Nothing Special   »   [go: up one dir, main page]

JP5854575B2 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP5854575B2
JP5854575B2 JP2008270946A JP2008270946A JP5854575B2 JP 5854575 B2 JP5854575 B2 JP 5854575B2 JP 2008270946 A JP2008270946 A JP 2008270946A JP 2008270946 A JP2008270946 A JP 2008270946A JP 5854575 B2 JP5854575 B2 JP 5854575B2
Authority
JP
Japan
Prior art keywords
data
imaging
projection
subject
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008270946A
Other languages
English (en)
Other versions
JP2009160378A (ja
Inventor
正生 油井
正生 油井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2008270946A priority Critical patent/JP5854575B2/ja
Priority to CN2008101787574A priority patent/CN101455565B/zh
Priority to US12/330,949 priority patent/US8417007B2/en
Publication of JP2009160378A publication Critical patent/JP2009160378A/ja
Application granted granted Critical
Publication of JP5854575B2 publication Critical patent/JP5854575B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、被検体の原子核スピンをラーモア周波数の高周波(RF: radio frequency)信号で磁気的に励起し、この励起に伴って発生する核磁気共鳴(NMR:nuclear magnetic resonance)信号から画像を再構成する磁気共鳴イメージング(MRI: Magnetic Resonance Imaging)装置に係り、特に、自由呼吸下において心臓等の動きのある部位における3次元(3D: three-dimensional)シネ撮像を行うことが可能な磁気共鳴イメージング装置に関する。
磁気共鳴イメージングは、静磁場中に置かれた被検体の原子核スピンをラーモア周波数のRF信号で磁気的に励起し、この励起に伴って発生するMR信号から画像を再構成する撮像法である。
従来、MRIの分野において、心臓のシネ撮像が行われている(例えば特許文献1参照)。MRIによる心臓のシネ撮像は、患者である被検体が10秒前後の息止めをしている間に心電同期下において2次元(2D: two dimensional)撮影を行うものである。通常は、心臓の左心室全体をカバーするように短軸像が取得されるため、10回程度息止め撮影を繰り返すことが必要である。このため、収集すべきk空間(フーリエ空間)データをいくつかの領域に分割(セグメント化)し、1回の息止め中にセグメントごとに複数のk空間データを順次収集する技術、すなわちセグメンテッドシーケンスによりデータを収集する技術が考案されている。
特開2007−82753号公報
しかしながら、従来のMRIによる心臓のシネ撮像では、息止めが困難な患者の画像を撮影する場合に画像のぶれ等の画質劣化が生じたり、スライス位置がずれるという問題がある。この結果、心機能解析等の診断の精度低下が懸念されている。また、従来のMRIによる心臓のシネ撮像では、息止め撮影を10回程度繰り返すため、患者の負担が大きくなるという問題もある。
さらに、従来のMRIによる心臓のシネ撮像では、息止め時間の制約から時間分解能や空間分解能を向上させることが困難であることから、実用的には3D撮影が非現実的と考えられている。
これに対し、近年考案されている高速撮像法の1つであるパラレルイメージング法によって、時間分解能や空間分解能が向上し、研究レベルでは3D撮影が試みられている。
しかしながら、10数秒という長い息止め時間が必要となる上に、分解能をある程度犠牲にせざるを得ない状況である。
本発明はかかる従来の事情に対処するためになされたものであり、自由呼吸下においてで心臓における高分解能の3Dシネ画像を取得することが可能な磁気共鳴イメージング装置を提供することを目的とする。
本発明に係る磁気共鳴イメージング装置は、上述の目的を達成するために、被検体に一定間隔で連続的に高周波パルス列を印加することによって前記被検体からイメージング用の複数のデータおよび前記被検体の呼吸位置を求めるための複数のプロジェクションデータをそれぞれ、心電信号と非同期に収集するデータ収集手段と、前記被検体の心電情報を記録する記録部と、前記複数のプロジェクションデータに基づいて求められた前記被検体の呼吸位置を用いて前記複数のデータの動き補正を行う補正手段と、前記動き補正後における複数のデータを、記録した前記被検体の心電情報に基づいて心時相順に並べ替えるデータ並べ替え手段と、前記動き補正後の心時相順に並べ替えられた複数のデータに基づいて3次元画像データを再構成する画像再構成手段と、を有し、前記データ収集手段は、前記イメージング用の複数のデータを収集するイメージングパートと、前記プロジェクションデータを収集するプロジェクションパートとを交互に繰り返すと共に、前記高周波パルス列の各高周波パルスを、前記イメージングパートと前記プロジェクションパートとを区別することなく同一の繰り返し時間で連続的に印加し、前記プロジェクションパートを、その直前の前記イメージングパートとの間、及びその直後の前記イメージンパートとの間のいずれの間にも空き時間が無いように、隣り合うイメージングパートの間に挿入して、前記イメージング用の複数のデータ及び前記複数のプロジェクションデータを収集し、前記プロジェクションパートは、リードアウト方向にのみ傾斜磁場を印加してデータ収集する1次元のデータ収集であり、前記1次元のデータ収集はその直前のイメージングパートとその直後のイメージンパートとの間で1回のみ行われ、前記プロジェクションパートのリードアウト方向と、前記イメージングパートのリードアウト方向とは異なる、ことを特徴とするものである。
また、本発明に係る磁気共鳴イメージング装置は、上述の目的を達成するために、被検体に一定間隔で連続的に高周波パルス列を印加することによって前記被検体からイメージング用の複数のデータおよび前記被検体の呼吸位置を求めるための複数のプロジェクションデータをそれぞれ、心電信号と非同期に収集するデータ収集手段と、前記被検体の心電情報を記録する記録部と、前記複数のデータを、記録した前記被検体の心電情報に基づいて心時相順に並べ替えるデータ並べ替え手段と、前記複数のプロジェクションデータに基づいて求められた前記被検体の呼吸位置を用いて前記心時相順に並べ替えられた複数のデータの動き補正を行う補正手段と、前記動き補正後の心時相順に並べ替えられた複数のデータに基づいて3次元画像データを再構成する画像再構成手段と、を有し、前記データ収集手段は、前記イメージング用の複数のデータを収集するイメージングパートと、前記プロジェクションデータを収集するプロジェクションパートとを交互に繰り返すと共に、前記高周波パルス列の各高周波パルスを、前記イメージングパートと前記プロジェクションパートとを区別することなく同一の繰り返し時間で連続的に印加し、前記プロジェクションパートを、その直前の前記イメージングパートとの間、及びその直後の前記イメージンパートとの間のいずれの間にも空き時間が無いように、隣り合うイメージングパートの間に挿入して、前記イメージング用の複数のデータ及び前記複数のプロジェクションデータを収集し、前記プロジェクションパートは、リードアウト方向にのみ傾斜磁場を印加してデータ収集する1次元のデータ収集であり、前記1次元のデータ収集はその直前のイメージングパートとその直後のイメージンパートとの間で1回のみ行われ、前記プロジェクションパートのリードアウト方向と、前記イメージングパートのリードアウト方向とは異なる、ことを特徴とするものである。
本発明に係る磁気共鳴イメージング装置においては、自由呼吸下においてで心臓等の動きのある部位における高分解能の3Dシネ画像を取得することができる。
本発明に係る磁気共鳴イメージング装置の実施の形態について添付図面を参照して説明する。
図1は本発明に係る磁気共鳴イメージング装置の実施の形態を示す構成図である。
磁気共鳴イメージング装置20は、静磁場を形成する筒状の静磁場用磁石21と、この静磁場用磁石21の内部に設けられたシムコイル22、傾斜磁場コイル23およびRFコイル24とを図示しないガントリに内蔵した構成である。
また、磁気共鳴イメージング装置20には、制御系25が備えられる。制御系25は、静磁場電源26、傾斜磁場電源27、シムコイル電源28、送信器29、受信器30、シーケンスコントローラ31およびコンピュータ32を具備している。制御系25の傾斜磁場電源27は、X軸傾斜磁場電源27x、Y軸傾斜磁場電源27yおよびZ軸傾斜磁場電源27zで構成される。また、コンピュータ32には、入力装置33、表示装置34、演算装置35および記憶装置36が備えられる。
静磁場用磁石21は静磁場電源26と接続され、静磁場電源26から供給された電流により撮像領域に静磁場を形成させる機能を有する。尚、静磁場用磁石21は超伝導コイルで構成される場合が多く、励磁の際に静磁場電源26と接続されて電流が供給されるが、一旦励磁された後は非接続状態とされるのが一般的である。また、静磁場用磁石21を永久磁石で構成し、静磁場電源26が設けられない場合もある。
また、静磁場用磁石21の内側には、同軸上に筒状のシムコイル22が設けられる。シムコイル22はシムコイル電源28と接続され、シムコイル電源28からシムコイル22に電流が供給されて静磁場が均一化されるように構成される。
傾斜磁場コイル23は、X軸傾斜磁場コイル23x、Y軸傾斜磁場コイル23yおよびZ軸傾斜磁場コイル23zで構成され、静磁場用磁石21の内部において筒状に形成される。傾斜磁場コイル23の内側には寝台37が設けられて撮像領域とされ、寝台37には被検体Pがセットされる。RFコイル24はガントリに内蔵されず、寝台37や被検体P近傍に設けられる場合もある。
また、傾斜磁場コイル23は、傾斜磁場電源27と接続される。傾斜磁場コイル23のX軸傾斜磁場コイル23x、Y軸傾斜磁場コイル23yおよびZ軸傾斜磁場コイル23zはそれぞれ、傾斜磁場電源27のX軸傾斜磁場電源27x、Y軸傾斜磁場電源27yおよびZ軸傾斜磁場電源27zと接続される。
そして、X軸傾斜磁場電源27x、Y軸傾斜磁場電源27yおよびZ軸傾斜磁場電源27zからそれぞれX軸傾斜磁場コイル23x、Y軸傾斜磁場コイル23yおよびZ軸傾斜磁場コイル23zに供給された電流により、撮像領域にそれぞれX軸方向の傾斜磁場Gx、Y軸方向の傾斜磁場Gy、Z軸方向の傾斜磁場Gzを形成することができるように構成される。
RFコイル24は、送信器29および受信器30と接続される。RFコイル24は、送信器29からRF信号を受けて被検体Pに送信する機能と、被検体P内部の原子核スピンのRF信号による励起に伴って発生したNMR信号を受信して受信器30に与える機能を有する。
一方、制御系25のシーケンスコントローラ31は、傾斜磁場電源27、送信器29および受信器30と接続される。シーケンスコントローラ31は傾斜磁場電源27、送信器29および受信器30を駆動させるために必要な制御情報、例えば傾斜磁場電源27に印加すべきパルス電流の強度や印加時間、印加タイミング等の動作制御情報を記述したシーケンス情報を記憶する機能と、記憶した所定のシーケンスに従って傾斜磁場電源27、送信器29および受信器30を駆動させることによりX軸傾斜磁場Gx、Y軸傾斜磁場Gy,Z軸傾斜磁場GzおよびRF信号を発生させる機能を有する。
また、シーケンスコントローラ31は、受信器30におけるNMR信号の検波およびA/D (analog to digital)変換により得られた複素データである生データ(raw data)を受けてコンピュータ32に与えるように構成される。
このため、送信器29には、シーケンスコントローラ31から受けた制御情報に基づいてRF信号をRFコイル24に与える機能が備えられる一方、受信器30には、RFコイル24から受けたNMR信号を検波して所要の信号処理を実行するとともにA/D変換することにより、デジタル化された複素データである生データを生成する機能と生成した生データをシーケンスコントローラ31に与える機能とが備えられる。
さらに、磁気共鳴イメージング装置20には、被検体PのECG (electro cardiogram)信号を取得するECGユニット38が備えられる。ECGユニット38により取得されたECG信号はシーケンスコントローラ31を介してコンピュータ32に出力されるように構成される。
尚、ECG信号の代わりに脈波同期(PPG: peripheral pulse gating)信号を取得することもできる。PPG信号は、例えば指先の脈波を光信号として検出した信号である。PPG信号を取得する場合には、PPG信号検出ユニットが設けられる。
また、コンピュータ32の記憶装置36に保存されたプログラムを演算装置35で実行することにより、コンピュータ32には各種機能が備えられる。ただし、プログラムによらず、各種機能を有する特定の回路を磁気共鳴イメージング装置20に設けてもよい。
図2は、図1に示すコンピュータ32の機能ブロック図である。
コンピュータ32は、プログラムにより撮影条件設定部40、シーケンスコントローラ制御部41、k空間データベース42、ECGトリガ検出部43、ECGデータベース44、呼吸位置計算部45、ゲーティング部46、データ補正部47、データ並べ替え部48、画像再構成部49、画像データベース50および画像処理部51として機能する。
撮影条件設定部40は、入力装置33からの指示情報に基づいてパルスシーケンスを含む撮影条件を設定し、設定した撮影条件をシーケンスコントローラ制御部41に与える機能を有する。そのために、撮影条件設定部40は、撮影条件の設定用画面情報を表示装置34に表示させる機能を備えている。特に、撮影条件設定部40は、自由呼吸下において心臓等の動きのある部位の3Dシネ画像を高分解能で取得するためのパルスシーケンスを設定する機能を備えている。
図3は、図2に示す撮影条件設定部40において設定されるパルスシーケンスの一例を示す図である。
図3において、BREATHは、参考用に示す呼吸による心臓の動き量を、ECGは、ECG信号を、RFは、RFパルスを、Gssは、スライス選択(slice selection)用傾斜磁場パルス(スライスエンコード(SE: slice sncode)用傾斜磁場パルスとも言う)を、Groは、リードアウト(RO: readout)用傾斜磁場パルス(周波数エンコード(frequency encode)用傾斜磁場パルスとも言う)を、Gpeは、位相エンコード(PE: phase encode)用傾斜磁場パルスを、Gprojは、被検体Pの呼吸位置を求めるためのプロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスを、それぞれ示す。
図3に示すパルスシーケンスは、バランスされた(balanced)自由歳差運動(SSFP: Steady-state Free Precession)シーケンスである。すなわち、RFパルスが一定の繰り返し時間(TR: repetition time)で連続して印加されることによって磁化の定常状態が維持され、NMR信号が発生する。ただし、FLASH (fast low angle shot)シーケンス、FISP (fast imaging with steady-state precession)シーケンスあるいはPSIF (time reversed FISP)シーケンス等のSSFPシーケンスと異なる別種のグラジエントエコー(gradient echo)シーケンスを用いてもよい。
図3に示すように自由呼吸下において動きのある部位の3Dシネ画像を取得するためのパルスシーケンスは、イメージングパート(IMAGING PART)およびプロジェクションパート(PROJECTION PART)を有する。より具体的には、イメージングパートとプロジェクションパートとが交互に繰り返して実行される。
尚、パルスシーケンスは、ECG信号と同期せずに、無関係に実行される。すなわち心電同期撮影ではない。ただし、パルスシーケンスの実行中は、ECGユニット38において心電情報が常に収集されて記録される。収集される心電情報は、ECG信号の波形そのものでも良いし、R波等のタイムスタンプ情報であっても良い。
パルスシーケンスのイメージングパートでは、スライス選択用傾斜磁場パルスGssおよび位相エンコード用傾斜磁場パルスGpeの2方向の位相エンコードパルスとともに、リードアウト用傾斜磁場パルスが1方向の周波数エンコードパルスとして印加される。これにより、リードアウト用傾斜磁場パルスの印加中にNMR信号がイメージング用のデータとして収集される。
イメージングパートは、撮影高速化により高時間分解能での3D撮像を実現するためにセグメントk-space法(segment k-space method)を用いたシーケンスとすることができる。セグメントk-space法は、k空間(周波数空間;フーリエ空間とも言う)をいくつかの領域に分割することによってセグメント化し、セグメントごとに順次k空間データを取り込んでいく方法である。そのために、位相エンコード用傾斜磁場パルスGpeの強度はセグメント毎にそれぞれ複数の異なる値に設定され、全てのセグメント内における複数のデータがそれぞれ収集されることによって、k-space内の全てのデータが埋められる。そして、あるセグメントに対応して複数個の値に設定された強度を有する複数の位相エンコード用傾斜磁場パルスGpeが少なくとも1心拍以上に亘って繰り返し印加される。以下、パルスシーケンスがセグメントk-space法によるセグメンテッドシーケンスである場合について説明する。
図3の例では、n番目のセグメント内のデータを収集するためのイメージングパートに続いてn+1番目のプロジェクションパートが実行され、n+1番目のプロジェクションパートに続いてn+1番目のセグメント内のデータを収集するためのイメージングパートが実行されるようにパルスシーケンスが設定されている。さらに、n+1番目のセグメント内のデータを収集するためのイメージングパートの後には、n+2番目のプロジェクションパートが実行される。このように、N個のセグメントにそれぞれ対応するN個のイメージングパートと隣接するイメージングパート間に設けられたプロジェクションパートが交互に順次繰り返される。
また、イメージングパートにおけるスライス選択用傾斜磁場パルスGssの印加によって撮像対象を含む断面が選択励起される。図3の例では、RFパルスと同じタイミングでスライス選択用傾斜磁場パルスGssが印加されている。
一方、プロジェクションパートにおいては、呼吸の動きの方向と同一方向または呼吸の動きの方向に近い方向に被検体Pの呼吸位置を求めるためのプロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスGprojが印加される。そして、このプロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスGprojの印加によってNMR信号が被検体Pの呼吸位置を求めるためのプロジェクションデータとして収集される。
また、イメージングパートにおけるスライス選択用傾斜磁場パルスGssによって、スライスが選択された状態でプロジェクションパートが実行される。すなわち、スライス選択用傾斜磁場パルスGssがイメージングパートおよびプロジェクションパートによって共有され、プロジェクションパートの直前のイメージングパートで最後に選択されたスライスが選択されている状態でプロジェクションパートが実行されるようにパルスシーケンスが設定される。このため、図3に示すように、SSFPシーケンスが用いられる場合には、プロジェクションパートにおいても磁化の定常状態を維持することができる。
さらに、イメージングパートにおけるRFパルスの印加によって励起された状態で、プロジェクションパートが実行される。すなわち、RFパルスもイメージングパートおよびプロジェクションパートによって共有され、プロジェクションパートの直前のイメージングパートの最後のRFパルスの印加によって励起されている状態でプロジェクションパートが実行されるようにパルスシーケンスが設定される。そして、イメージングパートおよびプロジェクションパートのRFパルスが一定の繰り返し時間で印加されており、定常状態が維持されている。したがって、イメージングパートからプロジェクションパート、プロジェクションパートからイメージングパートの間に、余計な空き時間は設定されていない。
図4は、図3に示すパルスシーケンスのイメージングパートおよびプロジェクションパートにおいて選択されるスライス並びにプロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスGprojの印加方向の設定例を示す図である。
図4は、被検体Pの心臓を撮影する場合において設定される典型的な撮影断面および各傾斜磁場パルスの方向を示している。被検体Pの心臓を撮影する場合には、撮影プラン時に心臓を含むボリュームがイメージングスラブとされる。そして、イメージングスラブは心臓の左室を含む短軸断面に設定される。このため、スライス選択用傾斜磁場パルスGssは、心臓の短軸断面に垂直な方向に、イメージングパートにおけるリードアウト用傾斜磁場パルスGroは、心臓の短軸方向に、位相エンコード用傾斜磁場パルスGpeは、スライス選択用傾斜磁場パルスGssの印加方向およびリードアウト用傾斜磁場パルスGroの印加方向の双方に垂直な方向に、それぞれ設定される。
一方、プロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスGprojは、呼吸の動きの方向と同一方向または呼吸の動きの方向に近い方向に印加される。従って、図4の例では、プロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスGprojの印加方向は、被検体Pの体軸方向に設定されている。このため、イメージングパートにおけるリードアウト用傾斜磁場パルスGroおよびプロジェクションパートにおけるプロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスGprojの各印加方向は互に異なることになる。逆に、スライス選択用傾斜磁場パルスGssおよびRFパルスは、イメージングパートとプロジェクションパートとの間で共有されている。従って、イメージングパートとプロジェクションパートとの間でおり、スライス選択用傾斜磁場パルスGssおよびRFパルスの印加タイミングを含む条件が同一である。
そして、このように設定されたパルスシーケンスを含む撮影条件は、撮影条件設定部40からシーケンスコントローラ制御部41に与えられるように構成される。
シーケンスコントローラ制御部41は、入力装置33からの撮影開始指示情報に従って、シーケンスコントローラ31にパルスシーケンスを含む撮影条件を与えることにより駆動制御させる機能を有する。また、シーケンスコントローラ制御部41は、シーケンスコントローラ31から生データを受けてk空間データベース42に保存する機能を有する。
このため、k空間データベース42には、受信器30において生成された各生データがk空間データとして保存される。すなわち、撮影条件設定部40において設定されたパルスシーケンスの実行によって収集された複数のセグメントに対応するイメージングデータおよび被検体Pの呼吸位置を求めるためのプロジェクションデータがk空間データベース42に順次書き込まれて保存される。
ECGトリガ検出部43は、パルスシーケンスの実行によるデータ収集中にECGユニット38により別途取得されたECG信号をシーケンスコントローラ31およびシーケンスコントローラ制御部41を経由して取得する機能と、取得したECG信号からR波等の心電情報に基づくトリガ信号を検出する機能とを有する。ただし、ECGユニット38においてR波等の心電情報に基づくトリガ信号を検出するように構成しても良い。この場合には、ECGユニット38において検出された心電情報に基づくトリガ信号がシーケンスコントローラ31およびシーケンスコントローラ制御部41を経由してECGトリガ検出部43によって取得される。そして、ECGトリガ検出部43は、得られた心電情報に基づくトリガ信号をECGデータベース44に書き込むように構成される。
このため、ECGデータベース44には、パルスシーケンスの実行によるデータ収集中に収集された心電情報に基づくトリガ信号が蓄積される。
呼吸位置計算部45は、k空間データベース42からパルスシーケンスのプロジェクションパートの実行により断続的に収集された時系列の複数のプロジェクションデータを読み込んで、読み込んだ時系列の複数のプロジェクションデータに基づいてN個のセグメントn (n=1, 2, 3, …, N)内のk空間データが収集されたタイミングにおける被検体Pの呼吸位置を計算する機能を有する。
具体的には、時系列の複数のプロジェクションデータをそれぞれリードアウト方向にFT (Fourier transform)することにより、呼吸性の動きを示す実空間の複数の投影データを作成することができる。そして、投影データを参照することにより、各プロジェクションデータが収集されたタイミングにおける被検体Pの心臓等の撮影部位の呼吸による動き量を求めることができる。被検体Pの撮影部位における呼吸による動き量は、ある基準位置に対する撮影部位の相対的な移動量として求めることができる。基準位置に対する撮影部位の相対的な移動量の求め方としては、例えば、基準位置に対応する投影データと相対的な移動量を求めようとする投影データとの間における相互相関をとることにより相対的な位置シフト量を求める方法が挙げられる。
各プロジェクションデータは、それぞれ各セグメントnに対応して各セグメントnの前または後に収集されるため、各プロジェクションデータが収集されたタイミングをそれぞれ対応するセグメントnが収集されたタイミングとみなすことができる。従って、各プロジェクションデータが収集されたタイミングにおける呼吸位置、すなわち呼吸による動き量を対応する各セグメントn内の複数のk空間データが収集されたタイミングにおける動き量とみなすことができる。
ただし、各プロジェクションデータが収集されたタイミングにおける呼吸位置データは、各セグメントn内の複数のk空間データが収集されたタイミング前後における呼吸位置データに相当する。従って、各プロジェクションデータが収集されたタイミングにおける呼吸位置データ間の平均値あるいは内挿値を計算することにより呼吸位置データを補間すれば、各セグメントn内の任意の位置k(Kro, Kpe, Kse)におけるk空間データS(Kro, Kpe, Kse)が収集されるタイミングの呼吸位置r(Kro,Kpe,Kse)をより精度良く計算することができる。すなわち、被検体Pの呼吸位置の時間変化を計算することができる。
ゲーティング部46は、必要に応じて機能する。そして、ゲーティング部46は、k空間データベース42からパルスシーケンスのイメージングパートの実行によって収集された各セグメントn内の位置k(Kro, Kpe, Kse)におけるk空間データS(Kro, Kpe, Kse)を読み込んで、呼吸位置計算部45において計算された各k空間データS(Kro, Kpe, Kse)が収集されるタイミングのそれぞれの呼吸位置r(Kro,Kpe,Kse)に基づくゲーティングを掛けることにより、呼吸による動き量または呼吸位置r(Kro,Kpe,Kse)が予め決定された閾値の範囲外にある状態で収集されたk空間データを除くk空間データS(Kro, Kpe, Kse)のみをデータ補正部47に与える機能を有する。
これより、被検体Pの自由呼吸による動き量が大きくシネ画像データの生成に用いられることが不適切なk空間データを除くk空間データS(Kro, Kpe, Kse)が抽出され、抽出されたk空間データS(Kro, Kpe, Kse)を選択的にデータ補正部47にシネ画像データの生成用に与えることができる。
データ補正部47は、ゲーティング部46によって抽出されたk空間データS(Kro, Kpe, Kse)またはゲーティング部46から読み込んだ、イメージングパートの実行により収集されたk空間データS(Kro, Kpe, Kse)に対して、呼吸位置計算部45から取得した各k空間データS(Kro,Kpe,Kse)にそれぞれ対応する被検体Pの呼吸位置データr(Kro,Kpe,Kse)を用いて動き補正を施すことにより動き補正後のk空間データS’(Kro,Kpe,Kse)を求める機能を有する。すなわち、各セグメントn内のk空間データS(Kro, Kpe, Kse)が、各セグメントnに対応して収集されたプロジェクションデータに基づいて計算された呼吸位置データr(Kro,Kpe,Kse)により動き補正される。
動き補正前のk空間データS(Kro,Kpe,Kse)に呼吸位置データr(Kro,Kpe,Kse)を用いて動き補正することにより、動き補正前のk空間データS(Kro,Kpe,Kse)を動き補正後のk空間データS’(Kro,Kpe,Kse)に変換する式は式(1)のように表すことができる。
[数1]
S’(Kro,Kpe,Kse) = S(Kro,Kpe,Kse)
×exp[-I×(Gro・Gproj)×Kro×{r(Kro,Kpe,Kse)-r0}/FOVro]
×exp[-I×(Gpe・Gproj)×Kpe×{r(Kro,Kpe,Kse)-r0}/FOVpe]
×exp[-I×(Gse・Gproj)×Kse×{r(Kro,Kpe,Kse)-r0}/FOVse]
…(1)
式(1)において、FOVro, FOVpe, FOVseはそれぞれ周波数エンコード方向、位相エンコード方向およびスライスエンコード方向の撮影視野(FOV: field of view)であり、r0は呼吸位置の基準位置である。また、記号・は内積を表している。
このような式(1)による動き補正により、動き補正後における時系列の各セグメントn内における複数のk空間データS’(Kro,Kpe,Kse)は、それぞれ基準位置に固定されている状態の撮影部位から収集されたk空間データと等価となる。すなわち、撮影部位は実際には、スラブ内において呼吸により移動しているが、基準位置に固定されているものとして扱うことができる。
データ並べ替え部48は、データ補正部47から動き補正後のセグメントnごとの時系列のk空間データS’(Kro,Kpe,Kse)を取得する一方、ECGデータベース44から心電情報に基づくトリガ信号を取得して、心電情報に基づくトリガ信号、動き補正後における時系列のk空間データS’(Kro,Kpe,Kse)のデータ収集時刻およびトリガ信号の取得時刻に基づいて動き補正後におけるk空間データS’(Kro,Kpe,Kse)を心時相に対応付ける機能と、心時相に対応付けられた動き補正後における各k空間データS’(Kro,Kpe,Kse)を心時相の早い順に並べ替える(ソーティングする)機能とを有する。動き補正後におけるk空間データは、心臓の心時相にそれぞれ対応する複数のk空間上の各位置に配置されることとなる。
図5は、図2に示すデータ並べ替え部48における動き補正後のk空間データの並べ替えの方法を説明する図である。
図5(a)は、シネ画像データの生成に用いられる時系列のk空間およびk空間上に配置されるk空間のデータ列を示す。図5(a)に示すように、各心時相t=t1, t2, t3, …に対応するそれぞれのk空間上のk空間データがシネ画像データの生成用に必要となる。尚、図5(a)ではk空間データを2次元的に示しているが、実際には複数のスライス分のk空間データが必要である。また、パルスシーケンスがセグメンテッドシーケンスであるため、各k空間は、N個のセグメントn (n=1, 2, 3, …, N)に分割される。そして各セグメントn内の各位置k=kn1, kn2, kn3, …における動き補正後の複数のk空間データ列がk空間に順次配置されることとなる。
尚、図5(a)におけるk空間のセグメント分割は1例であって、任意の分割方法がある。
また、図5(b)は、パルスシーケンスのイメージングパートの実行によってECG信号と非同期でセグメントn別に収集された動き補正後のk空間データSn’{k(Kro,Kpe,Kse)}を心時相と対応付けた例を示す図である。すなわち、各セグメントn内の各位置kにおけるk空間データSn(k)の収集時刻のR波等のトリガ信号の取得時刻からの遅延時間TDn(k)を求めることにより、動き補正後における時系列の各k空間データSn’(k)を心時相と関連付けることができる。この結果、図5(b)に示すように、R波のタイミングと動き補正後における各k空間データSn’(k)の収集タイミングを関連付けることができる。
図5(b)に示すように、k空間データSn’(k)は、ECG信号と非同期でセグメントn別に順次収集されるため、k空間におけるセグメントn内の同一の位置kにおける時系列のk空間データSn’(k)が同じ心時相t=t1, t2, t3, …で収集されるとは限らない。例えば、セグメントn=1内の位置k11におけるk空間データS1’(k11)が心時相t1に近い心時相t1’で収集された後に、セグメントn=2内の位置k21におけるk空間データS1’(k21)が心時相t2に近い心時相t2’で収集された場合には、心時相t1’で収集されたセグメントn=1内の位置k11におけるk空間データS1’(k11)は、心時相t1のシネ画像データ用の元データとして用いられる一方、心時相t2’で収集されたセグメントn=2内の位置k21におけるk空間データS1’(k21)は、心時相t2のシネ画像データ用の元データとして用いられることとなる。一方、別のデータ収集タイミングで心時相t1に近い心時相t1’’で収集されたセグメントn=2内の位置k21におけるk空間データS1’(k21)は、心時相t1のシネ画像データ用の元データとして用いられることとなる。
従って、あるセグメントn のk空間上の位置kにおける動き補正後におけるk空間データSn’(k)を心時相tの早い順次に並べ替えれば、最も心時相が早い動き補正後におけるk空間データSn’(k)を心時相t1のシネ画像データ用の元データとして用い、次に、心時相が早い動き補正後におけるk空間データSn’(k)を心時相t2のシネ画像データ用の元データとして用いることができる。さらに同様に、心時相の早い順に動き補正後におけるk空間データSn’(k)を対応する心時相のシネ画像データ用の元データとして用いることができる。換言すれば、最も早い心時相に関連付けられた動き補正後における各セグメントnの各k空間上の位置kにおける全てのk空間データ群Sn’(k) (n=1, 2, 3, …, N; k=k11, k12, k13, …, k21, k22, k23, …, k31, k32, k33, …, kn1, kn2, kn3, …, kN1, kN2, kN3, …)が最も早い心時相t1のシネ画像データ用の元データとなる。そして、同様に心時相の早い順に全ての動き補正後におけるk空間データ群Sn’(k)が対応する心時相tのシネ画像データ用の元データとなる。
画像再構成部49は、データ並べ替え部48から動き補正後であり並べ替え後における心時相順のk空間データを順次取得してFTを含む画像再構成処理を施すことにより実空間データである被検体Pの心時相ごとの画像データを再構成する機能と、再構成して得られた心時相ごとの時系列の画像データを画像データベース50に書き込む機能とを有する。
このため、画像データベース50は、画像再構成部49において再構成された画像データが保存される。保存される画像データは、撮影条件設定部40において設定された心臓等の動きのある部位の3Dシネ画像を取得するための3Dパルスシーケンスによって収集されたデータであるため、3Dシネ画像データとなる。
画像処理部51は、画像データベース50から3Dシネ画像データを取り込んでMIP (Maximum Intensity Projection)処理やMPR (multi-planar reconstruction)処理等の画像処理を行って表示用の2Dシネ画像データを生成する機能と、生成した表示用のシネ画像データを表示装置34にシネ表示させる機能を有する。
次に磁気共鳴イメージング装置20の動作および作用について説明する。
図6は、図1に示す磁気共鳴イメージング装置20により自由呼吸下において被検体Pの心臓の3Dシネ画像を撮像する際の手順を示すフローチャートであり、図中Sに数字を付した符号はフローチャートの各ステップを示す。
まずステップS1において、撮影条件設定部40においてパルスシーケンスが設定され、設定されたパルスシーケンスに従って、自由呼吸下における撮影が開始される。
そのために、予め寝台37に被検体Pがセットされ、静磁場電源26により励磁された静磁場用磁石21(超伝導磁石)の撮像領域に静磁場が形成される。また、シムコイル電源28からシムコイル22に電流が供給されて撮像領域に形成された静磁場が均一化される。
また、表示装置34に表示された撮影条件の設定用画面を通じた入力装置33の操作によって、図3に示すようなイメージングパートとプロジェクションパートとを有するセグメント化3Dパルスシーケンスの選択情報が撮影条件設定部40に与えられ、選択されたセグメント化3Dパルスシーケンスが撮影条件設定部40において撮影条件として設定される。このとき、図4に示すように撮影条件の設定用画面を介してイメージングパートにおけるリードアウト用傾斜磁場パルスGroの印加方向が心臓の短軸方向に設定される一方、プロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスGprojの印加方向が被検体Pの体軸方向に設定される。
そして、入力装置33からシーケンスコントローラ制御部4140にセグメント化3Dパルスシーケンスを用いた被検体Pの心臓における3Dシネ画像の撮像開始指示が与えられる。
そうすると、ステップS2において、被検体Pの自由呼吸下においてプロジェクションパートを有するセグメント化3Dパルスシーケンスが実行され、セグメント化された時系列のk空間データおよび各セグメントにそれぞれ対応する時系列のプロジェクションデータが順次収集される。
すなわち、シーケンスコントローラ制御部41は撮影条件設定部40からイメージングパートとプロジェクションパートとを有するセグメント化3Dパルスシーケンスを取得してシーケンスコントローラ31に与える。シーケンスコントローラ31は、シーケンスコントローラ制御部41から受けたセグメント化3Dパルスシーケンスに従って傾斜磁場電源27、送信器29および受信器30を駆動させることにより被検体Pがセットされた撮像領域に傾斜磁場を形成させるとともに、RFコイル24からRF励起パルス信号を発生させる。
このため、被検体Pの内部における核磁気共鳴により生じたNMR信号が、RFコイル24により受信されて受信器30に与えられる。受信器30は、RFコイル24からNMR信号を受けて、所要の信号処理を実行した後、A/D変換することにより、デジタルデータのNMR信号である生データを生成する。受信器30は、生成した生データをシーケンスコントローラ31に与える。シーケンスコントローラ31は、生データをシーケンスコントローラ制御部41に与え、シーケンスコントローラ制御部41はk空間データベース42に生データをk空間データとして書き込む。
ここで、k空間データは、セグメント化3Dパルスシーケンスによって収集されるため、k空間データベース42には、セグメントごとのk空間データが保存されることとなる。
一方、ステップS3において、撮像中における被検体PのECG信号の波形がECGユニット38によりモニタリングされる。ここで、必要に応じてECGユニット38は収集したECG信号からR波等の心電情報に基づくトリガ信号を検出する。そして、収集されたECG信号またはトリガ信号は、シーケンスコントローラ31およびシーケンスコントローラ制御部41を経由してECGトリガ検出部43に与えられる。そして、ECGトリガ検出部43に、トリガ信号ではなくECG信号が与えられた場合には、ECGトリガ検出部43においてR波等の心電情報に基づくトリガ信号が検出される。さらに、得られた心電情報に基づくトリガ信号は、ECGトリガ検出部43からECGデータベース44に書き込まれて保存される。
次に、セグメントnごとのk空間データの収集タイミングにおける被検体Pの動き量の計算および動き量に基づくk空間データのセグメントnごとの動き補正が行われる。
そのためにステップS4においてnに1が代入されて1番目のセグメントn=1が選択される。
次に、ステップS5において、1番目のセグメントn=1内の各k空間データが収集されたタイミングにおける被検体Pの呼吸位置がプロジェクションデータに基づいて計算される。
すなわち、呼吸位置計算部45は、k空間データベース42からパルスシーケンスのプロジェクションパートの実行により断続的に収集された時系列の複数のプロジェクションデータを読み込んで、リードアウト方向にFTを施すことにより呼吸性の動きを示す実空間上の時系列の投影データを作成する。そして、各時刻において収集された時系列の複数の投影データと撮影部位が基準位置にある時刻において収集された投影データとの相互相関を順次とることによって、プロジェクションデータが収集された各時刻、つまり各セグメントn内のk空間データが収集されたタイミング前後における撮影部位の基準位置からの相対的な移動量を呼吸位置として求めることができる。さらに、求めた時系列の被検体Pの呼吸位置データを平均値や内挿値を用いて補間することによって、任意の時刻における被検体Pの呼吸位置を求めることができる。
このため、1番目のセグメントn=1内の各k空間データが収集されたそれぞれの時刻における被検体Pの呼吸位置を求めることができる。
次に、ステップS6において、データ補正部47において、1番目のセグメントn=1内の各k空間データが収集されたそれぞれの時刻における被検体Pの呼吸位置を用いて、各k空間データの動き補正が行われる。すなわち、動き補正前における1番目のセグメントn=1内における各k空間データは、呼吸位置に基づく動き補正によってそれぞれ動き補正後のk空間データに変換される。この動き補正の変換処理は上述したように式(1)で表すことができる。
尚、被検体Pの呼吸による動きが大きくなったタイミングで収集されたk空間データをシネ画像データの生成用の元データとしない場合には、動き補正に先立って、呼吸位置に対して予め設定された閾値の範囲外の呼吸位置に対応するk空間データを除外するためのゲーティング処理をゲーティング部46において実行することができる。この場合には、ゲーティング処理によって抽出されたk空間データが、動き補正の対象とされる。
そして、このような動き補正によって1番目のセグメント内におけるk空間データは、イメージングスラブ内において実際には呼吸によって移動した撮像対象が基準位置に固定されている状態で収集されたデータと等価になる。
次に、ステップS7において、動き補正の対象となったセグメントnが最後のセグメントNであるか否かが判定され、セグメントが最後のセグメントNでない場合には、ステップS8において、nにn+1が代入されて次のセグメントnが選択される。そして次のセグメントnについて再びステップS5およびステップS6における呼吸位置の計算および呼吸位置に基づく動き補正が行われる。このような処理をセグメント1からセグメントNまで繰り返し行うことにより、全てのセグメントn内におけるk空間データの動き補正が行われる。
最後のセグメントNについての動き補正が終了すると、ステップS7において動き補正の対象となったセグメントnが最後のセグメントNであると判定される。
そうすると、ステップS9において、データ並べ替え部48により、動き補正後における各セグメントの3Dのk空間データが心時相順に並べ替えられる。
そのために、セグメント化された時系列の動き補正後における3Dのk空間データは、ECG信号に基づくトリガ信号に基づいてECG信号と同期化される。すなわち、データ並べ替え部48は、ECGデータベース44から収集時刻に関連付けられたECGトリガ信号を取得する。
次に、データ並べ替え部48は、各k空間データが収集された時刻のECGトリガ信号からのそれぞれの遅延時間を求める。求められた各遅延時間は、心時相としてそれぞれ対応する動き補正後におけるk空間データに関連付けられる。そして、全てのセグメントnの全てのk空間データが心時相と関連付けられ、図5(b)に示すような動き補正後における各k空間データSn’(k)の心時相情報が得られる。
次に、データ並べ替え部48は、心時相に対応付けられた動き補正後における各k空間データのソーティングを行うことによって、心時相の早い順に動き補正後における各k空間データを並べ替える。この結果、図5(a)に示すような心時相ごとの動き補正後におけるk空間データのセットが得られる。図5(a)には示されていないが、動き補正後におけるk空間データは3Dシーケンスによって収集されるため、複数のスライスについて得られる。そして、並べ替えおよび動き補正後における心時相ごとの3D収集データは、3Dシネ画像データの生成用の元データとして蓄積される。
次に、ステップS10において、画像再構成部49において、並べ替えおよび動き補正後における心時相ごとの3D収集データに対する画像再構成処理が行われる。これにより被検体Pの心臓における3Dシネ画像データが生成される。生成された3Dシネ画像データは、画像データベース50に書き込まれる。
そして、画像処理部51は、画像データベース50から3Dシネ画像データを読み込んでMIP処理やMPR処理等の画像処理を行って表示用の2Dシネ画像データを生成する。さらに生成された表示用の2Dシネ画像データは、表示装置34に出力表示される。これにより、ユーザは、自由呼吸下において収集したデータに基づいて作成された被検体Pの心臓におけるシネ画像を観察することが可能となる。
つまり以上のような磁気共鳴イメージング装置20は、被検体Pの呼吸位置検出用のプロジェクションデータを収集するプロジェクションパートを設けた3Dセグメンテッドシーケンス等のパルスシーケンスによって自由呼吸下において心電非同期で複数時相分のデータ収集を行い、プロジェクションデータに基づいて計算された呼吸位置を用いてデータの動き補正を行った後に、別途取得した心電情報に基づくトリガ信号を利用して心時相順に並べ替えることによって、心臓等の動きのある部位におけるシネ画像データを再構成するものである。
このため、磁気共鳴イメージング装置20によれば、呼吸による動き量をモニタして補正することによって自由呼吸下において心臓等の動きのある部位の3Dシネ画像を高時間分解能および高空間分解能で取得することができる。これにより、3Dシネ画像の高分解能化や不整脈除去を行うことが可能となる。
尚、図6に示すフローチャートには、パルスシーケンスの実行によるプロジェクションデータおよびイメージングデータの収集後にイメージングデータの動き補正および並べ替えを行う例が示されているが、プロジェクションデータおよびイメージングデータの収集中、つまり撮像中においてデータ収集と並行してリアルタイムにイメージングデータの動き補正や並べ替えを行うこともできる。
また、図6に示すフローチャートには、k空間データの動き補正後にk空間データの心時相順への並べ替えを行う例を示したが、心時相順へのk空間データの並べ替えを行った後に、k空間データの動き補正を行うようにしてもよい。
図7は、図1に示す磁気共鳴イメージング装置20により心時相順へのk空間データの並べ替えを行った後にk空間データの動き補正を行うことによって3Dシネ画像撮像を行う場合の手順を示すフローチャートであり、図中Sに数字を付した符号はフローチャートの各ステップを示す。尚、図7において図6と同様のステップには同符号を付して説明を省略する。
心時相順へのk空間データの並べ替えを行った後にk空間データの動き補正を行う場合には、ステップS2において、セグメント化3Dパルスシーケンスの実行によるk空間データおよびプロジェクションデータの収集が行われた後、ステップS9において、データ並べ替え部48により、収集された各セグメントの3Dのk空間データが心時相順に並べ替えられる。
そして、k空間データの並べ替え後に、ステップS4からステップS8において並べ替えられたk空間データの動き補正が行われる。ただし、プロジェクションデータは時系列データである一方、動き補正の対象となるk空間データは並べ替えられており、n番目のセグメントにおけるk空間データはデータ収集時における時系列のk空間データではない。従って、ステップS6’では、k空間データの並べ替え前後におけるデータ対応情報に基づいて、n番目のセグメントにおける並べ替え前におけるk空間データが、対応するセグメントのプロジェクションデータに基づいて計算された呼吸位置に基づいて動き補正される。
従って、図6に示すフローチャートの手順のように、k空間データの動き補正後にk空間データの並べ替えを行うようにすれば、ゲーティング処理によってシネ画像データの元データとして使用されないk空間データの同期化処理や並べ替え処理が不要となるため、データ処理量を低減させることができる。このため、イメージングデータの動き補正処理や動き補正後の並べ替え処理のリアルタイム性が向上し、上述したように、撮像中においてデータ収集と並行してリアルタイムにイメージングデータの動き補正や並べ替えを行うことが容易となる。
また、パルスシーケンスをラジアル収集用のシーケンスとする場合や、周波数領域におけるk空間データを、複数の平行なデータ収集軌跡により形成されるbladeと呼ばれる帯状領域を繰り返し時間毎に回転させることによって、非直交状に収集して充填するPROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction)法に従うシーケンスとする場合には、これらのシーケンスの実行によって収集されるk空間データをFTすることにより心拍の動きを示す時系列の投影データを得ることができる。従って、心拍の動き等の心電情報を示す投影データを得ることが可能なパルスシーケンスを用いてデータ収集を行う場合には、ECG信号やPPG信号を取得しなくても、ECG信号と同様な周期性を有する投影データから心電情報に基づくトリガ信号を検出することが可能である。すなわち、各投影データが収集された時相から心電情報を検出し、検出した心電情報からトリガ信号を設定することができる。この場合には、コンピュータ32のECGトリガ検出部43に、k空間データベース42から収集されたk空間データを読み込む機能および上述したようなk空間データから心電情報を示す投影データを作成し、投影データから心電情報を検出する機能を設ければ良い。
また、パルスシーケンスを、スライス非選択のラジアル収集3Dシーケンスとすることもできる。この場合、ラジアル収集3Dシーケンスはイメージング用の複数のプロジェクションデータおよび呼吸位置を求めるための複数のプロジェクションデータを収集する。さらに、イメージング用と呼吸位置検出用ともにプロジェクションデータであるので、同一方向のプロジェクションデータをイメージング用と呼吸検出用で共用してもよい。
本発明に係る磁気共鳴イメージング装置の実施の形態を示す構成図。 図1に示すコンピュータの機能ブロック図。 図2に示す撮影条件設定部において設定されるパルスシーケンスの一例を示す図。 図3に示すパルスシーケンスのイメージングパートおよびプロジェクションパートにおいて選択されるスライス並びにプロジェクションデータの収集用の周波数エンコード用傾斜磁場パルスの印加方向の設定例を示す図。 図2に示すデータ並べ替え部における動き補正後のk空間データの並べ替えの方法を説明する図。 図1に示す磁気共鳴イメージング装置により自由呼吸下において被検体の心臓の3Dシネ画像を撮像する際の手順を示すフローチャート。 図1に示す磁気共鳴イメージング装置により心時相順へのk空間データの並べ替えを行った後にk空間データの動き補正を行うことによって3Dシネ画像撮像を行う場合の手順を示すフローチャート。
符号の説明
20 磁気共鳴イメージング装置
21 静磁場用磁石
22 シムコイル
23 傾斜磁場コイル
24 RFコイル
25 制御系
26 静磁場電源
27 傾斜磁場電源
28 シムコイル電源
29 送信器
30 受信器
31 シーケンスコントローラ
32 コンピュータ
33 入力装置
34 表示装置
35 演算装置
36 記憶装置
37 寝台
38 ECGユニット
40 撮影条件設定部
41 シーケンスコントローラ制御部
42 k空間データベース
43 ECGトリガ検出部
44 ECGデータベース
45 呼吸位置計算部
46 ゲーティング部
47 データ補正部
48 データ並べ替え部
49 画像再構成部
50 画像データベース
51 画像処理部
P 被検体

Claims (9)

  1. 被検体に一定間隔で連続的に高周波パルス列を印加することによって前記被検体からイメージング用の複数のデータおよび前記被検体の呼吸位置を求めるための複数のプロジェクションデータをそれぞれ、心電信号と非同期に収集するデータ収集手段と、
    前記被検体の心電情報を記録する記録部と、
    前記複数のプロジェクションデータに基づいて求められた前記被検体の呼吸位置を用いて前記複数のデータの動き補正を行う補正手段と、
    前記動き補正後における複数のデータを、記録した前記被検体の心電情報に基づいて心時相順に並べ替えるデータ並べ替え手段と、
    前記動き補正後の心時相順に並べ替えられた複数のデータに基づいて3次元画像データを再構成する画像再構成手段と、
    を有し、
    前記データ収集手段は、前記イメージング用の複数のデータを収集するイメージングパートと、前記プロジェクションデータを収集するプロジェクションパートとを交互に繰り返すと共に、前記高周波パルス列の各高周波パルスを、前記イメージングパートと前記プロジェクションパートとを区別することなく同一の繰り返し時間で連続的に印加し、前記プロジェクションパートを、その直前の前記イメージングパートとの間、及びその直後の前記イメージンパートとの間のいずれの間にも空き時間が無いように、隣り合うイメージングパートの間に挿入して、前記イメージング用の複数のデータ及び前記複数のプロジェクションデータを収集し、
    前記プロジェクションパートは、リードアウト方向にのみ傾斜磁場を印加してデータ収集する1次元のデータ収集であり、前記1次元のデータ収集はその直前のイメージングパートとその直後のイメージンパートとの間で1回のみ行われ、前記プロジェクションパートのリードアウト方向と、前記イメージングパートのリードアウト方向とは異なる、
    ことを特徴とする磁気共鳴イメージング装置。
  2. 被検体に一定間隔で連続的に高周波パルス列を印加することによって前記被検体からイメージング用の複数のデータおよび前記被検体の呼吸位置を求めるための複数のプロジェクションデータをそれぞれ、心電信号と非同期に収集するデータ収集手段と、
    前記被検体の心電情報を記録する記録部と、
    前記複数のデータを、記録した前記被検体の心電情報に基づいて心時相順に並べ替えるデータ並べ替え手段と、
    前記複数のプロジェクションデータに基づいて求められた前記被検体の呼吸位置を用いて前記心時相順に並べ替えられた複数のデータの動き補正を行う補正手段と、
    前記動き補正後の心時相順に並べ替えられた複数のデータに基づいて3次元画像データを再構成する画像再構成手段と、
    を有し、
    前記データ収集手段は、前記イメージング用の複数のデータを収集するイメージングパートと、前記プロジェクションデータを収集するプロジェクションパートとを交互に繰り返すと共に、前記高周波パルス列の各高周波パルスを、前記イメージングパートと前記プロジェクションパートとを区別することなく同一の繰り返し時間で連続的に印加し、前記プロジェクションパートを、その直前の前記イメージングパートとの間、及びその直後の前記イメージンパートとの間のいずれの間にも空き時間が無いように、隣り合うイメージングパートの間に挿入して、前記イメージング用の複数のデータ及び前記複数のプロジェクションデータを収集し、
    前記プロジェクションパートは、リードアウト方向にのみ傾斜磁場を印加してデータ収集する1次元のデータ収集であり、前記1次元のデータ収集はその直前のイメージングパートとその直後のイメージンパートとの間で1回のみ行われ、前記プロジェクションパートのリードアウト方向と、前記イメージングパートのリードアウト方向とは異なる、
    ことを特徴とする磁気共鳴イメージング装置。
  3. 前記データ収集手段は、前記イメージング用のデータを収集するためのイメージングパートとプロジェクションデータを収集するためのプロジェクションパートにおいて傾斜磁場パルスが共有されるように前記被検体に傾斜磁場を印加するように構成されることを特徴とする請求項1または2記載の磁気共鳴イメージング装置。
  4. 前記データ収集手段は、前記イメージング用のデータを収集するためのイメージングパートとプロジェクションデータを収集するためのプロジェクションパートにおいて高周波パルスが共有されるように前記高周波パルス列を印加するように構成されることを特徴とする請求項1または2記載の磁気共鳴イメージング装置。
  5. 前記データ収集手段は、前記複数のデータをk空間上に設定された複数のセグメントごとに収集し、前記複数のセグメントにそれぞれ対応する複数のプロジェクションデータを収集するように構成されることを特徴とする請求項1または2記載の磁気共鳴イメージング装置。
  6. 前記複数のデータから前記被検体の呼吸位置が予め決定した閾値の範囲内にある状態において収集されたデータを抽出するデータ抽出手段をさらに備え、
    前記画像再構成手段は、抽出された動き補正後の心時相順に並べ替えられたデータに基づいて前記3次元画像データを再構成するように構成されることを特徴とする請求項1または2記載の磁気共鳴イメージング装置。
  7. 前記データ収集手段は、前記被検体の心電情報を示す投影データを得ることが可能なパルスシーケンスを用いて前記複数のデータを収集するように構成され、
    前記データ並べ替え手段は、前記投影データから検出された心電情報に基づいて前記複数のデータを心時相順に並べ替えるように構成されることを特徴とする請求項1または2記載の磁気共鳴イメージング装置。
  8. 前記データ収集手段は、前記被検体内において磁化の定常状態が維持されるように前記高周波パルス列を印加するSteady-state Free Precessionシーケンスを用いて前記複数のデータを収集するように構成されることを特徴とする請求項1または2記載の磁気共鳴イメージング装置。
  9. 前記補正手段は、前記イメージング用の複数のデータおよび前記複数のプロジェクションデータの収集中に前記動き補正を行うように構成されることを特徴とする請求項1または2記載の磁気共鳴イメージング装置。
JP2008270946A 2007-12-10 2008-10-21 磁気共鳴イメージング装置 Expired - Fee Related JP5854575B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008270946A JP5854575B2 (ja) 2007-12-10 2008-10-21 磁気共鳴イメージング装置
CN2008101787574A CN101455565B (zh) 2007-12-10 2008-11-26 磁共振成像装置和磁共振成像方法
US12/330,949 US8417007B2 (en) 2007-12-10 2008-12-09 Magnetic resonance imaging apparatus and magnetic resonance imaging method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007318518 2007-12-10
JP2007318518 2007-12-10
JP2008270946A JP5854575B2 (ja) 2007-12-10 2008-10-21 磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2009160378A JP2009160378A (ja) 2009-07-23
JP5854575B2 true JP5854575B2 (ja) 2016-02-09

Family

ID=40766873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270946A Expired - Fee Related JP5854575B2 (ja) 2007-12-10 2008-10-21 磁気共鳴イメージング装置

Country Status (2)

Country Link
JP (1) JP5854575B2 (ja)
CN (1) CN101455565B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2443590B1 (en) 2009-06-19 2023-06-14 ViewRay Technologies, Inc. System and method for performing tomographic image reconstruction
CN102469953B (zh) 2009-08-12 2014-12-31 株式会社日立医疗器械 磁共振成像装置以及同步测量方法
CN101966081B (zh) * 2010-08-05 2012-02-01 华东师范大学 校正呼吸信息影响静息态功能磁共振脑成像的方法
JP5345610B2 (ja) 2010-12-28 2013-11-20 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴イメージング装置
DE102011086369B4 (de) * 2011-11-15 2022-08-11 Siemens Healthcare Gmbh Verfahren zur Erstellung von MR-Angiographiebildern und entsprechende Magnetresonanzanlage
WO2014172328A1 (en) * 2013-04-16 2014-10-23 The Johns Hopkins University Integration of t2-preparation and motion tracking in magnetic resonance imaging
CA2932259C (en) 2013-12-03 2023-03-28 Viewray Technologies, Inc. Single- and multi-modality alignment of medical images in the presence of non-rigid deformations using phase correlation
JP6325267B2 (ja) * 2014-02-03 2018-05-16 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置
JP6647816B2 (ja) * 2015-08-10 2020-02-14 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置、画像再構成方法及び画像再構成プログラム
CN109642933B (zh) 2016-06-22 2022-09-06 优瑞技术公司 低场强磁共振成像
US11284811B2 (en) * 2016-06-22 2022-03-29 Viewray Technologies, Inc. Magnetic resonance volumetric imaging
EP3422037A1 (en) * 2017-06-27 2019-01-02 Koninklijke Philips N.V. Method and device for determining a motion field from k-space data
JP7164320B2 (ja) 2018-05-11 2022-11-01 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法
CN113133756B (zh) * 2021-04-23 2023-08-15 上海联影医疗科技股份有限公司 三维心脏电影成像方法、磁共振成像系统和存储介质
CN116867440A (zh) * 2023-04-21 2023-10-10 武汉迈瑞医疗技术研究院有限公司 一种胎心的超声成像方法和系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855910A (en) * 1986-10-22 1989-08-08 North American Philips Corporation Time-clustered cardio-respiratory encoder and method for clustering cardio-respiratory signals
JPH07163537A (ja) * 1994-09-01 1995-06-27 Hitachi Ltd Nmrイメージング方法
JPH10248825A (ja) * 1997-01-09 1998-09-22 Toshiba Iyou Syst Eng Kk Mri装置およびmr撮像方法
JPH10201736A (ja) * 1997-01-22 1998-08-04 Hitachi Ltd 磁気共鳴を用いた検査装置
JP3891667B2 (ja) * 1997-10-27 2007-03-14 株式会社日立メディコ 磁気共鳴イメージング装置
US6434412B1 (en) * 1999-05-21 2002-08-13 Siemens Medical Systems, Inc. Cardiac cine imaging with a short repetition time and high contrast between the blood and the myocardium
US6889071B2 (en) * 2000-12-19 2005-05-03 General Electric Company Acquisition of high-temporal free-breathing MR images
JP4086544B2 (ja) * 2002-05-16 2008-05-14 株式会社日立メディコ 磁気共鳴イメージング装置
JP4133348B2 (ja) * 2003-01-07 2008-08-13 株式会社日立メディコ 核磁気共鳴を用いた検査装置
JP2005040416A (ja) * 2003-07-24 2005-02-17 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2006014753A (ja) * 2004-06-30 2006-01-19 Hitachi Medical Corp 磁気共鳴イメージング装置
CN100493450C (zh) * 2004-11-12 2009-06-03 株式会社东芝 磁共振成像装置、图像数据修正装置和图像数据修正方法
JP3668816B1 (ja) * 2004-12-16 2005-07-06 学校法人慶應義塾 磁気共鳴イメージング装置
US7945305B2 (en) * 2005-04-14 2011-05-17 The Board Of Trustees Of The University Of Illinois Adaptive acquisition and reconstruction of dynamic MR images
JP2007190114A (ja) * 2006-01-18 2007-08-02 Hitachi Medical Corp 磁気共鳴イメージング装置
JP5105848B2 (ja) * 2006-02-06 2012-12-26 株式会社東芝 磁気共鳴イメージング装置および磁気共鳴イメージング装置における撮影条件設定方法

Also Published As

Publication number Publication date
CN101455565B (zh) 2011-12-14
JP2009160378A (ja) 2009-07-23
CN101455565A (zh) 2009-06-17

Similar Documents

Publication Publication Date Title
JP5854575B2 (ja) 磁気共鳴イメージング装置
US8417007B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US20070088212A1 (en) Magnetic resonance imaging apparatus
US20110148413A1 (en) Magnetic resonance imaging apparatus
KR100646914B1 (ko) 자기공명 이미징장치
JP2004129724A (ja) 磁気共鳴イメージング装置
US6889071B2 (en) Acquisition of high-temporal free-breathing MR images
JP2011015951A (ja) 磁気共鳴イメージング装置
JP5684363B2 (ja) 磁気共鳴イメージング装置
JP2013176672A (ja) 磁気共鳴イメージング装置
JP5304987B2 (ja) 磁気共鳴イメージング装置
EP1956383A1 (en) MRI involving a cine prescan for motion analysis
CN105266813A (zh) 一种自门控三维心脏成像的运动信号提取方法及装置
JP2004329614A (ja) 磁気共鳴イメージング装置
JP2005040416A (ja) 磁気共鳴イメージング装置
JP6109598B2 (ja) 磁気共鳴イメージング装置
JP4230875B2 (ja) 磁気共鳴イメージング装置
JP4349647B2 (ja) 磁気共鳴イメージング装置
JP4443918B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング装置の信号処理方法
JP4086544B2 (ja) 磁気共鳴イメージング装置
JP4678916B2 (ja) 磁気共鳴イメージング装置
JP4745650B2 (ja) 磁気共鳴イメージング装置
JP2010179046A (ja) 磁気共鳴イメージング装置
JP4265783B2 (ja) 核磁気共鳴撮像装置
US10495710B2 (en) Time-resolved MR images during a cyclical movement

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R150 Certificate of patent or registration of utility model

Ref document number: 5854575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees