Nothing Special   »   [go: up one dir, main page]

JP5576782B2 - 画像処理装置、画像処理方法、及び画像処理プログラム - Google Patents

画像処理装置、画像処理方法、及び画像処理プログラム Download PDF

Info

Publication number
JP5576782B2
JP5576782B2 JP2010280716A JP2010280716A JP5576782B2 JP 5576782 B2 JP5576782 B2 JP 5576782B2 JP 2010280716 A JP2010280716 A JP 2010280716A JP 2010280716 A JP2010280716 A JP 2010280716A JP 5576782 B2 JP5576782 B2 JP 5576782B2
Authority
JP
Japan
Prior art keywords
region
circular
image processing
area
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010280716A
Other languages
English (en)
Other versions
JP2012125469A (ja
JP2012125469A5 (ja
Inventor
誠 北村
大和 神田
隆志 河野
昌士 弘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2010280716A priority Critical patent/JP5576782B2/ja
Priority to US13/323,910 priority patent/US8798344B2/en
Priority to CN201110420174.XA priority patent/CN102525381B/zh
Priority to EP11009867.0A priority patent/EP2466541B1/en
Publication of JP2012125469A publication Critical patent/JP2012125469A/ja
Publication of JP2012125469A5 publication Critical patent/JP2012125469A5/ja
Application granted granted Critical
Publication of JP5576782B2 publication Critical patent/JP5576782B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Multimedia (AREA)
  • Endoscopes (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、画像から泡が映し出された領域を検出する画像処理装置、画像処理方法、及び画像処理プログラムに関するものである。
従来から、患者等の被検者の体内に導入されて、生体内を非侵襲に観察する医用観察装置として、内視鏡が広く普及している。近年では、カプセル型の筐体内部に撮像装置及び通信装置等を収容し、撮像装置により撮像された画像データを体外に無線送信する飲み込み型の内視鏡(カプセル内視鏡)も開発されている。このような医用観察装置によって生体の管腔内を撮像した一連の画像(生体内画像)は膨大な数(数万枚以上)に上ると共に、各生体内画像に対する観察及び診断には多くの経験が必要とされる。そのため、医師による診断を補助する医療診断支援機能が望まれている。
このような機能を実現する画像認識技術の1つとして、医療診断に当たって観察が不要な領域を生体内画像から自動的に検出して除去する技術が提案されている。ここで、観察が不要な領域とは、生体組織である粘膜以外の領域であり、例えば、管腔内に生じた気泡(以下、単に「泡」ともいう)が映し出された領域(以下、「泡領域」という)が挙げられる。例えば、特許文献1には、画素の勾配強度と、泡画像の特徴に基づいて予め設定された泡モデルとの相関値を算出し、相関値が所定の閾値以上となる領域を泡領域として検出する方法が開示されている。
特開2007−313119号公報
ところで、泡領域は通常、円形状や楕円形状、又はそれらの一部の形状(円弧形状等。以下、これらをまとめて、円形状等という。)をなすが、具体的な形状や大きさは非常に多様である。そのため、パターンマッチングにより円形状等を検出する場合、形状モデルを多数用意し、1つの画像内の各領域についてこれらの形状モデルとの相関値を算出しなければならず、膨大な量の演算が必要となる。一方、演算量を低減するために、形状モデルの種類をある程度限定すると共に、相関を評価する際の閾値を低く設定することも考えられるが、この場合、誤検出が生じたり、検出漏れが生じたりすることがある。
本発明は、上記に鑑みてなされたものであって、画像から、形状や大きさが多様な円形状等の領域を、良好な精度で効率よく検出することができる画像処理装置、画像処理方法、及び画像処理プログラムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る画像処理装置は、画像から、泡を表す円形状領域を構成する点の候補である候補点を抽出する候補点抽出手段と、前記候補点が有する情報に基づいて、前記画像内の円形状領域を検出する円形状領域検出手段とを備えることを特徴とする。
本発明に係る画像処理方法は、候補点抽出手段により、画像から、泡を表す円形状領域を構成する点の候補である候補点を抽出する候補点抽出ステップと、円形状領域検出手段により、前記候補点が有する情報に基づいて、前記画像内の円形状領域を検出する円形状領域検出ステップとを含むことを特徴とする。
本発明に係る画像処理プログラムは、候補点抽出手段により、画像から、泡を表す円形状領域を構成する点の候補である候補点を抽出する候補点抽出ステップと、円形状領域検出手段により、前記候補点が有する情報に基づいて、前記画像内の円形状領域を検出する円形状領域検出ステップとをコンピュータに実行させることを特徴とする。
本発明によれば、画像から、円形状領域の一部をなす候補点を抽出し、この候補点が有する情報に基づいて円形状領域を検出するので、円形状等を有する領域を良好な精度で効率よく検出することが可能となる。
図1は、本発明の実施の形態1に係る画像処理装置の構成を示すブロック図である。 図2は、図1に示す初期候補点抽出部の構成を示すブロック図である。 図3は、図1に示す円形状領域検出部の構成を示すブロック図である。 図4は、泡領域の構造を説明する図である。 図5は、図1に示す画像処理装置の動作を示すフローチャートである。 図6は、図1に示す画像処理装置が処理する生体内画像の一例を示す模式図である。 図7は、画素値の勾配が凸となる方向における勾配強度の算出方法を説明する図である。 図8は、図6に示す生体内画像から抽出されたエッジ画素を示す模式図である。 図9は、図8に示す画像から初期候補点として抽出されたエッジ画素を示す模式図である。 図10は、図6に示す生体内画像を距離値(R値)に基づいて分割した分割領域を示す図である。 図11は、距離値(R値)と円形状領域のサイズとの対応を示すテーブルである。 図12は、RANSACによる円形状領域の推定方法を説明する図である。 図13は、境界領域の設定方法を説明する図である。 図14は、境界領域に含まれるエッジ画素の連続性を表す評価値の算出方法を説明する図である。 図15は、境界領域に含まれるエッジ画素の円形状領域の中心座標についての相対性を表す評価値の算出方法を説明する図である。 図16は、境界領域に含まれるエッジ画素の円形性を表す評価値の算出方法を説明する図である。 図17は、本発明の実施の形態2に係る画像処理装置の構成を示すブロック図である。 図18は、図17に示す投票部の構成を示すブロック図である。 図19は、図17に示す画像処理装置の動作を示すフローチャートである。 図20は、初期候補点のパラメータ空間への投票方法を説明する図である。 図21は、初期候補点のパラメータ空間への投票方法を説明する図である。 図22は、本発明の実施の形態3に係る画像処理装置の構成を示すブロック図である。 図23は、図22に示す画像処理装置の動作を示すフローチャートである。 図24は、図22に示す画像処理装置における泡領域の判定方法を説明する図である。
以下、本発明の実施の形態に係る画像処理装置について、図面を参照しながら説明する。なお、これら実施の形態によって本発明が限定されるものではない。また、各図面の記載において、同一部分には同一の符号を付して示している。
以下に説明する実施の形態に係る画像処理装置は、内視鏡又はカプセル内視鏡等の医用観察装置によって撮像された画像を処理するものであり、具体的には、被検者の生体(管腔)内を撮像した画像から、泡が映された泡領域を検出する処理を行う。以下の説明において、画像処理を施される生体内画像は、例えば、各画素においてR(赤)、G(緑)、B(青)の各色成分に対する256階調の画素レベル(画素値)を持つカラー画像である。なお、本発明に係る画像処理装置は、生体内画像に限らず、一般の画像から泡領域を検出する場合に適用することも可能である。
また、以下の実施の形態において検出対象としている泡領域は、表面張力の作用により、通常、円形状、偏円形状若しくは楕円形状等の類円形状、又はそれらの周の一部の形状(円弧等)の平面外観を有する。そのため、本出願においては、真円、偏円及び楕円等の類円形状のことを「円形状」といい、円形状の一部(例えば円弧)の形状のことを「円弧形状」という。
(実施の形態1)
図1は、本発明の実施の形態1に係る画像処理装置の構成を示すブロック図である。図1に示すように、画像処理装置1は、画像処理装置1全体の動作を制御する制御部10と、画像取得部11と、入力部12と、表示部13と、記憶部14と、演算部15とを備える。
画像取得部11は、医用観察装置によって撮像された生体内画像の画像データを取得する。画像取得部11は、医用観察装置を含むシステムの態様に応じて適宜構成される。例えば、医用観察装置がカプセル内視鏡であり、医用観察装置との間の画像データの受け渡しに可搬型の記録媒体が使用される場合、画像取得部11は、この記録媒体を着脱自在に装着し、保存された生体内画像の画像データを読み出すリーダ装置で構成される。また、医用観察装置によって撮像された生体内画像の画像データを保存しておくサーバを設置する場合、画像取得部11は、サーバと接続される通信装置等で構成され、サーバとデータ通信を行って生体内画像の画像データを取得する。或いは、画像取得部11を、内視鏡等の医用観察装置から、ケーブルを介して画像信号を入力するインターフェース装置等で構成しても良い。
入力部12は、例えばキーボードやマウス、タッチパネル、各種スイッチ等によって実現され、入力信号を制御部10に出力する。
表示部13は、LCDやELディスプレイ等の表示装置によって実現され、制御部10の制御の下で、生体内画像を含む各種画面を表示する。
記憶部14は、更新記録可能なフラッシュメモリ等のROMやRAMといった各種ICメモリ、内蔵若しくはデータ通信端子で接続されたハードディスク、又は、CD−ROM等の情報記録媒体及びその読取装置等によって実現される。記憶部14は、画像取得部11によって取得された生体内画像の画像データの他、画像処理装置1を動作させると共に、種々の機能を画像処理装置1に実行させるためのプログラムや、このプログラムの実行中に使用されるデータ等を格納する。具体的には、記憶部14は、生体内画像から泡領域を検出するための画像処理プログラム141を格納する。
演算部15は、CPU等のハードウェアによって実現され、画像処理プログラム141を読み込むことにより生体内画像の画像データを処理して、生体内画像から泡領域を検出するための種々の演算処理を行う。演算部15は、生体内画像から、泡を表す円形状領域を構成する点の候補である初期候補点を、泡領域が有する特徴に基づいて抽出する初期候補点抽出部16と、抽出された初期候補点が有する情報に基づいて生体内画像から円形状領域を検出する円形状領域検出部17とを備える。
制御部10は、CPU等のハードウェアによって実現され、記憶部14に格納された各種プログラムを読み込むことにより、画像取得部11から入力される画像データや入力部12から入力される操作信号等に従って、画像処理装置1を構成する各部への指示やデータの転送等を行い、画像処理装置1全体の動作を統括的に制御する。
次に、演算部15の詳細な構成について説明する。
図2は、初期候補点抽出部16の構成を示すブロック図である。初期候補点抽出部16は、生体内画像に含まれる各画素における画素値の勾配強度を算出する勾配強度算出部161と、勾配強度に基づいてエッジを検出するエッジ検出部162と、生体内画像から鏡面反射領域を検出する鏡面反射領域検出部163とを備える。
勾配強度算出部161が実行する勾配強度の算出方法としては、1次微分(ソーベルフィルタ等)や2次微分等、既知の様々な手法を用いることができる。勾配強度算出部161は、一例として、凸部勾配強度算出部161aを有しており、画素値の勾配が凸となる方向における勾配強度を、2次微分を行うことにより算出する。
エッジ検出部162は、所定の閾値以上の勾配強度を有する画素を抽出することにより、エッジを検出する。なお、エッジの検出方法としては、これ以外にも既知の様々な手法を用いることができる。例えば、ケニー(Canny)のエッジ検出アルゴリズム(参考:CG−ARTS協会、ディジタル画像処理、p.208〜p.210)等を用いても良い。
鏡面反射領域検出部163は、生体内画像に含まれる各画素の輝度値を算出して、所定値以上の輝度を有する高輝度領域を検出する高輝度領域検出部163aと、各画素の画素値に基づき、白色を表す色範囲に含まれる画素値を有する画素の領域(白色領域)を検出する白色領域検出部163bとを有する。白色を表す色範囲としては、例えば、生体内において生じたハレーション部分のRGB値をHSI値(H:色相、S:彩度、I:明度、参考:CG−ARTS協会、ディジタル画像処理、p.64〜p.68)に変換した値の範囲(例えば、S≦0.2、I≧0.8)が用いられる。このような色範囲は、教師データとして予め記憶部14に格納されており、必要に応じて白色領域検出部163bが記憶部14から教師データを読み出して参照する。
図3は、円形状領域検出部17の構成を示すブロック図である。円形状領域検出部17は、初期候補点の内から円形状領域の推定に用いられる複数の候補点(推定用候補点)を抽出する推定用候補点抽出部18と、抽出された推定用候補点の座標を用いて、ロバスト推定により円形状領域を推定する円形状推定部19と、推定された円形状領域が生体内画像内に実在するか否かを評価するための評価値を算出する評価値算出部20と、この評価値を所定の閾値と比較することにより、円形状領域が生体内画像内に実在するか否かの評価を行う判定部21とを備える。
推定用候補点抽出部18は、検出済みの円形状領域に関する情報を格納する円形状領域記億部181と、円形状領域の大きさを推定する円形状領域サイズ推定部182とを有する。円形状領域サイズ推定部182は、生体内画像に映された被写体の奥行きを表す距離情報を算出し、この距離情報に基づいて円形状領域のサイズを推定する。
評価値算出部20は、円形状領域の境界領域を抽出する境界領域抽出部201と、境界領域に含まれる画素に関する情報(以下、境界領域情報ともいう)を取得する境界領域情報算出部202とを有する。境界領域情報としては、例えば、境界領域における画素値の勾配強度の平均値が用いられる。
ここで、演算部15が検出対象としている泡領域について説明する。図4は、泡領域の構造例を説明する図である。図4(a)に示すように、泡100は、空気等の気体を含んだ液体(水分等)が表面張力の作用により丸まったものであり、水分等の膜101と、その内部の気体102とからなる。このような泡100に光を照射して撮像を行うと、図4(b)に示すような泡領域110の画像が得られる。この泡領域110は、外形的には円形状又は円弧形状を有し、内部構造として、膜101の厚み部分に対応し、泡領域110の周縁部に含まれる境界領域111と、その内側に位置する内部領域112と、内部領域112の内側の複数箇所に見られる鏡面反射領域113とを含む。この内、境界領域111は、照射光が膜101において散乱することにより生じた明るい領域である。一方、内部領域112は、照明光の多くが膜101を透過することにより生じた領域であり、全体的に暗い領域となる。鏡面反射領域113は、照射光が膜101の表面で鏡面反射することにより光源が映り込んでハレーションが生じた、極めて輝度が高い領域である。
次に、画像処理装置1の動作について説明する。図5は、画像処理装置1の動作を示すフローチャートである。
まず、ステップS10において、画像取得部11は、外部から生体内画像群を取得し、記憶部14に格納する。演算部15は、画像処理を施す生体内画像を記憶部14から順次読み出す。図6は、記憶部14から読み出された生体内画像の一例を示す模式図である。図6に示すように、生体内画像120には、時に、生体の粘膜とは異なる特徴を有する領域122が、粘膜領域121に重なって映し出される場合がある。
ステップS11において、勾配強度算出部161は、生体内画像120内の各画素における画素値の勾配強度を算出する。具体的には、まず、凸部勾配強度算出部161aは、座標(x,y)に位置する画素の画素値P(x,y)に対し、次式(1)〜式(4)を用いて、水平方向における2次微分dHと、垂直方向における2次微分dVと、第1の斜め方向における2次微分dD1と、第2の斜め方向における2次微分dD2とを算出する(図7参照)。
Figure 0005576782
ここで、パラメータuは整数であり、パラメータu’は、(u/√2)を四捨五入した整数である。これらのパラメータu及びu’は、2次微分算出時の画素範囲を示す。即ち、パラメータuを所望の値に設定することにより、勾配成分の精度を調節することができる。例えば、パラメータuの値を小さくすると、空間周波数の高い勾配成分を算出することができ、パラメータuの値を大きくすると、空間周波数の低い勾配成分を算出することができる。パラメータuの値としては、予め固定値を設定しておいても良いし、生体内画像の特性に応じて動的な値を設定しても良い。或いは、所望の値のパラメータuを外部から与えて処理することとしても良い。
続いて、凸部勾配強度算出部161aは、次式(5)を用いて、方向別に算出された2次微分dH、dV、dD1、dD2の内から値が正となる最大値を抽出することにより、勾配が増加する(即ち、周囲の画素に対して勾配が凸となる)方向における勾配強度(凸部勾配強度)g(x,y)を算出する。
Figure 0005576782
ここで、図4に示す泡領域110の場合、境界領域111の画素値は内部領域112や泡領域110の外側の画素値よりも大きくなるため、境界領域111内の径方向に沿って画素値のピークが現れる。そこで、凸部勾配強度gを算出することにより、径方向における画素値の立ち上がりを検出することができる。
ステップS12において、エッジ検出部162は、各画素について算出された凸部勾配強度gを所定の閾値で2値化することにより、エッジ画素を抽出する。これにより、泡領域の境界である可能性が高いエッジが抽出される。図8に示す画像125には、このようにして生体内画像120から抽出されたエッジ画素GEが示されている。
ステップS13において、鏡面反射領域検出部163は、生体内画像120から鏡面反射領域113を検出する。具体的には、まず、高輝度領域検出部163aは、生体内画像120内の各画素のR値(R)、G値(G)、及びB値(B)から、次式(6)を用いて輝度値Yを算出する(参考:CG−ARTS協会、ディジタル画像処理、p.299)。
Y=0.3×R+0.59×G+0.11×B …(6)
続いて、高輝度領域検出部163aは、輝度値Yが所定の閾値以上となる画素を高輝度領域として抽出する。さらに、白色領域検出部163bは、高輝度領域として抽出された画素のR値、G値、及びB値を取得し、これらの色成分が白色を表す色範囲に含まれるか否かを、教師データを参照して判定する。そして、白色領域検出部163bは、白色を表す色範囲に含まれる色成分を有する画素を、鏡面反射領域として抽出する。
ステップS14において、初期候補点抽出部16は、ステップS12において抽出されたエッジ画素の内、ステップS13において抽出された鏡面反射領域の近傍、即ち、鏡面反射領域から所定範囲内に存在するエッジ画素の座標を、初期候補点として抽出する。これは、鏡面反射領域近傍のエッジであれば、泡領域110の境界領域111である可能性が高いからである(図4参照)。図9に示す画像126には、初期候補点として抽出されたエッジ画素GEが示されている。
ステップS15において、円形状領域サイズ推定部182は、生体内画像120内の距離情報を算出する。具体的には、まず、円形状領域サイズ推定部182は、各画素の奥行きを表す距離値として、生体内における吸収や散乱が最も少ないR値を取得する。R値は、被写体と撮像素子との距離が短いほど(即ち、被写体が画面の手前側に存在するほど)大きくなるからである。続いて、円形状領域サイズ推定部182は、各画素の距離値に基づいて、生体内画像120を複数の領域A〜Dに分割する(図10)。領域分割法としては、例えば、類似した特徴量(画素値、テクスチャ特徴量等)を有し、空間的に近接する画素を集合として領域を分割する領域統合法(参考:CG−ARTS協会、ディジタル画像処理、p.196)や、クラスタリング手法の1つであるK−means法(参考:CG−ARTS協会、ディジタル画像処理、p.232)等の既知の方法を用いることができる。さらに、円形状領域サイズ推定部182は、分割領域A〜D毎に距離値の平均値(平均距離値)を、距離情報として算出する。
続くステップS16において、円形状領域サイズ推定部182は、初期候補点の座標における円形状領域のサイズを推定する。ここで、生体内画像には、通常、近景から遠景までが映っている。また、一般に、遠景にある被写体は、近景にある被写体よりも小さく映し出される。そこで、画像内の距離情報に基づいて、円形状領域のサイズをある程度推定することができる。
具体的には、円形状領域サイズ推定部182は、図11に示すテーブル128を参照して、平均距離値に対応する円形状領域のサイズの範囲(最小半径rMIN及び最大半径rMAX)を、分割領域A〜D毎に取得する。なお、テーブル128は、予め作成して記憶部14に格納しておく。
ステップS17において、推定用候補点抽出部18は、初期候補点の内から複数の推定用候補点を抽出する。なお、実施の形態1においては、RANSAC(random sampling consensus)の手法を用いるため、ランダムに推定用候補点を抽出する。具体的には、推定用候補点抽出部18は、まず、図12に示すように、初期候補点の内の1点(候補点GE0)をランダムに抽出する。続いて、候補点GE0を原点とし、この候補点GE0が属する分割領域A〜Dについて取得された円形状領域の最大半径rMAX又はそれより若干大きい長さ(rMAX+α)を半径とする円に内包される領域127を求める。さらに、この領域127の内部から、所定の個数の候補点GE1、GE2、…を、推定用候補点としてランダムに抽出する。
ステップS18において、円形状推定部19は、推定用候補点GE1、GE2、…に基づいて、円形状領域を推定する。具体的には、円形状推定部19は、推定用候補点GE1、GE2、…の座標を通る円の連立方程式を作成し、この連立方程式を最小二乗法で解くことにより、推定される円形状の領域を算出する。そして、算出された円形状の領域との間の距離が所定の閾値以下である推定用候補点をインライアと判定し、それ以外の推定用候補点をアウトライアと判定する。さらに、円形状推定部19は、インライアと判定された推定用候補点の座標を用いて、同様にして円形状の領域を再び算出する。
ステップS19において、境界領域抽出部201は、図13に示すように、円形状領域130の円周131から距離d1の範囲内の領域を抽出し、この領域を境界領域132に設定する。そして、境界領域132に含まれる画素数Nをカウントする。
ステップS20において、境界領域情報算出部202は、円形状領域130が生体内画像120内に実在するか否かを判定するための評価値を算出する。具体的には、境界領域情報算出部202は、境界領域132に含まれる各画素の勾配強度の合計値及び画素数Nから、勾配強度の平均値SAVEを算出し、次式(7)により評価値E1を算出する。
1=SAVE×k …(7)
式(7)において、kは所定の係数(定数)である。
ステップS21において、判定部21は、評価値E1に基づいて、円形状領域130が生体内画像120内に実在するか否かを判定する。評価値E1の値が所定の閾値よりも大きい場合、円形状領域130は生体内画像120内に実在すると判定される。
円形状領域検出部17は、円形状領域130が生体内画像120内に実在すると判定された場合(ステップS21:Yes)、判定対象の円形状領域130に関する情報(円形状の中心座標及び半径、並びに、そこに含まれる画素の画素値等)を出力し、泡領域を表す情報として記憶部14に格納させる(ステップS22)。
ステップS23において、円形状領域検出部17は、1つの初期候補点に対する推定用候補点としての抽出処理回数が所定の閾値を超えたか否かを判定する。抽出処理回数が閾値を超えていない場合(ステップS23:No)、動作はステップS17に移行する。この場合、2回目以降に実行されるステップS17及びS18においては、既に円形状と判定された領域内に位置する初期候補点は抽出しないようにする。一方、抽出処理回数が所定値を超えている場合(ステップS23:Yes)、動作は終了する。
また、円形状領域検出部17は、円形状領域130が生体内画像120内に実在しないと判定された場合(ステップS21:No)、円形状領域がステップS17〜S21の一連の処理により続けて検出されなかった回数(連続未検出回数)が所定値を超えたか否かを判定する(ステップS24)。連続未検出回数が所定値を超えていない場合(ステップS24:No)、動作はステップS23に移行する。一方、連続未検出回数が所定値を超えた場合(ステップS24:Yes)、動作は終了する。
以上説明したように、実施の形態1によれば、生体内画像から抽出されたエッジ画素に基づいて円形状領域を推定すると共に、推定された円形状領域が生体内画像内に実在するか否かを、算出された円形状領域の境界領域が有する情報に基づいて判定するので、高精度な泡領域の検出を行うことができる。
また、実施の形態1によれば、泡領域が有する構造的な特徴に基づいて生体内画像から抽出されたエッジ画素を抽出し、このエッジ画素を用いて円形状領域を推定するので、演算量を抑制して、効率良く円形状領域を検出することができる。
さらに、実施の形態1によれば、距離情報に基づいて円形状領域のサイズを推定し、その後の円形状領域の算出処理における演算範囲を、このサイズに基づいて制限するので、演算量(計算コスト)を低減すると共に、円形状領域の誤検出を抑制することができる。
なお、上記説明においては、鏡面反射領域として、高輝度且つ白色の領域を抽出したが、高輝度領域又は白色領域のいずれかを抽出して鏡面反射領域として扱っても良い。
また、上記説明においては、ロバスト推定により円形状領域を推定したが、同様の手法により楕円形状領域を推定しても良い。
円形状領域130の評価のために用いられる評価値としては、上述した評価値E1以外にも、様々な値を用いることができる。以下、変形例1−1〜1−6において、評価値の例を説明する。
(変形例1−1)
変形例1−1に係る評価値E2は、図14に示す境界領域132に含まれる全画素数Nと、その内のエッジ画素GEの個数NEDGとを用いて、次式(8)により与えられる。
2=(NEDG/N)×k …(8)
式(8)において、kは所定の係数(定数)である。
この場合、評価値E2の値が所定の閾値よりも大きいときに、円形状領域130は生体内画像120内に実在する泡領域であると判定される。
(変形例1−2)
変形例1−2に係る評価値E3は、境界領域132に含まれる全画素数Nと、境界領域132における輝度値の合計値YSUMとを用いて、次式(9)により与えられる。なお、各画素の輝度値は、式(6)により算出される。
3=(YSUM/(N×YMAX))×k …(9)
式(9)において、YMAXは、境界領域における輝度値の最大値である。
この場合、評価値E3の値が所定の閾値よりも大きいときに、円形状領域130は生体内画像120内に実在する泡領域であると判定される。
(変形例1−3)
或いは、境界領域のRGB値に基づいて評価値E4を算出しても良い。この場合、泡領域のRGB色範囲を予め取得して記憶部14に格納しておく。
まず、境界領域132に含まれる各画素のR値、G値、及びB値を取得し、各色成分について画素間の平均値を算出する。それによって得られた平均R値、平均G値、及び平均B値と、泡領域のRGB色範囲とを比較し、色差ΔEを算出する。評価値E4は、この色差ΔEを用いて、次式(10)により与えられる。
4=(1/ΔE)×k …(10)
この場合、評価値E4が所定の閾値よりも大きいときに、円形状領域130は生体内画像120内に実在する泡領域であると判定される。
(変形例1−4)
泡領域は、通常、円形状やその一部である円弧形状を有している。そこで、円形状領域130の形状的な情報(即ち、幾何学的に円弧の特徴を有しているか否か)に基づいて、円形状領域130が泡領域であるか否かを判定することも可能である。変形例1−4においては、そのような幾何学的な特徴として、境界領域132に含まれるエッジ画素の連続性を判定する。
具体的には、まず、図14に示すように、境界領域132に含まれるエッジ画素GEの個数NEDG1(即ち、エッジの面積に相当)を取得する。また、境界領域132のエッジ画素GEの内、周囲8方向のいずれかに隣接するエッジ画素が存在するエッジ画素GEの個数NEDG2をカウントする。例えば、図14に示すエッジ画素GE(1)の場合、右斜め上に隣接するエッジ画素が存在するため、カウントされる。一方、エッジ画素GE(2)の場合、周囲8方向には隣接するエッジ画素が存在しないため、カウントされない。
評価値E5は、これらの値NEDG1及びNEDG2を用いて、次式(11)により与えられる。
5=(NEDG1×(1−k)+NEDG2×k)/N …(11)
ここで、境界領域132に含まれる全画素数Nは、評価値を境界領域132のサイズで正規化するために用いられる。また、kは0<k<1を満たす係数(定数)である。
この場合、評価値E5が所定の閾値よりも大きいときに、境界領域132に含まれるエッジ画素GEの連続性は高く、従って、円形状領域130は生体内画像120内に実在する泡領域であると判定される。
(変形例1−5)
泡領域の境界を示すエッジは、通常、円の中心座標について相対する円周上の位置に現れる。そこで、境界領域132に含まれるエッジ画素GEが、円形状領域130の中心座標について高い相対性を有する場合、そのエッジ画素GEは泡領域の境界を構成すると判断することができる。ここで、相対性が高いとは、円の中心座標に対して相対する位置に存在するエッジ画素の対が多いことを意味する。
具体的には、まず、図15に示すように、境界領域132から抽出されたエッジ画素GEの個数NEDG1を取得する。また、境界領域132において、円形状領域130の中心座標C(x,y)について相対する位置に別のエッジ画素が存在するエッジ画素GEの個数NEDG3をカウントする。例えば図15に示すエッジ画素GE(3)の場合、エッジ画素GE(3)を通る円形状領域130の直径上に別のエッジ画素GTが存在しているため、カウントされる。
評価値E6は、これらの値NEDG1及びNEDG3を用いて、次式(12)により与えられる。
6=(NEDG1×(1−k)+NEDG3×k)/N …(12)
式(12)において、kは0<k<1を満たす係数(定数)である。
この場合、評価値E6が所定の閾値よりも大きいときに、境界領域132に含まれるエッジ画素GEの相対性は高く、従って、円形状領域130は生体内画像120内に実在する泡領域であると判定される。
(変形例1−6)
円形状領域130の境界領域の形状情報を表す特徴量として、境界領域132におけるエッジ画素の円形性、即ち、幾何学的な円らしさを表す評価値を用いても良い。図16は、境界領域132の一部を示す模式図である。特徴量の算出の際には、まず、境界領域132に含まれるエッジ画素GEの個数NEDG1をカウントする。また、各エッジ画素GEから円形状領域130の円周131までの距離LEを算出し、距離LEが所定の閾値以内にあるエッジ画素の個数NGCをカウントする。評価値E7は、これらの値NEDG1及びNGCを用いて、次式(13)により与えられる。
7=(NEDG1×(1−k)+NGC×k)/N …(13)
式(13)において、kは0<k<1を満たす係数(定数)である。
この場合、評価値E7が所定の閾値よりも大きいときに、境界領域132に含まれるエッジ画素GEの円形性は高く、従って、円形状領域130は生体内画像120内に実在する泡領域であると判定される。
(実施の形態2)
次に、本発明の実施の形態2について説明する。図17は、実施の形態2に係る画像処理装置の構成を示すブロック図である。図17に示すように、画像処理装置2は、演算部30を備えている。その他の構成については、図1に示すものと同様である。
演算部30は、初期候補点抽出部16と、円形状領域検出部31とを備える。この内、初期候補点抽出部16の構成及び動作については、実施の形態1において説明したものと同様である。
円形状領域検出部31は、初期候補点抽出部16により抽出された初期候補点に基づき、ハフ(Hough)変換により円形状領域を検出する。より詳細には、円形状領域検出部31は、円の半径と円の中心座標とからなるパラメータ空間に初期候補点を投票する投票部32と、パラメータ空間における投票頻度に基づき、円形状領域を検出するための評価値を算出する投票評価値算出部33と、評価値に基づいて円形状領域の判定を行う判定部34とを備える。
図18は、投票部32の詳細な構成を示すブロック図である。投票部32は、パラメータ空間に投票される初期候補点に与えられる重みを決定する重み決定部321と、パラメータ空間の範囲を決定するパラメータ空間範囲決定部322と、決定された範囲内で初期候補点をパラメータ空間に投票する初期候補点投票部323とを備える。
重み決定部321は、各初期候補点が有する情報に基づいて、泡と類似した特徴を有する初期候補点の重みが大きくなるように重みを決定する。例えば、重み決定部321は、各初期候補点の勾配強度に応じた重みを決定する。
パラメータ空間範囲決定部322は、生体内画像に映された被写体の奥行きを表す距離情報を算出する距離情報算出部322aと、この距離情報に基づいて、検出対象とする円形状領域のサイズを推定する円形状領域サイズ推定部322bと、円形状領域のサイズに基づいてパラメータ空間の範囲を決定する範囲決定部322cとを有する。
次に、画像処理装置2の動作について説明する。図19は、画像処理装置2の動作を示すフローチャートである。図19に示すステップの内、ステップS10〜S14は、実施の形態1において説明したものと同様である。また、図20に示す画像135には、生体内画像120(図6)から抽出された初期候補点GE(x1,y1)、GE(x2,y2)、GE(x3,y3)、…が示されている。
ステップS31において、重み決定部321は、各初期候補点の勾配強度g及び次式(14)を用いて、当該初期候補点に与えられる重みW1を算出する。
1=(g/gMAX)×k …(14)
式(14)において、gMAXは処理対象である生体内画像における画素値の勾配強度の最大値であり、kは所定の係数(定数)である。この重みW1の値は、勾配強度gが大きいほど大きくなる。
ステップS32において、距離情報算出部322aは、生体内画像の距離情報(奥行き情報)を取得する。なお、距離情報の取得方法については、図5のステップS15において説明したものと同様である。
ステップS33において、円形状領域サイズ推定部322bは、距離情報及び図11に示すテーブル128に基づいて、各初期候補点の画素位置における円形状領域のサイズを推定する。なお、円形状領域のサイズの推定方法については、図5のステップS16において説明したものと同様である。
ステップS34において、範囲決定部322cは、パラメータ空間の範囲を決定する。
図21は、パラメータ空間を示す模式図である。この3次元パラメータ空間において、a軸は画像135のX軸に対応し、b軸は画像135のY軸に対応している。また、r軸は検出対象とする円形状領域の半径を表す。従って、a軸の範囲は、具体的には、最小値が0で、最大値が生体内画像のX方向におけるサイズとなる。また、b軸の範囲は、最小値が0で、最大値が生体内画像のY方向におけるサイズとなる。さらに、r軸の範囲については、ステップS33において領域A〜D(図10参照)毎に推定された円形状領域のサイズの範囲(図11参照)に基づいて決定される。即ち、領域A〜Dについて推定された最小半径rMINの内の最小値riMINがr軸の最小値として設定され、領域A〜Dについて推定された最大半径rMAXの内の最大値riMAXがr軸の最大値として設定される。
ステップS35において、初期候補点投票部323は、初期候補点GEをパラメータ空間に投票する。具体的には、初期候補点投票部323は、まず、図21に示すパラメータ空間を生成する。続いて、画像135から走査線方向に沿って初期候補点の座標GE(xn,yn)を順次抽出する。そして、パラメータ空間のr=rm平面において、座標(xn,yn,rm)を中心とする半径rmの円周上に位置する点に、重みW1を付与して投票する。このような投票を、rの値(投票を行う平面及び半径の値)をriMIN〜riMAXの範囲で、例えば1画素分ずつ変化させながら行う。
ステップS36において、投票評価値算出部33は、パラメータ空間における投票頻度に基づいて、円形状領域を検出するための評価値を算出する。ここで、図21に示すrm平面上の点C0は、C1(x1,y1,rm)、C2(x2,y2,rm)、C3(x3,y3,rm)を中心とする半径rmの円が交差している点である。言い換えれば、点C0は、これらの点C1、C2、C3から等距離にあるので、画像135において、点C0を中心とし、半径をrmとする円形状領域の存在を推定することができる。即ち、パラメータ空間における投票頻度の高い座標(a,b,r)が、画像135における円形状領域を表す。
評価値としては、例えば、パラメータ空間の各rm平面に対してガウシアンフィルタ(参考:CG−ARTS協会:ディジタル画像処理、p.108〜p.110)等により平滑化処理を施してノイズを除去した後の処理結果(投票頻度)が用いられる。
ステップS37において、判定部34は、評価値が所定の閾値以上であるパラメータ空間上の座標(a,b,r)を抽出し、この座標に対応する画像135上の領域(即ち、円の中心座標及び半径)を円形状領域として検出する。
さらに、ステップS38において、円形状領域検出部31は、検出された円形状領域に関する情報(円形状の中心座標及び半径、並びに、そこに含まれる画素の画素値等)を出力し、泡領域を表す情報として記憶部14に格納させる。
以上説明したように、実施の形態2によれば、生体内画像から抽出されたエッジ画素の座標をパラメータ空間に投票し、その投票頻度に基づいて円形状領域を検出するので、演算量を低減しつつ、泡領域を表す円形状領域の検出精度を向上させることが可能となる。
また、実施の形態2によれば、パラメータ空間への投票時に初期候補点に与えられる重みを、泡と類似した特徴を持つ初期候補点ほど大きくするので、泡領域の特徴を有する円形状領域が検出され易くなると共に、誤検出を抑制することが可能となる。
なお、上記説明においては、ハフ変換により円形状領域を検出したが、同様の手法により楕円形状領域を検出することもできる。この場合、楕円の中心座標(a,b)、長径、及び短径に対応する4次元のパラメータ空間に初期候補点を投票すれば良い。
(変形例2−1)
重み決定部321において決定される重みは、初期候補点の勾配強度以外の特徴量を用いて決定しても良い。例えば、式(6)を用いて各初期候補点について算出された輝度値と、次式(15)とを用いて、重みW2を決定しても良い。
2=(Y/YMAX)×k …(15)
式(15)において、YMAXは、初期候補点の内の輝度値の最大値である。なお、kは所定の係数(定数)である。
(変形例2−2)
或いは、各初期候補点の色情報に基づいて、重みを決定しても良い。例えば、各初期候補点におけるR値、G値、及びB値を取得し、これらの値と泡領域のRGB色範囲とを比較して、色差ΔEを算出する。次いで、次式(16)を用いて、重みW3を算出する。この重みW3は、色差ΔEが小さいほど大きな値となる。
3=(1/ΔE)×k …(16)
なお、泡領域のRGB色範囲は、予め記憶部14に格納しておく。また、kは所定の係数(定数)である。
(実施の形態3)
次に、本発明の実施の形態3について説明する。図22は、実施の形態3に係る画像処理装置の構成を示すブロック図である。図22に示すように、画像処理装置3は、演算部40を備える。その他の構成については、図1に示すものと同様である。
演算部40は、初期候補点抽出部16及び円形状領域検出部17に加えて、更に、生体内画像を複数の領域に分割する領域分割部41と、各分割領域の全体に泡領域が存在するか否かを判定する領域判定部42を備える。なお、初期候補点抽出部16及び円形状領域検出部17の構成及び動作については、実施の形態1において説明したものと同様である。
ここで、生体内画像において、類似した特徴(色やテクスチャ等の特徴)を有する領域同士は、同一のカテゴリー(例えば、粘膜領域、泡領域等)である場合が多い。そこで、実施の形態3においては、生体内画像を色情報等の特徴量に基づいて複数の領域に分割し、個別に検出された円形状領域が所定の割合以上を占める分割領域について、その分割領域全体に泡領域が存在するとみなすことにより、個別には円形状を検出することができなかった領域も、泡領域として検出できるようにしている。
図23は、画像処理装置3の動作を示すフローチャートである。
まず、ステップS10において、画像処理装置3は生体内画像を取得する。なお、このステップの詳細については実施の形態1において説明したものと同様である。
続くステップS41において、領域分割部41は、図24に示すように、生体内画像136を複数の領域137、138に分割する。分割方法としては、既知の様々な方法を用いて良い。例えば、類似した特徴量(画素値、テクスチャ特徴量等)を有し、且つ空間的に近接する画素を集合として領域を分割する領域統合法(参考:CG-ARTS協会、ディジタル画像処理、p.196)や、クラスタリング手法の1つであるK-means法(参考:CG−ARTS協会、ディジタル画像処理、p.232)等を用いることができる。
ステップS42において、初期候補点抽出部16は、生体内画像136から初期候補点を抽出する。なお、初期候補点の抽出方法は、図5のステップS11〜S14において説明したものと同様である。
ステップS43において、円形状領域検出部17は、抽出された初期候補点に基づいて、円形状領域139を検出する。なお、円形状領域の検出方法は、図5のステップS15〜S23において説明したものと同様である。
ステップS44において、領域判定部42は、円形状領域の検出結果に基づいて、各分割領域137、138全体に泡領域が存在するか否かの判定を行う。即ち、領域判定部42は、まず、各分割領域の面積(又は画素数)s1と、各分割領域内において検出された円形状領域の総面積(又は画素数)s2とを取得し、分割領域の面積s1に占める円形状領域の面積s2の割合(面積率)s2/s1を算出する。この面積率s2/s1が所定の閾値以上である場合、その分割領域全体に泡領域が存在すると判定する。一方、この面積率s2/s1が所定の閾値より小さい場合、その分割領域全体に泡領域が存在するわけではないと判定する。例えば分割領域137の場合、泡領域と判定された領域が占める割合は低い(ゼロ)ので、泡領域は存在しないと判定される。一方、分割領域138の場合、円形状領域139の占める割合が高いので、分割領域138全体に泡領域が存在すると判定される。
以上説明したように、実施の形態3においては、類似する特徴量に基づいて分割された領域全体に泡領域が存在するか否かを、個別に円形状領域と判定された領域が占める割合に基づいて判定する。そのため、直接的には円形状が検出されなかった領域であっても、泡領域として抽出することが可能となる。
なお、演算部40においては、円形状領域検出部17の代わりに、実施の形態2において説明した円形状領域検出部31を用いても良い。この場合、ステップS43においては、図19のステップS31〜S38と同様にして円形状領域を検出する。
以上説明した実施の形態1〜3に係る画像処理装置は、記録媒体に記録された画像処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータシステムで実行することにより実現することができる。また、このようなコンピュータシステムを、ローカルエリアネットワーク、広域エリアネットワーク(LAN/WAN)、又は、インターネット等の公衆回線を介して、他のコンピュータシステムやサーバ等の機器に接続して使用しても良い。この場合、実施の形態1〜3に係る画像処理装置は、これらのネットワークを介して管腔内画像の画像データを取得したり、これらのネットワークを介して接続された種々の出力機器(ビュアーやプリンタ等)に画像処理結果を出力したり、これらのネットワークを介して接続された記憶装置(記録媒体及びその読取装置等)に画像処理結果を格納するようにしても良い。
なお、本発明は、実施の形態1〜3及びそれらの変形例に限定されるものではなく、各実施の形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。例えば、各実施の形態や変形例に示される全構成要素からいくつかの構成要素を除外して形成しても良いし、異なる実施の形態や変形例に示した構成要素を適宜組み合わせて形成しても良い。
1、2、3 画像処理装置
10 制御部
11 画像取得部
12 入力部
13 表示部
14 記憶部
141 画像処理プログラム
15、30、40 演算部
16 初期候補点抽出部
161 勾配強度算出部
161a 凸部勾配強度算出部
162 エッジ検出部
163 鏡面反射領域検出部
163a 高輝度領域検出部
163b 白色領域検出部
17 円形状領域検出部
18 推定用候補点抽出部
181 円形状領域記億部
182 円形状領域サイズ推定部
19 円形状推定部
20 評価値算出部
201 境界領域抽出部
202 境界領域情報算出部
21 判定部
31 円形状領域検出部
32 投票部
321 重み決定部
322 パラメータ空間範囲決定部
322a 距離情報算出部
322b 円形状領域サイズ推定部
322c 範囲決定部
323 初期候補点投票部
33 投票評価値算出部
34 判定部
41 領域分割部
42 領域判定部
100 泡
101 膜
102 気体
110 泡領域
111、132 境界領域
112 内部領域
113 鏡面反射領域
120、136 生体内画像
121 粘膜領域
122 領域
125、126、135 画像
127 円に内包される領域
128 テーブル
130、139 円形状領域
131 円周
137、138 分割領域

Claims (23)

  1. 生体の管腔内を撮像した画像から、泡を表す円形状領域を構成する点の候補である候補点を抽出する候補点抽出手段と、
    前記候補点が有する情報に基づいて、前記画像内の円形状領域を検出する円形状領域検出手段と、
    を備え
    前記円形状領域検出手段は、
    前記候補点抽出手段により抽出された候補点の内から、円形状領域の推定に用いられる複数の推定用候補点を抽出する推定用候補点抽出手段と、
    前記推定用候補点抽出手段により抽出された前記複数の推定用候補点に基づいて、円形状領域を推定する円形状推定手段と、
    前記円形状領域が有する情報に基づいて、当該円形状領域が前記画像内に実在するか否かを判定するための評価値を算出する評価値算出手段と、
    前記評価値に基づいて、前記円形状領域が前記画像内に実在するか否かの判定を行う判定手段と、
    を備えることを特徴とする画像処理装置。
  2. 前記判定手段により前記画像内に実在すると判定された円形状領域に関する情報を記憶する記憶手段をさらに備え、
    前記推定用候補点抽出手段は、前記記憶手段に記憶された円形状領域よりも外側の領域から前記複数の推定用候補点を抽出することを特徴とする請求項に記載の画像処理装置。
  3. 前記推定用候補点抽出手段は、前記円形状領域の大きさを推定する円形状領域サイズ推定手段を有することを特徴とする請求項に記載の画像処理装置。
  4. 前記円形状領域サイズ推定手段は、前記画像に含まれる各画素の画素値に基づいて、前記画像に映された被写体の奥行きを表す距離情報を算出し、該距離情報に基づいて前記円形状領域の大きさを推定することを特徴とする請求項に記載の画像処理装置。
  5. 前記評価値算出手段は、
    前記円形状領域の周縁部に含まれる境界領域を抽出する境界領域抽出手段と、
    前記境界領域に含まれる画素に関する情報を取得する境界領域情報算出手段と、
    を備えることを特徴とする請求項に記載の画像処理装置。
  6. 前記境界領域情報算出手段は、前記境界領域に含まれる画素における画素値の勾配強度の平均値を算出することを特徴とする請求項に記載の画像処理装置。
  7. 前記境界領域情報算出手段は、前記境界領域に含まれるエッジ画素の個数をカウントすることを特徴とする請求項に記載の画像処理装置。
  8. 前記境界領域情報算出手段は、前記境界領域に含まれる画素の輝度値の平均値を算出することを特徴とする請求項に記載の画像処理装置。
  9. 前記境界領域情報算出手段は、前記境界領域に含まれる画素の色情報を取得することを特徴とする請求項に記載の画像処理装置。
  10. 前記境界領域情報算出手段は、前記境界領域に含まれるエッジ画素の形状を表す情報を算出することを特徴とする請求項に記載の画像処理装置。
  11. 前記境界領域情報算出手段は、前記エッジ画素の連続性を表す評価値を算出することを特徴とする請求項1に記載の画像処理装置。
  12. 前記境界領域情報算出手段は、前記境界領域において隣接するエッジ画素が存在するエッジ画素の数をカウントすることを特徴とする請求項1に記載の画像処理装置。
  13. 前記境界領域情報算出手段は、前記境界領域に含まれるエッジ画素の前記円形状領域の中心座標についての相対性を表す評価値を算出することを特徴とする請求項1に記載の画像処理装置。
  14. 前記境界領域情報算出手段は、前記境界領域において、前記円形状領域の中心座標に対して相対する位置に別のエッジ画素が存在するエッジ画素の数をカウントすることを特徴とする請求項1に記載の画像処理装置。
  15. 前記境界領域情報算出手段は、前記境界領域に含まれるエッジ画素の円形性を表す評価値を算出することを特徴とする請求項1に記載の画像処理装置。
  16. 前記境界領域情報算出手段は、前記円形状領域の円周と前記境界領域に含まれるエッジ画素との間の距離を算出することを特徴とする請求項1に記載の画像処理装置。
  17. 前記円形状領域検出手段は、
    前記候補点を、円の半径と円の中心座標とからなるパラメータ空間に投票する投票手段と、
    前記パラメータ空間における投票頻度に基づいて円形状領域を検出するための評価値を算出する投票評価値算出手段と、
    を備え、
    前記投票手段は、前記パラメータ空間に投票される前記候補点に与えられる重みを、該候補点が有する情報に基づいて決定する重み決定手段を備えることを特徴とする請求項1に記載の画像処理装置。
  18. 前記重み決定手段は、前記候補点における画素値の勾配強度に基づいて前記重みを決定することを特徴とする請求項1に記載の画像処理装置。
  19. 前記重み決定手段は、前記候補点における画素の輝度値に基づいて前記重みを決定することを特徴とする請求項1に記載の画像処理装置。
  20. 前記重み決定手段は、前記候補点における画素が有する色情報に基づいて前記重みを決定することを特徴とする請求項1に記載の画像処理装置。
  21. 前記円形状領域検出手段は、
    前記候補点を、円の半径と円の中心座標とからなるパラメータ空間に投票する投票手段と、
    前記パラメータ空間における投票頻度に基づいて円形状領域を検出するための評価値を算出する投票評価値算出手段と、
    を備え、
    前記投票手段は、前記パラメータ空間の範囲を決定するパラメータ空間範囲決定手段を備え、
    前記パラメータ空間範囲決定手段は、
    前記画像に映された被写体の奥行きを表す距離情報を算出する距離情報算出手段と、
    前記距離情報に基づいて、検出対象とする円形状領域の大きさを推定する円形状領域サイズ推定手段と、
    を備えることを特徴とする請求項1に記載の画像処理装置。
  22. 候補点抽出手段生体の管腔内を撮像した画像から、泡を表す円形状領域を構成する点の候補である候補点を抽出する候補点抽出ステップと、
    円形状領域検出手段、前記候補点が有する情報に基づいて、前記画像内の円形状領域を検出する円形状領域検出ステップと、
    を含み、
    前記円形状領域検出ステップは、
    前記候補点抽出ステップにおいて抽出された候補点の内から、円形状領域の推定に用いられる複数の推定用候補点を抽出する推定用候補点抽出ステップと、
    前記推定用候補点抽出ステップにおいて抽出された前記複数の推定用候補点に基づいて、円形状領域を推定する円形状推定ステップと、
    前記円形状領域が有する情報に基づいて、当該円形状領域が前記画像内に実在するか否かを判定するための評価値を算出する評価値算出ステップと、
    前記評価値に基づいて、前記円形状領域が前記画像内に実在するか否かの判定を行う判定ステップと、
    を含むことを特徴とする画像処理方法。
  23. 生体の管腔内を撮像した画像から、泡を表す円形状領域を構成する点の候補である候補点を抽出する候補点抽出ステップと、
    記候補点が有する情報に基づいて、前記画像内の円形状領域を検出する円形状領域検出ステップと、
    をコンピュータに実行させ
    前記円形状領域検出ステップは、
    前記候補点抽出ステップにおいて抽出された候補点の内から、円形状領域の推定に用いられる複数の推定用候補点を抽出する推定用候補点抽出ステップと、
    前記推定用候補点抽出ステップにおいて抽出された前記複数の推定用候補点に基づいて、円形状領域を推定する円形状推定ステップと、
    前記円形状領域が有する情報に基づいて、当該円形状領域が前記画像内に実在するか否かを判定するための評価値を算出する評価値算出ステップと、
    前記評価値に基づいて、前記円形状領域が前記画像内に実在するか否かの判定を行う判定ステップと、
    を含むことを特徴とする画像処理プログラム。
JP2010280716A 2010-12-16 2010-12-16 画像処理装置、画像処理方法、及び画像処理プログラム Active JP5576782B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010280716A JP5576782B2 (ja) 2010-12-16 2010-12-16 画像処理装置、画像処理方法、及び画像処理プログラム
US13/323,910 US8798344B2 (en) 2010-12-16 2011-12-13 Image processing apparatus, image processing method and computer-readable recording device
CN201110420174.XA CN102525381B (zh) 2010-12-16 2011-12-15 图像处理装置、图像处理方法及计算机可读取的记录装置
EP11009867.0A EP2466541B1 (en) 2010-12-16 2011-12-15 Image processing apparatus, image processing method and image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280716A JP5576782B2 (ja) 2010-12-16 2010-12-16 画像処理装置、画像処理方法、及び画像処理プログラム

Publications (3)

Publication Number Publication Date
JP2012125469A JP2012125469A (ja) 2012-07-05
JP2012125469A5 JP2012125469A5 (ja) 2014-01-16
JP5576782B2 true JP5576782B2 (ja) 2014-08-20

Family

ID=45421780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280716A Active JP5576782B2 (ja) 2010-12-16 2010-12-16 画像処理装置、画像処理方法、及び画像処理プログラム

Country Status (4)

Country Link
US (1) US8798344B2 (ja)
EP (1) EP2466541B1 (ja)
JP (1) JP5576782B2 (ja)
CN (1) CN102525381B (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090214B2 (en) 2011-01-05 2015-07-28 Orbotix, Inc. Magnetically coupled accessory for a self-propelled device
US10281915B2 (en) 2011-01-05 2019-05-07 Sphero, Inc. Multi-purposed self-propelled device
US9429940B2 (en) 2011-01-05 2016-08-30 Sphero, Inc. Self propelled device with magnetic coupling
US8571781B2 (en) 2011-01-05 2013-10-29 Orbotix, Inc. Self-propelled device with actively engaged drive system
US9218316B2 (en) 2011-01-05 2015-12-22 Sphero, Inc. Remotely controlling a self-propelled device in a virtualized environment
US20150049177A1 (en) * 2012-02-06 2015-02-19 Biooptico Ab Camera Arrangement and Image Processing Method for Quantifying Tissue Structure and Degeneration
US8811675B2 (en) * 2012-03-30 2014-08-19 MindTree Limited Circular object identification system
JP2015524951A (ja) * 2012-05-14 2015-08-27 オルボティックス, インコーポレイテッドOrbotix, Inc. 画像内で丸い物体を検出することによるコンピューティングデバイスの操作
US10056791B2 (en) 2012-07-13 2018-08-21 Sphero, Inc. Self-optimizing power transfer
WO2014101803A1 (zh) * 2012-12-27 2014-07-03 Wang Hao 红外选择装置和红外选择方法
CN114923580A (zh) * 2012-12-27 2022-08-19 杭州美盛红外光电技术有限公司 红外选择通知装置和红外选择通知方法
CN103900717A (zh) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 热像识别装置和热像识别方法
WO2014101802A1 (zh) * 2012-12-27 2014-07-03 Wang Hao 热像挑选装置和热像挑选方法
CN103900707A (zh) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 热像检测更新装置和热像检测更新方法
CN103900698A (zh) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 红外识别控制装置和红外识别控制方法
WO2014101809A1 (zh) * 2012-12-27 2014-07-03 Wang Hao 热像检测装置和热像检测方法
CN103900714A (zh) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 热像匹配装置和热像匹配方法
CN114923583A (zh) * 2012-12-27 2022-08-19 杭州美盛红外光电技术有限公司 热像选择装置和热像选择方法
JP6230262B2 (ja) * 2012-12-28 2017-11-15 キヤノン株式会社 画像処理装置及び画像処理方法
EP3045104A4 (en) * 2013-09-13 2017-04-26 Olympus Corporation Image processing device, method, and program
CN104655286B (zh) * 2013-11-25 2022-04-22 杭州美盛红外光电技术有限公司 分析设置装置、处理装置和分析设置方法、处理方法
CN104660922A (zh) * 2013-11-25 2015-05-27 杭州美盛红外光电技术有限公司 热像整理装置、记录装置、整理系统和热像整理方法、记录方法
US9829882B2 (en) 2013-12-20 2017-11-28 Sphero, Inc. Self-propelled device with center of mass drive system
CN104748862A (zh) * 2013-12-29 2015-07-01 杭州美盛红外光电技术有限公司 分析装置和分析方法
CN104751445A (zh) * 2013-12-29 2015-07-01 杭州美盛红外光电技术有限公司 热像分析配置装置和热像分析配置方法
CN103729632B (zh) * 2014-01-22 2016-11-02 哈尔滨工业大学 一种基于连通区域滤波的圆形Mark点的定位方法
JP2015156937A (ja) * 2014-02-24 2015-09-03 ソニー株式会社 画像処理装置、画像処理方法、並びにプログラム
JP2015156938A (ja) 2014-02-24 2015-09-03 ソニー株式会社 画像処理装置、画像処理方法
WO2016117277A1 (ja) 2015-01-21 2016-07-28 Hoya株式会社 内視鏡システム
US9824189B2 (en) * 2015-01-23 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Image processing apparatus, image processing method, image display system, and storage medium
WO2016208001A1 (ja) 2015-06-24 2016-12-29 オリンパス株式会社 画像処理装置、内視鏡装置、プログラム及び画像処理方法
CN105139384B (zh) * 2015-08-11 2017-12-26 北京天诚盛业科技有限公司 缺陷胶囊检测的方法和装置
KR102555096B1 (ko) * 2016-06-09 2023-07-13 엘지디스플레이 주식회사 데이터 압축 방법 및 이를 이용한 유기 발광 다이오드 표시 장치
WO2018078806A1 (ja) * 2016-10-28 2018-05-03 オリンパス株式会社 画像処理装置、画像処理方法及び画像処理プログラム
JP6346721B1 (ja) * 2016-11-07 2018-06-20 オリンパス株式会社 カプセル型内視鏡、受信装置、カプセル型内視鏡の作動方法、及びカプセル型内視鏡の作動プログラム
KR101874738B1 (ko) * 2017-02-10 2018-07-04 국민대학교산학협력단 영상처리를 이용하여 ldr 영상으로부터 hdr 영상을 생성하는 장치 및 방법
US10319108B2 (en) * 2017-02-14 2019-06-11 Jx Imaging Arts, Llc System and method for machine vision object orientation measurement
IT201700094994A1 (it) * 2017-08-22 2019-02-22 Milano Politecnico Apparato e metodo per illuminare oggetti
CN109190457B (zh) * 2018-07-19 2021-12-03 北京市遥感信息研究所 一种基于大幅面遥感图像的油库集群目标快速检测方法
US12030243B2 (en) * 2020-03-19 2024-07-09 Ricoh Company, Ltd. Measuring apparatus, movable apparatus, robot, electronic device, fabricating apparatus, and measuring method
CN114663378B (zh) * 2022-03-17 2024-10-18 汕头大学 一种浮游植物计数方法、装置及可读存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941182A (en) * 1987-07-29 1990-07-10 Phoenix Software Development Co. Vision system and method for automated painting equipment
US5566249A (en) 1994-09-20 1996-10-15 Neopath, Inc. Apparatus for detecting bubbles in coverslip adhesive
US6415054B1 (en) * 1997-07-15 2002-07-02 Silverbrook Research Pty Ltd. Target detection for dot region alignment in optical storage systems using ink dots
US6529630B1 (en) * 1998-03-02 2003-03-04 Fuji Photo Film Co., Ltd. Method and device for extracting principal image subjects
EP2264671B1 (en) * 1998-04-07 2016-02-10 Omron Corporation Image processing apparatus and method, medium storing program for image processing, and inspection apparatus
JP4393016B2 (ja) * 2000-06-30 2010-01-06 株式会社日立メディコ 画像診断支援装置
US7231072B2 (en) * 2002-02-27 2007-06-12 Konica Corporation Image processing method and image converting apparatus
JP3946586B2 (ja) * 2002-06-28 2007-07-18 フジノン株式会社 縞画像の円形領域抽出方法
CN101065052B (zh) * 2004-12-27 2010-12-22 奥林巴斯株式会社 医疗图像处理装置和医疗图像处理方法
US8073233B2 (en) * 2005-01-31 2011-12-06 Olympus Corporation Image processor, microscope system, and area specifying program
JP4749732B2 (ja) * 2005-02-15 2011-08-17 オリンパス株式会社 医用画像処理装置
JP4212564B2 (ja) * 2005-02-28 2009-01-21 ザイオソフト株式会社 画像処理方法および画像処理プログラム
JP4624841B2 (ja) * 2005-04-13 2011-02-02 オリンパスメディカルシステムズ株式会社 画像処理装置および当該画像処理装置における画像処理方法
JP4420459B2 (ja) * 2005-06-14 2010-02-24 キヤノン株式会社 画像処理装置およびその方法
JP5086563B2 (ja) * 2006-05-26 2012-11-28 オリンパス株式会社 画像処理装置及び画像処理プログラム
JP4761149B2 (ja) * 2006-08-28 2011-08-31 富士フイルム株式会社 液体吐出装置及び気体処理方法
JP2009136655A (ja) * 2008-02-21 2009-06-25 Olympus Corp 画像処理装置、画像処理方法および画像処理プログラム
US8107726B2 (en) * 2008-06-18 2012-01-31 Samsung Electronics Co., Ltd. System and method for class-specific object segmentation of image data
JP2010115260A (ja) * 2008-11-11 2010-05-27 Olympus Corp 画像処理装置、画像処理プログラムおよび画像処理方法

Also Published As

Publication number Publication date
US20120155724A1 (en) 2012-06-21
JP2012125469A (ja) 2012-07-05
EP2466541A3 (en) 2013-02-06
CN102525381B (zh) 2016-08-03
CN102525381A (zh) 2012-07-04
EP2466541A2 (en) 2012-06-20
US8798344B2 (en) 2014-08-05
EP2466541B1 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5576782B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP5757724B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
CN113573654B (zh) 用于检测并测定病灶尺寸的ai系统、方法和存储介质
JP5851160B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP5683888B2 (ja) 画像処理装置、画像処理方法、および画像処理プログラム
JP6265588B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
JP4855868B2 (ja) 医療用画像処理装置
JP5597049B2 (ja) 画像処理装置、画像処理方法、および画像処理プログラム
JP5980555B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
US9672610B2 (en) Image processing apparatus, image processing method, and computer-readable recording medium
JP5576775B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP5830295B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
CN108601509B (zh) 图像处理装置、图像处理方法以及记录有程序的介质
JP2012016453A (ja) 画像処理装置、画像処理方法、および画像処理プログラム
JP6578058B2 (ja) 画像処理装置、画像処理装置の作動方法及び画像処理装置の作動プログラム
KR20160118037A (ko) 의료 영상으로부터 병변의 위치를 자동으로 감지하는 장치 및 그 방법
CN109475277B (zh) 图像处理装置、图像处理装置的控制方法和图像处理装置的控制程序
JP5800549B2 (ja) 画像処理装置、画像処理装置の作動方法、及び画像処理プログラム
CN107529962B (zh) 图像处理装置、图像处理方法和记录介质
Gadermayr et al. Getting one step closer to fully automatized celiac disease diagnosis
JP2005319080A (ja) 超音波診断装置
CN118212235B (zh) 一种胶囊内窥镜图像筛选方法及系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140704

R151 Written notification of patent or utility model registration

Ref document number: 5576782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250