Nothing Special   »   [go: up one dir, main page]

JP5841862B2 - High temperature superconducting wire and high temperature superconducting coil - Google Patents

High temperature superconducting wire and high temperature superconducting coil Download PDF

Info

Publication number
JP5841862B2
JP5841862B2 JP2012042431A JP2012042431A JP5841862B2 JP 5841862 B2 JP5841862 B2 JP 5841862B2 JP 2012042431 A JP2012042431 A JP 2012042431A JP 2012042431 A JP2012042431 A JP 2012042431A JP 5841862 B2 JP5841862 B2 JP 5841862B2
Authority
JP
Japan
Prior art keywords
layer
superconducting
laminate
resin
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012042431A
Other languages
Japanese (ja)
Other versions
JP2012216504A (en
Inventor
雅載 大保
雅載 大保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012042431A priority Critical patent/JP5841862B2/en
Publication of JP2012216504A publication Critical patent/JP2012216504A/en
Application granted granted Critical
Publication of JP5841862B2 publication Critical patent/JP5841862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、高温超電導線材および高温超電導コイルに関する。   The present invention relates to a high-temperature superconducting wire and a high-temperature superconducting coil.

従来から使用されてきたNbTiなどの金属系超電導線材は丸線や角線などの形態で提供されており、形状の自由度が高い。これに対し、Bi系やY系などの臨界温度が90〜100K程度の高温酸化物超電導体は、超電導層がセラミックスから形成されており、また、その線材構造もテープ形状とされているので、曲げや捻回などの機械特性について劣化し易いという欠点がある。   Conventionally used metal-based superconducting wires such as NbTi are provided in the form of round wires or square wires, and have a high degree of freedom in shape. On the other hand, in the high-temperature oxide superconductor having a critical temperature of about 90 to 100 K such as Bi-based and Y-based, the superconducting layer is formed of ceramics, and the wire structure is also in a tape shape. There is a drawback that mechanical properties such as bending and twisting are likely to deteriorate.

例えば、図15に示す如くBi系の超電導線材100は、Bi系の超電導層101をAgのシース材102で被覆した状態となるようにPowder In Tube法(PIT法)などにより製造された構造となっている。一方、Yなどの希土類系の超電導線材200は、例えば図16に示す如く全く異なる構造とされている。
図16に示す超電導線材200は、テープ状の金属基材201上に中間層202を介し成膜法により酸化物超電導層203を積層し、AgやCuなどの安定化層204、205を被覆した積層構造とされる。そのため、図15に示す構造のBi系の超電導線材100のように厚さ方向に対称的な構造ではなく、希土類系の超電導線材200を用いて超電導コイルとするには、曲げや捻回などの方向性を考慮して設計する必要がある。
For example, as shown in FIG. 15, a Bi-based superconducting wire 100 has a structure manufactured by a Powder In Tube method (PIT method) or the like so that a Bi-based superconducting layer 101 is covered with an Ag sheath material 102. It has become. On the other hand, the rare earth-based superconducting wire 200 such as Y has a completely different structure as shown in FIG.
A superconducting wire 200 shown in FIG. 16 is formed by laminating an oxide superconducting layer 203 on a tape-shaped metal substrate 201 through an intermediate layer 202 by a film forming method, and covering stabilization layers 204 and 205 such as Ag and Cu. A laminated structure is adopted. Therefore, the Bi-based superconducting wire 100 having the structure shown in FIG. 15 is not symmetrical in the thickness direction, and a rare-earth superconducting wire 200 is used to form a superconducting coil such as bending or twisting. It is necessary to design in consideration of directionality.

テープ状の超電導線材を巻回してコイルにするためには、超電導線材間の電気的な絶縁性を確保するため、超電導線材を絶縁材で被覆する必要がある。
超電導線材を絶縁被覆する方法としては、テープ状の超電導線材の外周にポリイミドテープ等の樹脂テープを巻き付ける方法や、超電導線材の外周面に樹脂を塗布して該樹脂を焼付けることにより、超電導線材の外周面に樹脂被膜を形成する方法(特許文献1参照)が知られている。
In order to wind a tape-shaped superconducting wire into a coil, it is necessary to coat the superconducting wire with an insulating material in order to ensure electrical insulation between the superconducting wires.
As a method of insulatingly covering the superconducting wire, a method of winding a resin tape such as a polyimide tape around the outer periphery of the tape-shaped superconducting wire, or applying a resin to the outer peripheral surface of the superconducting wire and baking the resin, the superconducting wire A method of forming a resin film on the outer peripheral surface of the film (see Patent Document 1) is known.

特開2000−311526号公報JP 2000-31526 A

特許文献1に記載の技術は、酸化物超電導体となる原料粉末を金属管に充填して縮径加工するPIT法により形成されたBi系の超電導線材に適用される技術である。PIT法により形成されたBi系の超電導線材は、図15に示す如く断面が楕円形状であり、超電導線材の外周全体に樹脂を塗布・焼付けして樹脂被膜を形成しやすい。   The technique described in Patent Document 1 is a technique applied to a Bi-based superconducting wire formed by a PIT method in which a raw material powder to be an oxide superconductor is filled in a metal tube and diameter-reduced. The Bi-based superconducting wire formed by the PIT method has an elliptical cross section as shown in FIG. 15, and it is easy to form a resin film by applying and baking a resin on the entire outer periphery of the superconducting wire.

これに対し、図16に示す如くテープ状の金属基材201の上方に酸化物超電導層203が積層された希土類系の超電導線材200は断面が矩形状であり、その四隅が角張っている。そのため、図16に示す超電導線材200の外周に樹脂を塗布・焼付けして樹脂被膜を形成しようとすると、図17に示す如く超電導線材200の角部200a部分に絶縁被膜210を形成し難く、超電導線材200の外周全体を絶縁被覆できない場合がある。
絶縁被膜210の厚さを厚くすれば、角部200aを被覆可能であるが、絶縁被膜210の厚さが厚くなり過ぎると、超電導線材200を巻回してコイル加工した場合に、コイル断面に占める酸化物超電導層203の割合が低下し、当該コイルの電流密度が低下してしまう。また、特許文献1の実施例では、300℃以上350℃以下の温度で樹脂の焼付けを行って絶縁被覆層を形成しているが、希土類系の酸化物超電導層は300℃以上の温度では特性が劣化しやすいため、この熱処理条件を線材の構成や耐熱性が異なる希土類系の超電導線材にそのまま適用することは困難である。
On the other hand, as shown in FIG. 16, a rare earth-based superconducting wire 200 in which an oxide superconducting layer 203 is laminated above a tape-like metal substrate 201 has a rectangular cross section, and its four corners are square. Therefore, if an attempt is made to form a resin coating by applying and baking a resin on the outer periphery of the superconducting wire 200 shown in FIG. 16, it is difficult to form the insulating coating 210 on the corner portion 200a of the superconducting wire 200 as shown in FIG. In some cases, the entire outer periphery of the wire 200 cannot be covered with insulation.
If the thickness of the insulating coating 210 is increased, the corner portion 200a can be covered. However, if the thickness of the insulating coating 210 becomes too thick, the coil section is occupied when the superconducting wire 200 is wound and coiled. The ratio of the oxide superconducting layer 203 decreases, and the current density of the coil decreases. In the example of Patent Document 1, the insulating coating layer is formed by baking the resin at a temperature of 300 ° C. or higher and 350 ° C. or lower. However, the rare earth oxide superconducting layer has characteristics at a temperature of 300 ° C. or higher. Therefore, it is difficult to apply this heat treatment condition as it is to rare earth-based superconducting wires having different wire composition and heat resistance.

ところで、絶縁被覆された超電導線材を巻回してコイル加工する際には、巻回状態の超電導線材間に熱硬化性樹脂を塗布あるいは注入して加熱硬化することにより、超電導線材の巻回状態を保つことが行われている。この熱硬化性樹脂の導入・硬化方法としては、以下の方法が知られている。
(1)巻回後の超電導線材をエポキシ樹脂等の熱硬化性樹脂に浸漬させ、真空中で加圧して含浸させた後に、加熱して熱硬化性樹脂を硬化させる方法(真空加圧含浸法)。
(2)超電導線材を巻回する際に、超電導線材にエポキシ樹脂等の熱硬化性樹脂を塗布しながら巻回した後、加熱して熱硬化性樹脂を硬化させる方法。
(3)超電導線材を巻回する際に、半硬化エポキシテープ等の半硬化熱硬化性樹脂テープと、超電導線材とを、重ねた状態で共巻きして巻回した後、加熱して熱硬化性樹脂を硬化させる方法。
By the way, when coiling by winding a superconducting wire with insulation coating, the winding state of the superconducting wire can be changed by applying or injecting a thermosetting resin between the superconducting wires in the wound state and then heat-curing. Keeping it is done. The following methods are known as methods for introducing and curing the thermosetting resin.
(1) A method in which a superconducting wire after winding is immersed in a thermosetting resin such as an epoxy resin, impregnated by pressurization in vacuum, and then heated to cure the thermosetting resin (vacuum pressure impregnation method) ).
(2) A method of winding a superconducting wire while applying a thermosetting resin such as an epoxy resin to the superconducting wire and then heating to cure the thermosetting resin.
(3) When winding a superconducting wire, a semi-cured thermosetting resin tape such as a semi-cured epoxy tape and a superconducting wire are wound together and wound, and then heated and thermoset. A method of curing a functional resin.

上記(1)の方法では、コイルが大型化するとコイル内部まで熱硬化性樹脂を含浸させることが難しくなるという問題がある。
上記(2)の方法では、長尺の超電導線材を巻回してコイル加工する際に、超電導線材全体に均一に熱硬化性樹脂を塗布することができない可能性がある。このような場合、超電導コイル運転時に液体窒素温度程度まで該コイルを冷却した際に、超電導線材を構成する金属材料と、熱硬化性樹脂よりなる樹脂層との線膨張係数の差により局所的に歪みを生じ、この歪みに起因して酸化物超電導層が劣化して超電導特性が低下するおそれがある。
上記(3)の方法では、半硬化熱硬化性樹脂テープの厚さが100μm未満になると、超電導線材巻回時の作業性が極端に悪くなる傾向がある。また、半硬化熱硬化性樹脂テープの厚さが100μm以上になると、コイル断面に占める酸化物超電導層の割合が低くなり、当該コイルの電流密度が低下してしまう。
The method (1) has a problem that when the coil is enlarged, it is difficult to impregnate the coil with the thermosetting resin.
In the method (2), when a long superconducting wire is wound and coiled, the thermosetting resin may not be uniformly applied to the entire superconducting wire. In such a case, when the coil is cooled to about the liquid nitrogen temperature during operation of the superconducting coil, it is locally caused by the difference in coefficient of linear expansion between the metal material constituting the superconducting wire and the resin layer made of the thermosetting resin. There is a possibility that distortion is generated, and the oxide superconducting layer is deteriorated due to the distortion and the superconducting characteristics are deteriorated.
In the method (3), when the thickness of the semi-cured thermosetting resin tape is less than 100 μm, the workability when winding the superconducting wire tends to be extremely deteriorated. Further, when the thickness of the semi-cured thermosetting resin tape is 100 μm or more, the ratio of the oxide superconducting layer in the coil cross section is reduced, and the current density of the coil is lowered.

本発明は、このような従来の実情に鑑みてなされたものであり、外周全体が絶縁被覆された高温超電導線材、及び該高温超電導線材を用いてなる高温超電導コイルの提供を目的とする。また、本発明は、電流密度の低下を抑制できる高温超電導コイルの提供も目的とする。   The present invention has been made in view of such a conventional situation, and an object of the present invention is to provide a high-temperature superconducting wire having an insulation coating on the entire outer periphery, and a high-temperature superconducting coil using the high-temperature superconducting wire. Another object of the present invention is to provide a high-temperature superconducting coil that can suppress a decrease in current density.

上記課題を解決するため、本発明の高温超電導線材は、基板と中間層と酸化物超電導層と金属安定化層とがこの順に積層された超電導積層体と、前記超電導積層体の外周面を覆い、樹脂の焼付けにより形成された絶縁被覆層とを備え、前記超電導積層体の幅方向に沿う断面における角部が曲率半径を有する曲面となる面取りとされ、前記絶縁被覆層の厚さが12μm以上であり、前記角部の曲率半径が14.5mm以上であることを特徴とする。
本発明の高温超電導線材は、超電導積層体の幅方向に沿う断面における角部の曲率半径を14.5mm以上とし、且つ、絶縁被覆層の厚さを12μm以上に規定していることにより、超電導積層体の角部を覆うように絶縁被覆層形成用の樹脂を塗布・焼付けすることができ、超電導積層体の角部を含む外周全体が絶縁被覆層により完全に覆われた構造を実現できる。従って、本発明の高温超電導線材は、超電導積層体が絶縁被覆層により外部から封止されており、水分などが酸化物超電導層に浸入することを低減でき、超電導特性の劣化を抑止できる。
In order to solve the above problems, the high-temperature superconducting wire of the present invention covers a superconducting laminate in which a substrate, an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer are laminated in this order, and an outer peripheral surface of the superconducting laminate. An insulating coating layer formed by baking a resin, and a chamfer in which a corner in a cross section along the width direction of the superconducting laminate is a curved surface having a radius of curvature, and the thickness of the insulating coating layer is 12 μm or more The radius of curvature of the corner is 14.5 mm or more.
The high-temperature superconducting wire of the present invention has a superconducting structure in which the radius of curvature of the corners in the cross section along the width direction of the superconducting laminate is 14.5 mm or more and the thickness of the insulating coating layer is specified to be 12 μm or more. The insulating coating layer forming resin can be applied and baked so as to cover the corners of the laminate, and a structure in which the entire outer periphery including the corners of the superconducting laminate is completely covered with the insulating coating layer can be realized. Therefore, in the high-temperature superconducting wire of the present invention, the superconducting laminate is sealed from the outside by the insulating coating layer, so that moisture and the like can be prevented from entering the oxide superconducting layer, and deterioration of the superconducting characteristics can be suppressed.

本発明の高温超電導線材において、前記金属安定化層が、第1安定化層上に第2安定化層が積層された構造であり、前記第2安定化層が半田を介した金属テープの貼り合わせにより形成され、前記絶縁被覆層が170℃〜200℃の温度で焼付け可能な樹脂より形成されてなることができる。
この場合、絶縁被覆層形成時に、焼付け温度が高くなり過ぎることがなく、半田を介した金属テープの貼り合わせにより形成されている第2安定化層が、樹脂焼付け時に半田が溶融して剥離することを防止できる。
In the high-temperature superconducting wire of the present invention, the metal stabilization layer has a structure in which a second stabilization layer is laminated on the first stabilization layer, and the second stabilization layer is attached to a metal tape via solder. The insulating coating layer may be formed of a resin that can be baked at a temperature of 170 ° C. to 200 ° C.
In this case, when the insulating coating layer is formed, the baking temperature does not become too high, and the second stabilization layer formed by bonding the metal tape through the solder melts and peels off when the resin is baked. Can be prevented.

本発明の高温超電導線材において、前記金属安定化層が、第1安定化層上に第2安定化層が積層された構造であり、前記第2安定化層がめっき又は蒸着により形成され、前記絶縁被覆層が170℃〜280℃の温度で焼付け可能な樹脂より形成されてなることもできる。
この場合、絶縁被覆層7形成時に、焼付け温度が高くなり過ぎることがなく、樹脂焼付け時に酸化物超電導層中の酸素が抜けて酸化物超電導層が劣化することを防止できる。
In the high-temperature superconducting wire of the present invention, the metal stabilization layer has a structure in which a second stabilization layer is laminated on the first stabilization layer, and the second stabilization layer is formed by plating or vapor deposition, The insulating coating layer may be formed of a resin that can be baked at a temperature of 170 ° C. to 280 ° C.
In this case, when the insulating coating layer 7 is formed, the baking temperature does not become excessively high, and it is possible to prevent the oxide superconducting layer from deteriorating due to the loss of oxygen in the oxide superconducting layer during resin baking.

また、本発明の高温超電導線材において、前記絶縁被覆層の外周面を覆い、半硬化の熱硬化性樹脂よりなる半硬化樹脂層を備えることもできる。
この場合、高温超電導線材を巻回した後、樹脂の含浸を行わなくともそのまま加熱することにより、半硬化樹脂層を硬化させてコイル径方向に隣接する高温超電導線材を固定してコイル加工することができる。従って、この形態の高温超電導線材から高温超電導コイルを製造することにより、コイル製造工程を簡素化できるとともに、従来の超電導コイル製造方法と比較して、コイル径方向に隣接する高温超電導線材間の樹脂の厚さを薄くできるため、超電導コイルの電流密度が高く、高性能な超電導コイルが実現可能である。
In the high-temperature superconducting wire of the present invention, a semi-cured resin layer made of a semi-cured thermosetting resin may be provided so as to cover the outer peripheral surface of the insulating coating layer.
In this case, after winding the high-temperature superconducting wire, the semi-cured resin layer is cured by heating as it is without impregnating the resin, and the high-temperature superconducting wire adjacent in the coil radial direction is fixed and coiled. Can do. Therefore, by producing a high-temperature superconducting coil from this form of high-temperature superconducting wire, the coil manufacturing process can be simplified, and the resin between the high-temperature superconducting wires adjacent in the coil radial direction can be compared with the conventional superconducting coil manufacturing method. Therefore, the current density of the superconducting coil is high and a high-performance superconducting coil can be realized.

上記課題を解決するため、本発明の高温超電導コイルは、上記本発明の高温超電導線材高温超電導線材を巻回してなることを特徴とする。
本発明の高温超電導コイルは、上記した本発明の高温超電導線材より構成されているため、超電導積層体が絶縁被覆層により外部から封止された構造であり、酸化物超電導層への水分の浸入を低減できるので、超電導特性の劣化を抑制できる。
In order to solve the above-mentioned problems, the high-temperature superconducting coil of the present invention is formed by winding the high-temperature superconducting wire of the present invention.
Since the high-temperature superconducting coil of the present invention is composed of the above-described high-temperature superconducting wire of the present invention, the superconducting laminate is sealed from the outside with an insulating coating layer, and moisture enters the oxide superconducting layer. Therefore, deterioration of superconducting characteristics can be suppressed.

上記課題を解決するため、本発明の高温超電導コイルにおいて、前記金属安定化層として、第1安定化層上に第2安定化層を積層した構造であり、前記第2安定化層が前記超電導積層体の幅方向に沿う断面における4つの角部を占めるように配置され、前記第2安定化層の角部が前記曲率半径を有する曲面とすることができる。
金属製の第2安定化層の4つの角部を規定の曲率半径の角部とするので、金属製の第2安定化層の4つの角部を規定の曲率半径とすることで目的の構造を実現できる。即ち、角部を覆うように絶縁被覆層形成用の樹脂を塗布・焼付けすることができ、超電導積層体の角部を含む外周全体を絶縁被覆層により完全に覆った構造を実現できる。
In order to solve the above problems, in the high-temperature superconducting coil of the present invention, the metal stabilizing layer has a structure in which a second stabilizing layer is laminated on a first stabilizing layer, and the second stabilizing layer is the superconducting layer. It is arrange | positioned so that four corner | angular parts in the cross section along the width direction of a laminated body may occupy, and the corner | angular part of a said 2nd stabilization layer can be made into the curved surface which has the said curvature radius.
Since the four corners of the metal second stabilization layer are the corners of the specified curvature radius, the target structure is obtained by setting the four corners of the metal second stabilization layer to the specified curvature radius. Can be realized. That is, the resin for forming the insulating coating layer can be applied and baked so as to cover the corner portion, and a structure in which the entire outer periphery including the corner portion of the superconducting laminate is completely covered with the insulating coating layer can be realized.

上記課題を解決するため、本発明の高温超電導コイルにおいて、前記金属安定化層が、第1安定化層上に第2安定化層と第3安定化層を備えた構造であり、前記第2安定化層が前記超電導積層体の幅方向に沿う断面における2つの角部を占めるように、前記第3安定化層が前記超電導積層体の幅方向に沿う断面における残り2つの角部を占めるように配置され、前記第2安定化層の2つの角部と前記第3安定化層の2つの角部が前記曲率半径を有する曲面とされた構造とすることができる。
第2安定化層に加え、第3安定化層を加えた構造においても、第2安定化層と第3安定化層の角部を規定の曲率半径とすることで、目的の構造を実現できる。即ち、角部を覆うように絶縁被覆層形成用の樹脂を塗布・焼付けすることができ、外周全体を絶縁被覆層により完全に覆った構造を実現できる。
In order to solve the above problems, in the high-temperature superconducting coil of the present invention, the metal stabilization layer has a structure including a second stabilization layer and a third stabilization layer on the first stabilization layer, and the second Just as the stabilization layer occupies two corners in the cross section along the width direction of the superconducting laminate, the third stabilization layer occupies the remaining two corners in the cross section along the width direction of the superconducting laminate. And the two corners of the second stabilization layer and the two corners of the third stabilization layer may be curved surfaces having the curvature radius.
Even in the structure in which the third stabilizing layer is added in addition to the second stabilizing layer, the target structure can be realized by setting the corners of the second stabilizing layer and the third stabilizing layer to a prescribed curvature radius. . That is, the resin for forming the insulating coating layer can be applied and baked so as to cover the corners, and a structure in which the entire outer periphery is completely covered with the insulating coating layer can be realized.

上記課題を解決するため、本発明の高温超電導コイルは、上記半硬化樹脂層を備える本発明の高温超電導線材を巻回してなり、コイル径方向に隣接する前記高温超電導線材間に、前記半硬化樹脂層を加熱硬化させてなる樹脂層を備えることを特徴とする。
本発明の高温超電導コイルは、上記した本発明に係る高温超電導線材より形成されているため、従来の超電導コイルと比較して、絶縁被覆層および線材をコイル状に固定する硬化樹脂層の厚さは、従来の超電導コイルよりも薄く、厚さのバラつきも少なくできる。従って、コイル径方向に隣接する高温超電導線材間の間隔を小さくできるので、絶縁樹脂層や硬化樹脂層の厚さが厚くなりすぎることがなく、臨界電流密度の低下を抑制できる超電導コイルとなる。
また、従来、超電導コイルの製造は、超電導線材を巻回した後に、熱硬化性樹脂に含浸させ、さらに、加熱硬化させるという工程を経て行われていた。これに対し、本発明の高温超電導コイルは、半硬化樹脂層を備える高温超電導線材を巻回した後、加熱して半硬化樹脂層を硬化させて硬化樹脂層とすることにより製造でき、従来のコイルにおいて必要であった熱硬化性樹脂の含浸工程を省略できる。従って、本実施形態の高温超電導コイルは、従来の超電導コイルと比較して、簡略化された製造工程で製造できる。
In order to solve the above problems, the high-temperature superconducting coil of the present invention is formed by winding the high-temperature superconducting wire of the present invention provided with the semi-cured resin layer, and the semi-cured between the high-temperature superconducting wires adjacent in the coil radial direction It is provided with the resin layer formed by heat-curing a resin layer.
Since the high-temperature superconducting coil of the present invention is formed from the high-temperature superconducting wire according to the present invention described above, the thickness of the cured resin layer for fixing the insulating coating layer and the wire in a coil shape as compared with the conventional superconducting coil. Is thinner than a conventional superconducting coil and can reduce variations in thickness. Therefore, since the interval between the high-temperature superconducting wires adjacent to each other in the coil radial direction can be reduced, the thickness of the insulating resin layer or the cured resin layer does not become too thick, and the superconducting coil can suppress the decrease in critical current density.
Conventionally, a superconducting coil has been manufactured through a process of winding a superconducting wire, impregnating it with a thermosetting resin, and further heat-curing it. In contrast, the high-temperature superconducting coil of the present invention can be manufactured by winding a high-temperature superconducting wire having a semi-cured resin layer and then heating to cure the semi-cured resin layer to form a cured resin layer. The impregnation step of the thermosetting resin necessary for the coil can be omitted. Therefore, the high temperature superconducting coil of the present embodiment can be manufactured by a simplified manufacturing process as compared with the conventional superconducting coil.

本発明によれば、外周全体が完全に絶縁被覆された高温超電導線材、及び該高温超電導線材を用いてなる高温超電導コイルを提供できる。また、本発明によれば、高電流密度の小型で高性能な高温超電導コイルも提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the high temperature superconducting wire with which the whole outer periphery was completely insulation-coated, and the high temperature superconducting coil which uses this high temperature superconducting wire can be provided. Further, according to the present invention, a small and high-performance high-temperature superconducting coil with a high current density can be provided.

本発明に係る高温超電導線材の第1実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 1st Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の第2実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 2nd Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の第2実施形態の他の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the other example of 2nd Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の第3実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 3rd Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の第4実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 4th Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の一例構造を示す概略斜視図である。It is a schematic perspective view which shows an example structure of the high temperature superconducting wire which concerns on this invention. 図6に示す高温超電導コイルにおいて、コイル径方向に隣接する高温超電導線材の一例構造を示す断面模式図である。FIG. 7 is a schematic cross-sectional view showing an example structure of a high-temperature superconducting wire adjacent to the coil radial direction in the high-temperature superconducting coil shown in FIG. 6. 図8(a)は従来の超電導コイルの一例構造における径方向に沿う部分断面図であり、図8(b)は従来の超電導コイルの他の例における径方向に沿う部分断面図である。FIG. 8A is a partial cross-sectional view along the radial direction in an example structure of a conventional superconducting coil, and FIG. 8B is a partial cross-sectional view along the radial direction in another example of the conventional superconducting coil. 本発明に係る高温超電導線材の第5実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 5th Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の第6実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 6th Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の第7実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 7th Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の第8実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 8th Embodiment of the high-temperature superconducting wire which concerns on this invention. 本発明に係る高温超電導線材の第9実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows 9th Embodiment of the high-temperature superconducting wire which concerns on this invention. 実施例6及び比較例1の耐湿性試験の結果を示すグラフである。It is a graph which shows the result of the moisture resistance test of Example 6 and Comparative Example 1. Bi系の超電導線材の一例構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example structure of Bi type superconducting wire. 希土類系の超電導線材の一例構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example structure of a rare earth-based superconducting wire. 図16に示す超電導線材に絶縁被覆した場合の一例構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example structure at the time of carrying out insulation coating to the superconducting wire shown in FIG.

以下、本発明に係る高温超電導線材および高温超電導コイルの実施形態について図面に基づいて説明する。
[第1実施形態]
図1は本発明に係る高温超電導線材の第1実施形態の幅方向に沿う断面模式図である。
図1に示す高温超電導線材10は、基板11上に中間層12と酸化物超電導層13と金属安定化層4とがこの順に積層されてなる超電導積層体5の外周面上に、超電導積層体5の外周面全体を覆う絶縁被覆層7が形成され構成されている。金属安定化層4は、酸化物超電導層13上に形成された第1安定化層14と、第1安定化層14上に形成された第2安定化層15より構成されている。
Hereinafter, embodiments of a high-temperature superconducting wire and a high-temperature superconducting coil according to the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic cross-sectional view along the width direction of the first embodiment of the high-temperature superconducting wire according to the present invention.
A high-temperature superconducting wire 10 shown in FIG. 1 has a superconducting laminate on an outer peripheral surface of a superconducting laminate 5 in which an intermediate layer 12, an oxide superconducting layer 13, and a metal stabilizing layer 4 are laminated in this order on a substrate 11. 5 is formed and configured to cover the entire outer peripheral surface 5. The metal stabilization layer 4 includes a first stabilization layer 14 formed on the oxide superconducting layer 13 and a second stabilization layer 15 formed on the first stabilization layer 14.

基板11は、通常の超電導線材の基板として使用し得るものであれば良く、長尺のプレート状、シート状又はテープ状であることが好ましく、耐熱性の金属からなるものが好ましい。耐熱性の金属の中でも、合金が好ましく、ニッケル(Ni)合金又は銅(Cu)合金がより好ましい。中でも、市販品であればハステロイ(商品名、ヘインズ社製)が好適であり、モリブデン(Mo)、クロム(Cr)、鉄(Fe)、コバルト(Co)等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。また、基板11としてニッケル(Ni)合金などに集合組織を導入した配向金属基板を用い、その上に中間層12および酸化物超電導層13を形成してもよい。
基板11の厚さは、目的に応じて適宜調整すれば良く、通常は、10〜500μmであることが好ましく、20〜200μmであることがより好ましい。下限値以上とすることで強度が一層向上し、上限値以下とすることでオーバーオールの臨界電流密度を一層向上させることができる。
The substrate 11 may be any substrate that can be used as an ordinary superconducting wire substrate, and is preferably in the form of a long plate, sheet, or tape, and is preferably made of a heat-resistant metal. Among heat resistant metals, an alloy is preferable, and a nickel (Ni) alloy or a copper (Cu) alloy is more preferable. Among them, if it is a commercial product, Hastelloy (trade name, manufactured by Haynes) is suitable, and the amount of components such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co) is different, Hastelloy B, Any kind of C, G, N, W, etc. can be used. Alternatively, an oriented metal substrate in which a texture is introduced into a nickel (Ni) alloy or the like may be used as the substrate 11, and the intermediate layer 12 and the oxide superconducting layer 13 may be formed thereon.
The thickness of the substrate 11 may be appropriately adjusted according to the purpose, and is usually preferably 10 to 500 μm, and more preferably 20 to 200 μm. By setting the lower limit value or more, the strength can be further improved, and by setting the upper limit value or less, the critical current density of the overall can be further improved.

中間層12は、酸化物超電導層13の結晶配向性を制御し、基板11中の金属元素の酸化物超電導層13への拡散を防止するものである。さらに、基板11と酸化物超電導層13との物理的特性(熱膨張率や格子定数等)の差を緩和するバッファー層として機能し、その材質は、物理的特性が基板11と酸化物超電導層13との中間的な値を示す金属酸化物が好ましい。中間層12の好ましい材質として具体的には、GdZr、MgO、ZrO−Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示できる。
中間層12は、単層でも良いし、複数層でも良い。例えば、前記金属酸化物からなる層(金属酸化物層)は、結晶配向性を有していることが好ましく、複数層である場合には、最外層(最も酸化物超電導層13に近い層)が少なくとも結晶配向性を有していることが好ましい。
The intermediate layer 12 controls the crystal orientation of the oxide superconducting layer 13 and prevents diffusion of the metal element in the substrate 11 into the oxide superconducting layer 13. Furthermore, it functions as a buffer layer that alleviates the difference in physical properties (thermal expansion coefficient, lattice constant, etc.) between the substrate 11 and the oxide superconducting layer 13, and the material has physical properties such as the substrate 11 and the oxide superconducting layer. A metal oxide showing an intermediate value of 13 is preferable. Specifically, preferred materials for the intermediate layer 12 are Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2. Examples thereof include metal oxides such as O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .
The intermediate layer 12 may be a single layer or a plurality of layers. For example, the layer made of the metal oxide (metal oxide layer) preferably has crystal orientation, and when it is a plurality of layers, the outermost layer (the layer closest to the oxide superconducting layer 13). Preferably have at least crystal orientation.

中間層12は、基板11側にベッド層が介在された複数層構造でもよい。ベッド層は、耐熱性が高く、界面反応性を低減するためのものであり、その上に配される膜の配向性を得るために用いる。このようなベッド層は、必要に応じて配され、例えば、イットリア(Y)、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)等から構成される。このベッド層は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10〜200nmである。 The intermediate layer 12 may have a multi-layer structure in which a bed layer is interposed on the substrate 11 side. The bed layer has high heat resistance and is used for reducing interfacial reactivity, and is used for obtaining the orientation of a film disposed thereon. Such a bed layer is arranged as necessary, and is made of, for example, yttria (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or the like. Is done. The bed layer is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 200 nm, for example.

さらに、本発明において、中間層12は、基板11側に拡散防止層とベッド層が積層された複数層構造でもよい。この場合、基板11とベッド層との間に拡散防止層が介在された構造となる。拡散防止層は、基板11の構成元素拡散を防止する目的で形成されたもので、窒化ケイ素(Si)、酸化アルミニウム(Al)、あるいは希土類金属酸化物等から構成され、その厚さは例えば10〜400nmである。なお、拡散防止層の結晶性は問われないので、通常のスパッタ法等の成膜法により形成すればよい。
このように基板11とベッド層との間に拡散防止層を介在させることにより、中間層12を構成する他の層や酸化物超電導層13等を形成する際に、必然的に加熱されたり、熱処理される結果として熱履歴を受ける場合に、基板11の構成元素の一部がベッド層を介して酸化物超電導層13側に拡散することを効果的に抑制することができる。基板11とベッド層との間に拡散防止層を介在させる場合の例としては、拡散防止層としてAl、ベッド層としてYを用いる組み合わせを例示することができる。
Further, in the present invention, the intermediate layer 12 may have a multi-layer structure in which a diffusion prevention layer and a bed layer are laminated on the substrate 11 side. In this case, a diffusion preventing layer is interposed between the substrate 11 and the bed layer. The diffusion preventing layer is formed for the purpose of preventing the constituent elements of the substrate 11 from diffusing, and is composed of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), or a rare earth metal oxide, The thickness is, for example, 10 to 400 nm. Note that since the crystallinity of the diffusion preventing layer is not questioned, it may be formed by a film forming method such as a normal sputtering method.
In this way, by interposing the diffusion preventing layer between the substrate 11 and the bed layer, when forming the other layer constituting the intermediate layer 12, the oxide superconducting layer 13, etc., it is inevitably heated, When receiving a thermal history as a result of the heat treatment, it is possible to effectively suppress a part of the constituent elements of the substrate 11 from diffusing to the oxide superconducting layer 13 side through the bed layer. As an example of the case where a diffusion preventing layer is interposed between the substrate 11 and the bed layer, a combination using Al 2 O 3 as the diffusion preventing layer and Y 2 O 3 as the bed layer can be exemplified.

また中間層12は、前記金属酸化物層の上に、さらにキャップ層が積層された複数層構造でも良い。キャップ層は、酸化物超電導層13の配向性を制御する機能を有するとともに、酸化物超電導層13を構成する元素の中間層12への拡散や、酸化物超電導層13積層時に使用するガスと中間層12との反応を抑制する機能等を有するものである。   The intermediate layer 12 may have a multi-layer structure in which a cap layer is further laminated on the metal oxide layer. The cap layer has a function of controlling the orientation of the oxide superconducting layer 13, diffuses the elements constituting the oxide superconducting layer 13 into the intermediate layer 12, and uses a gas and an intermediate used when the oxide superconducting layer 13 is laminated. It has a function of suppressing the reaction with the layer 12 and the like.

キャップ層は、前記金属酸化物層の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層は、前記金属酸化物層よりも高い面内配向度が得られる。
キャップ層の材質は、上記機能を発現し得るものであれば特に限定されないが、好ましいものとして具体的には、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
キャップ層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができるが、大きな成膜速度を得られる点でPLD法を用いることが好ましい。
The cap layer is formed through a process of epitaxially growing on the surface of the metal oxide layer, and then growing the grains in the lateral direction (plane direction) (overgrowth) and selectively growing the crystal grains in the in-plane direction. The ones made are preferred. Such a cap layer has a higher degree of in-plane orientation than the metal oxide layer.
The material of the cap layer is not particularly limited as long as it can exhibit the above functions, but specifically, preferred examples include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , and Zr 2 O. 3 , Ho 2 O 3 , Nd 2 O 3 and the like. When the material of the cap layer is CeO 2 , the cap layer may contain a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
The cap layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like, but it is preferable to use the PLD method from the viewpoint of obtaining a high film formation rate.

中間層12の厚さは、目的に応じて適宜調整すれば良いが、通常は、0.1〜5μmである。
中間層12が、前記金属酸化物層の上にキャップ層が積層された複数層構造である場合には、キャップ層の厚さは、通常は、0.1〜1.5μmである。
The thickness of the intermediate layer 12 may be appropriately adjusted according to the purpose, but is usually 0.1 to 5 μm.
When the intermediate layer 12 has a multi-layer structure in which a cap layer is laminated on the metal oxide layer, the thickness of the cap layer is usually 0.1 to 1.5 μm.

中間層12は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、イオンビームアシスト蒸着法(以下、IBAD法と略記する)等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法で積層できる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層13やキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、結晶の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO−Y(YSZ)からなる中間層12は、IBAD法における配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。 The intermediate layer 12 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, ion beam assisted vapor deposition (hereinafter abbreviated as IBAD); chemical vapor deposition (CVD). ); Coating pyrolysis method (MOD method); lamination can be performed by a known method for forming an oxide thin film such as thermal spraying. In particular, the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 13 and the cap layer is high. The IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface during deposition. Usually, an argon (Ar) ion beam is used as the ion beam. For example, the intermediate layer 12 made of Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) can reduce the value of ΔΦ (FWHM: full width at half maximum) that is an index representing the degree of orientation in the IBAD method. Therefore, it is particularly suitable.

酸化物超電導層13は通常知られている組成の酸化物超電導体からなるものを広く適用することができ、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)なる材質のもの、具体的には、Y123(YBaCu)又はGd123(GdBaCu)を例示することができる。また、その他の酸化物超電導体、例えば、BiSrCan−1Cu4+2n+δなる組成等に代表される臨界温度の高い他の酸化物超電導体からなるものを用いても良いのは勿論である。
酸化物超電導層13は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法)等で積層でき、中でもレーザ蒸着法が好ましい。
酸化物超電導層13の厚みは、0.5〜5μm程度であって、均一な厚みであることが好ましい。
The oxide superconducting layer 13 can be widely applied with an oxide superconductor having a generally known composition, such as REBa 2 Cu 3 O y (RE is Y, La, Nd, Sm, Er, Gd, etc. A material made of a material that represents a rare earth element, specifically, Y123 (YBa 2 Cu 3 O y ) or Gd123 (GdBa 2 Cu 3 O y ) can be exemplified. Further, other oxide superconductors, for example, Bi 2 Sr 2 Ca n- 1 Cu n for O 4 + 2n + δ becomes may be used in compositions such as those made of other oxide superconductors having high critical temperatures representative Of course.
The oxide superconducting layer 13 is laminated by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, or electron beam vapor deposition; chemical vapor deposition (CVD); coating pyrolysis (MOD). Of these, laser vapor deposition is preferred.
The oxide superconducting layer 13 has a thickness of about 0.5 to 5 μm and preferably a uniform thickness.

酸化物超電導層13上に積層されている第1安定化層14は、Agあるいは貴金属などの良電導性かつ酸化物超電導層13と接触抵抗が低くなじみの良い金属材料からなる。
第1安定化層14をAgから構成する理由としては、酸化物超電導層13に酸素をドープするアニール工程において、ドープした酸素を酸化物超電導層13から逃避し難くする性質を有する点を挙げることができる。Agの第1安定化層14を成膜するには、スパッタ法などの成膜法を採用し、その厚さは1〜30μm程度とされる。
The first stabilization layer 14 laminated on the oxide superconducting layer 13 is made of a metal material having good conductivity, such as Ag or a noble metal, having a low contact resistance with the oxide superconducting layer 13 and a good compatibility.
The reason why the first stabilization layer 14 is made of Ag is that it has a property of making it difficult for escape of doped oxygen from the oxide superconducting layer 13 in the annealing step of doping the oxide superconducting layer 13 with oxygen. Can do. In order to form the Ag first stabilizing layer 14, a film forming method such as a sputtering method is employed, and the thickness thereof is set to about 1 to 30 μm.

第1安定化層14上に積層された第2安定化層15は、良導電性の金属材料からなり、酸化物超電導層13が超電導状態から常電導状態に遷移しようとした時に、第1安定化層14とともに、酸化物超電導層13の電流が転流するバイパスとして機能する。
第2安定化層15を構成する金属材料としては、良導電性を有するものであればよく、特に限定されないが、銅、黄銅(Cu−Zn合金)、Cu−Ni合金等の銅合金、ステンレス等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることから銅製が好ましい。
なお、酸化物超電導線材10を超電導限流器に使用する場合は、第2安定化層15は抵抗金属材料より構成され、Ni−Cr等のNi系合金などを使用できる。
The second stabilization layer 15 laminated on the first stabilization layer 14 is made of a highly conductive metal material. When the oxide superconducting layer 13 attempts to transition from the superconducting state to the normal conducting state, the first stabilizing layer 15 is formed. It functions as a bypass through which the current of the oxide superconducting layer 13 commutates together with the oxide layer 14.
The metal material constituting the second stabilization layer 15 is not particularly limited as long as it has good conductivity, but copper alloys such as copper, brass (Cu—Zn alloy), Cu—Ni alloy, stainless steel, and the like. It is preferable to use a material made of a relatively inexpensive material such as copper, and copper is preferable because it has high conductivity and is inexpensive.
In addition, when using the oxide superconducting wire 10 for a superconducting fault current limiter, the 2nd stabilization layer 15 is comprised from a resistance metal material, Ni-type alloys, such as Ni-Cr, etc. can be used.

第2安定化層15の形成方法は特に限定されず、例えば、銅などの良導電性材料よりなる金属テープを半田などの接合剤を介して第1安定化層14上に積層することにより形成できる。ここで、半田を介して金属テープを第1安定化層14上に積層して第2安定化層15を形成する場合に使用できる半田としては、特に限定されず、従来公知の半田を使用可能であり、例えば、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなる鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を1種または2種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。これにより、300℃以下の温度で金属テープと第1安定化層14を半田付けすることが可能となるので、半田付けの熱によって酸化物超電導層13の特性が劣化することを抑止できる。
第2安定化層15の厚さは特に限定されず、適宜調整可能であるが、10〜300μmとすることが好ましい。下限値以上とすることにより酸化物超電導層13を安定化する一層高い効果が得られ、上限値以下とすることにより酸化物超電導線材10を薄型化できる。
The formation method of the 2nd stabilization layer 15 is not specifically limited, For example, it forms by laminating | stacking the metal tape which consists of highly conductive materials, such as copper, on the 1st stabilization layer 14 via bonding agents, such as solder. it can. Here, the solder that can be used when the second stabilization layer 15 is formed by laminating a metal tape on the first stabilization layer 14 via the solder is not particularly limited, and a conventionally known solder can be used. For example, lead-free solder made of an alloy containing Sn as a main component such as Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, Pb—Sn alloy solder, Examples thereof include eutectic solder and low-temperature solder, and these solders can be used alone or in combination of two or more. Among these, it is preferable to use solder having a melting point of 300 ° C. or less. As a result, the metal tape and the first stabilizing layer 14 can be soldered at a temperature of 300 ° C. or lower, and the deterioration of the characteristics of the oxide superconducting layer 13 due to the heat of soldering can be suppressed.
The thickness of the 2nd stabilization layer 15 is not specifically limited, Although it can adjust suitably, it is preferable to set it as 10-300 micrometers. By setting the lower limit value or more, a higher effect of stabilizing the oxide superconducting layer 13 can be obtained, and by setting the upper limit value or less, the oxide superconducting wire 10 can be thinned.

基板11と中間層12と酸化物超電導層13と第1安定化層14と第2安定化層15とが積層された横断面略矩形状の超電導積層体5は、その幅方向に沿う断面における4つの隅側の角部5aが曲率半径を有する曲面とされ、角部5aの曲率半径は14.5mm以上に設定されている。超電導積層体5の角部5aの曲率半径を14.5mm以上とすることにより、後述する絶縁被覆層7を形成する際に、超電導積層体5の角部5aを含む外周全体に均一に樹脂を塗布・焼付けすることができ、超電導積層体5の外周全体を完全に覆う絶縁被覆層7を形成できる。そのため、絶縁被覆層7により超電導積層体5が完全に外部から封止された構造を実現できる。超電導積層体5の角部5aの曲率半径が14.5mm未満の場合、超電導積層体5の角部5aを覆うように絶縁被覆層7形成用の樹脂を塗布できず、角部5a上に絶縁被覆層7が形成できないおそれがあり、好ましくない。
超電導積層体5の角部5aの曲率半径の上限は特に限定されず、超電導積層体5の寸法やアスペクト比(幅/厚さ)により適宜調整可能である。
Superconducting laminate 5 having a substantially rectangular cross section in which substrate 11, intermediate layer 12, oxide superconducting layer 13, first stabilizing layer 14, and second stabilizing layer 15 are laminated has a cross section along the width direction. The corners 5a on the four corner sides are curved surfaces having a radius of curvature, and the radius of curvature of the corner 5a is set to 14.5 mm or more. By setting the radius of curvature of the corner 5a of the superconducting laminate 5 to 14.5 mm or more, the resin is uniformly applied to the entire outer periphery including the corner 5a of the superconducting laminate 5 when the insulating coating layer 7 described later is formed. The insulating coating layer 7 that can be applied and baked and completely covers the entire outer periphery of the superconducting laminate 5 can be formed. Therefore, a structure in which the superconducting laminate 5 is completely sealed from the outside by the insulating coating layer 7 can be realized. When the curvature radius of the corner portion 5a of the superconducting laminate 5 is less than 14.5 mm, the resin for forming the insulating coating layer 7 cannot be applied so as to cover the corner portion 5a of the superconducting laminate 5, and insulation is provided on the corner portion 5a. The coating layer 7 may not be formed, which is not preferable.
The upper limit of the radius of curvature of the corner portion 5a of the superconducting laminate 5 is not particularly limited, and can be appropriately adjusted depending on the dimensions and aspect ratio (width / thickness) of the superconducting laminate 5.

超電導積層体5の角部5aを前記範囲の曲率半径を有する曲面に加工する方法としては、従来公知の面取り加工方法が適用でき、例えば、超電導積層体5の角部を鑢などの工具あるいは研磨装置により研磨することにより所望の曲率半径の角部となるように加工できる。
超電導積層体5の角部を曲面に加工する場合、超電導積層体5を形成した後に角部を加工してもよく、予め基板11の角部11aおよび第2安定化層15の角部15aを曲面に加工した後に、各層を積層して超電導積層体5を形成してもよい。
As a method of processing the corner 5a of the superconducting laminate 5 into a curved surface having a curvature radius in the above range, a conventionally known chamfering method can be applied. It can process so that it may become a corner | angular part of a desired curvature radius by grind | polishing with an apparatus.
When the corner portion of the superconducting laminate 5 is processed into a curved surface, the corner portion may be processed after the superconducting laminate 5 is formed, and the corner portion 11a of the substrate 11 and the corner portion 15a of the second stabilization layer 15 are preliminarily formed. After processing into a curved surface, each layer may be laminated to form superconducting laminate 5.

超電導積層体5の外周全体を覆う絶縁被覆層7は、超電導積層体5の外周全体に樹脂を塗布した後、焼付けすることにより形成されており、その厚さは12μm以上に設定されている。超電導積層体5の角部5aの曲率半径を14.5mm以上とし、且つ、絶縁被覆層7の厚さを12μm以上とすることにより、超電導積層体5の角部5aを覆うように絶縁被覆層7形成用の樹脂を塗布・焼付けすることができ、超電導積層体5の角部5aを含む外周全体が絶縁被覆層7により完全に覆われた構造を実現できる。角部5aの曲率半径が14.5mm未満の場合、超電導積層体5の角部5aを覆うように絶縁被覆層7形成用の樹脂を塗布できず、角部5a上に絶縁被覆層7が形成できないおそれがあり、好ましくない。また、角部の曲率半径が14.5mm以上の場合にも、後述の実施例に示す如く、絶縁被覆層7の厚さが12μm未満であると角部5aを完全に覆うことができない。
絶縁被覆層7の厚さの上限は特に限定されないが、20μm以下とすることが好ましい。絶縁被覆層7の厚さを20μm以下とすることにより、断面積中に示す絶縁被覆層7の面積を削減できるので、高温超電導線材10を小型化できるとともに、高温超電導線材10をコイル加工した場合に、オーバーオールの電流密度を高くすることができる。
The insulating coating layer 7 covering the entire outer periphery of the superconducting laminate 5 is formed by applying a resin to the entire outer periphery of the superconducting laminate 5 and then baking it, and its thickness is set to 12 μm or more. The insulating coating layer is formed so as to cover the corner portion 5a of the superconducting laminate 5 by setting the radius of curvature of the corner portion 5a of the superconducting laminate 5 to 14.5 mm or more and the thickness of the insulating coating layer 7 to 12 μm or more. 7 can be applied and baked, and a structure in which the entire outer periphery including the corner 5a of the superconducting laminate 5 is completely covered with the insulating coating layer 7 can be realized. When the radius of curvature of the corner portion 5a is less than 14.5 mm, the resin for forming the insulating coating layer 7 cannot be applied so as to cover the corner portion 5a of the superconducting laminate 5, and the insulating coating layer 7 is formed on the corner portion 5a. It may not be possible and is not preferable. Further, even when the radius of curvature of the corner is 14.5 mm or more, the corner 5a cannot be completely covered if the thickness of the insulating coating layer 7 is less than 12 μm, as shown in the examples described later.
The upper limit of the thickness of the insulating coating layer 7 is not particularly limited, but is preferably 20 μm or less. When the thickness of the insulating coating layer 7 is 20 μm or less, the area of the insulating coating layer 7 shown in the cross-sectional area can be reduced, so that the high-temperature superconducting wire 10 can be reduced in size and the high-temperature superconducting wire 10 is coiled In addition, the overall current density can be increased.

絶縁被覆層7を構成する樹脂としては、焼付けにより層を形成できるものであれば特に限定されず、例えば、ホルマール樹脂、ウレタン樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル・エーテル・ケトン樹脂(PEEK樹脂)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、パーフルオロアルコシキフッ素樹脂(PFA)、ポリテトラフルオロエチレン(四フッ素化樹脂、PTFE)、エチレン・四フッ化エチレン共重合体(ETFE)等のフッ素樹脂が挙げられる。これらの中でも、170〜200℃の温度で焼付け可能な樹脂が好ましい。このような樹脂を用いることにより、絶縁被覆層7形成時に、焼付け温度が高くなり過ぎることがなく、半田等を介した金属テープの貼り合わせにより形成されている第2安定化層15が、樹脂焼付け時に半田が溶融して剥離することを防止できる。   The resin constituting the insulating coating layer 7 is not particularly limited as long as the layer can be formed by baking. For example, formal resin, urethane resin, polyamideimide resin, polyimide resin, polyester resin, polyether ether ketone Resin (PEEK resin), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), perfluoroalkoxy fluororesin (PFA), polytetrafluoroethylene (tetrafluorinated resin, PTFE), ethylene tetrafluoride Fluorine resin such as ethylene copolymer (ETFE) can be used. Among these, a resin that can be baked at a temperature of 170 to 200 ° C. is preferable. By using such a resin, when the insulating coating layer 7 is formed, the baking temperature does not become too high, and the second stabilization layer 15 formed by bonding metal tape through solder or the like is used as the resin. It is possible to prevent the solder from melting and peeling during baking.

絶縁被覆層7形成時の樹脂の焼付けは、200℃以下、例えば、170〜200℃の温度で行うことが好ましく、焼付け時間は適宜調整すればよい。このような条件で樹脂の焼付けを行うことにより、半田の溶融による第2安定化層15の剥離や、酸化物超電導層13の劣化を抑止できる。
樹脂を塗布する方法は、特に限定されず、ディップコート法やスプレーコート法等、従来公知の方法を適用することができる。
超電導積層体5への絶縁被覆層7の形成は、樹脂の塗布・焼付け処理を一度だけ行ってもよく、所望の厚さの絶縁被覆層7が形成されるまで樹脂の塗布・焼付け処理を複数回繰り返し行ってもよい。
The baking of the resin when forming the insulating coating layer 7 is preferably performed at a temperature of 200 ° C. or lower, for example, 170 to 200 ° C., and the baking time may be adjusted as appropriate. By baking the resin under such conditions, peeling of the second stabilization layer 15 due to melting of the solder and deterioration of the oxide superconducting layer 13 can be suppressed.
The method for applying the resin is not particularly limited, and conventionally known methods such as a dip coating method and a spray coating method can be applied.
The insulating coating layer 7 may be formed on the superconducting laminate 5 by applying and baking the resin only once, and a plurality of resin coating and baking processes may be performed until the insulating coating layer 7 having a desired thickness is formed. It may be repeated repeatedly.

本実施形態の高温超電導線材10は、超電導積層体5の角部5aの曲率半径および絶縁被覆層7の厚さが所定範囲に規定されていることにより、超電導積層体5の角部5aを含む外周全体が絶縁被覆層7により完全に覆われた構造を実現できる。したがって、本実施形態の高温超電導線材10は、超電導積層体5が絶縁被覆層7により外部から封止されており、水分などが酸化物超電導層13に浸入することを低減でき、超電導特性の劣化を抑止できる。   The high-temperature superconducting wire 10 of the present embodiment includes the corner 5a of the superconducting laminate 5 by defining the curvature radius of the corner 5a of the superconducting laminate 5 and the thickness of the insulating coating layer 7 within a predetermined range. A structure in which the entire outer periphery is completely covered with the insulating coating layer 7 can be realized. Therefore, in the high-temperature superconducting wire 10 of the present embodiment, the superconducting laminate 5 is sealed from the outside by the insulating coating layer 7, and it is possible to reduce the intrusion of moisture and the like into the oxide superconducting layer 13 and the deterioration of the superconducting characteristics. Can be suppressed.

[第2実施形態]
図2は本発明に係る高温超電導線材の第2実施形態の幅方向に沿う断面模式図である。
図2に示す高温超電導線材10Bは、基板11上に中間層12と酸化物超電導層13と第1安定化層14とがこの順に積層されてなる矩形断面の積層体S1を中央に備え、この積層体S1の外周全体が第2安定化層15Bにより覆われた横断面略矩形状の超電導積層体5Bの外周面上に、超電導積層体5Bの外周面全体を覆う絶縁被覆層7Bが形成され構成されている。金属安定化層4Bは、酸化物超電導層13上に形成された第1安定化層14と、積層体S1の外周全体を覆う第2安定化層15Bより構成されている。
[Second Embodiment]
FIG. 2 is a schematic cross-sectional view along the width direction of the second embodiment of the high-temperature superconducting wire according to the present invention.
A high-temperature superconducting wire 10B shown in FIG. 2 includes a laminated body S1 having a rectangular cross section in which an intermediate layer 12, an oxide superconducting layer 13, and a first stabilizing layer 14 are laminated in this order on a substrate 11, in the center. An insulating coating layer 7B covering the entire outer peripheral surface of the superconducting laminate 5B is formed on the outer peripheral surface of the superconducting laminate 5B having a substantially rectangular cross section whose entire outer periphery of the laminate S1 is covered with the second stabilization layer 15B. It is configured. The metal stabilization layer 4B includes a first stabilization layer 14 formed on the oxide superconducting layer 13 and a second stabilization layer 15B that covers the entire outer periphery of the multilayer body S1.

本実施形態の高温超電導線材10Bは、第2安定化層15Bが基板11上に中間層12と酸化物超電導層13と第1安定化層14とが積層された積層体S1の外周全体を覆っている点で、上記第1実施形態の高温超電導線材10とは異なっている。図2に示す高温超電導線材10Bにおいて図1に示す高温超電導線材10と同一の構成要素には同一の符号を付し、説明を省略する。   In the high-temperature superconducting wire 10B of the present embodiment, the second stabilizing layer 15B covers the entire outer periphery of the multilayer body S1 in which the intermediate layer 12, the oxide superconducting layer 13, and the first stabilizing layer 14 are laminated on the substrate 11. This is different from the high-temperature superconducting wire 10 of the first embodiment. In the high temperature superconducting wire 10B shown in FIG. 2, the same components as those of the high temperature superconducting wire 10 shown in FIG.

積層体S1の外周全体を覆う第2安定化層15Bは、酸化物超電導層13が超電導状態から常電導状態に遷移しようとした時に、第1安定化層14とともに、酸化物超電導層13の電流が転流するバイパスとして機能する。
第2安定化層15Bは、電気めっき又は蒸着により形成されている。第2安定化層15Bを構成する材質としては、良導電性の金属が好ましく、銅、アルミニウムなどが挙げられ、高い導電性を有するため銅が特に好ましい。第2安定化層15Bの厚さは特に限定されず、適宜変更可能であるが、10〜100μm程度とすることができ、20μm以上100μm以下とすることが好ましく、20μm以上50μm以下とすることがより好ましい。第2安定化層15Bの厚さを10μm以上とすることにより酸化物超電導層13を安定化する一層高い効果が得られ、100μm以下とすることにより高温超電導線材10Bを薄型化できる。
めっきにより銅の第2金属安定化層15Bを形成するには、硫酸銅水溶液のめっき浴中に積層体S1を浸漬させて電気めっきを行えばよい。
The second stabilization layer 15B covering the entire outer periphery of the multilayer body S1 is used together with the first stabilization layer 14 and the current of the oxide superconducting layer 13 when the oxide superconducting layer 13 attempts to transition from the superconducting state to the normal conducting state. Functions as a bypass to commutate.
The second stabilization layer 15B is formed by electroplating or vapor deposition. The material constituting the second stabilizing layer 15B is preferably a highly conductive metal, such as copper or aluminum, and copper is particularly preferable because of high conductivity. The thickness of the second stabilization layer 15B is not particularly limited and can be changed as appropriate. However, the thickness can be set to about 10 to 100 μm, preferably 20 μm to 100 μm, and preferably 20 μm to 50 μm. More preferred. A higher effect of stabilizing the oxide superconducting layer 13 can be obtained by setting the thickness of the second stabilizing layer 15B to 10 μm or more, and the high-temperature superconducting wire 10B can be made thinner by setting the thickness to 100 μm or less.
In order to form the second metal stabilization layer 15B of copper by plating, the laminate S1 may be immersed in a plating bath of an aqueous copper sulfate solution and electroplated.

基板11と中間層12と酸化物超電導層13と第1安定化層14と第2安定化層15Bよりなる超電導積層体5Bは、その幅方向に沿う断面における角部5Baが曲率半径を有する曲面とされ、角部5Baの曲率半径は14.5mm以上に設定されている。超電導積層体5Bの角部5Baの曲率半径を14.5mm以上とすることにより、絶縁被覆層7Bを形成する際に、超電導積層体5Bの角部5Baを含む外周全体に樹脂を塗布・焼付けすることができ、超電導積層体5Bの外周全体を覆う絶縁被覆層7Bを形成できる。
超電導積層体5Bの角部5Baの曲率半径の上限は前記第1実施形態の高温超電導線材10と同様である。
Superconducting laminate 5B composed of substrate 11, intermediate layer 12, oxide superconducting layer 13, first stabilizing layer 14, and second stabilizing layer 15B has a curved surface in which corner portion 5Ba in the cross section along the width direction has a radius of curvature. The curvature radius of the corner 5Ba is set to 14.5 mm or more. By setting the radius of curvature of the corner portion 5Ba of the superconducting laminate 5B to 14.5 mm or more, the resin is applied and baked on the entire outer periphery including the corner portion 5Ba of the superconducting laminate 5B when the insulating coating layer 7B is formed. Insulating coating layer 7B covering the entire outer periphery of superconducting laminate 5B can be formed.
The upper limit of the radius of curvature of the corner 5Ba of the superconducting laminate 5B is the same as that of the high-temperature superconducting wire 10 of the first embodiment.

超電導積層体5Bの角部5Baを前記範囲の曲率半径を有する曲面に加工する方法としては、従来公知の面取り加工方法が適用でき、例えば、超電導積層体5の角部を鑢などの工具あるいは研磨装置により研磨することにより所望の曲率半径の角部となるように加工できる。なお、めっき又は蒸着により形成された第2安定化層15Bはその角部が曲面状になる傾向があるので、第2安定化層15Bがそのままの状態で前記範囲の曲率半径を有する曲面となっている場合、面取り加工は省略できる。なお、曲率は全側面が一致しなくてもその一部が該当する範囲の曲面を有していることで効果が得られるので、一部分であっても良い。
超電導積層体5Bのアスペクト比(幅/厚さ)は前記第1実施形態の高温超電導線材10と同様である。
As a method of processing the corner portion 5Ba of the superconducting laminate 5B into a curved surface having a curvature radius in the above range, a conventionally known chamfering method can be applied. For example, the corner portion of the superconducting laminate 5 can be a tool such as a scissors or polished. It can process so that it may become a corner | angular part of a desired curvature radius by grind | polishing with an apparatus. Since the second stabilizing layer 15B formed by plating or vapor deposition tends to have a curved corner, the second stabilizing layer 15B has a curved surface having a curvature radius in the above range with the second stabilizing layer 15B intact. Chamfering can be omitted. In addition, even if all the side surfaces do not match, a part of the curvature can be obtained because the effect is obtained by having a curved surface in a corresponding range.
The aspect ratio (width / thickness) of the superconducting laminate 5B is the same as that of the high-temperature superconducting wire 10 of the first embodiment.

超電導積層体5Bの外周全体を覆う絶縁被覆層7Bは、超電導積層体5Bの外周全体に樹脂を塗布した後、焼付けすることにより形成されており、その厚さは12μm以上に設定されている。超電導積層体5Bの角部5Baの曲率半径を前記範囲とし、且つ、絶縁被覆層7Bの厚さを12μm以上とすることにより、超電導積層体5の角部5aを覆うように絶縁被覆層7形成用の樹脂を塗布・焼付けすることができ、超電導積層体5Bの角部5Baを含む外周全体が絶縁被覆層7Bにより完全に覆われた構造を実現できる。絶縁被覆層7Bの厚さの上限は特に限定されないが、20μm以下とすることが好ましい。絶縁被覆層7Bの厚さを20μm以下とすることにより、断面積中に示す絶縁被覆層7の面積を削減できるので、高温超電導線材10Bを小型化できるとともに、高温超電導線材10Bをコイル加工した場合に、オーバーオールの高い電流密度が実現できる。   The insulating coating layer 7B covering the entire outer periphery of the superconducting laminate 5B is formed by applying a resin to the entire outer periphery of the superconducting laminate 5B and then baking, and the thickness thereof is set to 12 μm or more. The insulating coating layer 7 is formed so as to cover the corner portion 5a of the superconducting laminate 5 by setting the radius of curvature of the corner portion 5Ba of the superconducting laminate 5B within the above range and the thickness of the insulating coating layer 7B being 12 μm or more. Therefore, a structure in which the entire outer periphery including the corner portion 5Ba of the superconducting laminate 5B is completely covered with the insulating coating layer 7B can be realized. The upper limit of the thickness of the insulating coating layer 7B is not particularly limited, but is preferably 20 μm or less. When the thickness of the insulating coating layer 7B is 20 μm or less, the area of the insulating coating layer 7 shown in the cross-sectional area can be reduced, so that the high-temperature superconducting wire 10B can be downsized and the high-temperature superconducting wire 10B is coiled In addition, a high overall current density can be realized.

絶縁被覆層7Bを構成する樹脂としては、焼付けにより層を形成できるものであれば特に限定されず、前記第1実施形態の高温超電導線材10と同様のものが挙げられる。これらの中でも、280℃以下、例えば、170〜280℃の温度で焼付け可能な樹脂が好ましい。このような樹脂を用いることにより、絶縁被覆層7B形成時に、焼付け温度が高くなり過ぎることがなく、樹脂焼付け時に酸化物超電導層13中の酸素が抜けて酸化物超電導層13が劣化することを防止できる。   The resin constituting the insulating coating layer 7B is not particularly limited as long as the layer can be formed by baking, and the same resin as the high-temperature superconducting wire 10 of the first embodiment can be mentioned. Among these, a resin that can be baked at a temperature of 280 ° C. or lower, for example, 170 to 280 ° C. is preferable. By using such a resin, the baking temperature does not become too high when the insulating coating layer 7B is formed, and the oxide superconducting layer 13 deteriorates due to the release of oxygen in the oxide superconducting layer 13 during resin baking. Can be prevented.

絶縁被覆層7B形成時の樹脂の焼付けは、170〜280℃の温度で行うことが好ましく、焼付け時間は適宜調整すればよい。このような条件で樹脂の焼付けを行うことにより、酸化物超電導層13の劣化を抑止できる。
樹脂を塗布する方法は、特に限定されず、ディップコート法やスプレーコート法等、従来公知の方法を使用することができる。
超電導積層体5Bへの絶縁被覆層7Bの形成は、樹脂の塗布・焼付け処理を一度だけ行ってもよく、所望の厚さの絶縁被覆層7Bが形成されるまで樹脂の塗布・焼付け処理を複数回繰り返し行ってもよい。
The baking of the resin when forming the insulating coating layer 7B is preferably performed at a temperature of 170 to 280 ° C., and the baking time may be adjusted as appropriate. By baking the resin under such conditions, deterioration of the oxide superconducting layer 13 can be suppressed.
The method for applying the resin is not particularly limited, and a conventionally known method such as a dip coating method or a spray coating method can be used.
The insulating coating layer 7B may be formed on the superconducting laminate 5B by applying and baking the resin only once. A plurality of resin coating and baking processes may be performed until the insulating coating layer 7B having a desired thickness is formed. It may be repeated repeatedly.

本実施形態の高温超電導線材10Bは、超電導積層体5Bの角部5Baの曲率半径および絶縁被覆層7Bの厚さが所定範囲に規定されていることにより、超電導積層体5の角部5aを覆うように絶縁被覆層7形成用の樹脂を塗布、焼付けすることができ、超電導積層体5Bの角部5Baを含む外周全体が絶縁被覆層7Bにより完全に覆われた構造を実現できる。したがって、本実施形態の高温超電導線材10Bは、超電導積層体5Bが絶縁被覆層7Bにより外部から封止されており、水分などが酸化物超電導層13に浸入することを低減でき、超電導特性の劣化を抑止できる。   The high-temperature superconducting wire 10B of the present embodiment covers the corner 5a of the superconducting laminate 5 by defining the curvature radius of the corner 5Ba of the superconducting laminate 5B and the thickness of the insulating coating layer 7B within a predetermined range. Thus, the resin for forming the insulating coating layer 7 can be applied and baked, and a structure in which the entire outer periphery including the corner portion 5Ba of the superconducting laminate 5B is completely covered with the insulating coating layer 7B can be realized. Therefore, in the high-temperature superconducting wire 10B of the present embodiment, the superconducting laminate 5B is sealed from the outside by the insulating coating layer 7B, so that moisture or the like can be prevented from entering the oxide superconducting layer 13 and the superconducting characteristics are deteriorated. Can be suppressed.

なお、図2に示す高温超電導線材10Bでは積層体S1の幅方向に沿う矩形断面の4つの角部が角張っている例を示しているが、図3に示す如く積層体S1の角部を面取り加工して曲面としてもよい。図3に示す高温超電導線材10Bにおいて、積層体S1の角部の曲率半径は特に限定されないが、めっきにより第2安定化層15Bを形成した際に、自動的に第2安定化層15Bの角部が前記範囲の曲率半径を有する曲面となるように設定することが好ましい。このように予め積層体S1の角部が曲面となるように面取り加工することにより、積層体S1の外周に形成される第2安定化層15Bが前記範囲の曲率半径を有する曲面とすることもできる。 In the high-temperature superconducting wire 10B shown in FIG. 2, an example is shown in which four corners of a rectangular cross section along the width direction of the laminate S1 are angular, but the corners of the laminate S1 are chamfered as shown in FIG. It may be processed into a curved surface. In the high-temperature superconducting wire 10B 2 shown in FIG. 3, although the radius of curvature of the corners of the stack S1 is not particularly limited, plating by the time of forming the second stabilizing layer 15B, automatically the second stabilizing layer 15B It is preferable that the corner is set to be a curved surface having a radius of curvature in the above range. In this way, the second stabilizing layer 15B formed on the outer periphery of the multilayer body S1 may be a curved surface having a curvature radius in the above range by chamfering so that the corners of the multilayer body S1 are curved in advance. it can.

積層体S1の角部を曲面に加工する方法としては、従来公知の面取り加工方法が適用でき、例えば、積層体S1の角部を鑢などの工具や研磨装置により研磨することにより所望の曲率半径の角部となるように加工できる。
積層体S1の角部を曲面に加工する場合、積層体S1を形成した後に角部を加工してもよく、予め基板11の角部11aを曲面に加工した後に、各層を積層して積層体S1とし、さらに、第1安定化層14の角部14aを曲面に加工してもよい。
As a method of processing the corner portion of the laminated body S1 into a curved surface, a conventionally known chamfering method can be applied. For example, a desired radius of curvature is obtained by polishing the corner portion of the laminated body S1 with a tool such as a scissors or a polishing apparatus. Can be processed to be the corners of
When processing the corners of the laminate S1 into a curved surface, the corners may be processed after forming the laminate S1, and after processing the corner 11a of the substrate 11 into a curved surface in advance, the layers are stacked to form a laminate. In addition, the corner portion 14a of the first stabilization layer 14 may be processed into a curved surface.

[第3実施形態]
図4は本発明に係る高温超電導線材の第3実施形態の幅方向に沿う断面模式図である。
図4に示す高温超電導線材10Cは、基板11上に中間層12と酸化物超電導層13と第1安定化層14とがこの順に積層されてなる超電導積層体5Cの外周面上に、超電導積層体5Cの外周面全体を覆う絶縁被覆層7Cが形成され構成されている。
[Third Embodiment]
FIG. 4 is a schematic cross-sectional view along the width direction of the third embodiment of the high-temperature superconducting wire according to the present invention.
A high-temperature superconducting wire 10C shown in FIG. 4 has a superconducting laminate on the outer peripheral surface of a superconducting laminate 5C in which an intermediate layer 12, an oxide superconducting layer 13, and a first stabilizing layer 14 are laminated in this order on a substrate 11. An insulating coating layer 7C that covers the entire outer peripheral surface of the body 5C is formed and configured.

本実施形態の高温超電導線材10Cは、金属安定化層4Cが第1安定化層14の一層よりなる点で、上記第1実施形態の高温超電導線材10とは異なっている。図4に示す高温超電導線材10Cにおいて図1に示す高温超電導線材10と同一の構成要素には同一の符号を付し、説明を省略する。   The high temperature superconducting wire 10C of the present embodiment is different from the high temperature superconducting wire 10 of the first embodiment in that the metal stabilizing layer 4C is composed of one layer of the first stabilizing layer 14. In the high temperature superconducting wire 10C shown in FIG. 4, the same components as those of the high temperature superconducting wire 10 shown in FIG.

基板11と中間層12と酸化物超電導層13と第1安定化層14よりなる横断面略矩形状の超電導積層体5Cは、その幅方向に沿う断面における角部5Caが曲率半径を有する曲面とされ、角部5Caの曲率半径は14.5mm以上に設定されている。超電導積層体5Cの角部5Caの曲率半径を14.5mm以上とすることにより、絶縁被覆層7Cを形成する際に、超電導積層体5Cの角部5Caを含む外周全体に樹脂を塗布・焼付けすることができ、超電導積層体5Cの外周全体を覆う絶縁被覆層7Cを形成できる。
超電導積層体5Cの角部5Caの曲率半径の上限は前記第1実施形態の高温超電導線材10と同様である。
A superconducting laminate 5C having a substantially rectangular cross section composed of the substrate 11, the intermediate layer 12, the oxide superconducting layer 13, and the first stabilizing layer 14 has a curved surface in which the corner 5Ca in the cross section along the width direction has a radius of curvature. The radius of curvature of the corner 5Ca is set to 14.5 mm or more. By setting the curvature radius of the corner 5Ca of the superconducting laminate 5C to 14.5 mm or more, the resin is applied and baked on the entire outer periphery including the corner 5Ca of the superconducting laminate 5C when the insulating coating layer 7C is formed. Insulating coating layer 7C covering the entire outer periphery of superconducting laminate 5C can be formed.
The upper limit of the radius of curvature of the corner portion 5Ca of the superconducting laminate 5C is the same as that of the high temperature superconducting wire 10 of the first embodiment.

超電導積層体5Cの角部5Caを前記範囲の曲率半径を有する曲面に加工する方法は前記第1実施形態の高温超電導線材10と同様である。
超電導積層体5Cの角部を、前記曲率半径を有する曲面に加工する場合、超電導積層体5Cを形成した後に角部を加工してもよく、予め基板11の角部11aを曲面に加工した後に各層を積層し、さらに、第1安定化層14の角部14aを曲面に加工してもよい。
超電導積層体5Cのアスペクト比(幅/厚さ)は前記第1実施形態の高温超電導線材10と同様である。
The method of processing the corner portion 5Ca of the superconducting laminate 5C into a curved surface having the radius of curvature in the above range is the same as that of the high temperature superconducting wire 10 of the first embodiment.
When processing the corner portion of the superconducting laminate 5C into a curved surface having the radius of curvature, the corner portion may be processed after forming the superconducting laminate 5C, or after processing the corner portion 11a of the substrate 11 into a curved surface in advance. Each layer may be laminated, and the corner portion 14a of the first stabilization layer 14 may be processed into a curved surface.
The aspect ratio (width / thickness) of the superconducting laminate 5C is the same as that of the high-temperature superconducting wire 10 of the first embodiment.

超電導積層体5Cの外周全体を覆う絶縁被覆層7Cは、超電導積層体5Cの外周全体に樹脂を塗布した後、焼付けすることにより形成されており、その厚さは12μm以上に設定されている。超電導積層体5Cの角部5Caの曲率半径を前記範囲とし、且つ、絶縁被覆層7Cの厚さを12μm以上とすることにより、超電導積層体5Cの角部5Caを含む外周全体が絶縁被覆層7Cにより覆われた構造を実現できる。絶縁被覆層7Cの厚さの上限は特に限定されないが、20μm以下とすることが好ましい。絶縁被覆層7Cの厚さを20μm以下とすることにより、断面積中に示す絶縁被覆層7の面積を削減できるので、高温超電導線材10Cを小型化できるとともに、高温超電導線材10Cをコイル加工した場合に、オーバーオールの電流密度を高くすることができる。   The insulating coating layer 7C covering the entire outer periphery of the superconducting laminate 5C is formed by applying a resin to the entire outer periphery of the superconducting laminate 5C and then baking, and the thickness thereof is set to 12 μm or more. By setting the radius of curvature of the corner portion 5Ca of the superconducting laminate 5C within the above range and the thickness of the insulating coating layer 7C being 12 μm or more, the entire outer periphery including the corner portion 5Ca of the superconducting laminate 5C becomes the insulating coating layer 7C. The structure covered with can be realized. The upper limit of the thickness of the insulating coating layer 7C is not particularly limited, but is preferably 20 μm or less. When the thickness of the insulating coating layer 7C is 20 μm or less, the area of the insulating coating layer 7 shown in the cross-sectional area can be reduced, so that the high-temperature superconducting wire 10C can be reduced in size and the high-temperature superconducting wire 10C is coiled In addition, the overall current density can be increased.

絶縁被覆層7Cを構成する樹脂としては、焼付けにより層を形成できるものであれば特に限定されず、前記第1実施形態の高温超電導線材10と同様のものが挙げられる。これらの中でも、170〜280℃の温度で焼付け可能な樹脂が好ましい。このような樹脂を用いることにより、絶縁被覆層7C形成時に、焼付け温度が高くなり過ぎることがなく、樹脂焼付け時に酸化物超電導層13中の酸素が抜けて酸化物超電導層13が劣化することを防止できる。   The resin constituting the insulating coating layer 7C is not particularly limited as long as the layer can be formed by baking, and the same resin as the high-temperature superconducting wire 10 of the first embodiment can be mentioned. Among these, a resin that can be baked at a temperature of 170 to 280 ° C. is preferable. By using such a resin, the baking temperature does not become too high when the insulating coating layer 7C is formed, and the oxide superconducting layer 13 deteriorates due to the release of oxygen in the oxide superconducting layer 13 during resin baking. Can be prevented.

本実施形態の高温超電導線材10Cは、超電導積層体5Cの角部5Caの曲率半径および絶縁被覆層7Cの厚さが所定範囲に規定されていることにより、超電導積層体5の角部5aを覆うように絶縁被覆層7形成用の樹脂を塗布、焼付けすることができ、超電導積層体5Cの角部5Caを含む外周全体が絶縁被覆層7Cにより完全に覆われた構造を実現できる。したがって、本実施形態の高温超電導線材10Cは、超電導積層体5Cが絶縁被覆層7Cにより外部から封止されており、水分などが酸化物超電導層13に浸入することを低減でき、超電導特性の劣化を抑止できる。   The high-temperature superconducting wire 10C of the present embodiment covers the corner 5a of the superconducting laminate 5 by defining the curvature radius of the corner 5Ca of the superconducting laminate 5C and the thickness of the insulating coating layer 7C within a predetermined range. Thus, the resin for forming the insulating coating layer 7 can be applied and baked, and a structure in which the entire outer periphery including the corner portion 5Ca of the superconducting laminate 5C is completely covered with the insulating coating layer 7C can be realized. Therefore, in the high-temperature superconducting wire 10C of the present embodiment, the superconducting laminate 5C is sealed from the outside by the insulating coating layer 7C, and it is possible to reduce the intrusion of moisture and the like into the oxide superconducting layer 13, thereby deteriorating the superconducting characteristics. Can be suppressed.

[第4実施形態]
上記第1〜第3実施形態の高温超電導線材10、10B、10B、10Cは、さらに、絶縁被覆層7、7B、7Cの外周面を覆い、半硬化の熱硬化性樹脂よりなる半硬化樹脂層を備えていることも好ましい。以下に一例として、図3に示す高温超電導線材10Bが半硬化樹脂層を備える場合について説明するが、本発明はこの実施形態に限定されず、上記第1〜第3実施形態の高温超電導線材のいずれも、半硬化樹脂層を有する構成とすることができる。
[Fourth Embodiment]
The first to the high temperature superconducting wire of the third embodiment 10 and 10B, 10B 2, 10C further insulating coating layer 7,7B, covers 7C outer peripheral surface of the semi-cured resin made of a semi-cured thermosetting resin It is also preferred to have a layer. As an example below, but the high-temperature superconducting wire 10B 2 shown in FIG. 3 will be described for the case with a semi-cured resin layer, the present invention is not limited to this embodiment, high-temperature superconducting wire of the first to third embodiments Any of these can have a semi-cured resin layer.

図5は本発明に係る高温超電導線材の第4実施形態の幅方向に沿う断面模式図である。
図5に示す高温超電導線材10Dは、基板11上に中間層12と酸化物超電導層13と第1安定化層14とがこの順に積層されてなる積層体S1を中央に備え、この積層体S1の外周全体が第2安定化層15Bにより覆われた横断面略矩形状の超電導積層体5Bの外周面上に、超電導積層体5Bの外周面全体を覆う絶縁被覆層7Bが形成され、さらに絶縁被覆層7Bの外周面上に絶縁被覆層7Bの外周全体を覆う半硬化樹脂層9が形成されている。図5に示す高温超電導線材10Cにおいて図3に示す高温超電導線材10Bと同一の構成要素には同一の符号を付し、説明を省略する。
FIG. 5: is a cross-sectional schematic diagram along the width direction of 4th Embodiment of the high-temperature superconducting wire which concerns on this invention.
A high-temperature superconducting wire 10D shown in FIG. 5 includes a laminated body S1 in which an intermediate layer 12, an oxide superconducting layer 13, and a first stabilizing layer 14 are laminated in this order on a substrate 11, and this laminated body S1. An insulating covering layer 7B is formed on the outer peripheral surface of the superconducting laminate 5B having a substantially rectangular cross section and the entire outer periphery of the superconducting laminate 5B is covered with the second stabilizing layer 15B. A semi-cured resin layer 9 covering the entire outer periphery of the insulating coating layer 7B is formed on the outer peripheral surface of the coating layer 7B. The same symbols are attached to the same components as HTS wire 10B 2 shown in FIG. 3 in a high temperature superconducting wire 10C shown in FIG. 5, the description thereof is omitted.

絶縁被覆層7Bの外周全体を覆う半硬化樹脂層9は、図3に示す高温超電導線材10Bの外周全体に熱硬化性樹脂を塗布した後、加熱して熱硬化性樹脂を半硬化状態とすることにより形成されている。
半硬化樹脂層9形成時の熱硬化性樹脂の加熱は、150〜200℃の温度で行うことが好ましく、加熱時間は適宜調整すればよい。このような条件で熱硬化性樹脂の加熱を行うことにより、熱硬化性樹脂を半硬化状態にできるとともに、加熱により酸化物超電導層13が劣化することを抑止できる。
The semi-cured resin layer 9 covering the entire outer periphery of the insulating coating layer 7B is obtained by applying a thermosetting resin to the entire outer periphery of the high-temperature superconducting wire 10B 2 shown in FIG. It is formed by doing.
Heating of the thermosetting resin when forming the semi-cured resin layer 9 is preferably performed at a temperature of 150 to 200 ° C., and the heating time may be appropriately adjusted. By heating the thermosetting resin under such conditions, the thermosetting resin can be brought into a semi-cured state, and the oxide superconducting layer 13 can be prevented from being deteriorated by heating.

半硬化樹脂層9の形成に使用できる熱硬化性樹脂としては、前記した加熱条件で半硬化状態になる熱硬化性樹脂であれば特に限定されず、例えば、エポキシ樹脂が挙げられる。
熱硬化性樹脂を塗布する方法は、特に限定されず、ディップコート法やスプレーコート法等、従来公知の方法を使用することができる。
The thermosetting resin that can be used for forming the semi-cured resin layer 9 is not particularly limited as long as it is a thermosetting resin that becomes a semi-cured state under the above-described heating conditions, and examples thereof include an epoxy resin.
The method for applying the thermosetting resin is not particularly limited, and a conventionally known method such as a dip coating method or a spray coating method can be used.

本実施形態の高温超電導線材10Dをコイル加工する場合、高温超電導線材10Dを巻回した後、樹脂の含浸を行わなくともそのまま加熱することにより、半硬化樹脂層9が硬化してコイル径方向に隣接する高温超電導線材10を固定することができる。したがって、本実施形態の高温超電導線材10Dより高温超電導コイルを製造することにより、コイル製造工程を簡素化できるとともに、後述の如く従来の超電導コイル製造方法と比較して、コイル径方向に隣接する高温超電導線材間の樹脂の厚さを薄くできるため、超電導コイルの電流密度を高くすることができる。   When coiling the high-temperature superconducting wire 10D of this embodiment, after winding the high-temperature superconducting wire 10D, the semi-cured resin layer 9 is cured and heated in the coil radial direction without being impregnated with resin. Adjacent high temperature superconducting wire 10 can be fixed. Therefore, by manufacturing a high-temperature superconducting coil from the high-temperature superconducting wire 10D of the present embodiment, the coil manufacturing process can be simplified and, as will be described later, compared to a conventional superconducting coil manufacturing method, a high temperature adjacent to the coil radial direction. Since the thickness of the resin between the superconducting wires can be reduced, the current density of the superconducting coil can be increased.

半硬化樹脂層9の厚さは特に限定されず、適宜調整可能であるが、2〜20μmとすることが好ましく、2〜5μmとすることがより好ましい。半硬化樹脂層9の厚さを前記範囲とすることにより、高温超電導線材10Dをコイル加工した場合に、オーバーオールの電流密度を高くできる。   The thickness of the semi-cured resin layer 9 is not particularly limited and can be appropriately adjusted, but is preferably 2 to 20 μm, and more preferably 2 to 5 μm. By setting the thickness of the semi-cured resin layer 9 in the above range, the overall current density can be increased when the high-temperature superconducting wire 10D is coiled.

次に、本発明に係る超電導コイルの一実施形態について説明する。
図6は、本発明に係る高温超電導コイルの一実施形態を示す概略斜視図である。
図6に示す高温超電導コイル50は、第1のコイル体51上に、第2のコイル体52が、同軸的に積層されて構成されている。
第1のコイル体51は、上述した本発明の高温超電導線材が同心円状、反時計回りに多数回巻回されて構成されたパンケーキ型のコイル体である。第2のコイル体52は、上述した本発明の高温超電導線材が、同心円状、時計回りに多数回巻回されて構成されたパンケーキ型のコイル体である。
Next, an embodiment of a superconducting coil according to the present invention will be described.
FIG. 6 is a schematic perspective view showing an embodiment of the high-temperature superconducting coil according to the present invention.
The high temperature superconducting coil 50 shown in FIG. 6 is configured by coaxially laminating a second coil body 52 on a first coil body 51.
The first coil body 51 is a pancake-type coil body configured by winding the above-described high-temperature superconducting wire of the present invention many times concentrically and counterclockwise. The second coil body 52 is a pancake type coil body formed by concentrically winding the high-temperature superconducting wire of the present invention described above many times in a clockwise direction.

第1のコイル体51の巻回終端である外周端部51aと、第2のコイル体52の巻回端部である外周端部52aとは、互いに隣接するように配されており、外周端部51a、52a側では絶縁被覆層7が除去されて超電導積層体5が引き出された状態とされ、隣接配置された金属安定化層4同士が良導電性の接続板(図示略)により、電気的および機械的に接続されている。   The outer peripheral end portion 51a that is the winding end of the first coil body 51 and the outer peripheral end portion 52a that is the winding end portion of the second coil body 52 are arranged so as to be adjacent to each other. On the side of the parts 51a and 52a, the insulating coating layer 7 is removed and the superconducting laminate 5 is drawn out, and the adjacent metal stabilization layers 4 are electrically connected by a highly conductive connection plate (not shown). Connected mechanically and mechanically.

本実施形態の高温超電導コイル50を構成する高温超電導線材は、上記した本発明の高温超電導線材より構成されているため、超電導積層体5が絶縁被覆層7により外部から封止された構造であるため、酸化物超電導層13への水分の浸入を低減でき、超電導特性が劣化を抑制できる。   Since the high-temperature superconducting wire constituting the high-temperature superconducting coil 50 of the present embodiment is composed of the above-described high-temperature superconducting wire of the present invention, the superconducting laminate 5 is sealed from the outside by the insulating coating layer 7. For this reason, moisture permeation into the oxide superconducting layer 13 can be reduced, and deterioration of the superconducting characteristics can be suppressed.

本実施形態の高温超電導コイル50においては、上記第4実施形態の高温超電導線材10Dの如く絶縁被覆層7Bの外周上に半硬化樹脂層9が形成された線材より構成されることが好ましい。
図7は、本実施形態の高温超電導コイル50が、図5に示す高温超電導線材10Dより構成される場合の、コイル径方向に隣接する高温超電導線材10Dの様子を模式的に示す断面図である。
The high temperature superconducting coil 50 of the present embodiment is preferably composed of a wire material in which a semi-cured resin layer 9 is formed on the outer periphery of the insulating coating layer 7B like the high temperature superconducting wire material 10D of the fourth embodiment.
FIG. 7 is a cross-sectional view schematically showing the state of the high-temperature superconducting wire 10D adjacent in the coil radial direction when the high-temperature superconducting coil 50 of the present embodiment is constituted by the high-temperature superconducting wire 10D shown in FIG. .

図7に示す高温超電導コイル50は、図5に示す高温超電導線材10Dを同心円状に巻回した後に加熱することにより、高温超電導線材10Dの半硬化樹脂層9を硬化させて製造できる。コイル径方向に隣接する高温超電導線材10Dは、半硬化樹脂層9が硬化した硬化樹脂層9Gにより固定されている。   The high temperature superconducting coil 50 shown in FIG. 7 can be manufactured by curing the semi-cured resin layer 9 of the high temperature superconducting wire 10D by heating the high temperature superconducting wire 10D shown in FIG. 5 after concentric winding. The high-temperature superconducting wire 10D adjacent in the coil radial direction is fixed by a cured resin layer 9G obtained by curing the semi-cured resin layer 9.

従来、超電導コイルの製造は、超電導線材を巻回した後に、熱硬化性樹脂に含浸させ、さらに、加熱硬化させるという工程を経て行われていた。これに対し、図6に示す本実施形態の高温超電導コイル50は、半硬化樹脂層9を備える高温超電導線材10Dを巻回した後、加熱して半硬化樹脂層9を硬化させて硬化樹脂層9Gとすることにより製造でき、従来のコイルにおいて必要であった熱硬化性樹脂の含浸工程を省略できる。従って、本実施形態の高温超電導コイル50は、従来の超電導コイルと比較して、簡略化された製造工程で製造できる。また、製造工程を簡略化できるので、製造コストを抑えることができる。   Conventionally, the production of a superconducting coil has been performed through a process of winding a superconducting wire, impregnating it with a thermosetting resin, and further heat-curing it. On the other hand, in the high temperature superconducting coil 50 of this embodiment shown in FIG. 6, after winding the high temperature superconducting wire 10D provided with the semi-cured resin layer 9, the semi-cured resin layer 9 is cured by heating to cure the cured resin layer. It can be manufactured by using 9G, and the impregnation step of the thermosetting resin that is necessary in the conventional coil can be omitted. Therefore, the high-temperature superconducting coil 50 of the present embodiment can be manufactured by a simplified manufacturing process as compared with the conventional superconducting coil. Further, since the manufacturing process can be simplified, the manufacturing cost can be suppressed.

図8(a)は従来の超電導コイルの一例構造における径方向に沿う部分断面図であり、図8(b)は従来の超電導コイルの他の例における径方向に沿う部分断面図である。
図8(a)に示す超電導コイル310は、基板上に中間層と酸化物超電導層と金属安定化層とが順次積層された超電導線材311と、絶縁性の樹脂テープ312を重ね合わせた状態で、同心円状に巻回してコイル状とした後に、このコイル状物を熱硬化性樹脂に含浸させて加熱硬化させた樹脂層315により固定することにより形成される。この形態の超電導コイル310では、使用する樹脂テープ312の厚さが50μmを下回ると巻回時の作業性が悪くなる傾向にあり、また、樹脂テープ312の厚さが50μmを超えて厚くなり過ぎると、超電導コイル310の臨界電流密度が低下してしまう。さらに、超電導線材311の長手方向における樹脂層315Aの厚さは不均一になりやすい。
FIG. 8A is a partial cross-sectional view along the radial direction in an example structure of a conventional superconducting coil, and FIG. 8B is a partial cross-sectional view along the radial direction in another example of the conventional superconducting coil.
The superconducting coil 310 shown in FIG. 8A has a superconducting wire 311 in which an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer are sequentially laminated on a substrate, and an insulating resin tape 312 overlaid. It is formed by winding concentrically into a coil shape and then fixing it with a resin layer 315 which is impregnated with a thermosetting resin and heat-cured. In the superconducting coil 310 of this form, when the thickness of the resin tape 312 to be used is less than 50 μm, the workability during winding tends to deteriorate, and the thickness of the resin tape 312 exceeds 50 μm and becomes too thick. Then, the critical current density of the superconducting coil 310 is lowered. Furthermore, the thickness of the resin layer 315A in the longitudinal direction of the superconducting wire 311 tends to be non-uniform.

図8(b)に示す超電導コイル320は、基板上に中間層と酸化物超電導層と金属安定化層とが順次積層された超電導線材321の外周に絶縁性の樹脂テープ322を巻きつけたものを同心円状に巻回してコイル状とした後に、このコイル状物を熱硬化性樹脂に含浸させて加熱硬化させた樹脂層325により固定することにより形成される。この形態の超電導コイル320では、使用する樹脂テープ322の厚さが50μmを下回ると超電導線材321への巻き付け時の作業性が悪くなる傾向にあり、また、樹脂テープ322の厚さが厚くなり過ぎると、超電導コイル320の臨界電流密度が低下してしまう。さらに、超電導線材321の長手方向における樹脂層325Aの厚さは不均一になりやすい。     A superconducting coil 320 shown in FIG. 8B is obtained by winding an insulating resin tape 322 around the outer periphery of a superconducting wire 321 in which an intermediate layer, an oxide superconducting layer, and a metal stabilizing layer are sequentially laminated on a substrate. Are coiled to form a coil shape, and then the coiled material is impregnated with a thermosetting resin and fixed by a heat-cured resin layer 325. In the superconducting coil 320 of this form, when the thickness of the resin tape 322 to be used is less than 50 μm, the workability at the time of winding around the superconducting wire 321 tends to deteriorate, and the thickness of the resin tape 322 becomes too thick. Then, the critical current density of the superconducting coil 320 is lowered. Furthermore, the thickness of the resin layer 325A in the longitudinal direction of the superconducting wire 321 tends to be non-uniform.

本実施形態の高温超電導コイル50は、上記した本発明に係る高温超電導線材を巻回して形成されているため、図8(a)および図8(b)に示す超電導コイル310、320と比較して、樹脂の塗布・焼付けにより形成された絶縁被覆層7は薄く、また、熱硬化性樹脂の塗布・加熱により形成された半硬化樹脂層9の厚さは薄く、厚さのバラつきも少ない。そのため、超電導コイル50における絶縁被覆層7および硬化樹脂層9Gの厚さは、図8に示す超電導コイル310、320の樹脂テープ312、322および樹脂層315、325の厚さよりも薄く、厚さのバラつきも少なくできる。従って、コイル径方向に隣接する高温超電導線材(超電導積層体5B)間の間隔を小さくできるので、絶縁樹脂層7や硬化樹脂層9Gの厚さが厚くなりすぎることがなく、臨界電流密度を高くすることができる超電導コイル50となる。   Since the high-temperature superconducting coil 50 of this embodiment is formed by winding the high-temperature superconducting wire according to the present invention described above, it is compared with the superconducting coils 310 and 320 shown in FIGS. 8 (a) and 8 (b). Thus, the insulating coating layer 7 formed by applying and baking the resin is thin, and the semi-cured resin layer 9 formed by applying and heating the thermosetting resin is thin, and the thickness variation is small. Therefore, the thickness of the insulating coating layer 7 and the cured resin layer 9G in the superconducting coil 50 is smaller than the thickness of the resin tapes 312 and 322 and the resin layers 315 and 325 of the superconducting coils 310 and 320 shown in FIG. There can be less variation. Therefore, since the interval between the high-temperature superconducting wires (superconducting laminate 5B) adjacent in the coil radial direction can be reduced, the thickness of the insulating resin layer 7 and the cured resin layer 9G does not become too thick, and the critical current density is increased. It becomes the superconducting coil 50 which can do.

[第5実施形態]
図9は本発明に係る高温超電導線材の第5実施形態の横断面模式図である。
図9に示す高温超電導線材10Eは、基板11の一方の面上に中間層12と酸化物超電導層13と第1安定化層14とをこの順に積層し、この積層物の周面を第2安定化層15Eで覆ってなる超電導積層体5Eの周面上に、絶縁被覆層7Eが形成されている。第2安定化層15Eは基板11の他方の面の中央部を除いて前記積層物の周面を横断面C字型をなすように覆っていて、先の第1実施形態の第2安定化層15と同等材料からなる。第2安定化層15Eにより覆われていない基板11の他方の面の中央部は半田層25により覆われ、半田層25は第2安定化層15Eの端縁どうしが形成する凹部を埋めるように形成されている。また、絶縁被覆層7Eは先の第1実施形態の絶縁被覆層7と同等のものである。
図9に示す高温超電導線材10Eにおいて図1に示す高温超電導線材10と同一の構成要素については同一の符号を付し、詳しい説明を省略する。
[Fifth Embodiment]
FIG. 9 is a schematic cross-sectional view of a fifth embodiment of the high-temperature superconducting wire according to the present invention.
In the high-temperature superconducting wire 10E shown in FIG. 9, the intermediate layer 12, the oxide superconducting layer 13, and the first stabilizing layer 14 are laminated in this order on one surface of the substrate 11, and the peripheral surface of the laminate is formed as the second surface. An insulating coating layer 7E is formed on the peripheral surface of the superconducting laminate 5E covered with the stabilization layer 15E. The second stabilization layer 15E covers the peripheral surface of the laminate so as to form a C-shaped cross section except for the central portion of the other surface of the substrate 11, and the second stabilization layer of the first embodiment described above. The layer 15 is made of the same material. The central portion of the other surface of the substrate 11 that is not covered by the second stabilization layer 15E is covered by the solder layer 25, and the solder layer 25 fills the recess formed by the edges of the second stabilization layer 15E. Is formed. The insulating coating layer 7E is equivalent to the insulating coating layer 7 of the first embodiment.
In the high temperature superconducting wire 10E shown in FIG. 9, the same components as those of the high temperature superconducting wire 10 shown in FIG.

基板11と中間層12と酸化物超電導層13と第1安定化層14と第2安定化層15Eからなる横断面略矩形状の超電導積層体5Eにおいて、その幅方向に沿う断面における角部5Eaが曲率半径を有する曲面とされ、角部5Eaの曲率半径は14.5mm以上に設定されている。超電導積層体5Eの角部5Eaの曲率半径を14.5mm以上とすることにより、絶縁被覆層7Eを形成する際に、超電導積層体5Eの角部5Eaを含む外周全体に樹脂を塗布・焼付けすることができ、超電導積層体5Eの外周全体を覆う絶縁被覆層7Eを形成できる。超電導積層体5Eの角部5Eaの曲率半径の上限は前記第1実施形態の高温超電導線材10と同様である。
この第5実施形態の構造においても先の第1実施形態の構造と同様の作用効果を得ることができる。
In the superconducting laminate 5E having a substantially rectangular cross section composed of the substrate 11, the intermediate layer 12, the oxide superconducting layer 13, the first stabilizing layer 14, and the second stabilizing layer 15E, the corner 5Ea in the cross section along the width direction thereof. Is a curved surface having a radius of curvature, and the radius of curvature of the corner 5Ea is set to 14.5 mm or more. By setting the radius of curvature of the corner portion 5Ea of the superconducting laminate 5E to 14.5 mm or more, the resin is applied and baked on the entire outer periphery including the corner portion 5Ea of the superconducting laminate 5E when the insulating coating layer 7E is formed. Insulating coating layer 7E covering the entire outer periphery of superconducting laminate 5E can be formed. The upper limit of the radius of curvature of the corner 5Ea of the superconducting laminate 5E is the same as that of the high-temperature superconducting wire 10 of the first embodiment.
Also in the structure of the fifth embodiment, the same effect as that of the structure of the first embodiment can be obtained.

[第6実施形態]
図10は本発明に係る高温超電導線材の第6実施形態の横断面模式図である。
図10に示す高温超電導線材10Fにおいて、基板11の一方の面上に中間層12と酸化物超電導層13と第1安定化層14とをこの順に積層し、この積層物の周面を第2安定化層15Fで覆い、更にその一面上に第3安定化層16Fを積層して超電導積層体5Fが構成されている。第2安定化層15Fは基板11の他方の面の中央部を除いて前記積層物の周面を横断面C字型をなすように覆っていて、先の第1実施形態の第2安定化層15と同等材料からなる。第2安定化層15Fにより覆われていない基板11の他方の面の中央部は半田層25により覆われ、半田層25は第2安定化層15Fの端縁どうしが形成する凹部を埋めるように形成されている。また、第2安定化層15Fに対し半田層25を設けた位置の外側に第2安定化層15Fと同じ幅の銅テープなどからなる第3安定化層16Fを沿わせて超電導積層体5Fが構成され、この超電導積層体5Fの外方に絶縁被覆層7Eが形成されている。図10に示す高温超電導線材10Fにおいて図9に示す高温超電導線材10Eと同一の構成要素には同一の符号を付し、詳細な説明を略する。
[Sixth Embodiment]
FIG. 10 is a schematic cross-sectional view of a sixth embodiment of the high-temperature superconducting wire according to the present invention.
In the high-temperature superconducting wire 10F shown in FIG. 10, the intermediate layer 12, the oxide superconducting layer 13, and the first stabilizing layer 14 are laminated in this order on one surface of the substrate 11, and the peripheral surface of this laminate is formed as the second surface. The superconducting laminate 5F is configured by covering with the stabilization layer 15F and further laminating the third stabilization layer 16F on one surface thereof. The second stabilization layer 15F covers the peripheral surface of the laminate so as to form a C-shaped cross section except for the central portion of the other surface of the substrate 11, and the second stabilization layer of the first embodiment. The layer 15 is made of the same material. The central portion of the other surface of the substrate 11 that is not covered by the second stabilization layer 15F is covered by the solder layer 25, and the solder layer 25 fills the recess formed by the edges of the second stabilization layer 15F. Is formed. Further, the superconducting laminate 5F is arranged along the third stabilization layer 16F made of a copper tape having the same width as the second stabilization layer 15F outside the position where the solder layer 25 is provided with respect to the second stabilization layer 15F. An insulating coating layer 7E is formed outside the superconducting laminate 5F. In the high-temperature superconducting wire 10F shown in FIG. 10, the same components as those in the high-temperature superconducting wire 10E shown in FIG. 9 are denoted by the same reference numerals, and detailed description thereof is omitted.

基板11と中間層12と酸化物超電導層13と第1安定化層14と第2安定化層15Fと第3安定化層16Fよりなる横断面略矩形状の超電導積層体5Fにおいて、その幅方向に沿う断面における角部5Faが曲率半径を有する曲面とされ、角部5Faの曲率半径は14.5mm以上に設定されている。超電導積層体5Fの角部5Faの曲率半径を14.5mm以上とすることにより、絶縁被覆層7Eを形成する際に、超電導積層体5Fの角部5Faを含む外周全体に樹脂を塗布・焼付けすることができ、超電導積層体5Fの外周全体を覆う絶縁被覆層7Eを形成できる。超電導積層体5Fの角部5Faの曲率半径の上限は前記先の実施形態の高温超電導線材10Eと同様である。なお、本実施形態では、超電導積層体5Fの4つの角部のうち、第2安定化層15Fによって2つの角部が構成され、第3安定化層16Fによって他の2つの角部が構成されている。なお、図10に示す構造においては、第3安定化層16Fを半田層25の外側に配置したが、第3安定化層16Fを酸化物超電導層13に近い側に配置しても良い。即ち、第1安定化層14の外側に積層された第2安定化層15Fの外側に接するように第3安定化層16Fが積層されていても良い。酸化物超電導層13に近い位置に第3安定化層16Fを配置した方が超電導特性の安定化の面では有利である。
この第6実施形態の構造においても先の第1実施形態の構造と同様の作用効果を得ることができる。
In the superconducting laminate 5F having a substantially rectangular cross section composed of the substrate 11, the intermediate layer 12, the oxide superconducting layer 13, the first stabilizing layer 14, the second stabilizing layer 15F, and the third stabilizing layer 16F, its width direction The corner 5Fa in the cross-section along the line is a curved surface having a radius of curvature, and the radius of curvature of the corner 5Fa is set to 14.5 mm or more. By setting the curvature radius of the corner portion 5Fa of the superconducting laminate 5F to 14.5 mm or more, the resin is applied and baked on the entire outer periphery including the corner portion 5Fa of the superconducting laminate 5F when the insulating coating layer 7E is formed. Insulating coating layer 7E covering the entire outer periphery of superconducting laminate 5F can be formed. The upper limit of the radius of curvature of the corner portion 5Fa of the superconducting laminate 5F is the same as that of the high temperature superconducting wire 10E of the previous embodiment. In the present embodiment, of the four corners of the superconducting laminate 5F, two corners are constituted by the second stabilization layer 15F, and the other two corners are constituted by the third stabilization layer 16F. ing. In the structure shown in FIG. 10, the third stabilization layer 16 </ b> F is disposed outside the solder layer 25, but the third stabilization layer 16 </ b> F may be disposed near the oxide superconducting layer 13. That is, the third stabilization layer 16F may be laminated so as to be in contact with the outside of the second stabilization layer 15F laminated on the outside of the first stabilization layer 14. It is advantageous in terms of stabilizing the superconducting characteristics that the third stabilizing layer 16F is disposed at a position close to the oxide superconducting layer 13.
Also in the structure of the sixth embodiment, the same effect as that of the structure of the first embodiment can be obtained.

[第7実施形態]
図11は本発明に係る高温超電導線材の第7実施形態の横断面模式図である。
図11に示す高温超電導線材10Gは、基板11の一方の面上に中間層12と酸化物超電導層13と第1安定化層14とをこの順に積層し、基板11の他方の面上にスズ箔をフォーミングすることにより接合層17を形成してなる積層物の周面を第2安定化層15Gで覆ってなる超電導積層体5Gの周面上に、絶縁被覆層7Eが形成されている。第2安定化層15Gは基板11の他方の面側の中央部を除いて前記積層物の周面を横断面C字型をなすように覆っていて、先の第1実施形態の第2安定化層15と同等材料からなる。第2安定化層15Eにより覆われていない基板11の他方の面側の接合層17の中央部は半田層25により覆われ、半田層25は第2安定化層15Gの端縁どうしが形成する凹部を埋めるように形成されている。なお、接合層17と半田層25を同一材料で構成することも可能なので、同一材料で構成する場合は接合層17と半田層25は一体構造とされる。
図11に示す高温超電導線材10Gにおいて図9に示す高温超電導線材10Eと同一の構成要素については同一の符号を付し、詳細な説明を略する。
[Seventh Embodiment]
FIG. 11 is a schematic cross-sectional view of a seventh embodiment of the high-temperature superconducting wire according to the present invention.
In the high-temperature superconducting wire 10G shown in FIG. 11, an intermediate layer 12, an oxide superconducting layer 13, and a first stabilizing layer 14 are laminated in this order on one surface of the substrate 11, and tin is formed on the other surface of the substrate 11. An insulating coating layer 7E is formed on the peripheral surface of the superconducting laminate 5G in which the peripheral surface of the laminate formed by forming the bonding layer 17 by forming the foil is covered with the second stabilization layer 15G. The second stabilization layer 15G covers the peripheral surface of the laminate so as to form a C-shaped cross section except for the central portion on the other surface side of the substrate 11, and the second stabilization layer 15G of the previous first embodiment. It is made of the same material as the chemical layer 15. The central portion of the bonding layer 17 on the other side of the substrate 11 that is not covered by the second stabilization layer 15E is covered by the solder layer 25, and the solder layer 25 is formed by the edges of the second stabilization layer 15G. It is formed so as to fill the recess. Since the bonding layer 17 and the solder layer 25 can be made of the same material, the bonding layer 17 and the solder layer 25 have an integral structure when they are made of the same material.
In the high-temperature superconducting wire 10G shown in FIG. 11, the same components as those of the high-temperature superconducting wire 10E shown in FIG. 9 are denoted by the same reference numerals, and detailed description thereof is omitted.

基板11と中間層12と酸化物超電導層13と第1安定化層14と接合層17と第2安定化層15Gからなる横断面略矩形状の超電導積層体5Gにおいて、その幅方向に沿う断面における角部5Gaが曲率半径を有する曲面とされ、角部5Gaの曲率半径は14.5mm以上に設定されている。超電導積層体5Gの角部5Gaの曲率半径を14.5mm以上とすることにより、絶縁被覆層7Eを形成する際に、超電導積層体5Gの角部5Gaを含む外周全体に樹脂を塗布・焼付けすることができ、超電導積層体5Gの外周全体を覆う絶縁被覆層7Eを形成できる。超電導積層体5Gの角部5Gaの曲率半径の上限は先の実施形態の高温超電導線材10Eと同様である。
この第7実施形態の構造においても先の第1実施形態の構造と同様の作用効果を得ることができる。
A cross section along the width direction of a superconducting laminate 5G having a substantially rectangular cross section comprising a substrate 11, an intermediate layer 12, an oxide superconducting layer 13, a first stabilizing layer 14, a bonding layer 17, and a second stabilizing layer 15G. The corner 5Ga is a curved surface having a radius of curvature, and the radius of curvature of the corner 5Ga is set to 14.5 mm or more. By setting the radius of curvature of the corner portion 5Ga of the superconducting laminate 5G to 14.5 mm or more, the resin is applied and baked on the entire outer periphery including the corner portion 5Ga of the superconducting laminate 5G when the insulating coating layer 7E is formed. Insulating coating layer 7E covering the entire outer periphery of superconducting laminate 5G can be formed. The upper limit of the radius of curvature of the corner portion 5Ga of the superconducting laminate 5G is the same as that of the high temperature superconducting wire 10E of the previous embodiment.
Also in the structure of the seventh embodiment, the same effect as that of the structure of the first embodiment can be obtained.

[第8実施形態]
図12は本発明に係る高温超電導線材の第8実施形態の横断面模式図である。
図12に示す高温超電導線材10Hにおいて、基板11の一方の面上に中間層12と酸化物超電導層13と第1安定化層14とをこの順に積層し、基板11の他方の面にスズ箔をフォーミングすることにより接合層17を形成してなる積層物の周面を第2安定化層15Hで覆い、更にその一面上に第3安定化層16Hを積層して超電導積層体5Hが構成されている。第2安定化層15Hは基板11の他方の面の接合層17の外側中央部を除いて前記積層物の周面を横断面C字型をなすように覆っていて、先の第1実施形態の第2安定化層15と同等材料からなる。第2安定化層15Hにより覆われていない接合層17の外側中央部は半田層25により覆われ、半田層25は第2安定化層15Hの端縁どうしが形成する凹部を埋めるように形成されている。また、第2安定化層15Hに対し半田層25を設けた位置の外側にC字型の第2安定化層15Hと同じ幅の銅テープなどからなる第3安定化層16Hを沿わせて超電導積層体5Hが構成され、この超電導積層体5Hの外方に絶縁被覆層7Eが形成されている。
図12に示す高温超電導線材10Hにおいて図9に示す高温超電導線材10Eと同一の構成要素には同一の符号を付し、説明を省略する。
[Eighth Embodiment]
FIG. 12 is a schematic cross-sectional view of an eighth embodiment of the high-temperature superconducting wire according to the present invention.
In the high-temperature superconducting wire 10H shown in FIG. 12, the intermediate layer 12, the oxide superconducting layer 13, and the first stabilizing layer 14 are laminated in this order on one surface of the substrate 11, and the tin foil is laminated on the other surface of the substrate 11. A superconducting laminate 5H is formed by covering the peripheral surface of the laminate formed by forming the bonding layer 17 with the second stabilizing layer 15H and further laminating the third stabilizing layer 16H on the one surface. ing. The second stabilizing layer 15H covers the peripheral surface of the laminate so as to form a C-shaped cross section except for the outer central portion of the bonding layer 17 on the other surface of the substrate 11, and the first embodiment described above. The second stabilizing layer 15 is made of the same material. The outer central portion of the bonding layer 17 that is not covered by the second stabilization layer 15H is covered by the solder layer 25, and the solder layer 25 is formed so as to fill the recess formed by the edges of the second stabilization layer 15H. ing. Further, the third stabilization layer 16H made of a copper tape or the like having the same width as the C-shaped second stabilization layer 15H is placed outside the position where the solder layer 25 is provided with respect to the second stabilization layer 15H. A laminated body 5H is configured, and an insulating coating layer 7E is formed outside the superconducting laminated body 5H.
In the high-temperature superconducting wire 10H shown in FIG. 12, the same components as those in the high-temperature superconducting wire 10E shown in FIG.

基板11と中間層12と酸化物超電導層13と第1安定化層14と第2安定化層15Hと第3安定化層16Hよりなる横断面略矩形状の超電導積層体5Hは、その幅方向に沿う断面における角部5Haが曲率半径を有する曲面とされ、角部5Haの曲率半径は14.5mm以上に設定されている。超電導積層体5Hの角部5Haの曲率半径を14.5mm以上とすることにより、絶縁被覆層7Eを形成する際に、超電導積層体5Hの角部5Haを含む外周全体に樹脂を塗布・焼付けすることができ、超電導積層体5Hの外周全体を覆う絶縁被覆層7Eを形成できる。超電導積層体5Hの角部5Haの曲率半径の上限は前記先の実施形態の高温超電導線材10Eと同様である。なお、図12に示す構造においては、第3安定化層16Hを半田層25の外側に配置したが、第3安定化層16Hを酸化物超電導層13に近い側に配置しても良い。即ち、第1安定化層14の外側に積層された第2安定化層15Fの外側に接するように第3安定化層16Hが積層されていても良い。
この第8実施形態の構造においても先の第1実施形態と同様の効果を得ることができる。
The superconducting laminate 5H having a substantially rectangular cross section composed of the substrate 11, the intermediate layer 12, the oxide superconducting layer 13, the first stabilizing layer 14, the second stabilizing layer 15H, and the third stabilizing layer 16H has a width direction. The corner 5Ha in the cross section along the line is a curved surface having a radius of curvature, and the radius of curvature of the corner 5Ha is set to 14.5 mm or more. By setting the radius of curvature of the corner portion 5Ha of the superconducting laminate 5H to 14.5 mm or more, the resin is applied and baked on the entire outer periphery including the corner portion 5Ha of the superconducting laminate 5H when the insulating coating layer 7E is formed. Insulating coating layer 7E covering the entire outer periphery of superconducting laminate 5H can be formed. The upper limit of the radius of curvature of the corner 5Ha of the superconducting laminate 5H is the same as that of the high-temperature superconducting wire 10E of the previous embodiment. In the structure shown in FIG. 12, the third stabilization layer 16H is disposed outside the solder layer 25. However, the third stabilization layer 16H may be disposed near the oxide superconducting layer 13. That is, the third stabilization layer 16H may be laminated so as to be in contact with the outside of the second stabilization layer 15F laminated on the outside of the first stabilization layer 14.
In the structure of the eighth embodiment, the same effect as that of the first embodiment can be obtained.

[第9実施形態]
図13は本発明に係る高温超電導線材の第9実施形態の横断面模式図である。
図13に示す高温超電導線材10Jにおいて、基板11の一方の面上に中間層12と酸化物超電導層13と第1安定化層14とをこの順に積層してなる超電導積層体5Jの外周面上に、超電導積層体5Jの一側面中央側に端縁を突き合わせて半田付けあるいは溶接して全体を横断面C字型をなして覆う第2の安定化層15Jが形成され、更にその外方に絶縁被覆層7Eが形成されている。なお、第2の安定化層15Jは、先の第1実施形態の第2安定化層15と同等材料からなる。
図13に示す高温超電導線材10Jにおいて図9に示す高温超電導線材10Eと同一の構成要素には同一の符号を付し、説明を省略する。
[Ninth Embodiment]
FIG. 13: is a cross-sectional schematic diagram of 9th Embodiment of the high temperature superconducting wire which concerns on this invention.
In the high-temperature superconducting wire 10J shown in FIG. 13, on the outer peripheral surface of the superconducting laminate 5J in which the intermediate layer 12, the oxide superconducting layer 13, and the first stabilizing layer 14 are laminated in this order on one surface of the substrate 11. In addition, a second stabilizing layer 15J is formed which covers the whole with a C-shaped cross section by abutting the end edge to the center of one side surface of the superconducting laminate 5J and soldering or welding, and further to the outside. An insulating coating layer 7E is formed. The second stabilization layer 15J is made of the same material as the second stabilization layer 15 of the first embodiment.
In the high-temperature superconducting wire 10J shown in FIG. 13, the same components as those in the high-temperature superconducting wire 10E shown in FIG.

基板11と中間層12と酸化物超電導層13と第1安定化層14と第2安定化層15Jからなる横断面略矩形状の超電導積層体5Jは、その幅方向に沿う断面における角部5Jaが曲率半径を有する曲面とされ、角部5Jaの曲率半径は14.5mm以上に設定されている。超電導積層体5Jの角部5Jaの曲率半径を14.5mm以上とすることにより、絶縁被覆層7Eを形成する際に、超電導積層体5Jの角部5Jaを含む外周全体に樹脂を塗布・焼付けすることができ、超電導積層体5Jの外周全体を覆う絶縁被覆層7Eを形成できる。超電導積層体5Jの角部5Jaの曲率半径の上限は前記先の実施形態の高温超電導線材10Eと同様である。
この第9実施形態の構造においても先の第1実施形態の構造と同様の作用効果を得ることができる。
以上、本発明の高温超電導線材および高温超電導コイルについて説明したが、上記実施形態において、高温超電導線材および高温超電導コイルを構成する各部一例であって、本発明の範囲を逸脱しない範囲で適宜変更することが可能である。
The superconducting laminate 5J having a substantially rectangular cross section composed of the substrate 11, the intermediate layer 12, the oxide superconducting layer 13, the first stabilizing layer 14, and the second stabilizing layer 15J has a corner portion 5Ja in a section along the width direction. Is a curved surface having a radius of curvature, and the radius of curvature of the corner 5Ja is set to 14.5 mm or more. By setting the curvature radius of the corner portion 5Ja of the superconducting laminate 5J to 14.5 mm or more, the resin is applied and baked on the entire outer periphery including the corner portion 5Ja of the superconducting laminate 5J when the insulating coating layer 7E is formed. Insulating coating layer 7E covering the entire outer periphery of superconducting laminate 5J can be formed. The upper limit of the radius of curvature of the corner 5Ja of the superconducting laminate 5J is the same as that of the high-temperature superconducting wire 10E of the previous embodiment.
Also in the structure of the ninth embodiment, the same effect as that of the structure of the first embodiment can be obtained.
As described above, the high temperature superconducting wire and the high temperature superconducting coil of the present invention have been described. It is possible.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例および比較例における評価方法は以下の通りである。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples. The evaluation methods in the following examples and comparative examples are as follows.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例および比較例における評価方法は以下の通りである。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples. The evaluation methods in the following examples and comparative examples are as follows.

[1]外観
外観の目視、および、マイクロメータによる寸法測定により、高温超電導線材における絶縁被覆層の被覆状態を確認した。外観(被覆)に異常が無い場合を「○」、被覆されているが被覆厚が薄い部分がある場合を「△」、被覆されておらず露出している箇所がある場合を「×」と判定した。
[1] Appearance The coating state of the insulating coating layer in the high-temperature superconducting wire was confirmed by visual inspection of the appearance and measurement with a micrometer. “○” indicates that there is no abnormality in the appearance (covering), “△” indicates that there is a portion where the coating is thin but the coating thickness is thin, and “×” indicates that there is an uncovered portion that is not covered. Judged.

[2]超電導特性
絶縁被覆層を形成前の超電導積層体の77Kにおける臨界電流値Ic0と、絶縁被覆層を形成後の高温超電導線材の77Kにおける臨界電流値Icを測定し、絶縁被覆層の形成前後の臨界電流値の比率Ic/Ic0を求め、Ic/Ic0が0.95以上の場合を「○」、Ic/Ic0が0.95未満の場合を「×」と判定した。
[2] Superconducting characteristics Measure the critical current value Ic0 at 77K of the superconducting laminate before forming the insulating coating layer and the critical current value Ic at 77K of the high-temperature superconducting wire after forming the insulating coating layer to form the insulating coating layer. The ratio Ic / Ic0 between the front and rear critical current values was determined, and a case where Ic / Ic0 was 0.95 or more was determined as “◯”, and a case where Ic / Ic0 was less than 0.95 was determined as “x”.

[3]耐溶剤試験
JIS C 3003の標準溶媒を使用し、60℃の溶剤(キシレン)中に高温超電導線材を30分間浸漬した後の、高温超電導線材の絶縁被覆層の有無を目視又は光学顕微鏡で観察した。
被覆に異常が無い場合を「○」、被覆が溶融しているなどの異常がある場合を「×」と判定した。
[3] Solvent resistance test Using a standard solvent of JIS C 3003, the presence or absence of the insulation coating layer of the high-temperature superconducting wire after immersion of the high-temperature superconducting wire in a solvent (xylene) at 60 ° C. for 30 minutes is visually or optical microscope Observed at.
The case where there was no abnormality in the coating was determined as “◯”, and the case where there was an abnormality such as melting of the coating was determined as “x”.

[4]耐薬品試験
JIS C 3003に準拠し、室温の希硫酸中に高温超電導線材を24時間浸漬した後、高温超電導線材の絶縁被覆層の被覆状態を目視又は光学顕微鏡で確認した。
被覆に異常が無い場合を「○」、被覆が溶融しているなどの異常がある場合を「×」と判定した。
[4] Chemical resistance test In accordance with JIS C 3003, the high-temperature superconducting wire was immersed in dilute sulfuric acid at room temperature for 24 hours, and then the coating state of the insulating coating layer of the high-temperature superconducting wire was confirmed visually or with an optical microscope.
The case where there was no abnormality in the coating was determined as “◯”, and the case where there was an abnormality such as melting of the coating was determined as “x”.

(実施例1:サンプル1〜5)
幅5mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基板上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、パルスレーザー蒸着法(PLD法)により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚の銀層(第1安定化層)を形成した。その後、0.1mm厚の銅テープ(第2安定化層)を錫半田(融点230℃)により銀層上に積層し、この積層体の幅方向の角部(四隅)に対して研磨することにより幅方向に沿う断面の角部の曲率半径を14.5mmとして、幅5mm、厚さ0.21mm、アスペクト比24の超電導積層体を作製した。
(Example 1: Samples 1 to 5)
On the substrate made of tape-like Hastelloy (trade name, manufactured by Haynes, USA) having a width of 5 mm and a thickness of 0.1 mm, an Al 2 O 3 (diffusion prevention layer; film thickness of 150 nm) film was formed by sputtering. Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) was formed on the bed layer by ion beam assisted sputtering (IBAD method), and then 1.0 μm thick CeO 2 (PLD method) was formed by pulsed laser deposition (PLD method). (Cap layer) was formed. Next, a 1.0 μm-thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by the PLD method, and an 8 μm-thick silver layer (first stabilization) is formed on the oxide superconducting layer by the sputtering method. Layer). Thereafter, a 0.1 mm thick copper tape (second stabilizing layer) is laminated on the silver layer with tin solder (melting point 230 ° C.), and the corners (four corners) in the width direction of the laminate are polished. Thus, a superconducting laminate having a width of 5 mm, a thickness of 0.21 mm, and an aspect ratio of 24 was prepared by setting the radius of curvature of the corner of the cross section along the width direction to 14.5 mm.

次に、作製した超電導積層体に、表1に示す焼付温度で、30分間、ホルマール樹脂(チッソ社製、ビニレックF)を焼き付けて、厚さ20μmの絶縁被覆層を形成して図1に示す構造の高温超電導線材を作製した。
作製したサンプル1〜5の高温超電導線材について、外観、超電導特性、耐溶剤試験の評価を行った結果を表1に併記した。
Next, a formal resin (manufactured by Chisso Corporation, Vinylec F) is baked on the produced superconducting laminate at the baking temperature shown in Table 1 for 30 minutes to form an insulating coating layer having a thickness of 20 μm and shown in FIG. A high-temperature superconducting wire with a structure was prepared.
Table 1 also shows the results of evaluating the appearance, superconducting properties, and solvent resistance test of the produced high-temperature superconducting wires of Samples 1 to 5.

Figure 0005841862
Figure 0005841862

表1の結果より、第2安定化層を銅テープの貼り合わせで形成した実施例1の高温超電導線材では、サンプル2〜4に示す如く絶縁被覆層形成時の樹脂の焼付けを170〜200℃で行うことにより、良好な外観、超電導特性および耐溶剤性となっていた。
これに対し、焼付け温度が155℃のサンプル5では、絶縁被覆層形成時の樹脂の焼付けが充分ではなく、形成された絶縁被覆層の耐溶剤性が低くなっていた。また、焼付け温度が230℃のサンプル1では、樹脂の焼付け時に錫半田が溶融して銅テープの剥離が起こり、外観および超電導特性が劣化していた。
この結果より、本発明の高温超電導線材において第2安定化層が金属テープの張り合わせにより形成されている場合は、170〜200℃の温度で焼付け可能な樹脂より絶縁被覆層が形成されていることが好ましいことが明らかである。
From the results of Table 1, in the high-temperature superconducting wire of Example 1 in which the second stabilizing layer was formed by laminating copper tape, the resin was baked at 170 to 200 ° C. when forming the insulating coating layer as shown in Samples 2 to 4. As a result, good appearance, superconducting properties and solvent resistance were obtained.
On the other hand, in sample 5 having a baking temperature of 155 ° C., the resin was not sufficiently baked when forming the insulating coating layer, and the solvent resistance of the formed insulating coating layer was low. In sample 1 with a baking temperature of 230 ° C., the tin solder melted during the baking of the resin and the copper tape peeled off, and the appearance and superconducting properties deteriorated.
From this result, in the high-temperature superconducting wire according to the present invention, when the second stabilizing layer is formed by laminating a metal tape, the insulating coating layer is formed from a resin that can be baked at a temperature of 170 to 200 ° C. Is clearly preferred.

(実施例2:サンプル6〜12)
幅10mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基板上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、PLD法により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚の銀層(第1安定化層)を形成して積層体を作製した。その後、この積層体を硫酸銅水溶液のめっき浴に浸漬して電気めっきを行うことにより、積層体の外周面上に厚さ20μmの銅層(第2安定化層)を形成することにより幅方向に沿う断面の角部の曲率半径25mm、幅10mm、厚さ0.15mm、アスペクト比66の超電導積層体を作製した。
(Example 2: Samples 6 to 12)
On a substrate made of tape-shaped Hastelloy (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm, an Al 2 O 3 (diffusion prevention layer; film thickness of 150 nm) film was formed by sputtering. Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) is formed on the bed layer by ion beam assisted sputtering (IBAD), and then 1.0 μm thick CeO 2 (cap layer) is formed by PLD. did. Next, a 1.0 μm-thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by the PLD method, and an 8 μm-thick silver layer (first stabilization) is formed on the oxide superconducting layer by the sputtering method. Layer) to form a laminate. Thereafter, the laminate is immersed in a copper sulfate aqueous plating bath and electroplated to form a copper layer (second stabilizing layer) having a thickness of 20 μm on the outer peripheral surface of the laminate. A superconducting laminate having a curvature radius of 25 mm, a width of 10 mm, a thickness of 0.15 mm, and an aspect ratio of 66 at the corner of the cross section along the line A was prepared.

次に、作製した超電導積層体に、表2に示す焼付温度で、30分間、ホルマール樹脂(チッソ社製、ビニレックF)を焼き付けて、厚さ20μmの絶縁被覆層を形成して図2に示す構造の高温超電導線材を作製した。
作製したサンプル6〜12の高温超電導線材について、外観、超電導特性、耐溶剤試験の評価を行った結果を表2に併記した。
Next, a formal resin (manufactured by Chisso Corp., Vinylec F) is baked on the produced superconducting laminate for 30 minutes at the baking temperature shown in Table 2 to form an insulating coating layer having a thickness of 20 μm and shown in FIG. A high-temperature superconducting wire with a structure was prepared.
Table 2 also shows the results of evaluating the appearance, superconducting properties, and solvent resistance test of the produced high-temperature superconducting wires of Samples 6 to 12.

Figure 0005841862
Figure 0005841862

表2の結果より、第2安定化層をめっきにより形成した実施例2の高温超電導線材では、サンプル7〜11に示す如く絶縁被覆層形成時の樹脂の焼付けを170〜280℃で行うことにより、良好な外観、超電導特性および耐溶剤性となっていた。
これに対し、焼付け温度が155℃のサンプル12では、絶縁被覆層形成時の樹脂の焼付けが充分ではなく、形成された絶縁被覆層の耐溶剤性が低くなっていた。また、焼付け温度が300℃のサンプル6では、樹脂の焼付け時に酸化物超電導層から酸素が抜けて劣化し、超電導特性が劣化していた。
From the results of Table 2, in the high-temperature superconducting wire of Example 2 in which the second stabilizing layer was formed by plating, as shown in Samples 7 to 11, the resin was baked at 170 to 280 ° C. when forming the insulating coating layer. It had good appearance, superconducting properties and solvent resistance.
On the other hand, in sample 12 having a baking temperature of 155 ° C., the resin was not sufficiently baked when forming the insulating coating layer, and the solvent resistance of the formed insulating coating layer was low. Further, in sample 6 having a baking temperature of 300 ° C., oxygen was lost from the oxide superconducting layer when the resin was baked, resulting in deterioration of superconducting properties.

この結果より、本発明の高温超電導線材において第2安定化層がめっきにより形成されている場合は、170〜280℃の温度で焼付け可能な樹脂より絶縁被覆層が形成されていることが好ましいことが明らかである。   From this result, when the second stabilization layer is formed by plating in the high-temperature superconducting wire of the present invention, it is preferable that the insulating coating layer be formed from a resin that can be baked at a temperature of 170 to 280 ° C. Is clear.

(実施例3:サンプル13〜19)
幅5mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基板上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、PLD法により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚の銀層(第1安定化層)を形成した。その後、0.1mm厚の銅テープ(第2安定化層)を錫半田(融点230℃)により銀層上に積層し、この積層体の幅方向の角部(四隅)に対して研磨することにより、角部の曲率半径を表3に示す値として、幅5mm、厚さ0.21mm、アスペクト比24の超電導積層体を作製した。
(Example 3: Samples 13 to 19)
On the substrate made of tape-like Hastelloy (trade name, manufactured by Haynes, USA) having a width of 5 mm and a thickness of 0.1 mm, an Al 2 O 3 (diffusion prevention layer; film thickness of 150 nm) film was formed by sputtering. Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) is formed on the bed layer by ion beam assisted sputtering (IBAD), and then 1.0 μm thick CeO 2 (cap layer) is formed by PLD. did. Next, a 1.0 μm-thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by the PLD method, and an 8 μm-thick silver layer (first stabilization) is formed on the oxide superconducting layer by the sputtering method. Layer). Thereafter, a 0.1 mm thick copper tape (second stabilizing layer) is laminated on the silver layer with tin solder (melting point 230 ° C.), and the corners (four corners) in the width direction of the laminate are polished. Thus, a superconducting laminate having a width of 5 mm, a thickness of 0.21 mm, and an aspect ratio of 24 was prepared using the curvature radius of the corner as shown in Table 3.

次に、作製した超電導積層体に、185℃で、30分間、ホルマール樹脂(チッソ社製、ビニレックF)を焼き付けて、表3に示す厚さの絶縁被覆層を形成して図1に示す構造の高温超電導線材を作製した。なお、絶縁被覆層の厚さは、焼付け回数を調整することにより行った。
作製したサンプル13〜19の高温超電導線材について、外観、超電導特性、耐薬品試験の評価を行った結果を表3に併記した。
Next, a formal resin (manufactured by Chisso Corporation, Vinylec F) is baked on the produced superconducting laminate at 185 ° C. for 30 minutes to form an insulating coating layer having a thickness shown in Table 3 and shown in FIG. A high-temperature superconducting wire was prepared. In addition, the thickness of the insulating coating layer was performed by adjusting the number of times of baking.
Table 3 also shows the results of evaluation of appearance, superconducting characteristics, and chemical resistance test for the produced high-temperature superconducting wires of Samples 13 to 19.

Figure 0005841862
Figure 0005841862

表3の結果より、本発明に係るサンプル15〜19の高温超電導線材では、超電導積層体の幅方向に沿う断面の角部の曲率半径を14.5mm以上とし、且つ、絶縁被覆層の厚さを12μm以上とすることにより、良好な外観、超電導特性および耐薬品性となっていた。
これに対し、絶縁被覆層の厚さが20μmであり本発明所定範囲を満たすが、角部の曲率半径が12mmであり本発明所定範囲よりも小さいサンプル13では、角部が被覆されていないために、角部から薬品が浸み込んで耐薬品性が低くなっていた。また、角部の曲率半径が14.5mmであり本発明所定範囲を満たすが、絶縁被覆層の厚さが7μmであり本発明所定範囲よりも薄いサンプル14では、外観試験では角部が辛うじて被覆されており△判定であったが、耐薬品試験の結果が悪くなっており、角部が完全には被覆されていないことが明らかとなった。
From the results of Table 3, in the high-temperature superconducting wires of Samples 15 to 19 according to the present invention, the radius of curvature of the cross section along the width direction of the superconducting laminate is 14.5 mm or more, and the thickness of the insulating coating layer By setting the thickness to 12 μm or more, good appearance, superconducting properties, and chemical resistance were obtained.
On the other hand, the thickness of the insulating coating layer is 20 μm and satisfies the predetermined range of the present invention. However, the sample 13 having a corner radius of curvature of 12 mm and smaller than the predetermined range of the present invention does not cover the corners. In addition, the chemicals penetrated from the corners, and the chemical resistance was low. Further, in the sample 14 where the radius of curvature of the corner portion is 14.5 mm and satisfies the predetermined range of the present invention, but the thickness of the insulating coating layer is 7 μm and is thinner than the predetermined range of the present invention, the corner portion is barely covered in the appearance test. However, the result of the chemical resistance test was deteriorated, and it was revealed that the corners were not completely covered.

(実施例4:サンプル20〜22)
幅10mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基板上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、PLD法により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚の銀層(第1安定化層)を形成して積層体を作製した。その後、この積層体を硫酸銅水溶液のめっき浴に浸漬して電気めっきを行うことにより、積層体の外周面上に厚さ20μmの銅層(第2安定化層)を形成し、この積層体の幅方向の角部(四隅)に対して研磨することにより幅方向に沿う断面の角部の曲率半径を表4に示す値として、幅10mm、厚さ0.15mm、アスペクト比66の超電導積層体を作製した。
(Example 4: Samples 20 to 22)
On a substrate made of tape-shaped Hastelloy (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm, an Al 2 O 3 (diffusion prevention layer; film thickness of 150 nm) film was formed by sputtering. Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) is formed on the bed layer by ion beam assisted sputtering (IBAD), and then 1.0 μm thick CeO 2 (cap layer) is formed by PLD. did. Next, a 1.0 μm-thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by the PLD method, and an 8 μm-thick silver layer (first stabilization) is formed on the oxide superconducting layer by the sputtering method. Layer) to form a laminate. Thereafter, the laminate is immersed in a plating bath of an aqueous copper sulfate solution and electroplated to form a copper layer (second stabilizing layer) having a thickness of 20 μm on the outer peripheral surface of the laminate. The superconducting laminate having a width of 10 mm, a thickness of 0.15 mm, and an aspect ratio of 66 is obtained by polishing the corners (four corners) in the width direction as shown in Table 4. The body was made.

次に、作製した超電導積層体に、185℃で、30分間、ホルマール樹脂(例えばチッソ社製、ビニレックF)を焼き付けて、厚さ15μmの絶縁被覆層を形成して図2に示す構造の高温超電導線材を作製した。
作製したサンプル20〜22の高温超電導線材について、外観、超電導特性、耐薬品試験の評価を行った結果を表4に併記した。
Next, a formal resin (for example, Vinylec F manufactured by Chisso Co., Ltd.) is baked on the produced superconducting laminate for 30 minutes at 185 ° C. to form an insulating coating layer having a thickness of 15 μm. A superconducting wire was produced.
Table 4 shows the results of evaluation of the appearance, superconducting characteristics, and chemical resistance test of the produced high-temperature superconducting wires of Samples 20 to 22.

Figure 0005841862
Figure 0005841862

表4の結果より、本発明に係るサンプル20〜22の高温超電導線材では、超電導積層体の幅方向に沿う断面の角部の曲率半径を14.5mm以上とし、且つ、絶縁被覆層の厚さを12μm以上とすることにより、良好な外観、超電導特性および耐薬品性となっていた。   From the results of Table 4, in the high-temperature superconducting wires of Samples 20 to 22 according to the present invention, the curvature radius of the corner portion of the cross section along the width direction of the superconducting laminate is 14.5 mm or more, and the thickness of the insulating coating layer By setting the thickness to 12 μm or more, good appearance, superconducting properties, and chemical resistance were obtained.

(実施例5:サンプル23〜25)
幅10mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基板上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、PLD法により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚の銀層(第1安定化層)を形成して積層体を作製した。その後、この積層体の幅方向の角部(四隅)に対して研磨することにより幅方向に沿う断面の角部の曲率半径を表5に示す値として、幅10mm、厚さ0.11mm、アスペクト比91の超電導積層体を作製した。
(Example 5: Samples 23 to 25)
On a substrate made of tape-shaped Hastelloy (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm, an Al 2 O 3 (diffusion prevention layer; film thickness of 150 nm) film was formed by sputtering. Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) is formed on the bed layer by ion beam assisted sputtering (IBAD), and then 1.0 μm thick CeO 2 (cap layer) is formed by PLD. did. Next, a 1.0 μm-thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by the PLD method, and an 8 μm-thick silver layer (first stabilization) is formed on the oxide superconducting layer by the sputtering method. Layer) to form a laminate. Then, by polishing the corners (four corners) in the width direction of this laminate, the radius of curvature of the corners of the cross section along the width direction is set to the values shown in Table 5, and the width is 10 mm, the thickness is 0.11 mm, the aspect A superconducting laminate having a ratio of 91 was produced.

次に、作製した超電導積層体に、185℃で、30分間、ホルマール樹脂(例えばチッソ社製、ビニレックF)を焼き付けて、厚さ15μmの絶縁被覆層を形成して図4に示す構造の高温超電導線材を作製した。
作製したサンプル23〜25の高温超電導線材について、外観、超電導特性、耐薬品試験の評価を行った結果を表5に併記した。
Next, a formal resin (for example, Vinylec F, manufactured by Chisso Corporation) is baked on the produced superconducting laminate for 30 minutes at 185 ° C. to form an insulating coating layer having a thickness of 15 μm. A superconducting wire was produced.
Table 5 also shows the results of evaluation of appearance, superconducting characteristics, and chemical resistance test for the produced high-temperature superconducting wires of Samples 23 to 25.

Figure 0005841862
Figure 0005841862

表5の結果より、本発明に係るサンプル23〜25の高温超電導線材では、超電導積層体の幅方向に沿う断面の角部の曲率半径を14.5mm以上とし、且つ、絶縁被覆層の厚さを12μm以上とすることにより、良好な外観、超電導特性および耐薬品性となっていた。 From the results of Table 5, in the high-temperature superconducting wires of Samples 23 to 25 according to the present invention, the radius of curvature of the cross section along the width direction of the superconducting laminate is 14.5 mm or more, and the thickness of the insulating coating layer By setting the thickness to 12 μm or more, good appearance, superconducting properties, and chemical resistance were obtained.

(実施例6)
幅5mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基板上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、PLD法により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚の銀層(第1安定化層)を形成した。その後、0.1mm厚の銅テープ(第2安定化層)を錫半田(融点230℃)により銀層上に積層し、この積層体の幅方向の角部(四隅)に対して研磨することにより幅方向に沿う断面の角部の曲率半径を14.5mmとして、幅5mm、厚さ0.21mm、アスペクト比24の超電導積層体を作製した。
(Example 6)
On the substrate made of tape-like Hastelloy (trade name, manufactured by Haynes, USA) having a width of 5 mm and a thickness of 0.1 mm, an Al 2 O 3 (diffusion prevention layer; film thickness of 150 nm) film was formed by sputtering. Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) is formed on the bed layer by ion beam assisted sputtering (IBAD), and then 1.0 μm thick CeO 2 (cap layer) is formed by PLD. did. Next, a 1.0 μm-thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by the PLD method, and an 8 μm-thick silver layer (first stabilization) is formed on the oxide superconducting layer by the sputtering method. Layer). Thereafter, a 0.1 mm thick copper tape (second stabilizing layer) is laminated on the silver layer with tin solder (melting point 230 ° C.), and the corners (four corners) in the width direction of the laminate are polished. Thus, a superconducting laminate having a width of 5 mm, a thickness of 0.21 mm, and an aspect ratio of 24 was prepared by setting the radius of curvature of the corner of the cross section along the width direction to 14.5 mm.

次に、作製した超電導積層体に、185℃で、30分間、ホルマール樹脂(例えばチッソ社製、ビニレックF)を焼き付けて、厚さ15μmの絶縁被覆層を形成して図1に示す構造の高温超電導線材を作製した。   Next, a formal resin (for example, Vinylec F manufactured by Chisso Co., Ltd.) is baked on the produced superconducting laminate for 30 minutes at 185 ° C. to form an insulating coating layer having a thickness of 15 μm. A superconducting wire was produced.

(比較例1)
絶縁被覆層を形成しなかったこと以外は、実施例6と同様にして高温超電導線材を作製した。
(Comparative Example 1)
A high-temperature superconducting wire was produced in the same manner as in Example 6 except that the insulating coating layer was not formed.

実施例6および比較例1の高温超電導線材について、温度126℃、湿度85%、2気圧の高温高湿下に0〜48時間放置する耐湿試験を行い、試験前の臨界電流値Ic0(77K)に対する試験後の臨界電流値Ic(77K)の比率Ic/Ic0を求めた。結果を図14にプロットした。図14において、Ic/Ic0が1.0に近いほど、超電導特性の保持率が高く、耐湿性が高いことを示す。
図14の結果より、実施例6の高温超電導線材は、絶縁被覆層を備える構成であることにより、絶縁被覆層を有さない比較例1と比較して、超電導特性の保持率が高く、耐湿性が高くなっていた。
The high-temperature superconducting wire of Example 6 and Comparative Example 1 was subjected to a moisture resistance test in which it was allowed to stand for 0 to 48 hours under a high temperature and high humidity of 126 ° C., 85% humidity and 2 atmospheres, and a critical current value Ic0 (77K) before the test. The ratio Ic / Ic0 of the critical current value Ic (77K) after the test was calculated. The results are plotted in FIG. In FIG. 14, the closer Ic / Ic0 is to 1.0, the higher the superconducting property retention ratio and the higher the moisture resistance.
From the result of FIG. 14, the high temperature superconducting wire of Example 6 has a structure having an insulating coating layer, and therefore has a higher superconducting property retention ratio and moisture resistance than Comparative Example 1 having no insulating coating layer. The nature was getting higher.

(実施例7)
幅10mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基板上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、PLD法により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚の銀層(第1安定化層)を形成して積層体を作製した。その後、この積層体を硫酸銅水溶液のめっき浴に浸漬して電気めっきを行うことにより、積層体の外周面上に厚さ20μmの銅層(第2安定化層)を形成し、この積層体の幅方向の角部(四隅)に対して研磨することにより幅方向に沿う断面の角部の曲率半径を14.5mmとして、幅10mm、厚さ0.15mm、アスペクト比66の超電導積層体を作製した。
(Example 7)
On a substrate made of tape-shaped Hastelloy (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm, an Al 2 O 3 (diffusion prevention layer; film thickness of 150 nm) film was formed by sputtering. Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) is formed on the bed layer by ion beam assisted sputtering (IBAD), and then 1.0 μm thick CeO 2 (cap layer) is formed by PLD. did. Next, a 1.0 μm-thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by the PLD method, and an 8 μm-thick silver layer (first stabilization) is formed on the oxide superconducting layer by the sputtering method. Layer) to form a laminate. Thereafter, the laminate is immersed in a plating bath of an aqueous copper sulfate solution and electroplated to form a copper layer (second stabilizing layer) having a thickness of 20 μm on the outer peripheral surface of the laminate. A superconducting laminate having a width of 10 mm, a thickness of 0.15 mm, and an aspect ratio of 66 is obtained by polishing the corners (four corners) in the width direction so that the radius of curvature of the corners of the cross section along the width direction is 14.5 mm. Produced.

次に、作製した超電導積層体に、185℃で、30分間、ホルマール樹脂(例えばチッソ社製、ビニレックF)を焼き付けて、厚さ15μmの絶縁被覆層を形成した。続いて、形成した絶縁被覆層の外周面上にエポキシ含有樹脂(東特塗料社製、TCVU2)を塗布して150〜160℃にて20分間加熱することにより、エポキシ樹脂を半硬化状態として厚さ5μmの半硬化樹脂層を形成して図5に示す高温超電導線材を作製した。   Next, a formal resin (for example, Vinylec F, manufactured by Chisso Corporation) was baked on the produced superconducting laminate at 185 ° C. for 30 minutes to form an insulating coating layer having a thickness of 15 μm. Subsequently, an epoxy-containing resin (manufactured by Tohoku Paint Co., Ltd., TCVU2) is applied on the outer peripheral surface of the formed insulating coating layer and heated at 150 to 160 ° C. for 20 minutes to make the epoxy resin semi-cured and thick. A semi-cured resin layer having a thickness of 5 μm was formed to produce a high-temperature superconducting wire shown in FIG.

作製した高温超電導線材を内径70mmとして同心円状に100回巻回させ、この状態で150℃にて180分間加熱して半硬化樹脂層を硬化させて、図7に示す内部構造を有するコイル体を作成した。次に、同様の手順でコイル体をもう1個作製し、得られた2個のコイル体を図6に示す如く同軸的に積層させることにより、高さ20.1mm、総ターン数200ターン(100ターン×2)の高温超電導コイルを作製した。   The produced high-temperature superconducting wire is concentrically wound 100 times with an inner diameter of 70 mm, heated in this state for 180 minutes at 150 ° C. to cure the semi-cured resin layer, and the coil body having the internal structure shown in FIG. Created. Next, another coil body is produced in the same procedure, and the obtained two coil bodies are coaxially laminated as shown in FIG. 6 to obtain a height of 20.1 mm and a total number of turns of 200 turns ( A high temperature superconducting coil of 100 turns × 2) was produced.

(実施例8)
ホルマール樹脂の焼付回数を調整して絶縁被覆層の厚さを20μmとしたこと以外は実施例6と同様にして、高さ20.1mm、総ターン数200ターン(100ターン×2)の高温超電導コイルを作製した。
(Example 8)
High-temperature superconductivity having a height of 20.1 mm and a total number of turns of 200 (100 turns × 2) in the same manner as in Example 6 except that the number of times the formal resin was baked was adjusted to a thickness of 20 μm. A coil was produced.

(比較例2)
幅10mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基板上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜した上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシストスパッタ法(IBAD法)によりMgO(中間層;膜厚10nm)を形成した上に、PLD法により1.0μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により1.0μm厚のGdBaCu(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により8μm厚の銀層(第1安定化層)を形成して積層体を作製した。その後、この積層体を硫酸銅水溶液のめっき浴に浸漬して電気めっきを行うことにより、積層体の外周面上に厚さ20μmの銅層(第2安定化層)を形成することにより、幅10mm、厚さ0.15mm、アスペクト比66の超電導線材を作製した。
(Comparative Example 2)
On a substrate made of tape-shaped Hastelloy (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm, an Al 2 O 3 (diffusion prevention layer; film thickness of 150 nm) film was formed by sputtering. Y 2 O 3 (bed layer; film thickness: 20 nm) was formed by ion beam sputtering. Next, MgO (intermediate layer; film thickness: 10 nm) is formed on the bed layer by ion beam assisted sputtering (IBAD), and then 1.0 μm thick CeO 2 (cap layer) is formed by PLD. did. Next, a 1.0 μm-thick GdBa 2 Cu 3 O 7 (oxide superconducting layer) is formed on the CeO 2 layer by the PLD method, and an 8 μm-thick silver layer (first stabilization) is formed on the oxide superconducting layer by the sputtering method. Layer) to form a laminate. Thereafter, the laminate is immersed in a copper sulfate aqueous plating bath and electroplated to form a copper layer (second stabilizing layer) having a thickness of 20 μm on the outer peripheral surface of the laminate. A superconducting wire having a thickness of 10 mm, a thickness of 0.15 mm, and an aspect ratio of 66 was produced.

次に、作製した超電導線材の外周面に、厚さ12.5μmのポリイミドテープを2枚重ねた状態で巻き付けて、絶縁テープ付き超電導線材を作製した。なお、超電導線材の長手方向に隣接するポリイミドテープは、その幅方向端部同士が重なり合わずに隙間無く接する状態となるように、ポリイミドテープを巻き付けた。
次いで、作製した絶縁テープ付き超電導線材を内径70mmとして同心円状に100回巻回させ、この状態で熱硬化性樹脂中に浸漬して含浸させた後、さらに、80℃にて12時間加熱することにより、熱硬化性樹脂を硬化させて、図17(b)に示す内部構造を有するコイル体を作成した。次に、同様の手順でコイル体をもう1個作製し、得られた2個のコイル体を図6に示す如く同軸的に積層させることにより、高さ21.0mm、総ターン数200ターン(100ターン×2)の高温超電導コイルを作製した。
Next, a superconducting wire with an insulating tape was produced by winding two 12.5 μm thick polyimide tapes on the outer peripheral surface of the produced superconducting wire. In addition, the polyimide tape was wound so that the polyimide tape adjacent to the longitudinal direction of a superconducting wire might be in the state which contact | connects without the space | interval edge parts overlapping each other.
Next, the produced superconducting wire with insulating tape is concentrically wound 100 times with an inner diameter of 70 mm, immersed in a thermosetting resin in this state and impregnated, and further heated at 80 ° C. for 12 hours. Thus, the thermosetting resin was cured to produce a coil body having the internal structure shown in FIG. Next, another coil body is produced in the same procedure, and the obtained two coil bodies are coaxially laminated as shown in FIG. 6 so that the height is 21.0 mm and the total number of turns is 200 turns ( A high temperature superconducting coil of 100 turns × 2) was produced.

(比較例3)
比較例2と同様の手法で幅10mm、厚さ0.15mm、アスペクト比66の超電導線材を作製した。
次に、作製した超電導線材の銀層側の銅層上に、厚さ50μm、幅10mmのポリイミドテープを1枚重ねた状態として、内径70mmとして同心円状に100回巻回(共巻き)し、この状態で熱硬化性樹脂中に浸漬して含浸させた後、さらに、80℃にて12時間加熱することにより、熱硬化性樹脂を硬化させて、図17(a)に示す内部構造を有するコイル体を作成した。次に、同様の手順でコイル体をもう1個作製し、得られた2個のコイル体を図6に示す如く同軸的に積層させることにより、高さ20.5mm、総ターン数200ターン(100ターン×2)の高温超電導コイルを作製した。
(Comparative Example 3)
A superconducting wire having a width of 10 mm, a thickness of 0.15 mm, and an aspect ratio of 66 was produced in the same manner as in Comparative Example 2.
Next, on the copper layer on the silver layer side of the produced superconducting wire, a polyimide tape having a thickness of 50 μm and a width of 10 mm is overlaid, and concentrically wound 100 times with an inner diameter of 70 mm (co-winding), In this state, after being immersed and impregnated in a thermosetting resin, the thermosetting resin is further cured by heating at 80 ° C. for 12 hours to have the internal structure shown in FIG. A coil body was created. Next, another coil body is produced in the same procedure, and the two obtained coil bodies are coaxially laminated as shown in FIG. 6 to obtain a height of 20.5 mm and a total number of turns of 200 turns ( A high temperature superconducting coil of 100 turns × 2) was produced.

実施例7、8および比較例2、3の高温超電導コイルについて、20Kにおいて300Aの電流を通電した際の、各高温超電導コイルの臨界電流密度(A/mm)および中心磁界(T)を測定した。結果を表6に示す。また、実施例7、8および比較例2、3のコイル寸法と使用線材長も表6に併記した。 For the high-temperature superconducting coils of Examples 7 and 8 and Comparative Examples 2 and 3, the critical current density (A / mm 2 ) and the central magnetic field (T) of each high-temperature superconducting coil when a current of 300 A was applied at 20 K were measured. did. The results are shown in Table 6. The coil dimensions and the wire lengths used in Examples 7 and 8 and Comparative Examples 2 and 3 are also shown in Table 6.

Figure 0005841862
Figure 0005841862

表6の結果より、本発明に係る実施例7の高温超電導コイルでは、比較例2および3と比較して、同じ通電電流に対して電流密度が大きくなるため、中心磁界が強くなることが確認された。また、実施例7の超電導コイルは、絶縁被覆層およびコイルを固定する樹脂層の厚さが比較例2,3の高温超電導コイルよりも薄いため、比較例2、3の高温超電導コイルよりも、コイル外径が小さく、使用線材長も少なくなっていた。
本発明に係る実施例8の高温超電導コイルは、比較例3の高温超電導コイルと比較して、同じ通電電流に対して電流密度が大きくなるため、中心磁界が強くなることが確認された。また、実施例8の高温超電導コイルは、比較例2、3の高温超電導コイルよりもコイル高さが小さくなっており、コイルを小型化できていた。
さらに、実施例7、8の高温超電導コイルは、比較例2、3の高温超電導コイルよりも簡素化された工程で製造されており、比較例2、3のように熱硬化性樹脂の硬化時間に長時間を要さず、良好な生産性で製造可能であることが確認された。
From the results of Table 6, it is confirmed that the high-temperature superconducting coil of Example 7 according to the present invention has a stronger central magnetic field because the current density is larger for the same energization current than Comparative Examples 2 and 3. It was done. Moreover, since the thickness of the resin layer which fixes an insulation coating layer and a coil is thinner than the high temperature superconducting coil of the comparative examples 2 and 3, the superconducting coil of Example 7 is higher than the high temperature superconducting coil of the comparative examples 2 and 3. The outer diameter of the coil was small and the length of the wire used was also small.
It was confirmed that the high-temperature superconducting coil of Example 8 according to the present invention has a higher central magnetic field than the high-temperature superconducting coil of Comparative Example 3 because the current density increases for the same energization current. Further, the high-temperature superconducting coil of Example 8 had a smaller coil height than the high-temperature superconducting coils of Comparative Examples 2 and 3, and the coil could be miniaturized.
Furthermore, the high-temperature superconducting coils of Examples 7 and 8 are manufactured by a process simplified more than the high-temperature superconducting coils of Comparative Examples 2 and 3, and the curing time of the thermosetting resin as in Comparative Examples 2 and 3 Thus, it was confirmed that it can be produced with good productivity without requiring a long time.

本発明は、例えば超電導モータ、限流器など、各種超電導機器に用いられる超電導コイルに利用することができる。   The present invention can be used for a superconducting coil used in various superconducting devices such as a superconducting motor and a current limiting device.

4、4B、4C…金属安定化層、5、5B、5C…超電導積層体、5a、5Ba、5Ca…角部、7、7B、7C…絶縁被覆層、9…半硬化樹脂層、9G…硬化樹脂層、10、10B、10B、10C、10D…高温超電導線材、11…基板、12…中間層、13…酸化物超電導層、14…第1安定化層層、15、15B…第2安定化層、50…高温超電導コイル、51…第1のコイル体、52…第2のコイル体。 4, 4B, 4C ... metal stabilizing layer, 5, 5B, 5C ... superconducting laminate, 5a, 5Ba, 5Ca ... corner, 7, 7B, 7C ... insulating coating layer, 9 ... semi-cured resin layer, 9G ... cured resin layer, 10 and 10B, 10B 2, 10C, 10D ... HTS wire, 11 ... substrate, 12 ... middle layer, 13 ... oxide superconducting layer, 14 ... first stabilizing layer layer, 15 and 15b ... second stable 50 ... high temperature superconducting coil, 51 ... first coil body, 52 ... second coil body.

Claims (8)

基板と中間層と酸化物超電導層と金属安定化層とが積層された超電導積層体と、前記超電導積層体の外周面を覆い、樹脂の焼付けにより形成された絶縁被覆層とを備え、
前記超電導積層体の幅方向に沿う断面における角部が曲率半径を有する曲面となる面取りとされ、前記絶縁被覆層の厚さが12μm以上であり、前記角部の曲率半径が14.5mm以上であることを特徴とする高温超電導線材。
A superconducting laminate in which a substrate, an intermediate layer, an oxide superconducting layer and a metal stabilizing layer are laminated, and an outer peripheral surface of the superconducting laminate, and an insulating coating layer formed by baking a resin;
The corners in the cross section along the width direction of the superconducting laminate are chamfered so that the curved surface has a curvature radius, the thickness of the insulating coating layer is 12 μm or more, and the curvature radius of the corners is 14.5 mm or more. A high-temperature superconducting wire characterized by being.
前記金属安定化層が、第1安定化層上に第2安定化層を積層した構造であり、前記第2安定化層が半田を介した金属テープの貼り合わせにより形成され、前記絶縁被覆層が170℃〜200℃の温度で焼付け可能な樹脂より形成されてなることを特徴とする請求項1に記載の高温超電導線材。   The metal stabilization layer has a structure in which a second stabilization layer is laminated on the first stabilization layer, the second stabilization layer is formed by bonding a metal tape through solder, and the insulating coating layer The high-temperature superconducting wire according to claim 1, wherein is formed from a resin that can be baked at a temperature of 170 ° C. to 200 ° C. 前記金属安定化層が、第1安定化層上に第2安定化層を積層した構造であり、前記第2安定化層がめっき又は蒸着により形成され、前記絶縁被覆層が170℃〜280℃の温度で焼付け可能な樹脂より形成されてなることを特徴とする請求項1に記載の高温超電導線材。   The metal stabilization layer has a structure in which a second stabilization layer is laminated on the first stabilization layer, the second stabilization layer is formed by plating or vapor deposition, and the insulating coating layer is 170 ° C. to 280 ° C. The high-temperature superconducting wire according to claim 1, wherein the high-temperature superconducting wire is formed of a resin that can be baked at a temperature of 5. 前記絶縁被覆層の外周面を覆い、半硬化の熱硬化性樹脂よりなる半硬化樹脂層を備えることを特徴とする請求項1〜3のいずれか一項に記載の高温超電導線材。   The high-temperature superconducting wire according to any one of claims 1 to 3, further comprising a semi-cured resin layer that covers an outer peripheral surface of the insulating coating layer and is made of a semi-cured thermosetting resin. 前記金属安定化層が、第1安定化層上に第2安定化層を積層した構造であり、前記第2安定化層が前記超電導積層体の幅方向に沿う断面における4つの角部を占めるように配置され、前記第2安定化層の角部が前記曲率半径を有する曲面とされたことを特徴とする請求項1に記載の高温超電導線材。   The metal stabilization layer has a structure in which a second stabilization layer is laminated on the first stabilization layer, and the second stabilization layer occupies four corners in a cross section along the width direction of the superconducting laminate. The high-temperature superconducting wire according to claim 1, wherein the second stabilization layer is a curved surface having the radius of curvature. 前記金属安定化層が、第1安定化層上に第2安定化層と第3安定化層を備えた構造であり、前記第2安定化層が前記超電導積層体の幅方向に沿う断面における2つの角部を占めるように、前記第3安定化層が前記超電導積層体の幅方向に沿う断面における残り2つの角部を占めるように配置され、前記第2安定化層の2つの角部と前記第3安定化層の2つの角部が前記曲率半径を有する曲面とされたことを特徴とする請求項1に記載の高温超電導線材。   The metal stabilization layer has a structure including a second stabilization layer and a third stabilization layer on the first stabilization layer, and the second stabilization layer is in a cross section along the width direction of the superconducting laminate. The third stabilization layer is disposed so as to occupy the remaining two corners in the cross section along the width direction of the superconducting laminate so as to occupy two corners, and the two corners of the second stabilization layer 2. The high-temperature superconducting wire according to claim 1, wherein two corners of the third stabilizing layer are curved surfaces having the radius of curvature. 請求項1〜6のいずれか一項に記載の高温超電導線材を巻回してなることを特徴とする高温超電導コイル。   A high temperature superconducting coil formed by winding the high temperature superconducting wire according to any one of claims 1 to 6. 請求項4に記載の高温超電導線材を巻回してなり、コイル径方向に隣接する前記高温超電導線材間に、前記半硬化樹脂層を加熱硬化させてなる樹脂層を備えることを特徴とする高温超電導コイル。   A high-temperature superconductivity comprising a resin layer formed by winding the high-temperature superconducting wire according to claim 4 and heat-curing the semi-cured resin layer between the high-temperature superconducting wires adjacent to each other in the coil radial direction. coil.
JP2012042431A 2011-03-31 2012-02-28 High temperature superconducting wire and high temperature superconducting coil Active JP5841862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012042431A JP5841862B2 (en) 2011-03-31 2012-02-28 High temperature superconducting wire and high temperature superconducting coil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011077947 2011-03-31
JP2011077947 2011-03-31
JP2012042431A JP5841862B2 (en) 2011-03-31 2012-02-28 High temperature superconducting wire and high temperature superconducting coil

Publications (2)

Publication Number Publication Date
JP2012216504A JP2012216504A (en) 2012-11-08
JP5841862B2 true JP5841862B2 (en) 2016-01-13

Family

ID=47269084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042431A Active JP5841862B2 (en) 2011-03-31 2012-02-28 High temperature superconducting wire and high temperature superconducting coil

Country Status (1)

Country Link
JP (1) JP5841862B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693784B2 (en) * 2012-02-29 2015-04-01 株式会社フジクラ Superconducting wire and superconducting coil
EP2731113B1 (en) * 2012-06-11 2016-06-29 Fujikura Ltd. Oxide superconducting wire and superconducting coil
JP6021150B2 (en) * 2012-12-05 2016-11-09 中部電力株式会社 Low temperature resistant resin composition and superconducting wire using the same
RU2606959C1 (en) 2013-02-15 2017-01-10 Фудзикура Лтд. Oxide superconducting wire
US10049800B2 (en) 2013-02-25 2018-08-14 Fujikura Ltd. High-temperature superconducting coil and superconducting device
KR101459583B1 (en) * 2013-09-11 2014-11-10 주식회사 서남 Superconductor and method for manufacturing the same
KR102562414B1 (en) * 2016-10-31 2023-08-01 스미토모 덴키 고교 가부시키가이샤 Superconducting wire and superconducting coil
WO2018078877A1 (en) * 2016-10-31 2018-05-03 住友電気工業株式会社 Superconducting wire
KR102314493B1 (en) * 2017-07-13 2021-10-18 한국전기연구원 Surface fabricating superconducting wire and manufacturing method the same
JP2020047739A (en) * 2018-09-18 2020-03-26 株式会社東芝 Superconducting coil and superconducting device
CN112466554B (en) * 2020-11-17 2022-05-31 中国科学院合肥物质科学研究院 Low-temperature superconducting cable treatment process for high-current high-temperature superconducting current lead
JPWO2023027149A1 (en) * 2021-08-26 2023-03-02

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2917603B2 (en) * 1991-08-05 1999-07-12 日立電線株式会社 Manufacturing method of aluminum composite superconducting wire
JPH07335051A (en) * 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductive tape with stabilizing layer and manufacture thereof
JP5364467B2 (en) * 2009-06-26 2013-12-11 株式会社フジクラ Superconducting wire

Also Published As

Publication number Publication date
JP2012216504A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5841862B2 (en) High temperature superconducting wire and high temperature superconducting coil
US9564259B2 (en) Superconducting wire and superconducting coil
JP5501541B1 (en) Oxide superconducting wire and superconducting coil
US8498680B2 (en) Electrode unit joining structure for superconducting wire, superconducting wire, and superconducting coil
JP5771751B2 (en) High temperature superconducting coil and superconducting equipment
JP6101491B2 (en) Oxide superconducting wire and method for producing the same
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP2013247011A (en) Oxide superconducting wire, and method of manufacturing the same
JP5693798B2 (en) Oxide superconducting wire
WO2012039444A1 (en) Oxide superconductor wire material and method for producing same
JP5677116B2 (en) High temperature superconducting coil
JP2014107149A (en) Oxide superconductive wire rod and connection structure of the oxide superconductive wire
JP2015228357A (en) Oxide superconducting wire rod, superconducting apparatus, and method for producing the oxide superconducting wire rod
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
JP2013225399A (en) Oxide superconducting wire rod and superconducting coil
JP2013186966A (en) Oxide superconducting wire and manufacturing method therefor
RU2575664C1 (en) Superconducting wire and superconducting coil
JP6652447B2 (en) Method for producing superconducting wire and method for producing superconducting coil
JP2014167847A (en) Oxide superconducting wire and superconducting coil, and manufacturing method of oxide superconducting wire
WO2011129325A1 (en) Superconducting coil and method for manufacturing the same
JP2012209189A (en) Oxide superconducting wire material and method for manufacturing the same
JP6404556B2 (en) Oxide superconducting conductor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151116

R151 Written notification of patent or utility model registration

Ref document number: 5841862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250