rで示す)が検査対象領域に設定される。近似面の算出処理の詳細については後述する。
続くステップS103において、近似面選択部17は、検査対象領域内の画素の画素値と、各画素の座標における近似値とが近接する領域ができるだけ広くなるような少なくとも1つの近似面を、複数の近似面の内から選択する。例えば、図5に示す近似面S〜Sの内では、図6に示す近似面Sが選択される。
ステップS104において、近似領域決定部18は、近似面選択部17によって選択された近似面毎に、検査対象領域内の画素の画素値が近似される近似領域を決定する。例えば、図6に示す近似面Sについては、領域Rが近似領域となる。
ステップS105において、対象領域再設定部19は、近似領域決定部18によって決定された近似領域が、検査対象領域全体と一致するか否かを判定する。近似領域が検査対象領域と一致しない場合(ステップS105:No)、対象領域再設定部19は、決定された近似領域以外の領域を、新たな検査対象領域に設定する(ステップS106)。例えば、近似領域として決定された領域Rは、当初設定された検査対象領域Rの一部である(R≠R)。従って、この場合、領域R及びRが、次の検査対象領域として設定される。
その後、動作はステップS102に戻る。それにより、新たに設定された領域R及びRの各々について、複数の近似面S’、S’、…(図7参照)が算出され、そこから少なくとも1つの近似面(例えば近似面S)を選択する処理が行われる。さらに、この近似面Sによって近似される近似領域Rを決定する処理が行われる(図8参照)。
このような動作を繰り返すことにより、画像100を構成する画素の画素値zを近似する近似面S(領域R)、近似面S(領域R)、近似面S(領域R)、近似面S(領域R)、及び近似面S(領域R)を得ることができる。これらの近似面及び近似領域に関する情報は、記憶部14に格納される。
近似領域が検査対象領域と一致する場合、即ち、画像100内の全ての領域に対して近似領域が決定された場合(ステップS105:Yes)、異常部検出部20は、生体内画像から異常部を検出する処理を行う(ステップS107)。
具体的には、異常部検出部20は、近似領域内の画素の画素値zと、各画素の座標における近似値z’との差分値Δz(Δz=z−z’)を算出する(図9参照)。その結果、差分値が所定の閾値以上であった領域を、異常部として検出する。
なお、差分値Δzは、新たに算出しても良いし、先の処理によって算出された値が記憶部14に格納されている場合には、記憶部14から取得しても良い。
ステップS108において、演算部15は、異常部の検出結果を出力して記憶部14に格納する。また、表示部13は、制御部10の制御の下で、出力された検出結果を所定の形式で画面表示しても良い。
次に、複数の近似面の算出処理(ステップS102)について、詳細に説明する。図10は、近似面算出部16の動作を示すフローチャートである。
まず、ステップS111において、算出回数設定部161は、近似面の算出回数Nを設定する。この回数Nとしては、予め設定された固定値を毎回用いても良いし、初回のみ予め設定された値を用い、その後は、後述するステップS106において、新たに検査対象領域が設定される度に、算出回数Nの値を減少させても良い。これは、図5に示すように、画像100全体が検査対象領域(領域R)である場合と比較して、図7に示すように、新たに設定された検査対象領域(領域R、R)が狭くなることにより、少ない算出回数でも、良好な近似面が算出され易くなるためである。
続くステップS112において、近似面算出部16は、処理回数を示すカウンタiを1に設定する。
ステップS113において、画素抽出部162は、検査対象領域内から複数の画素を抽出する。これらの画素は、後で近似関数の算出に用いられるものである。従って、近似関数における未知数の数以上の画素を抽出する。例えば、2つの変数を含む2次関数の場合、算出すべき未知数(係数)は6個であるため、6個以上の画素を抽出する。
ステップS114において、近似関数算出部163は、抽出された画素の座標(x,y)及び画素値zを用いて近似関数を算出する。具体的には、所望の関数に抽出された画素の座標及び画素値(x,y、z)、(x,y,z)、…を代入することにより、連立方程式又は過剰条件方程式を作成し、この連立方程式又は過剰条件方程式を解くことにより、関数に含まれる係数を推定する。なお、画素値zとしては、R値、G値、B値、輝度、色差、色相、彩度、明度等を用いることができる。
例えば、次式(1)によって与えられる2次関数を算出する場合、係数(定数)a〜fが、求めるべき未知数である。
z=ax+by+cxy+dx+ey+f …(1)
この場合、最小二乗法により得られる次式(2)を解けば良い。
Figure 0005800549
ただし、
Figure 0005800549
ステップS115において、近似面算出部16は、カウンタiが算出回数Nに至ったか否かを判定する。カウンタiが算出回数Nに至っていない場合(ステップS115:No)、カウンタiをインクリメントし(ステップS116)、動作はステップS113に戻る。
一方、カウンタiが算出回数Nに至った場合(ステップS115:Yes)、近似面算出部16は、N回の処理によって算出されたN個の近似関数に、検査対象領域内の全ての座標(x,y)を代入することにより、各座標(x,y)に対応する近似値z’を算出する。これにより、N個の近似面S、S、…、Sが算出される(ステップS117)。
次に、近似面の選択処理(ステップS103)について、詳細に説明する。図11は、近似面選択部17の動作を示すフローチャートである。
まず、ステップS121において、近似面近接領域検出部171は、検査対象領域内の画素の画素値zと、各画素の座標における近似値z’との差分値Δzを、近似面毎に算出する。
ステップS122において、近似面近接領域検出部171は、差分値Δzの絶対値が所定の閾値以下である領域を、各近似面S〜Sについて検出する。これによって検出された領域が、近似面近接領域である。
ステップS123において、近似評価値算出部172は、近似面の近似度合いを評価する評価値として、近似面近接領域の面積を近似面毎に算出する。
ステップS124において、近似面選択部17は、近似面近接領域の面積が最大となる少なくとも1つの近似面を選択する。
次に、近似領域の決定処理(ステップS104)について、詳細に説明する。図12は、近似領域決定部18の動作を示すフローチャートである。
ステップS131において、候補領域検出部181は、検査対象領域内の画素の画素値と、各画素の座標における近似値との差分値Δzを、近似面選択部17によって選択された近似面毎に算出する。
ステップS132において、候補領域検出部181は、差分値Δzの絶対値が所定の閾値以下である領域を、近似候補領域として検出する。
なお、候補領域検出部181は、ステップS131及びS132を行う代わりに、近似面近接領域の検出時(ステップS122)に検出された近似面近接領域の内から、選択された近似面に対応する近似面近接領域を抽出しても良い。この場合、近似面近接領域検出部171によって検出された近似面近接領域に関する情報を記憶部14に格納し、候補領域検出部181が、記憶部14からこの情報を取得することとすれば良い。これにより、演算部15における演算量を低減することができる。
ステップS133において、候補領域変形部182は、モルフォロジ(モフォロジ)のクロージング(closing)処理により、近似候補領域を変形する。モルフォロジのクロージング処理とは、構造要素と呼ばれる基本図形を近似候補領域に外接させて移動させた際に構造要素の外周が通過する軌跡を得る処理である(小畑秀文著、「モルフォロジ」、コロナ社)。
ここで、近似面選択部17によって選択された近似面は、検査対象領域内の部分領域の画素値変化を近似する面であり、該部分領域の大半は近似候補領域に含まれる。しかし、部分領域の内部や隣接部に位置する異常部は、部分領域の画素値変化と異なる画素値変化を示すため、本来含まれるべき近似候補領域に含まれない可能性が高い。そのため、周囲の画素値変化との違いをもとに、異常部の画素値変化を検出するためには、異常部の画素位置において、周囲の画素値変化を近似する面を得る必要がある。
そこで、候補領域変形部182は、近似候補領域にクロージング処理を施すことにより、近似候補領域内部の孔(非近似候補領域)や、近似候補領域境界の局所的な切れ目を塞ぐように近似候補領域を変形する。
ステップS134において、近似領域決定部18は、変形された近似候補領域を近似領域として決定する。これにより、近似候補領域の内部や隣接部に異常部が存在する場合に、これらの領域を、周囲の画素値変化と同様の傾向で画素値変化する面、つまり、近似候補領域を算出する際に用いた近似面の近似領域に含めることができ、結果として、近似領域内の画素の画素値と、各画素の座標における近似値との差に基づいて、異常部を検出できるようになる。
以上説明したように、実施の形態1によれば、検査対象領域内の画素の画素値を近似する近似面と、この近似面によって近似される近似領域とを求め、近似領域内の画素の画素値と、対応する座標における近似面上の値との差分値を算出することにより、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
なお、以上においては、1種類の波長成分(例えば、G成分)に対する処理を説明したが、複数の波長成分に対しても、実施の形態1を適用することができる。具体的には、まず、R成分に基づいて、近似面の算出(ステップS102)、選択(ステップS103)、及び近似領域の決定(ステップS104)処理を行う。続いて、R成分に基づいて決定された近似領域内において、G成分及びB成分にそれぞれ基づいて、近似面を算出(同上)及び選択(同上)する処理を行う。さらに、波長成分毎に各画素の画素値と近似値との差分を算出し、この差分値に基づいて波長成分毎に異常部を検出する(ステップS107)。
ここで、R成分は、血液の吸収帯域から離れる波長成分であり、また長波長の成分でもあるため、生体における吸収、散乱の影響を受け難く、撮像対象である生体組織の構造(粘膜形状等)を最も反映した画素値を示す。そのため、R成分に基づく近似面は、粘膜形状等を反映しているといえる。一方、G成分やB成分は、出血部位等の異常部において照明光に対する血液の吸光の影響を受け易い。そこで、上記のように、R成分に基づいて決定された近似領域内において、G成分やB成分に基づく近似面を算出することにより、粘膜形状等を反映した領域において、生体内における吸光の多い色変化のある病変部(出血部位等)を良好に検出することができる。
(変形例1−1)
次に、実施の形態1の変形例1−1について、図13を参照しながら説明する。
変形例1−1に係る画像処理装置は、図1に示す近似面選択部17の代わりに、近似面近接領域検出部171及び近似評価値算出部172−2を有する近似面選択部17−2を備える。近似評価値算出部172−2は、検査対象領域内の画素の画素値zと各画素の座標における近似値z’との差分値Δzの分散を算出する分散値算出部172bを含み、近似面の近似度合いを評価する評価値として分散を算出する。
図14は、変形例1−1における近似面選択部17−2の動作を示すフローチャートである。なお、ステップS121及びS122における動作は、実施の形態1において説明したものと同様である。
ステップS122に続くステップS141において、近似評価値算出部172−2は、近似面近接領域内における差分値Δzの分散を、近似面毎に算出する。
ステップS142において、近似面選択部17−2は、差分値Δzの分散が最小となる少なくとも1つの近似面を選択する。
変形例1−1によれば、複数の近似面S〜Sの内から、検査対象領域内の部分的な画素値変化により適合する近似面を選択することが可能となる。従って、後の異常部検出処理において、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
(変形例1−2)
次に、実施の形態1の変形例1−2について、図15を参照しながら説明する。
変形例1−2に係る画像処理装置は、図1に示す近似面選択部17の代わりに、近似面選択部17−3を備える。近似面選択部17−3は、近似面近接領域検出部171と、連結する近似面近接領域における近似面の近似度合いを評価するための評価値を算出する近似評価値算出部172−3とを有し、この評価値に基づいて複数の近似面の内から少なくとも1つの近似面を選択する。
近似評価値算出部172−3は、ラベリング処理(参考:CG−ARTS協会、ディジタル画像処理、第181〜182頁)により、近似面近接領域内の互いに隣接する画素同士を連結して1つの連結領域とする領域連結部172cと、各連結領域の面積を算出する面積算出部172dとを有する。
図16は、近似面選択部17−3の動作を示すフローチャートである。なお、ステップS121及びS122における動作は、実施の形態1において説明したものと同様である。
ステップS122に続くステップS151において、領域連結部172cは、画像100にラベリング処理を施すことにより、近似面近接領域内の互いに隣接する画素同士を連結して1つの連結領域とする。
ステップS152において、面積算出部172dは、各連結領域の面積を算出する。
ステップS153において、近似面選択部17−3は、連結領域の面積が最大となる少なくとも1つの近似面を選択する。
変形例1−2によれば、近似面を選択する際に、検査対象領域内の画素の画素値とその画素の座標における近似値とが局所的に一致することによって発生するノイズ領域の影響を抑制しながら、近似面を選択することができる。従って、後の異常部検出処理において、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
(変形例1−3)
次に、実施の形態1の変形例1−3について、図17を参照しながら説明する。
変形例1−3に係る画像処理装置は、図1に示す近似領域決定部18の代わりに、近似領域決定部18−2を備える。近似領域決定部18−2は、近似候補領域を検出する候補領域検出部181−2と、検出された近似候補領域を変形する候補領域変形部182とを有し、変形された近似候補領域を近似領域として決定する。
候補領域決定部181−2は、差分値算出部181aに加えて、ラベリング処理により、近似候補領域内の互いに隣接する画素同士を連結して1つの連結領域とする領域連結部181bと、各連結領域の面積を算出する面積算出部181cとを有し、連結領域の面積に基づいて近似領域の候補を決定する。
図18は、近似領域決定部18−2の動作を示すフローチャートである。なお、ステップS131、S132、S133、S134における動作は、実施の形態1において説明したものと同様である。
ステップS132に続くステップS161において、領域連結部181bは、ラベリング処理により、近似候補領域内の互いに隣接する画素同士を連結して1つの連結領域とする。
ステップS162において、面積算出部181cは、各連結領域の面積を算出する。
ステップS163において、候補領域検出部181−2は、面積が最大となる連結領域を、最終的な近似候補領域とする。
変形例1−3によれば、近似領域を決定する際に、検査対象領域内の画素の画素値とその画素の座標における近似値とが局所的に一致することによって発生するノイズ領域の影響を抑制しながら、近似領域を決定することができる。従って、後の異常部検出処理において、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
(変形例1−4)
次に、実施の形態1の変形例1−4について、図19を参照しながら説明する。
変形例1−4に係る画像処理装置は、図1に示す近似領域決定部18の代わりに、近似領域決定部18−3を備える。近似領域決定部18−3は、近似候補領域を検出する候補領域検出部181と、検出された近似候補領域に内包される内包領域を当該近似候補領域に統合することにより近似候補領域を変形する候補領域変形部182−3とを有し、変形された候補領域を近似領域として決定する。
候補領域変形部182−3は、候補領域に内包される内包領域を当該候補領域に統合する内包領域統合部182bを有する。内包領域統合部182bは、近似候補領域以外の画素からなる領域であって、画像100の端部に接することのない領域を内包領域として検出する内包領域検出部182b−1と、内包領域に関する情報(例えば面積)を算出する領域情報算出部182b−2とを含み、面積が所定の閾値以下である内包領域を近似候補領域に統合する。
図20は、近似領域決定部18−3の動作を示すフローチャートである。なお、ステップS131及びS132における動作は、実施の形態1と同様である。
ステップS132に続くステップS171において、内包領域検出部182b−1は、抽出された近似候補領域及びそれ以外の領域に対してラベリング処理を施し、近似候補領域以外の画素からなる領域であって、画像100の端部に接することのない領域を内包領域として検出する。
ステップS172において、領域情報算出部182b−2は、内包領域に関する情報として、内包領域の面積を算出する。
ステップS173において、候補領域変形部182−3は、面積が所定の閾値以下である内包領域を近似候補領域に統合することにより、近似候補領域の変形を行う。
この後のステップS134における動作は、実施の形態1と同様である。
変形例1−4によれば、面積が所定の閾値以下の内包領域が異常部であった場合に、その異常部の画素位置において、周囲の画素値変化に適合する近似面を取得することができる。従って、後の異常部検出処理において、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
(実施の形態2)
次に、本発明の実施の形態2について説明する。図21は、実施の形態2に係る画像処理装置の構成を示すブロック図である。図21に示す画像処理装置2は、図1に示す近似面算出部16の代わりに、近似面算出部31を有する演算部30を備える。その他の構成については、実施の形態1において説明したものと同様である。
近似面算出部31は、近似面の算出回数を設定する算出回数設定部311と、検査対象領域から近似関数の算出に用いる複数の画素を抽出する画素抽出部312と、近似関数算出部163とを有する。なお、近似関数算出部163の動作については、実施の形態1において説明したものと同様である。
算出回数設定部311は、近似面の算出回数の設定に用いられる情報(領域情報)を算出する領域情報算出部311aを有する。領域情報算出部311aは、検査対象領域の面積を算出する面積算出部311a−1を含む。
ここで、検査対象領域の面積が大きいということは、面積が小さい場合と比較して、検査対象領域内における画素値変化が起伏に富んでいる可能性が高い。そのため、検査対象領域の面積が大きい場合には、より多くの近似面を算出する方が、検査対象領域内の部分的な画素値変化に適合する近似面を算出できる可能性が高くなる。そこで、実施の形態2においては、検査対象領域の面積に応じて、近似面の算出回数を設定する。
画素抽出部312は、近似面の算出に用いる画素の抽出範囲を設定する抽出範囲設定部312aを有し、設定された抽出範囲内から画素を抽出する。抽出範囲設定部312aは、局所領域設定部312a−1を含み、該局所領域設定部312a−1によって設定された局所領域を画素の抽出範囲として設定する。
ここで、検査対象領域内において画素値変化が起伏に富んでいる場合、ある程度限られた領域内から近似面算出用の画素を抽出する方が、検査対象領域内の部分的な画素値変化に適合する近似面を算出できる可能性が高くなる。そこで、実施の形態2においては、限定された局所領域から画素を抽出するために、検査対象領域内に所定の大きさの複数の領域を設定する。
次に、画像処理装置2の動作について説明する。画像処理装置2全体の動作は、図2に示すものと同様であり、検査対象領域に対する複数の近似面の算出処理(ステップS102)における詳細な動作が、実施の形態1とは異なっている。
図22は、近似面算出部31の動作を示すフローチャートである。
まず、ステップS201において、領域情報算出部311aは、検査対象領域の情報として、面積Sを算出する。
続くステップS202において、算出回数設定部311は、kS(kは正の定数)を算出し、このkSを四捨五入等することにより整数化する。それによって得られた値が、当該検査対象領域に対する近似面の算出回数Nとして設定される。
続くステップS203において、近似面算出部31は、カウンタiを1に設定する。
ステップS204において、抽出範囲設定部312aは、検査対象領域内に、所定の半径を有する複数の局所領域を設定する。
ステップS205において、画素抽出部312は、1つの局所領域内から複数の画素を抽出する。
その後のステップS114〜S117における動作は、実施の形態1と同様である。
以上説明したように、実施の形態2によれば、検査対象領域の面積が大きくなる程、近似面の算出回数を多く設定するので、検査対象領域内の部分的な画素値変化に適合する近似面を算出し易くなる。また、実施の形態2によれば、検査対象領域内の限定された局所領域内から抽出された画素に基づいて近似面を算出するので、やはり、検査対象領域内の部分的な画素値変化に適合する近似面を算出し易くなる。従って、後の異常部検出処理において、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
(変形例2−1)
次に、実施の形態2の変形例2−1について、図23を参照しながら説明する。
変形例2−1に係る画像処理装置は、図21に示す算出回数設定部311の代わりに、領域情報算出部311bを有する算出回数設定部311−2を備える。領域情報算出部311bはエッジ量算出部311b−1を含み、近似面の算出回数を設定する際に用いる領域情報としてエッジ量を算出する。
ここで、検査対象領域内にエッジが多いということは、検査対象領域内における画素値変化が起伏に富んでいる可能性が高い。そのため、エッジが多い場合、より多くの近似面を算出する方が、検査対象領域内の部分的な画素値変化に適合する近似面を算出できる可能性が高くなる。そこで、変形例2−1においては、検査対象領域のエッジ量に応じて、近似面の算出回数を設定する。
具体的には、算出回数設定部311−2は次のような演算を行う。まず、領域情報算出部311bにおいて、公知の微分フィルタ(参考:CG−ARTS協会、ディジタル画像処理、第114頁)を用いて、画像100におけるエッジ強度を取得し、検査対象領域内におけるエッジ強度の平均値Vを算出する。次いで、このエッジ強度の平均値Vを用いてk’V(k’は正の定数)を算出し、さらにこのk’Vを四捨五入等することにより整数化する。それによって得られた値が、当該検査対象領域に対する近似面の算出回数Nとして設定される。
変形例2−1によれば、検査対象領域におけるエッジ強度の平均値に比例するように近似面の算出回数を設定するので、検査対象領域内の部分的な画素値変化に適合する近似面を算出し易くなる。従って、後の異常部検出処理において、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
(変形例2−2)
次に、実施の形態2の変形例2−2について、図24を参照しながら説明する。
変形例2−2に係る画像処理装置は、図21に示す画素抽出部312の代わりに、抽出範囲設定部312bを有する画素抽出部312−2を備える。抽出範囲設定部312bは、領域連結部312b−1を含み、領域連結部312b−1によって連結領域とされた領域を画素の抽出範囲に設定する。
ここで、例えば図8に示すように、近似面や近似領域の決定処理が進んでくると、細かく分割された検査対象領域が増加する。そこで、変形例2−2においては、画像100に対してラベリング処理を施し、検査対象領域内の互いに隣接する画素同士を連結した連結領域を、近似面の算出に用いる複数の画素の抽出範囲に設定する。
具体的には、画素抽出部312−2は次のような演算を行う。まず、抽出範囲設定部312bは、画像100に対するラベリング処理により、検査対象領域内の互いに隣接する画素同士を連結した連結領域を判定する。画素抽出部312−2は、同一の連結領域内から複数の画素を抽出する。
変形例2−2によれば、連結する検査対象領域内から、近似面の算出に用いる複数の画素を抽出するので、検査対象領域内の部分的な画素値変化に対して、より適合する近似面を算出し易くなる。従って、後の異常部検出処理において、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
(実施の形態3)
次に、実施の形態3について説明する。図25は、実施の形態3に係る画像処理装置の構成を示すブロック図である。図25に示す画像処理装置3は、図1に示す近似面算出部16〜異常部検出部20に加えて、近似面再算出部41を有する演算部40を備える。近似面再算出部41は、ある近似面について決定された近似領域に対し、さらに近似度が高い近似面を再算出する。
ここで、図26(a)に示すように、ある近似領域R20が決定された近似面S20は、検査対象領域から抽出された任意の複数の画素(例えば、画素P、P、P)に基づいて算出されたものである。従って、その近似面は、近似領域R20に対して最も適合する近似面であるとは限らない。そのため、実施の形態3においては、図26(b)に示すように、近似面S20の算出時に比べて近似領域R20内のより多くの画素(例えば、P〜P)の画素値に基づき、近似領域R20に対してより近似度の高い近似面S21を算出する。或いは、近似領域R20内の全画素を用いて近似面を算出しても良い。
近似面再算出部41は、近似領域内の画素に対して重みを設定する重み設定部411と、重みを設定された画素の画素値に基づいて近似関数を算出する近似関数算出部412とを備える。
重み設定部411は、近似領域内の画素の画素値zと、当該画素の座標における算出済みの近似面上の近似値z’との差分値Δzを算出する差分値算出部411aと、近似領域内の輪郭画素を検出する輪郭画素検出部411bとを有し、近似領域内の各画素に与えられる重みを設定する。
図27は、画像処理装置3の動作を示すフローチャートである。画像処理装置3においては、ステップS104において、選択された近似面に対する近似領域が決定された後、近似面再算出部41が、その近似領域内の画素の画素値に基づいて、近似面を再度算出する(ステップS300)。なお、ステップS101〜S104、及びステップS105〜S109の動作については、実施の形態1において説明したものと同様である。
図28は、近似面再算出部41の動作を示すフローチャートである。
まず、ステップS301において、差分値算出部411aは、近似領域内の画素の画素値zと、各画素の座標における算出済みの近似面(例えば図26(a)の近似面S20)上の近似値z’との差分値Δzを算出する。
ステップS302において、重み設定部411は、差分値Δzの絶対値に応じて近似領域内の各画素に対する重みを設定する。具体的には、差分値Δzの絶対値が大きい画素ほど、重みの値を小さく設定する。これは、近似領域内に存在する可能性がある異常部やノイズ等(即ち、外れ値)の画素値を用いると、再算出される近似面の近似度が向上しないので、これらの外れ値の重みを低くするためである。このとき、差分値Δzの絶対値が所定の閾値よりも大きい画素については、重みを例えばゼロにしても良い。
ステップS303において、輪郭画素検出部411bは、例えば輪郭追跡(参考:CG−ARTS協会、ディジタル画像処理、第178頁)等の公知の手法により、近似領域における輪郭画素を検出する。
ステップS304において、重み設定部411は、輪郭画素に対する重みが、輪郭画素以外の画素に対する重みよりも高くなるように、重みを再設定する。ここで、輪郭画素に対する重みを大きくするのは、互いに隣接する近似領域に対する近似面をより連続的にするためである。
ステップS305において、近似関数算出部412は、近似領域内の画素の座標及び画素値(x,y、z)、(x,y,z)、…と、画素(x,y)、(x,y)、…にそれぞれ設定された重みw、w、…とに基づいて近似関数を算出する。近似関数の具体的な算出方法は、実施の形態1において説明したものと同様である。ただし、式(2)における行列Aの代わりに、画素の重みを考慮した次の行列wBが代入される。
Figure 0005800549
ステップS306において、近似面再算出部41は、算出された近似関数に近似領域内の全ての画素の座標を代入することにより、各座標に対応する近似値を算出する。それにより、新たな近似面(例えば図26(b)の近似面S21)が算出される。
以上説明したように、実施の形態3によれば、決定された近似領域に対して、より近似度の高い近似面を算出することが可能となる。従って、後の異常部検出処理において、周囲とは異なる画素値変化を示す異常部を精度良く検出することが可能となる。
以上説明した実施の形態1〜3に係る画像処理装置は、記録媒体に記録された画像処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータシステムで実行することによって実現することができる。また、このようなコンピュータシステムを、ローカルエリアネットワーク、広域エリアネットワーク(LAN/WAN)、又は、インターネット等の公衆回線を介して、他のコンピュータシステムやサーバ等の機器に接続して使用しても良い。この場合、実施の形態1〜3に係る画像処理装置は、これらのネットワークを介して生体内画像の画像データを取得したり、これらのネットワークを介して接続された種々の出力機器(ビュアーやプリンタ等)に画像処理結果を出力したり、これらのネットワークを介して接続された記憶装置(記録媒体及びその読取装置等)に画像処理結果を格納するようにしても良い。
なお、本発明は、実施の形態1〜3及びそれらの変形例に限定されるものではなく、各実施の形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。例えば、各実施の形態や変形例に示される全構成要素からいくつかの構成要素を除外して形成しても良いし、異なる実施の形態や変形例に示した構成要素を適宜組み合わせて形成しても良い。
1、2、3 画像処理装置
10 制御部
11 画像取得部
12 入力部
13 表示部
14 記憶部
141 画像処理プログラム
15、30、40 演算部
16 近似面算出部
161 算出回数設定部
162 画素抽出部
163 近似関数算出部
17、17−2、17−3 近似面選択部
171 近似面近接領域検出部
171a 差分値算出部
172、172−2、172−3 近似評価値算出部
172a、172d 面積算出部
172b 分散値算出部
172c 領域連結部
18、18−2、18−3 近似領域決定部
181、181−2 候補領域検出部
181a 差分値算出部
181b 領域連結部
181c 面積算出部
182、182−3 候補領域変形部
182a モルフォロジ処理部
182b 内包領域統合部
182b−1 内包領域検出部
182b−2 領域情報算出部
19 対象領域再設定部
20 異常部検出部
201 差分値算出部
31 近似面算出部
311、311−2 算出回数設定部
311a、311b 領域情報算出部
311a−1 面積算出部
311b−1 エッジ量算出部
312、312−2 画素抽出部
312a、312b 抽出範囲設定部
312a−1 局所領域設定部
312b−1 領域連結部
41 近似面再算出部
411 重み設定部
411a 差分値算出部
411b 輪郭画素検出部
412 近似関数算出部
100 画像

Claims (27)

  1. 画像内の検査対象領域から抽出された画素の画素値を用いて、前記検査対象領域内の画素の画素値を近似する近似面を複数算出する近似面算出手段と、
    前記検査対象領域内の画素の画素値と前記近似面算出手段により算出された複数の近似面との関係に基づいて、前記複数の近似面の内から少なくとも1つの近似面を選択する近似面選択手段と、
    前記近似面選択手段により選択された前記少なくとも1つの近似面によって前記検査対象領域内の画素の画素値が近似される近似領域を決定する近似領域決定手段と、
    前記近似領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値とに基づいて異常部を検出する異常部検出手段と、
    を備えることを特徴とする画像処理装置。
  2. 前記近似面選択手段は、
    前記検査対象領域内の画素の画素値と該画素の座標における前記少なくとも1つの近似面上の値とが近接する近似面近接領域を、近似面毎に検出する近似面近接領域検出手段と、
    前記近似面近接領域における近似面の近似度合いを示す評価値を算出する近似評価値算出手段と、
    を備え、
    前記評価値に基づいて、前記複数の近似面の内から少なくとも1つの近似面を選択することを特徴とする請求項1に記載の画像処理装置。
  3. 前記近似面近接領域検出手段は、
    前記検査対象領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値との差分値を近似面毎に算出する差分値算出手段を備え、
    前記差分値を所定の閾値と比較することによって前記近似面近接領域を検出することを特徴とする請求項に記載の画像処理装置。
  4. 前記近似評価値算出手段は、前記評価値として前記近似面近接領域の面積を算出する面積算出手段を備え、
    前記近似面選択手段は、前記近似面近接領域の面積が最も大きい近似面を選択することを特徴とする請求項に記載の画像処理装置。
  5. 前記近似評価値算出手段は、前記評価値として、前記近似面近接領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値との差分値の分散を算出する分散値算出手段を備え、
    前記近似面選択手段は、前記分散が最も小さい近似面を選択することを特徴とする請求項に記載の画像処理装置。
  6. 前記近似評価値算出手段は、
    前記近似面近接領域内の互いに隣接する画素同士を連結して1つの連結領域とする領域連結手段を備え、
    同一の連結領域について前記評価値を算出することを特徴とする請求項に記載の画像処理装置。
  7. 前記近似面算出手段は、
    前記複数の近似面の各々の算出に用いる複数の画素を前記検査対象領域から抽出する画素抽出手段と、
    抽出された画素の座標を変数とし、該座標における画素値を近似する近似関数を算出する近似関数算出手段と、
    を備えることを特徴とする請求項1に記載の画像処理装置。
  8. 前記近似面算出手段は、前記検査対象領域に関する情報に基づいて近似面の算出回数を設定する算出回数設定手段を備えることを特徴とする請求項に記載の画像処理装置。
  9. 前記算出回数設定手段は、
    前記検査対象領域の面積を算出する面積算出手段を備え、
    前記面積を前記検査対象領域に関する情報として、前記近似面の算出回数を設定することを特徴とする請求項に記載の画像処理装置。
  10. 前記算出回数設定手段は、
    前記検査対象領域に含まれるエッジ量を算出するエッジ量算出手段を備え、
    前記エッジ量を前記検査対象領域に関する情報として、前記近似面の算出回数を設定することを特徴とする請求項に記載の画像処理装置。
  11. 前記画素抽出手段は、
    前記複数の近似面の各々の算出に用いる複数の画素を抽出する範囲を前記検査対象領域内に設定する抽出範囲設定手段を備え、
    前記範囲内から前記複数の画素を抽出することを特徴とする請求項に記載の画像処理装置。
  12. 前記抽出範囲設定手段は、
    前記範囲として局所領域を設定する局所領域設定手段を備え、
    前記画素抽出手段は、前記範囲内から前記複数の画素を抽出することを特徴とする請求項11に記載の画像処理装置。
  13. 前記抽出範囲設定手段は、
    前記検査対象領域内の互いに隣接する画素同士を連結して1つの連結領域とする領域連結手段を備え、
    前記画素抽出手段は、同一の連結領域内から前記複数の画素を抽出することを特徴とする請求項11に記載の画像処理装置。
  14. 前記近似領域決定手段は、
    前記近似領域の候補領域を検出する候補領域検出手段と、
    前記候補領域を変形する候補領域変形手段と、
    を備え、
    前記候補領域変形手段によって変形された候補領域を前記近似領域として決定することを特徴とする請求項1に記載の画像処理装置。
  15. 前記候補領域検出手段は、
    前記検査対象領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値との差分値を近似面毎に算出する差分値算出手段を備え、
    前記差分値を所定の閾値と比較することにより、候補領域を検出することを特徴とする請求項14に記載の画像処理装置。
  16. 前記候補領域検出手段は、
    前記候補領域内の互いに隣接する画素同士を連結して1つの連結領域とする領域連結手段と、
    前記連結領域の面積を算出する面積算出手段と、
    をさらに備え、
    前記面積が最大となる前記連結領域を最終的な候補領域として選択することを特徴とする請求項15に記載の画像処理装置。
  17. 前記候補領域変形手段は、
    前記候補領域に対してモルフォロジ処理を行うモルフォロジ処理手段を備え、
    前記近似領域決定手段は、モルフォロジ処理によって変形した前記候補領域を前記近似領域とすることを特徴とする請求項14に記載の画像処理装置。
  18. 前記候補領域変形手段は、
    前記候補領域に内包される内包領域を当該候補領域に統合する内包領域統合手段を備え、
    前記近似領域決定手段は、前記内包領域を統合することにより変形した前記候補領域を前記近似領域とすることを特徴とする請求項14に記載の画像処理装置。
  19. 内包領域統合手段は、
    前記候補領域に内包される内包領域を検出する内包領域検出手段と、
    前記内包領域に関する情報を算出する内包領域情報算出手段と、
    を備え、
    前記内包領域に関する情報が所定の条件を満たす場合に、前記内包領域を前記候補領域に統合することを特徴とする請求項18に記載の画像処理装置。
  20. 前記近似領域内の複数の画素の画素値に基づいて、該近似領域内の画素の画素値を近似する近似面を再算出する近似面再算出手段を更に備えることを特徴とする請求項1に記載の画像処理装置。
  21. 前記近似面再算出手段は、
    前記近似領域内の画素に対して重みを設定する重み設定手段と、
    前記重みを用いて、前記近似領域内の画素の座標を変数とし、該座標における画素値を近似する近似関数を算出する近似関数算出手段と、
    を備えることを特徴とする請求項20に記載の画像処理装置。
  22. 前記重み設定手段は、
    前記近似領域内の画素の画素値と、各画素の座標における算出済みの前記近似面上の近似値との差分値を算出する差分値算出手段を備え、
    前記差分値に応じて、各画素に対して重みを設定することを特徴とする請求項21に記載の画像処理装置。
  23. 前記重み設定手段は、
    前記近似領域における輪郭画素を検出する輪郭画素検出手段を備え、
    前記輪郭画素に対する重みを、輪郭画素以外の画素に対する重みよりも高く設定することを特徴とする請求項21に記載の画像処理装置。
  24. 前記異常部検出手段は、
    前記近似領域内の画素の画素値と、該画素の座標における前記近似面選択手段により選択された少なくとも1つの近似面上の値との差分値を算出する差分値算出手段を備え、
    前記差分値を所定の閾値と比較することにより、異常部を検出することを特徴とする請求項1に記載の画像処理装置。
  25. 前記画像内で、前記近似領域決定手段によって決定された近似領域以外の領域を新たな検査対象領域として設定して、前記近似面算出手段と、前記近似面選択手段と、前記近似領域決定手段とにおける処理の繰返しを制御する対象領域再設定手段をさらに備えることを特徴とする請求項1に記載の画像処理装置。
  26. 画像処理装置の作動方法であって、
    近似面算出部手段が、画像内の検査対象領域から抽出された画素の画素値を用いて、前記検査対象領域内の画素の画素値を近似する近似面を複数算出する近似面算出ステップと、
    近似面選択手段が、前記検査対象領域内の画素の画素値と前記近似面算出ステップにおいて算出された複数の近似面との関係に基づいて、前記複数の近似面の内から少なくとも1つの近似面を選択する近似面選択ステップと、
    近似領域決定手段が、前記近似面選択ステップにおいて選択された前記少なくとも1つの近似面によって前記検査対象領域内の画素の画素値が近似される近似領域を決定する近似領域決定ステップと、
    異常部検出手段が、前記近似領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値とに基づいて異常部を検出する異常部検出ステップと、
    を含むことを特徴とする画像処理装置の作動方法。
  27. 画像内の検査対象領域から抽出された画素の画素値を用いて、前記検査対象領域内の画素の画素値を近似する近似面を複数算出する近似面算出ステップと、
    前記検査対象領域内の画素の画素値と前記近似面算出ステップにおいて算出された複数の近似面との関係に基づいて、前記複数の近似面の内から少なくとも1つの近似面を選択する近似面選択ステップと、
    前記近似面選択ステップにおいて選択された前記少なくとも1つの近似面によって前記検査対象領域内の画素の画素値が近似される近似領域を決定する近似領域決定ステップと、
    前記近似領域内の画素の画素値と、該画素の座標における前記少なくとも1つの近似面上の値とに基づいて異常部を検出する異常部検出ステップと、
    をコンピュータに実行させることを特徴とする画像処理プログラム。
JP2011080911A 2011-03-31 2011-03-31 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム Active JP5800549B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011080911A JP5800549B2 (ja) 2011-03-31 2011-03-31 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
CN201210018136.6A CN102737388B (zh) 2011-03-31 2012-01-19 图像处理装置以及图像处理方法
US13/404,470 US8774521B2 (en) 2011-03-31 2012-02-24 Image processing apparatus, image processing method, and computer-readable recording device
EP12001516.9A EP2506212B1 (en) 2011-03-31 2012-03-06 Image processing apparatus, image processing method, and image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080911A JP5800549B2 (ja) 2011-03-31 2011-03-31 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム

Publications (3)

Publication Number Publication Date
JP2012213518A JP2012213518A (ja) 2012-11-08
JP2012213518A5 JP2012213518A5 (ja) 2014-05-08
JP5800549B2 true JP5800549B2 (ja) 2015-10-28

Family

ID=45936629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080911A Active JP5800549B2 (ja) 2011-03-31 2011-03-31 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム

Country Status (4)

Country Link
US (1) US8774521B2 (ja)
EP (1) EP2506212B1 (ja)
JP (1) JP5800549B2 (ja)
CN (1) CN102737388B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102555B (zh) * 2014-06-16 2018-01-19 奥林巴斯株式会社 医疗用系统及其图像处理设定方法以及图像处理装置
US9633276B2 (en) * 2014-07-14 2017-04-25 Sony Corporation Blood detection system with real-time capability and method of operation thereof
CN108596885B (zh) * 2018-04-16 2021-12-28 西安电子科技大学 基于cpu+fpga的快速sar图像变化检测方法
CN111625817B (zh) * 2020-05-12 2023-05-02 咪咕文化科技有限公司 异常用户识别方法、装置、电子设备及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005080757A (ja) * 2003-09-05 2005-03-31 Konica Minolta Medical & Graphic Inc 信号処理装置
JP4652694B2 (ja) * 2004-01-08 2011-03-16 オリンパス株式会社 画像処理方法
JP2006325937A (ja) * 2005-05-26 2006-12-07 Fujifilm Holdings Corp 画像判定装置、画像判定方法およびそのプログラム
JP4891636B2 (ja) * 2006-03-14 2012-03-07 オリンパスメディカルシステムズ株式会社 画像解析装置
JP5242381B2 (ja) * 2006-03-16 2013-07-24 オリンパスメディカルシステムズ株式会社 医療用画像処理装置及び医療用画像処理方法
CN101388077A (zh) * 2007-09-11 2009-03-18 松下电器产业株式会社 目标形状检测方法及装置
JP5424584B2 (ja) 2008-06-17 2014-02-26 オリンパス株式会社 画像処理装置、画像処理プログラムおよび画像処理装置の作動方法
JP5555097B2 (ja) * 2010-08-24 2014-07-23 オリンパス株式会社 画像処理装置、画像処理装置の作動方法、および画像処理プログラム

Also Published As

Publication number Publication date
CN102737388B (zh) 2016-09-28
US20120251009A1 (en) 2012-10-04
US8774521B2 (en) 2014-07-08
EP2506212B1 (en) 2017-08-16
JP2012213518A (ja) 2012-11-08
CN102737388A (zh) 2012-10-17
EP2506212A3 (en) 2013-11-20
EP2506212A2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
US12124960B2 (en) Learning apparatus and learning method
JP5555097B2 (ja) 画像処理装置、画像処理装置の作動方法、および画像処理プログラム
CN113573654B (zh) 用于检测并测定病灶尺寸的ai系统、方法和存储介质
JP5800468B2 (ja) 画像処理装置、画像処理方法、および画像処理プログラム
JP5851160B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP5576782B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP5683888B2 (ja) 画像処理装置、画像処理方法、および画像処理プログラム
JP5597049B2 (ja) 画像処理装置、画像処理方法、および画像処理プログラム
JP5980555B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP5926937B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP5830295B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP5931418B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP5576775B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
WO2013187206A1 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
US10206555B2 (en) Image processing apparatus, image processing method, and computer readable recording medium
JP6578058B2 (ja) 画像処理装置、画像処理装置の作動方法及び画像処理装置の作動プログラム
JP5800549B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
WO2015111308A1 (ja) 3次元医用画像表示制御装置およびその作動方法並びに3次元医用画像表示制御プログラム
JP2005160916A (ja) 石灰化陰影判定方法、石灰化陰影判定装置及びプログラム
JP2023075611A (ja) 医療画像処理装置及びその作動方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150825

R151 Written notification of patent or utility model registration

Ref document number: 5800549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250