Nothing Special   »   [go: up one dir, main page]

JP5714944B2 - Low temperature liquefied gas vaporizer - Google Patents

Low temperature liquefied gas vaporizer Download PDF

Info

Publication number
JP5714944B2
JP5714944B2 JP2011052378A JP2011052378A JP5714944B2 JP 5714944 B2 JP5714944 B2 JP 5714944B2 JP 2011052378 A JP2011052378 A JP 2011052378A JP 2011052378 A JP2011052378 A JP 2011052378A JP 5714944 B2 JP5714944 B2 JP 5714944B2
Authority
JP
Japan
Prior art keywords
vaporization
pipe
region
liquefied gas
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011052378A
Other languages
Japanese (ja)
Other versions
JP2012189125A (en
Inventor
西村 真
真 西村
光一 新開
光一 新開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011052378A priority Critical patent/JP5714944B2/en
Priority to EP11860385.1A priority patent/EP2672213B1/en
Priority to CN201180068641.5A priority patent/CN103403483B/en
Priority to KR1020137026252A priority patent/KR101489114B1/en
Priority to PCT/JP2011/007075 priority patent/WO2012120580A1/en
Publication of JP2012189125A publication Critical patent/JP2012189125A/en
Application granted granted Critical
Publication of JP5714944B2 publication Critical patent/JP5714944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、液化天然ガス(LNG)や液化石油ガス(LPG)、液体窒素(LN)等の低温液化ガスを海水等の熱媒体と熱交換させることにより気化させるための気化装置に関する。 The present invention relates to a vaporizer for vaporizing a low-temperature liquefied gas such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), or liquid nitrogen (LN 2 ) by heat exchange with a heat medium such as seawater.

従来から、液化天然ガス(LNG)を海水(熱交換用液体)と熱交換させて気化させる気化装置(ORV)として、特許文献1に記載されるものが知られている。   DESCRIPTION OF RELATED ART Conventionally, what is described in patent document 1 is known as a vaporizer (ORV) which heat-exchanges liquefied natural gas (LNG) with seawater (liquid for heat exchange), and vaporizes it.

この気化装置は、図11に示されるように、特定の垂直面に沿って広がる気化管パネル102と、気化管パネル100の表面に沿って流れ落ちるように当該気化管パネル100の上端部から海水を供給する海水供給部104と、を備える。   As shown in FIG. 11, the vaporizer has a vaporization tube panel 102 extending along a specific vertical plane and seawater from the upper end of the vaporization tube panel 100 so as to flow down along the surface of the vaporization tube panel 100. A seawater supply unit 104 to supply.

気化管パネル102は、垂直方向に伸び且つ内部に流される液化天然ガス(低温液化ガス)を外部との熱交換によって気化させるための複数の気化管(伝熱管)106と、気化管パネル102内における各気化管106に液化天然ガスをそれぞれ分配する気化管間分配管(供給側ヘッダー)108とを有する。気化管パネル102に含まれる複数の気化管106は、互いに平行な姿勢となるように前記特定の垂直面上において水平方向に並んでいる。気化管間分配管108は、水平方向に伸びて気化管パネル102に含まれる各気化管106の下端部にそれぞれ接続されている。   The vaporization tube panel 102 includes a plurality of vaporization tubes (heat transfer tubes) 106 for evaporating liquefied natural gas (low-temperature liquefied gas) flowing in the vertical direction and flowing inside by heat exchange with the outside, and the inside of the vaporization tube panel 102. The vaporizer pipes 106 (distribution side headers) 108 for distributing the liquefied natural gas to the vaporizer pipes 106 are provided. The plurality of vaporization tubes 106 included in the vaporization tube panel 102 are arranged in the horizontal direction on the specific vertical plane so as to be parallel to each other. The inter-vaporization pipe distribution pipe 108 extends in the horizontal direction and is connected to the lower end portion of each vaporization pipe 106 included in the vaporization pipe panel 102.

このような気化装置においては、気化管間分配管108によって各気化管106に分配された液化天然ガスが当該気化管106内を上昇すると共に、海水供給部104から供給された海水が気化管106の外側を当該気化管106に沿って流れ落ちる。このとき、各気化管106において、当該気化管106の内部と外部とを隔てる管壁を介して液化天然ガスと海水とが熱交換し、これにより、液化天然ガスが気化されて天然ガス(NG)となる。   In such a vaporizer, the liquefied natural gas distributed to each vaporizer pipe 106 by the vaporizer pipe distribution pipe 108 rises in the vaporizer pipe 106, and the seawater supplied from the seawater supply unit 104 is vaporized pipe 106. And flow down along the vaporizing tube 106. At this time, in each vaporization pipe 106, the liquefied natural gas and seawater exchange heat through a pipe wall that separates the inside and the outside of the vaporization pipe 106, whereby the liquefied natural gas is vaporized and natural gas (NG )

また、気化装置として、特許文献2に記載されるものが知られている。この気化装置では、図12に示されるように、気化管間分配管108の第1領域a1の上側に防水カバー110が被せられている。この防水カバー110によって海水が気化管間分配管108の第1領域a1に直接当たるのが防がれ、海水の温度が比較的高く負荷が小さい場合の気化した液化天然ガスの熱量変動を抑えることができる。   Moreover, what is described in patent document 2 is known as a vaporizer. In this vaporizer, as shown in FIG. 12, a waterproof cover 110 is placed on the upper side of the first region a1 of the inter-vaporization pipe distribution pipe. The waterproof cover 110 prevents seawater from directly hitting the first region a1 of the inter-vaporization pipe distribution pipe 108, and suppresses heat fluctuation of the vaporized liquefied natural gas when the temperature of the seawater is relatively high and the load is small. Can do.

特開昭57−57998号公報JP-A-57-57998 特開平08−183970号公報JP 08-183970 A

上記特許文献1の気化装置では、低温液化ガス(液化天然ガス)を気化するときに、気化管間分配管108の当該分配管108の長手方向の端部(図11における領域a2)と中央部(図11における領域a2)とにおいて温度の違いが生じ、これに起因する各気化管106の熱伸縮量の違いにより気化管間分配管108が湾曲する場合がある。これにより、気化管間分配管108の曲がり、気化管間分配管108と各気化管106との接合部位に応力が発生する。   In the vaporization apparatus of Patent Document 1, when the low-temperature liquefied gas (liquefied natural gas) is vaporized, the longitudinal end portion (region a2 in FIG. 11) and the central portion of the distribution pipe 108 between the vaporization pipes 108. There is a case where a temperature difference occurs between (a region a2 in FIG. 11) and the vaporization pipe distribution pipe 108 is bent due to a difference in thermal expansion / contraction amount of each vaporization pipe 106 due to this. As a result, the inter-vaporization pipe distribution pipe 108 is bent, and a stress is generated at the joint portion between the vaporization pipe distribution pipe 108 and each vaporization pipe 106.

具体的には、気化管間分配管108の長手方向において、複数の気化管106が配置された領域a1の外側、即ち、気化管間分配管108の長手方向における端部a2の温度が、前記領域a1の温度よりも高くなる。これは、気化管パネル102に沿って第1領域a1を流れ落ちる熱交換用液体(海水)は、気化管106内の低温液化ガスとの熱交換によって気化管間分配管108まで流れ落ちたときに十分に低温となっているのに対し、前記長手方向における気化管パネル102の外側を流れ落ちる熱交換用液体は気化管106内の低温液化ガスとの熱交換を殆ど行わずに流れ落ちるため、前記第1領域a1を流れ落ちる熱交換用液体に比べて気化管間分配管108に到達したときの温度が高いことに起因する。このように気化管間分配管108の第1領域a1と第2領域a2との間に温度の違いが生じると、当該気化管間分配管108から前記長手方向の端部位置の気化管106に分配される低温液化ガスの温度と、第1領域a1の前記長手方向の中央部位置の気化管106に分配される低温液化ガスの温度とに違いが生じる。その結果、前記端部位置の気化管106と前記中央部位置の気化管106とに熱伸縮量の差が生じ、これにより、気化管間分配管108が湾曲する。   Specifically, in the longitudinal direction of the inter-vaporization pipe distribution pipe 108, the temperature of the end a <b> 2 outside the region a <b> 1 where the plurality of vaporization pipes 106 are arranged, i.e., the longitudinal direction of the inter-vaporization pipe distribution pipe 108 is It becomes higher than the temperature of the region a1. This is sufficient when the heat exchange liquid (seawater) flowing down the first region a1 along the vaporization tube panel 102 flows down to the vaporization pipe distribution pipe 108 by heat exchange with the low-temperature liquefied gas in the vaporization pipe 106. However, since the heat exchange liquid that flows down outside the vaporization tube panel 102 in the longitudinal direction flows with little heat exchange with the low-temperature liquefied gas in the vaporization tube 106, the first temperature is low. This is because the temperature when reaching the vaporizing pipe distribution pipe 108 is higher than that of the heat exchange liquid flowing down the area a1. Thus, when a temperature difference occurs between the first region a1 and the second region a2 of the inter-vaporization pipe distribution pipe 108, the vaporization pipe distribution pipe 108 is connected to the vaporization pipe 106 at the end position in the longitudinal direction. There is a difference between the temperature of the low-temperature liquefied gas distributed and the temperature of the low-temperature liquefied gas distributed to the vaporization pipe 106 at the central position in the longitudinal direction of the first region a1. As a result, a difference in thermal expansion and contraction occurs between the vaporization pipe 106 at the end position and the vaporization pipe 106 at the central position, and thereby the vaporization pipe distribution pipe 108 is bent.

一方、上記特許文献2に記載の気化装置では、気化管間分配管108の第1領域a1に直接熱交換用液体が当たることを防ぐことができる。しかし、防水カバー110は、気化管間分配管108の第2領域a2において、水平方向の端部位置の気化管106と隣接する部位しか覆っていないため、当該気化装置においても、気化管間分配管108の第2領域a2に低温液化ガスと熱交換していない(温度の高い)熱交換用液体が当たる。そのため、当該気化装置においても、気化管間分配管108の第1領域a1と第2領域a2との間に温度の違いが生じ、上記特許文献1の気化装置と同様に、気化管間分配管108が湾曲することが懸念される。   On the other hand, in the vaporizer described in Patent Document 2, it is possible to prevent the heat exchange liquid from directly hitting the first region a1 of the inter-vaporization pipe distribution pipe. However, since the waterproof cover 110 covers only the portion adjacent to the vaporization pipe 106 at the end position in the horizontal direction in the second region a2 of the vaporization pipe distribution pipe 108, the vaporization apparatus also includes the vaporization pipe division. The heat exchange liquid that does not exchange heat with the low-temperature liquefied gas (high temperature) hits the second region a2 of the pipe 108. Therefore, also in the vaporizer, there is a temperature difference between the first region a1 and the second region a2 of the inter-vaporization pipe distribution pipe 108, and, similar to the vaporization apparatus of Patent Document 1, the inter-vaporization pipe distribution pipe. There is a concern that 108 may bend.

そこで、本発明は、上記問題点に鑑み、気化管間分配管の長手方向の温度の違いに起因する気化管間分配管の湾曲が生じ難い低温液化ガスの気化装置を提供することを課題とする。   Therefore, in view of the above problems, the present invention has an object to provide a vaporizer for low-temperature liquefied gas in which bending of an inter-vaporization pipe distribution pipe is unlikely to occur due to a difference in temperature in the longitudinal direction of the inter-vaporization pipe distribution pipe. To do.

そこで、上記課題を解消すべく、本発明は、低温液化ガスを気化するための装置であって、垂直方向に延び且つ内部に流される前記低温液化ガスを外部との熱交換によって気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、前記複数の気化管が配置されている前記気化管間分配管の第1領域に向かって流れ落ちる熱交換用液体の温度に比べて、前記水平方向において前記第1領域の外側である前記気化管間分配管の第2領域に向かって流れ落ちる熱交換用液体の温度の方が高い場合であっても、前記第1領域伝わる前記熱交換用液体からの単位面積当たりの伝熱量と比べて、前記第2領域に伝わる熱交換用液体からの単位面積当たりの伝熱量を同程度以下に抑えるための伝熱抑制部と、を備える。尚、伝熱量が同程度以下とは、熱交換用液体から気化管間分配管を流れる低温液化ガスに熱が伝わったときに、気化管間分配管の第2領域内を流れる低温液化ガスの温度が第1領域内を流れる低温液化ガスの温度と同じ若しくは低い場合だけでなく、気化管間分配管の曲がりに影響を与えない程度で第1領域内を流れる低温液化ガスの温度よりもわずかに高くなるような場合も含む。 Therefore, in order to solve the above-mentioned problems, the present invention is an apparatus for vaporizing a low-temperature liquefied gas, which evaporates the low-temperature liquefied gas extending in the vertical direction and flowing inside by heat exchange with the outside. A plurality of vaporizing pipes and pipes between the vaporizing pipes for distributing the low-temperature liquefied gas to each of the vaporizing pipes, the plurality of vaporizing pipes arranged in a horizontal direction on a vertical plane, and the pipes between the vaporizing pipes A vaporization tube panel extending in the horizontal direction and connected to a lower end portion of each vaporization tube, and a liquid for supplying heat exchange liquid from the upper end portion of the vaporization tube panel so as to flow down along the plurality of vaporization tubes Compared to the temperature of the heat exchange liquid flowing down toward the first region of the supply pipe and the inter-vaporization tube distribution pipe in which the plurality of vaporization tubes are arranged, it is outside the first region in the horizontal direction. Above Even if the direction of the temperature of the heat exchange fluid flows down towards the second region between distribution pipe tract high, the amount of heat transfer per unit area from the heat transfer fluid that Tsutawa to the first region compared to, and a heat transfer suppressing section for suppressing heat transfer to the following comparable per unit area from the previous SL heat transfer fluid that Tsutawa the second region. Note that the heat transfer amount is approximately equal to or less than that when the heat is transferred from the heat exchange liquid to the low-temperature liquefied gas flowing through the vaporization pipe distribution pipe, the low-temperature liquefied gas flowing through the second region of the vaporization pipe distribution pipe. Not only when the temperature is the same or lower than the temperature of the low-temperature liquefied gas flowing in the first region, but also slightly lower than the temperature of the low-temperature liquefied gas flowing in the first region to the extent that it does not affect the bending of the pipe between the vaporization tubes. This includes cases where the price is too high.

本発明によれば、気化管間分配管の第1領域に向かって流れ落ちる熱交換用液体に比べて気化管間分配管の第2領域に向かって流れ落ちる熱交換用液体の温度が高くても、伝熱抑制部によって第2領域の全域における熱交換用液体からの単位面積当たりの伝熱量が抑えられるため、前記温度の異なる熱交換用液体によって気化管間分配管の第1領域よりも第2領域が高温になることを防ぐことが可能となる。これにより、気化管間分配管から気化管パネルの水平方向における端部位置の気化管に分配される低温液化ガスと、中央部位置の気化管に分配される低温液化ガスと、の温度の違いが抑えられ、各気化管の熱伸縮量に起因する気化管間分配管の湾曲が防止される。   According to the present invention, even if the temperature of the heat exchange liquid flowing down toward the second region of the vaporization pipe distribution pipe is higher than the heat exchange liquid flowing down toward the first area of the vaporization pipe distribution pipe, Since the amount of heat transfer per unit area from the heat exchange liquid in the entire second region is suppressed by the heat transfer suppression unit, the heat exchange liquid having a different temperature is second than the first region of the inter-vaporization pipe distribution pipe. It becomes possible to prevent the region from becoming hot. As a result, the temperature difference between the low-temperature liquefied gas distributed from the distribution pipe between the vaporization pipes to the vaporization pipe at the end position in the horizontal direction of the vaporization pipe panel and the low-temperature liquefied gas distributed to the vaporization pipe at the central position. And the bending of the pipe between the vaporization pipes due to the amount of thermal expansion and contraction of each vaporization pipe is prevented.

具体的には、例えば、前記伝熱抑制部を前記気化管間分配管の第2領域を囲う断熱部材とし、前記断熱部材の熱伝導率を前記気化管間分配管の熱伝導率よりも小さくする。そして、この断熱部材によって気化管間分配管の第2領域を囲うことにより、気化管間分配管の第1領域における熱交換用液体からの単位面積当たりの伝熱量に比べ、前記第2領域における熱交換用液体からの単位面積当たりの伝熱量を容易且つ確実に抑えることができる。   Specifically, for example, the heat transfer suppression portion is a heat insulating member surrounding the second region of the inter-vaporization pipe distribution pipe, and the thermal conductivity of the heat insulation member is smaller than the thermal conductivity of the inter-vaporization pipe distribution pipe. To do. Then, by enclosing the second region of the inter-vaporization pipe distribution pipe with this heat insulating member, compared with the heat transfer amount per unit area from the heat exchange liquid in the first area of the inter-vaporization pipe distribution pipe, in the second region The amount of heat transfer per unit area from the heat exchange liquid can be easily and reliably suppressed.

また、気化装置において、前記断熱部材が所定の伸縮性を有することにより、気化管間分配管の熱伸縮による断熱部材の損傷を防止することができる。具体的に、気化管間分配管は、低温液化ガスが流れている状態(即ち、気化装置の運転中)と、低温液化ガスが流れていない状態(即ち、気化装置の停止中)と、の間の温度差によって熱伸縮するが、当該気化管間分配管を囲う断熱部材が所定の伸縮性を有することにより気化管間分配管の熱伸縮に合わせて伸縮する。これにより、気化管間分配管の熱伸縮(特に、径方向の熱伸縮)に起因する断熱部材の損傷を効果的に防止することができる。   Further, in the vaporizer, the heat insulating member has a predetermined stretchability, so that the heat insulating member can be prevented from being damaged due to the heat expansion and contraction of the distribution pipe between the vaporization tubes. Specifically, the distribution pipe between the vaporization pipes is in a state where the low-temperature liquefied gas is flowing (that is, during operation of the vaporizer) and a state where the low-temperature liquefied gas is not flowing (that is, when the vaporizer is stopped). The heat insulating member surrounding the vaporizing pipe distribution pipe expands and contracts in accordance with the heat expansion and contraction of the vaporization pipe distribution pipe. Thereby, the damage of the heat insulation member resulting from the thermal expansion / contraction (especially radial thermal expansion / contraction) of the distribution pipe between vaporization pipes can be prevented effectively.

気化装置の伝熱抑制部は、前記気化管間分配管の第2領域の上側に配置され、平面視において前記分配管の第2領域を覆い隠す形状を有するカバー部材であってもよい。   The heat transfer suppression unit of the vaporizer may be a cover member that is disposed above the second region of the inter-vaporization pipe distribution pipe and has a shape that covers the second area of the distribution pipe in plan view.

かかる構成によれば、気化管間分配管の長手方向(水平方向)における端部位置の気化管よりも外側を流れ落ち且つ当該気化管内を流れる低温液化ガスとの熱交換が殆ど行われていない熱交換用液体が、気化管間分配管の第2領域に当たることを防止することができる。これにより、気化管間分配管の第1領域と第2領域との間に温度の違いが生じることを防ぐことが可能となる。   According to such a configuration, the heat hardly flows with the low-temperature liquefied gas flowing down outside the vaporizing pipe at the end position in the longitudinal direction (horizontal direction) of the pipe between the vaporizing pipes and flowing through the vaporizing pipe. The replacement liquid can be prevented from hitting the second region of the inter-vaporization pipe distribution pipe. Thereby, it becomes possible to prevent a difference in temperature between the first region and the second region of the distribution pipe between the vaporization tubes.

尚、前記気化管間分配管におけるその端部と当該端部側に位置する気化管との間の部位が仕切り壁を貫通する場合、前記第2領域は、前記仕切り壁と前記端部側に位置する気化管までの領域である。   In addition, when the site | part between the edge part in the said distribution pipe between vaporization pipes and the vaporization pipe located in the said edge part side penetrates a partition wall, the said 2nd area | region is on the said partition wall and the said edge part side. This is the area up to the vaporization tube.

また、上記課題を解消すべく、本発明は、低温液化ガスを気化するための装置であって、垂直方向に延び且つ内部に流される前記低温液化ガスを外部との熱交換によって気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が特定の垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、を備える。そして、前記複数の気化管が配置されている前記気化管間分配管の第1領域における管壁よりも、前記水平方向において前記第1領域の外側の前記気化管間分配管の第2領域における管壁の方が熱伝導率が小さい。   Further, in order to solve the above-mentioned problems, the present invention is an apparatus for vaporizing a low-temperature liquefied gas, which evaporates the low-temperature liquefied gas extending in the vertical direction and flowing inside by heat exchange with the outside. A plurality of vaporizing pipes and pipes for dividing the low-temperature liquefied gas to each of the vaporizing pipes, and the plurality of vaporizing pipes are arranged in a horizontal direction on a specific vertical plane and are arranged between the vaporizing pipes. Supply a heat exchange liquid from the upper end of the vaporization tube panel so that the pipe extends in the horizontal direction and is connected to the lower end of each vaporization tube, and flows down along the plurality of vaporization tubes. A liquid supply unit. And, in the second region of the inter-vaporization tube distribution pipe outside the first region in the horizontal direction, rather than the tube wall in the first region of the inter-vaporization tube distribution tube in which the plurality of vaporization tubes are arranged. The tube wall has lower thermal conductivity.

本発明によれば、管壁の熱伝導率が気化管間分配管の第1領域に比べ第2領域の方が小さいため、気化管間分配管の第1領域よりも温度の高い熱交換用液体が気化管間分配管の第2領域に当たっても、気化管間分配管の第1領域の内部を流れる低温液化ガスの温度と第2領域の内部を流れる低温液化ガスの温度との間に温度の違いが生じることを防ぐことが可能となる。その結果、この温度の違いに起因する気化管間分配管の湾曲を防止することができる。   According to the present invention, since the thermal conductivity of the tube wall is smaller in the second region than in the first region of the vaporization pipe distribution pipe, the heat exchange has a higher temperature than the first region of the vaporization pipe distribution pipe. Even if the liquid hits the second region of the inter-vaporization pipe distribution pipe, the temperature is between the temperature of the low-temperature liquefied gas flowing inside the first area of the inter-vaporization pipe distribution pipe and the temperature of the low-temperature liquefied gas flowing inside the second area. It becomes possible to prevent the difference of. As a result, it is possible to prevent the vaporization pipe distribution pipe from being bent due to this temperature difference.

以上より、本発明によれば、気化管間分配管の長手方向の温度の違いに起因する気化管間分配管の湾曲が生じ難い低温液化ガスの気化装置を提供することができる。   As described above, according to the present invention, it is possible to provide a vaporizer for low-temperature liquefied gas in which bending of the inter-vaporization pipe distribution pipe is less likely to be caused by a difference in temperature in the longitudinal direction of the inter-vaporization pipe distribution pipe.

本実施形態に係る低温液化ガスの気化装置の概略構成斜視図である。It is a schematic structure perspective view of the vaporizer of the low-temperature liquefied gas concerning this embodiment. 前記気化装置の配管の状態を示す模式図(正面図)である。It is a schematic diagram (front view) which shows the state of piping of the said vaporization apparatus. 前記気化装置の配管の状態を示す模式図(側面図)である。It is a schematic diagram (side view) which shows the state of piping of the said vaporization apparatus. 前記気化装置の熱伝達抑制部を説明するための部分拡大図である。It is the elements on larger scale for demonstrating the heat transfer suppression part of the said vaporization apparatus. (A)は、前記気化装置の海水供給部を説明するための側面図であり、(B)は、前記気化装置の海水供給部を説明するための正面図である。(A) is a side view for demonstrating the seawater supply part of the said vaporization apparatus, (B) is a front view for demonstrating the seawater supply part of the said vaporization apparatus. 前記気化装置が設置された状態を示す図であって、一部を破断した斜視図である。It is a figure which shows the state in which the said vaporization apparatus was installed, Comprising: It is the perspective view which fractured | ruptured one part. 断熱部材の厚さによる供給側ヘッダー内を流れる液化天然ガスの温度の違いを示す図である。It is a figure which shows the difference in the temperature of the liquefied natural gas which flows through the inside of the supply side header by the thickness of a heat insulation member. 他実施形態に係る断熱部材(熱伝達抑制部)を説明するための縦断面図である。It is a longitudinal cross-sectional view for demonstrating the heat insulation member (heat transfer suppression part) which concerns on other embodiment. 他実施形態の低温液化ガスの気化装置におけるカバー部材を説明するための拡大横断面図である。It is an expanded cross-sectional view for demonstrating the cover member in the vaporization apparatus of the low temperature liquefied gas of other embodiment. 他実施形態の低温液化ガスの気化装置における気化管間分配管の第2領域の拡大横断面図である。It is an expanded transverse cross section of the 2nd field of distribution pipe between vaporization pipes in the vaporization device of low-temperature liquefied gas of other embodiments. 従来の気化装置を説明するための部分拡大斜視図である。It is a partial expansion perspective view for demonstrating the conventional vaporization apparatus. 従来の気化装置を説明するための部分拡大斜視図である。It is a partial expansion perspective view for demonstrating the conventional vaporization apparatus.

以下、本発明の一実施形態について、添付図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態に係る低温液化ガスの気化装置(以下、単に「気化装置」とも称する。)は、供給された低温液化ガスを外部の熱交換用液体と熱交換させることにより、当該低温液化ガスを気化させるいわゆるオープンラック型の気化装置(ORV)である。本実施形態の気化装置では液化天然ガス(LNG)を気化する。また、本実施形態では、熱交換用液体として海水が用いられる。   The low-temperature liquefied gas vaporizer according to the present embodiment (hereinafter, also simply referred to as “vaporizer”) exchanges the supplied low-temperature liquefied gas with an external heat exchange liquid, thereby This is a so-called open rack type vaporizer (ORV) for vaporization. In the vaporizer of this embodiment, liquefied natural gas (LNG) is vaporized. In this embodiment, seawater is used as the heat exchange liquid.

具体的に、気化装置は、図1〜図5に示されるように、複数(本実施形態では2個)の気化管ブロック11と、各気化管ブロック11へLNGを分配する分配管12と、各気化管ブロック11において気化されたLNGである天然ガス(NG)を集める集合管14と、各気化管パネル16の表面を伝って流れ落ちるように気化管パネル16の上部に海水を供給する海水供給部(液体供給部)30と、を備える。尚、気化装置10に設けられる気化管ブロック11の数は、複数に限定されず、1つでもよい。   Specifically, as shown in FIGS. 1 to 5, the vaporizer includes a plurality of (two in this embodiment) vaporizer tube blocks 11, a distribution pipe 12 that distributes LNG to each vaporizer tube block 11, and A collection pipe 14 that collects natural gas (NG), which is LNG vaporized in each vaporization pipe block 11, and a seawater supply that supplies seawater to the upper part of the vaporization pipe panel 16 so as to flow down along the surface of each vaporization pipe panel 16. Part (liquid supply part) 30. In addition, the number of the vaporization pipe blocks 11 provided in the vaporizer 10 is not limited to plural, and may be one.

各気化管ブロック11は、複数(本実施形態では5枚)の気化管パネル16と、分配管12からのLNGを各気化管パネル16へ分配する供給側マニホールド17と、各気化管パネル16において気化したLNG(即ち、NG)を集めて集合管14に送出する送出側マニホールド19と、をそれぞれ有する。尚、1つの気化管ブロック11に含まれる気化管パネル16の数は5枚に限定されず、他の枚数であってもよい。   Each vaporizing pipe block 11 includes a plurality of (in this embodiment, five) vaporizing pipe panels 16, a supply side manifold 17 that distributes LNG from the distribution pipe 12 to each vaporizing pipe panel 16, and each vaporizing pipe panel 16. And a delivery-side manifold 19 that collects vaporized LNG (that is, NG) and sends it to the collecting pipe 14. The number of vaporization tube panels 16 included in one vaporization tube block 11 is not limited to five, and may be another number.

各気化管パネル16は、垂直面上に互いに平行な姿勢で並べられた複数(本実施形態では90本)の気化管(伝熱管)21と、供給側マニホールド17からのLNGを各気化管21に分配する供給側ヘッダー22と、供給側ヘッダー22の両端部に設けられる伝熱抑制部23と、各気化管21において気化されたLNGを集めて送出側マニホールド19に送出する送出側ヘッダー24と、をそれぞれ有する。尚、1枚の気化管パネル16に含まれる気化管の数は90本に限定されず、他の本数であってもよい。   Each vaporization tube panel 16 includes a plurality of (90 heat transfer tubes) vaporization tubes (heat transfer tubes) 21 arranged in parallel with each other on a vertical plane, and LNG from the supply-side manifold 17. A supply side header 22 that distributes the LNG, a heat transfer suppression unit 23 provided at both ends of the supply side header 22, a sending side header 24 that collects LNG vaporized in each vaporizing pipe 21 and sends it to the sending side manifold 19. , Respectively. The number of vaporization tubes included in one vaporization tube panel 16 is not limited to 90, and may be other numbers.

各気化管21は、アルミニウム又はアルミニウム合金等の熱伝導率の高い金属材料により形成され、上下方向に延びる管である。   Each vaporization tube 21 is a tube formed of a metal material having a high thermal conductivity such as aluminum or an aluminum alloy and extending in the vertical direction.

供給側ヘッダー22は、気化管21が並ぶ前記垂直面に沿って水平方向に延びる管である。この供給側ヘッダー22も、気化管21同様に、アルミニウム又はアルミニウム合金等の熱伝導率の高い金属材料により形成されている。供給側ヘッダー22は、1つの気化管パネル16に含まれる各気化管21の下端部とそれぞれ接続される。また、供給側ヘッダー22は、その内部に配置されたヘッダー内管50を介して供給側マニホールド17からLNGが供給されるように、その一端が供給側マニホールド17と接続される。   The supply-side header 22 is a tube that extends in the horizontal direction along the vertical plane in which the vaporization tubes 21 are arranged. The supply side header 22 is also formed of a metal material having a high thermal conductivity such as aluminum or an aluminum alloy, like the vaporization tube 21. The supply-side header 22 is connected to the lower end portion of each vaporization tube 21 included in one vaporization tube panel 16. In addition, one end of the supply side header 22 is connected to the supply side manifold 17 so that LNG is supplied from the supply side manifold 17 via the header inner pipe 50 disposed therein.

ヘッダー内管50は、供給側ヘッダー22に沿って延びる管状部材であり、供給側ヘッダー22と同軸となるように当該供給側ヘッダー22の内部に配置される(図3参照)。このヘッダー内管50は、その外径が供給側ヘッダー22の内径よりも小さく、これにより、供給側ヘッダー22の内部に配置されたときに当該ヘッダー内管50の外周面と供給側ヘッダー22の内周面との間に所定の空間が形成される。そして、ヘッダー内管50は、その内部にLNGが供給されるように供給側マニホールド17に接続され、当該ヘッダー内管50の軸方向において管壁(周壁)の各気化管21と対応する位置にそれぞれ穴51を有する。この軸方向の各気化管に対応する位置には、それぞれ複数の(本実施形態では4つの穴)が設けられる。具体的に、これら複数の穴51は、前記軸方向における各気化管21と対応する位置(本実施形態では、各気化管21の下方側の位置)において、ヘッダー内管50の周方向、より詳しくは、各穴51の中心がヘッダー内管50の下半分に位置するように前記周方向に並んでいる。   The header inner pipe 50 is a tubular member extending along the supply side header 22 and is disposed inside the supply side header 22 so as to be coaxial with the supply side header 22 (see FIG. 3). The header inner pipe 50 has an outer diameter smaller than the inner diameter of the supply-side header 22, so that when arranged inside the supply-side header 22, the outer circumferential surface of the header inner pipe 50 and the supply-side header 22 A predetermined space is formed between the inner peripheral surface. The header inner pipe 50 is connected to the supply-side manifold 17 so that LNG is supplied into the header inner pipe 50, and at a position corresponding to each vaporization pipe 21 on the pipe wall (peripheral wall) in the axial direction of the header inner pipe 50. Each has a hole 51. A plurality of (four holes in the present embodiment) are provided at positions corresponding to the respective vaporization tubes in the axial direction. Specifically, the plurality of holes 51 are arranged in the circumferential direction of the header inner pipe 50 at positions corresponding to the vaporizing pipes 21 in the axial direction (positions below the vaporizing pipes 21 in the present embodiment). Specifically, the holes 51 are arranged in the circumferential direction so that the centers of the holes 51 are located in the lower half of the header inner pipe 50.

このように、供給側ヘッダー22の内部にヘッダー内管50を設けて二重管構造とし、ヘッダー内管50の各気化管21に対応する位置に複数の穴51をそれぞれ設けることにより、各気化管21に分配されるLNGの流量が均等になる。   In this way, the header inner pipe 50 is provided inside the supply side header 22 to form a double pipe structure, and a plurality of holes 51 are provided at positions corresponding to the vaporization pipes 21 of the header inner pipe 50 to thereby provide each vaporization. The flow rate of LNG distributed to the pipe 21 is equalized.

また、ヘッダー内管50の各気化管21に対応する位置に複数の穴51をそれぞれ設けることにより、各気化管21に流入するLNGの流れが均一となる。即ち、各気化管21に対応する位置の複数の穴51から流れ出たLNGが供給側ヘッダー22とヘッダー内管50との間を気化管21に向かって供給側ヘッダー22の周方向上側に向かって流れてから気化管21内に流入することにより、ヘッダー内管の上部(例えば、気化管21の下端と対向する位置等)に設けられた穴から流れ出て直ぐに気化管21内にLNGが流入する場合に比べてLNGの流れが均一となる。   Further, by providing a plurality of holes 51 at positions corresponding to the vaporization tubes 21 of the header inner tube 50, the flow of LNG flowing into the vaporization tubes 21 becomes uniform. That is, LNG that has flowed out from the plurality of holes 51 at positions corresponding to the respective vaporization tubes 21 passes between the supply side header 22 and the header inner tube 50 toward the vaporization tube 21 and toward the upper side in the circumferential direction of the supply side header 22. By flowing into the vaporization tube 21 after flowing, LNG flows into the vaporization tube 21 immediately after flowing out of a hole provided in the upper portion of the header inner tube (for example, a position facing the lower end of the vaporization tube 21). Compared with the case, the flow of LNG becomes uniform.

伝熱抑制部23は、供給側ヘッダー22における海水からの単位面積当たりの伝熱量を抑える。具体的に、伝熱抑制部23は、供給側ヘッダー22の第2領域A2の全域(全体)において、海水供給部30から供給された海水の有する熱が当該第2領域A2に伝熱されるときの単位面積当たりの伝熱量を抑える。ここで、供給側ヘッダー22の第2領域A2とは、供給側ヘッダー22の長手方向(水平方向)における複数の気化管21が配置されている領域(第1領域)A1の外側の領域である(図3及び図4参照)。具体的に、第1領域A1は、供給側ヘッダー22の長手方向において、気化管21の配置されている領域である。即ち、前記長手方向において、供給側ヘッダー22に沿って並ぶ複数の気化管21の一端の気化管21から他端の気化管21までの領域である。一方、第2領域A2は、前記長手方向において、第1領域A1の外側の領域である。具体的には、気化管ブロック11が部屋H(図6参照)内に配置される場合には、第2領域A2は、供給側ヘッダー22の第1領域A1以外で室内に位置する部位である。尚、この場合、各気化管ブロック11は、供給側ヘッダー22の供給側マニホールド17と反対側の端部が部屋H内に位置するように配置される。   The heat transfer suppression unit 23 suppresses the heat transfer amount per unit area from the seawater in the supply side header 22. Specifically, the heat transfer suppression unit 23 is configured to transfer the heat of the seawater supplied from the seawater supply unit 30 to the second region A2 in the entire second region A2 of the supply header 22 (entire). Reduce the amount of heat transfer per unit area. Here, the second area A2 of the supply-side header 22 is an area outside the area (first area) A1 in which the plurality of vaporization tubes 21 are arranged in the longitudinal direction (horizontal direction) of the supply-side header 22. (See FIGS. 3 and 4). Specifically, the first region A <b> 1 is a region where the vaporizing tube 21 is disposed in the longitudinal direction of the supply-side header 22. That is, in the longitudinal direction, a region from the vaporizing tube 21 at one end to the vaporizing tube 21 at the other end of the plurality of vaporizing tubes 21 arranged along the supply-side header 22. On the other hand, the second region A2 is a region outside the first region A1 in the longitudinal direction. Specifically, when the vaporizing tube block 11 is disposed in the room H (see FIG. 6), the second region A2 is a portion located indoors other than the first region A1 of the supply side header 22. . In this case, each vaporizing pipe block 11 is arranged such that the end of the supply side header 22 opposite to the supply side manifold 17 is located in the room H.

詳しくは、第2領域A2は、前記長手方向において、第1領域A1を挟んで、供給側マニホールド17側(図3における左側)の第2領域A2と、供給側マニホールド17と反対側(図3における右側)の第2領域A2とがある。前記反対側の第2領域A2は、図4において複数の気化管21のうちの右端に配置された気化管21の外側から供給側ヘッダー22の右端までの領域である。また、前記供給側マニホールド17側の第2領域A2は、図4において複数の気化管21のうちの左端に配置された気化管21の外側から、気化管ブロック11が配置される部屋Hの仕切り壁H1までの領域である(図1、図3、図6参照)。   Specifically, the second region A2 includes the second region A2 on the supply side manifold 17 side (left side in FIG. 3) and the opposite side of the supply side manifold 17 (FIG. 3) across the first region A1 in the longitudinal direction. And the second region A2 on the right side of FIG. The second region A2 on the opposite side is a region from the outside of the vaporizing tube 21 arranged at the right end of the plurality of vaporizing tubes 21 in FIG. 4 to the right end of the supply-side header 22. Further, the second region A2 on the supply side manifold 17 side is a partition of the room H in which the vaporizing pipe block 11 is arranged from the outside of the vaporizing pipe 21 arranged at the left end of the plurality of vaporizing pipes 21 in FIG. This is the area up to the wall H1 (see FIGS. 1, 3, and 6).

本実施形態の熱伝達抑制部23は、供給側ヘッダー22の第2領域A2を囲う断熱部材である。この断熱部材23は、その熱伝導率が供給側ヘッダー22(詳しくは、供給側ヘッダー22の管壁)の熱伝導率よりも小さい。具体的に、断熱部材23は、供給側ヘッダー22の第2領域A2の表面を覆うようにウレタンフォーム等の発泡プラスチック製のテープを供給側ヘッダー22に巻き付けることにより形成される。前記テープは、所定の伸縮性を有する。そして、断熱部材23は、供給側ヘッダー22の第2領域A2における表面(外周面)からの厚さが例えば1.5mmになるまで供給側ヘッダー22の第2領域A2の全域において前記テープが巻き重ねられることにより形成される。尚、断熱部材23の厚さは、供給側ヘッダー22の第1領域A1に向けて流れ落ちる海水と第2領域A2に向けて流れ落ちる海水との温度差、及び、断熱部材の熱伝導率等に基づいて適宜設定される。   The heat transfer suppression unit 23 of the present embodiment is a heat insulating member that surrounds the second region A <b> 2 of the supply side header 22. The heat conductivity of the heat insulating member 23 is smaller than the heat conductivity of the supply side header 22 (specifically, the tube wall of the supply side header 22). Specifically, the heat insulating member 23 is formed by winding a tape made of foamed plastic such as urethane foam around the supply side header 22 so as to cover the surface of the second region A2 of the supply side header 22. The tape has a predetermined elasticity. The heat insulating member 23 is wound around the entire area of the second region A2 of the supply side header 22 until the thickness from the surface (outer peripheral surface) in the second region A2 of the supply side header 22 becomes 1.5 mm, for example. It is formed by overlapping. Note that the thickness of the heat insulating member 23 is based on the temperature difference between the seawater flowing toward the first region A1 of the supply side header 22 and the seawater flowing toward the second region A2, the thermal conductivity of the heat insulating member, and the like. Is set as appropriate.

この断熱部材23は、供給側ヘッダー22において、第2領域A2にのみ設けられ、第1領域A1には設けられない。即ち、供給側ヘッダー22の第1領域A1は外部に露出した状態であり、第2領域A2はその全域において断熱部材23によって覆われた状態になっている。   The heat insulating member 23 is provided only in the second region A2 in the supply side header 22 and is not provided in the first region A1. That is, the first area A1 of the supply side header 22 is exposed to the outside, and the second area A2 is covered with the heat insulating member 23 in the entire area.

このような断熱部材23を供給側ヘッダー22の第2領域A2に設けることにより、供給側ヘッダー22の第1領域A1における海水(詳しくは、海水供給部30から供給される海水)からの熱伝達率に比べ、供給側ヘッダー22の第2領域A2における海水からの熱伝達率を抑えることができる。これにより、海水供給部30から供給側ヘッダー22の第1領域A1に向かって流れ落ちる海水の温度よりも第2領域に向かって流れ落ちる海水の温度の方が高くても、供給側ヘッダー22の第1領域A1の管壁の温度よりも第2領域A2の管壁の温度の方が高くなることを防ぐことができる。   By providing such a heat insulating member 23 in the second region A2 of the supply-side header 22, heat transfer from seawater (specifically, seawater supplied from the seawater supply unit 30) in the first region A1 of the supply-side header 22 is performed. Compared to the rate, the heat transfer rate from the seawater in the second region A2 of the supply-side header 22 can be suppressed. Thereby, even if the temperature of the seawater which flows down toward the 2nd field is higher than the temperature of the seawater which flows down toward the 1st field A1 of supply side header 22 from seawater supply part 30, the 1st of supply side header 22 It is possible to prevent the temperature of the tube wall in the second region A2 from becoming higher than the temperature of the tube wall in the region A1.

また、断熱部材23は、前記伸縮性を有するテープにより形成されるため、所定の伸縮性を有する。そのため、供給側ヘッダー22が熱収縮しても、この熱収縮に伴って断熱部材23自身も伸縮し、これにより、供給側ヘッダー22の熱収縮(特に、供給側ヘッダー22の径方向の熱伸縮)に起因する断熱部材23の破れ等の損傷を効果的に防止することができる。   Moreover, since the heat insulation member 23 is formed with the tape which has the said elasticity, it has predetermined elasticity. Therefore, even if the supply-side header 22 is thermally contracted, the heat insulating member 23 itself is expanded and contracted along with the thermal contraction, and thereby, the heat-shrinkage of the supply-side header 22 (particularly, the thermal expansion and contraction in the radial direction of the supply-side header 22). It is possible to effectively prevent damage such as tearing of the heat insulating member 23 caused by

送出側ヘッダー24は、供給側ヘッダー22と平行に延びる管である。この送出側ヘッダー24は、1つの気化管パネル16に含まれる各気化管21の上端部と、送出側マニホールド19と、に接続される。   The delivery side header 24 is a pipe extending in parallel with the supply side header 22. The delivery side header 24 is connected to the upper end portion of each vaporization tube 21 included in one vaporization tube panel 16 and the delivery side manifold 19.

以上のように構成される複数の気化管パネル16は、互いに平行な姿勢でパネル面(気化管21が並ぶ前記垂直面)と直交する方向(図2において左右方向)に配置されている。   The plurality of vaporizing tube panels 16 configured as described above are arranged in a direction (left-right direction in FIG. 2) orthogonal to the panel surface (the vertical surface on which the vaporizing tubes 21 are arranged) in a mutually parallel posture.

供給側マニホールド17は、供給側ヘッダー22と交差する方向(本実施形態では、略直交する方向:図3における紙面と直交する方向)に延びる管であり、1つの気化管ブロック11に含まれる各供給側ヘッダー22と、分配管12と、に接続される。   The supply-side manifold 17 is a pipe extending in a direction intersecting with the supply-side header 22 (in the present embodiment, a direction substantially orthogonal to the sheet: a direction orthogonal to the paper surface in FIG. 3), and is included in one vaporization tube block 11. Connected to the supply side header 22 and the distribution pipe 12.

送出側マニホールド19は、送出側ヘッダー24と交差する方向(本実施形態では、略直交する方向:図3において紙面と直交する方向)に延びる管であり、1つの気化管ブロック11に含まれる各送出側ヘッダー24と、集合管14と、に接続される。   The delivery-side manifold 19 is a pipe extending in a direction intersecting with the delivery-side header 24 (in the present embodiment, a direction substantially orthogonal to the paper: a direction orthogonal to the paper surface in FIG. 3), and is included in one vaporization tube block 11. Connected to the sending side header 24 and the collecting pipe 14.

分配管12は、供給側マニホールド17と略平行に延びる管であり、各供給側マニホールド17に接続される。また、分配管12には、外部から当該気化装置10にLNGを供給するための配管P1を接続する供給側接続部12aが設けられている。   The distribution pipe 12 is a pipe extending substantially parallel to the supply side manifold 17 and is connected to each supply side manifold 17. Further, the distribution pipe 12 is provided with a supply side connection portion 12a for connecting a pipe P1 for supplying LNG to the vaporizer 10 from the outside.

集合管14は、送出側マニホールド19と略平行に延びる管であり、各送出側マニホールド19に接続される。また、集合管14には、消費地等の外部へNGを送出するための配管P2を接続する送出側接続部14aが設けられている。   The collecting pipe 14 is a pipe extending substantially in parallel with the delivery side manifold 19 and is connected to each delivery side manifold 19. Further, the collecting pipe 14 is provided with a sending side connection portion 14a for connecting a pipe P2 for sending NG to the outside such as a consumption area.

海水供給部30は、各気化管パネル16の上端部近傍に配置されるトラフ31と、各トラフ31に海水を供給する海水ヘッダー32と、各海水ヘッダー32に海水を分配する海水マニホールド33と、を備える(図5(A)、図5(B)参照)。トラフ31は、気化管パネル16(詳しくは、当該気化管パネル16を構成する各気化管21)の表面に沿って海水が流れ落ちるように各気化管パネル16の上端部に海水を供給する。このトラフ31から供給されて気化管パネル16の表面を流れ落ちる海水と、各気化管21内を流れるLNGとが、気化管21の管壁を介して熱交換することにより、LNGが気化してNGとなる。   The seawater supply unit 30 includes a trough 31 disposed in the vicinity of the upper end of each vaporization tube panel 16, a seawater header 32 that supplies seawater to each trough 31, a seawater manifold 33 that distributes seawater to each seawater header 32, (See FIGS. 5A and 5B). The trough 31 supplies seawater to the upper end portion of each vaporization tube panel 16 so that the seawater flows down along the surface of the vaporization tube panel 16 (specifically, each vaporization tube 21 constituting the vaporization tube panel 16). The seawater supplied from the trough 31 and flowing down the surface of the vaporization tube panel 16 and the LNG flowing in the vaporization tubes 21 exchange heat through the tube walls of the vaporization tubes 21, whereby LNG is vaporized and NG. It becomes.

このように構成される気化装置10の各気化管ブロック11は、図6に示されるように、コンクリート等の壁に囲まれた部屋H内にそれぞれ配置される。具体的には、各気化管ブロック11は、当該気化管ブロック11における供給側マニホールド17及び送出側マニホールド19が部屋Hの外に位置するように部屋H内に配置される。この部屋Hは、供給側ヘッダー22の長手方向において、気化管21と供給側マニホールド17との間を供給側ヘッダー22及び送出側ヘッダー24を残して室内と室外とに仕切る仕切りH1を有する。即ち、供給側ヘッダー22におけるその端部(供給側マニホールド17側の端部)と当該端部側に位置する気化管21との間の部位が仕切り壁H1を貫通すると共に、送出側ヘッダー24におけるその端部(送出側マニホールド19側の端部)と当該端部側に位置する気化管21との間の部位が仕切り壁H1を貫通する。この部屋Hの外に配置される各管12、14、17、19には、その表面全体を覆うように断熱部材が設けられている。   Each vaporization pipe block 11 of the vaporization apparatus 10 configured as described above is arranged in a room H surrounded by a wall of concrete or the like, as shown in FIG. Specifically, each vaporizing pipe block 11 is arranged in the room H such that the supply side manifold 17 and the delivery side manifold 19 in the vaporizing pipe block 11 are located outside the room H. This room H has a partition H1 that partitions the inside of the room and the outside of the room on the supply side header 22 while leaving the supply side header 22 and the delivery side header 24 between the vaporization pipe 21 and the supply side manifold 17. That is, a portion between the end of the supply-side header 22 (the end on the supply-side manifold 17 side) and the vaporizing tube 21 located on the end side passes through the partition wall H1 and also in the delivery-side header 24. A portion between the end (the end on the delivery side manifold 19 side) and the vaporizing tube 21 located on the end passes through the partition wall H1. Each pipe 12, 14, 17, 19 disposed outside the room H is provided with a heat insulating member so as to cover the entire surface.

以上のように構成される気化装置10は、以下のようにしてLNGを気化する。   The vaporizer 10 configured as described above vaporizes LNG as follows.

トラフ31から各気化管パネル16の表面に海水が供給されると共に、供給側接続部12aに接続された配管P1を通じて供給ポンプ等からLNGが分配管12に供給される。分配管12は、供給ポンプ等によって供給されたLNGを当該分配管12に接続された各供給側マニホールド17に分配し、各供給側マニホールド17は、分配管12からのLNGを当該供給側マニホールド17に接続された各供給側ヘッダー22にそれぞれ分配する。各供給側ヘッダー22は、供給されたLNGを当該供給側ヘッダー22に接続された各気化管21に分配する。各気化管21では、供給側ヘッダー22から供給されたLNGがその内部を当該気化管21の下端から上端に向けて流れる。このとき、気化管21の内部を流れるLNGは、気化管21の表面を流れ落ちる海水と当該気化管21の管壁を介して熱交換する。この熱交換により、LNGが気化してNGとなる。   Seawater is supplied from the trough 31 to the surface of each vaporization tube panel 16, and LNG is supplied to the distribution pipe 12 from a supply pump or the like through the pipe P1 connected to the supply side connection portion 12a. The distribution pipe 12 distributes LNG supplied by a supply pump or the like to each supply side manifold 17 connected to the distribution pipe 12, and each supply side manifold 17 supplies the LNG from the distribution pipe 12 to the supply side manifold 17. Are distributed to each supply-side header 22 connected to the. Each supply-side header 22 distributes the supplied LNG to each vaporization tube 21 connected to the supply-side header 22. In each vaporization tube 21, the LNG supplied from the supply-side header 22 flows through the vaporization tube 21 from the lower end to the upper end. At this time, the LNG flowing inside the vaporizing tube 21 exchanges heat with the seawater flowing down the surface of the vaporizing tube 21 through the tube wall of the vaporizing tube 21. By this heat exchange, LNG vaporizes and becomes NG.

この気化装置10においてLNGの気化が行われているときに、海水供給部30は、気化管パネル16の気化管21が設けられた領域だけでなく、その幅方向(当該気化管パネル16における気化管21の並び方向)の外側の領域にも海水を供給する。これは、前記幅方向の両端部に位置する気化管21においても、全周において海水と十分に接触させるためである。これにより、LNGを気化してNGにするとき、即ち、気化装置10の運転中においては、気化管パネル16に沿って供給側ヘッダー22の第1領域A1に向けて流れ落ちる海水は、気化管21内のLNGとの熱交換によって供給側ヘッダー22の位置まで流れ落ちたときに十分に低温となっているのに対し、前記気化管の外側を流れ落ちる(即ち、供給側ヘッダー22の第2領域A2に向けて流れ落ちる)海水は、気化管21内のLNGとの熱交換を殆ど行わずに流れ落ちるため、前記第1領域A1に向けて流れ落ちる海水に比べて供給側ヘッダー22の位置に到達したときの温度が高い。そのため、供給側ヘッダー22の第2領域A2に断熱部材(熱伝達抑制部)23が設けられていなければ、この海水との熱交換によって供給側ヘッダー22の第1領域A1の管壁よりも第2領域A2の管壁の方が高温となり、この第2領域A2に隣接する気化管21(前記気化管パネルの幅方向の端部位置の気化管21)に供給されるLNG(ヘッダー内管50の穴51から流れ出て当該ヘッダー内管50と供給側ヘッダー22との間を気化管21に向かって供給側ヘッダー22の周方向上側に向かって流れるLNG)が第1領域A1の中央部位置の気化管21に供給されるLNGに比べて温度が高くなる。しかし、本実施形態の気化装置10においては、供給側ヘッダー22の第2領域A2に断熱部材23が設けられているため、当該第2領域A2の管壁におけるこの温度の高い海水からの単位面積当たりの伝熱量が抑えられ、これにより、供給側ヘッダー22の第2領域A2に隣接する気化管21に供給されるLNGと第1領域A1の中央部位置の気化管21に供給されるLNGとの間に温度の違いが生じることを防ぐことができる。   When LNG is vaporized in the vaporizer 10, the seawater supply unit 30 is not only in the region where the vaporization tube 21 of the vaporization tube panel 16 is provided, but also in its width direction (vaporization in the vaporization tube panel 16. Seawater is also supplied to the region outside the direction in which the tubes 21 are arranged. This is because the vaporization pipes 21 located at both ends in the width direction are sufficiently brought into contact with seawater on the entire circumference. Thereby, when the LNG is vaporized into NG, that is, during the operation of the vaporizer 10, the seawater flowing down toward the first region A1 of the supply side header 22 along the vaporization tube panel 16 is vaporized. The temperature is sufficiently low when it flows down to the position of the supply side header 22 due to heat exchange with the LNG inside, but it flows down outside the vaporization pipe (that is, into the second region A2 of the supply side header 22). Since the seawater flows down with little heat exchange with the LNG in the vaporization pipe 21, the temperature when the seawater reaches the position of the supply-side header 22 compared to the seawater that flows toward the first region A1. Is expensive. Therefore, if the heat insulating member (heat transfer suppressing portion) 23 is not provided in the second region A2 of the supply side header 22, the heat exchange with the seawater is performed more than the tube wall of the first region A1 of the supply side header 22. The tube wall of the second region A2 has a higher temperature, and the LNG (inner header tube 50) supplied to the vaporization tube 21 adjacent to the second region A2 (the vaporization tube 21 at the end portion in the width direction of the vaporization tube panel). LNG) flowing out from the hole 51 and flowing between the header inner pipe 50 and the supply side header 22 toward the vaporization pipe 21 toward the upper side in the circumferential direction of the supply side header 22) is located at the central position of the first region A1. The temperature is higher than LNG supplied to the vaporizing tube 21. However, in the vaporization apparatus 10 of the present embodiment, since the heat insulating member 23 is provided in the second region A2 of the supply side header 22, the unit area from the seawater having a high temperature in the pipe wall of the second region A2 is provided. The amount of heat transfer per unit is suppressed, and as a result, LNG supplied to the vaporization pipe 21 adjacent to the second area A2 of the supply side header 22 and LNG supplied to the vaporization pipe 21 at the center position of the first area A1. It is possible to prevent a temperature difference between the two.

各気化管21内において気化されたLNG、即ち、NGは、送出側ヘッダー24によって集められ、送出側マニホールド19に送出される。送出側マニホールド19に送られたNGは、集合管14を経て、送出側接続部14aに接続された配管P2を通じて消費地等に送出される。   LNG vaporized in each vaporization tube 21, that is, NG is collected by the delivery side header 24 and delivered to the delivery side manifold 19. The NG sent to the delivery side manifold 19 is sent to the consumption area or the like through the collecting pipe 14 and the pipe P2 connected to the delivery side connection portion 14a.

以上の気化装置10によれば、供給側ヘッダー22の第1領域A1に向かって流れ落ちる海水に比べて第2領域A2に向かって流れ落ちる海水の温度が高くても、断熱部材(熱伝達抑制部)23によって供給側ヘッダー22の第2領域A2の全域(各気化管ブロック11の収容されている部屋H内における供給側ヘッダー22の第1領域A1以外の領域)における海水からの単位面積当たりの伝熱量が抑えられる。そのため、前記温度の異なる海水によって供給側ヘッダー22の第1領域A1よりも第2領域A2が高温になることを防ぐことが可能となる。これにより、気化管パネル16の水平方向(幅方向)における端部位置の気化管21に分配されるLNGと、中央部位置の気化管21に分配されるLNGと、の温度の違いが抑えられ、各気化管21の熱伸縮量に起因する供給側ヘッダー22の湾曲が防止される。   According to the above vaporizer 10, even if the temperature of the seawater flowing toward the second region A2 is higher than the seawater flowing toward the first region A1 of the supply side header 22, the heat insulating member (heat transfer suppression unit) 23, transmission per unit area from seawater in the entire second area A2 of the supply-side header 22 (area other than the first area A1 of the supply-side header 22 in the room H in which each vaporizing pipe block 11 is accommodated). The amount of heat is suppressed. Therefore, it becomes possible to prevent the second region A2 from becoming hotter than the first region A1 of the supply-side header 22 by the seawater having different temperatures. Thereby, the temperature difference between the LNG distributed to the vaporizing tube 21 at the end position in the horizontal direction (width direction) of the vaporizing tube panel 16 and the LNG distributed to the vaporizing tube 21 at the central position is suppressed. The bending of the supply-side header 22 due to the amount of thermal expansion and contraction of each vaporizing tube 21 is prevented.

また、本実施形態の気化装置10では、断熱部材23によって供給側ヘッダー22の第2領域A2の全域(全体)を囲うことにより、供給側ヘッダー22の第1領域A1における海水からの単位面積当たりの伝熱量に比べ、供給側ヘッダー22の第2領域A2における海水からの単位面積当たりの伝熱量を容易且つ確実に抑えることができる。   Moreover, in the vaporization apparatus 10 of this embodiment, the whole area (the whole) of 2nd area | region A2 of the supply side header 22 is enclosed by the heat insulation member 23, The unit area from the seawater in 1st area | region A1 of the supply side header 22 Compared to the heat transfer amount, the heat transfer amount per unit area from seawater in the second region A2 of the supply-side header 22 can be easily and reliably suppressed.

また、本実施形態の気化装置10では、断熱部材23が所定の伸縮性を有することにより、供給側ヘッダー22の熱伸縮による断熱部材23の損傷を防止することができる。具体的に、供給側ヘッダー22は、気化装置10の運転中と気化装置10の停止中との間の温度差によって熱伸縮するが、当該供給側ヘッダー22を囲う断熱部材23が所定の伸縮性を有することにより、当該供給側ヘッダー22の熱伸縮に合わせて伸縮する。これにより、供給側ヘッダー22の熱伸縮(特に、径方向の熱伸縮)に起因する断熱部材23の損傷を効果的に防止することができる。   Moreover, in the vaporization apparatus 10 of this embodiment, since the heat insulation member 23 has predetermined elasticity, damage to the heat insulation member 23 due to thermal expansion and contraction of the supply side header 22 can be prevented. Specifically, the supply-side header 22 thermally expands and contracts due to a temperature difference between the operation of the vaporizer 10 and when the vaporizer 10 is stopped, but the heat insulating member 23 surrounding the supply-side header 22 has a predetermined stretchability. By expanding and contracting, it expands and contracts in accordance with the thermal expansion and contraction of the supply side header 22. Thereby, the damage of the heat insulation member 23 resulting from the thermal expansion / contraction (especially radial thermal expansion / contraction) of the supply side header 22 can be prevented effectively.

断熱部材の効果を確認するために、上記実施形態の気化装置10と断熱部材23を除いて同じ構成の気化装置を用い、当該気化装置の運転中の供給側ヘッダー22の第2領域を流れるLNGの温度を調べた。   In order to confirm the effect of the heat insulating member, the LNG flowing in the second region of the supply side header 22 during operation of the vaporizer is used by using the vaporizer having the same configuration except the vaporizer 10 and the heat insulator 23 of the above embodiment. The temperature of was examined.

この気化装置の供給側ヘッダーは、外形が165.2mmのアルミニウム製であり、熱伝達率が5000W/mKである。断熱部材の熱伝導率は、1W/mKである。   The supply-side header of this vaporizer is made of aluminum having an outer shape of 165.2 mm and has a heat transfer coefficient of 5000 W / mK. The heat conductivity of the heat insulating member is 1 W / mK.

この供給側ヘッダーに−145℃のLNGを供給し、断熱部材がない状態、厚さが0.5mmの断熱部材を設けた状態、厚さが1.5mmの断熱部材を設けた状態の各状態における供給側ヘッダーの第2領域を流れるLNGの温度を測定した。その結果を、図7に示す。   Each state of supplying 145 ° C. LNG to this supply-side header, having no heat insulation member, having a heat insulation member having a thickness of 0.5 mm, and having a heat insulation member having a thickness of 1.5 mm The temperature of LNG flowing through the second region of the supply-side header was measured. The result is shown in FIG.

この図からわかるように、断熱部材が設けられていない状態に比べ、薄い断熱部材であっても当該断熱部材を供給側ヘッダーの第2領域に設けることにより、内部を流れるLNGの海水による温度上昇が抑えられることが確認できた。   As can be seen from this figure, the temperature rise due to seawater of LNG flowing through the inside by providing the heat insulating member in the second region of the supply-side header, even if it is a thin heat insulating member, compared to the state in which the heat insulating member is not provided. Was confirmed to be suppressed.

これにより、第1領域に向けて流れ落ちる海水の温度よりも第2領域に向けて流れ落ちる海水の温度が高くても、第2領域に断熱部材を設けることにより、供給側ヘッダーにおける第1領域と第2領域との間に温度差が生じることを抑えることが可能であることが確認できた。   Thereby, even if the temperature of the seawater that flows down toward the second region is higher than the temperature of the seawater that flows down toward the first region, by providing the heat insulating member in the second region, It was confirmed that it was possible to suppress the temperature difference between the two regions.

尚、本発明の低温液化ガスの気化装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the low temperature liquefied gas vaporization apparatus of this invention is not limited to the said embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.

断熱部材23の具体的構成は限定されない。例えば、上記実施形態の断熱部材23は、ウレタンフォーム等の発泡プラスチック製のテープを供給側ヘッダー22の第2領域A2に巻き重ねる(巻き付ける)ことにより構成されるが、これに限定されない。即ち、断熱部材は、図8示されるように、シリコン、ポリ塩化ビニルなどの樹脂あるいは発泡樹脂、グラスファイバーなどを織り込んだ樹脂、ゴム等の熱伝導率の小さな素材で形成された筒状又は有底筒状の部材23A、23Bであってもよい。この筒状の断熱部材23A及び有底筒状の断熱部材23Bは、供給側ヘッダー22の第2領域A2の外周面の直径(外径)に対応する直径(内径)、又は前記外径よりも大きな前記内径の内周面123をそれぞれ有する。そして、これら断熱部材23A、23Bは、筒状の断熱部材23Aを供給側ヘッダー22における供給側マニホールド17側の第2領域A2の周囲に被せられ、有底筒状の断熱部材23Bを供給側ヘッダー22における供給側マニホールド17と反対側の第2領域A2に被せられる。これにより、第2領域A2の全域が断熱部材23A、23Bによって囲まれる。   The specific configuration of the heat insulating member 23 is not limited. For example, the heat insulating member 23 of the above embodiment is configured by winding (wrapping) a tape made of foamed plastic such as urethane foam around the second region A2 of the supply side header 22, but is not limited thereto. That is, as shown in FIG. 8, the heat insulating member has a cylindrical or formed shape made of a material having a low thermal conductivity such as a resin such as silicon or polyvinyl chloride, a foamed resin, a resin woven with glass fiber, or rubber. The bottom cylindrical members 23A and 23B may be used. The cylindrical heat insulating member 23A and the bottomed cylindrical heat insulating member 23B have a diameter (inner diameter) corresponding to the diameter (outer diameter) of the outer peripheral surface of the second region A2 of the supply side header 22 or the outer diameter. Each of the inner peripheral surfaces 123 has a large inner diameter. The heat insulating members 23A and 23B are covered with a cylindrical heat insulating member 23A around the second region A2 on the supply side manifold 17 side of the supply side header 22, and the bottomed cylindrical heat insulation member 23B is provided on the supply side header. 22 is covered with the second region A2 on the opposite side of the supply side manifold 17. Thereby, the whole area of 2nd field A2 is surrounded by heat insulation members 23A and 23B.

また、断熱部材は、ウレタンフォーム等の発泡プラスチックを供給側ヘッダー22の第2領域A2の表面に所定の厚さになるまで噴きつけることにより形成されてもよい。   The heat insulating member may be formed by spraying foamed plastic such as urethane foam on the surface of the second region A2 of the supply-side header 22 until a predetermined thickness is reached.

また、熱伝達抑制部は、供給側ヘッダー22の第2領域A2を囲う構成に限定されない。例えば、供給側ヘッダー22の第2領域A2の上側に配置され、平面視において供給側ヘッダー22の第2領域A2を覆い隠す形状を有するカバー部材60(図9参照)であってもよい。具体的に、カバー部材60は、平面視において供給側ヘッダー22の第2領域A2を覆い隠すことができるように供給側ヘッダー22の外径よりも大きな幅(水平方向の幅)を有する。そして、このカバー部材60は、供給側ヘッダー22の第2領域A2の上側において当該第2領域A2と間隔をおいて(又は接触するように)配置される。このような構成によれば、供給側ヘッダーの長手方向(水平方向)における端部位置の気化管よりも外側を流れ落ち且つ当該気化管内を流れるLNGとの熱交換が殆ど行われていない海水が、供給側ヘッダーの第2領域に当たることを防止することができる。これにより、供給側ヘッダーの第1領域に向かって流れ落ちる海水よりも第2領域に向かって流れ落ちる海水の方が温度が高くても、気化管間分配管の第1領域と第2領域との間に温度の違いが生じることを防ぐことが可能となる。即ち、供給側ヘッダー22の第2領域A2に海水供給部30から流れ落ちてくる海水が当たらないようにカバー部材60を設けることによって当該供給側ヘッダー22の第2領域A2の内部に海水からの熱を伝わり難くし、これにより、供給側ヘッダー22の第1領域A1と第2領域A2とに流れるLNGの温度差を抑制してもよい。   Further, the heat transfer suppression unit is not limited to the configuration surrounding the second region A2 of the supply side header 22. For example, it may be a cover member 60 (see FIG. 9) that is disposed above the second region A2 of the supply-side header 22 and has a shape that covers the second region A2 of the supply-side header 22 in plan view. Specifically, the cover member 60 has a width (horizontal width) larger than the outer diameter of the supply header 22 so as to cover the second region A2 of the supply header 22 in plan view. And this cover member 60 is arrange | positioned in the 2nd area | region A2 above the 2nd area | region A2 of the supply side header 22 at intervals (or so that it may contact). According to such a configuration, the seawater that flows down outside the vaporization tube at the end position in the longitudinal direction (horizontal direction) of the supply header and hardly exchanges heat with LNG flowing in the vaporization tube, It is possible to prevent hitting the second region of the supply header. Thereby, even if the temperature of the seawater flowing toward the second area is higher than the seawater flowing toward the first area of the supply-side header, the temperature between the first area and the second area of the pipe between the vaporization pipes is higher. It is possible to prevent the difference in temperature from occurring. That is, by providing the cover member 60 so that the seawater flowing down from the seawater supply unit 30 does not hit the second area A2 of the supply-side header 22, the heat from the seawater in the second area A2 of the supply-side header 22 is provided. Thus, the temperature difference of LNG flowing in the first region A1 and the second region A2 of the supply side header 22 may be suppressed.

また、供給側ヘッダーの第2領域A2の管壁を第1領域A1の管壁よりも熱伝導率の小さな素材によって構成していてもよい。具体的に、例えば、第1領域A1の管壁を第1実施形態と同様に、アルミニウム又はアルミ合金等の熱伝導率の高い金属によって形成し、第2領域A2の管壁を鉄やSUSによって形成する。これにより、管壁の熱伝導率が供給側ヘッダーの第1領域A1に比べて第2領域A2の方が小さくなり、供給側ヘッダーにおいて第1領域A1よりも温度の高い海水が第2領域A2に当たっても、供給側ヘッダーの第1領域A1の内部を流れるLNGの温度と第2領域A2の内部を流れるLNGの温度との間に温度差が生じることを防ぐことが可能となる。その結果、この温度の違いに起因する供給側ヘッダーの湾曲を防止することができる。   Further, the tube wall of the second region A2 of the supply side header may be made of a material having a smaller thermal conductivity than the tube wall of the first region A1. Specifically, for example, the tube wall of the first region A1 is formed of a metal having high thermal conductivity such as aluminum or an aluminum alloy as in the first embodiment, and the tube wall of the second region A2 is made of iron or SUS. Form. As a result, the thermal conductivity of the tube wall is smaller in the second region A2 than in the first region A1 of the supply-side header, and seawater having a higher temperature than the first region A1 in the supply-side header is in the second region A2. In this case, it is possible to prevent a temperature difference from occurring between the temperature of the LNG flowing inside the first area A1 of the supply side header and the temperature of the LNG flowing inside the second area A2. As a result, it is possible to prevent the supply-side header from being bent due to this temperature difference.

また、供給側ヘッダー22の第2領域A2の管壁のみを当該管壁の厚さ方向に層状に構成することによって、供給側ヘッダーの第2領域A2の表面(外周面)から当該第2領域A2の内部(供給側ヘッダーの内周面)への熱伝導率を抑えることにより、供給側ヘッダー22の第2領域A2の管壁の熱伝導率(等価熱伝導率)を第1領域A1の管壁の熱伝導率よりも小さくしてもよい。具体的には、図10に示されるように、供給側ヘッダー22の第2領域A2における管壁が複数の層(図10の例では2層)からなり、各層間には、空気若しくは断熱部材が充填された熱伝導抑制層62が形成される。このような構成によっても、供給側ヘッダー22の第2領域A2の管壁における熱伝導率(等価熱伝導率)が第1領域A1の管壁における熱伝導率よりも小さくなる。尚、管壁を構成する層は、3層以上でもよい。   In addition, by configuring only the tube wall of the second region A2 of the supply side header 22 in a layered manner in the thickness direction of the tube wall, the second region from the surface (outer peripheral surface) of the second region A2 of the supply side header. By suppressing the thermal conductivity to the inside of A2 (inner peripheral surface of the supply-side header), the thermal conductivity (equivalent thermal conductivity) of the tube wall of the second region A2 of the supply-side header 22 is reduced to that of the first region A1. It may be smaller than the thermal conductivity of the tube wall. Specifically, as shown in FIG. 10, the tube wall in the second region A2 of the supply side header 22 is composed of a plurality of layers (two layers in the example of FIG. 10), and air or a heat insulating member is provided between the layers. The heat conduction suppressing layer 62 filled with is formed. Even with such a configuration, the thermal conductivity (equivalent thermal conductivity) in the tube wall of the second region A2 of the supply side header 22 becomes smaller than the thermal conductivity in the tube wall of the first region A1. Note that the number of layers constituting the tube wall may be three or more.

また、上記実施形態では、供給側ヘッダー22の内部にヘッダー内管50が設けられているが、この構成に限定されない。即ち、ヘッダー内管50を設けることなく、供給側マニホールド17から供給側ヘッダー22に直接LNGが供給されるように構成されてもよい。   Moreover, in the said embodiment, although the header inner pipe | tube 50 is provided in the inside of the supply side header 22, it is not limited to this structure. In other words, the LNG may be directly supplied from the supply side manifold 17 to the supply side header 22 without providing the header inner pipe 50.

10 低温液化ガスの気化装置
11 気化管ブロック
12 分配管
14 集合管
16 気化管パネル
17 供給側マニホールド
19 送出側マニホールド
21 気化管
22 供給側ヘッダー(気化管間分配管)
23 熱伝達抑制部(断熱部材)
24 送出側ヘッダー
30 海水供給部(液体供給部)
50 ヘッダー内管
51 穴
A1 供給側ヘッダーの第1領域
A2 供給側ヘッダーの第2領域
DESCRIPTION OF SYMBOLS 10 Low-temperature liquefied gas vaporizer 11 Evaporation pipe block 12 Distribution pipe 14 Collecting pipe 16 Evaporation pipe panel 17 Supply side manifold 19 Delivery side manifold 21 Evaporation pipe 22 Supply side header (distribution pipe between vaporization pipes)
23 Heat transfer suppression part (heat insulation member)
24 Delivery side header 30 Seawater supply part (liquid supply part)
50 Header inner pipe 51 Hole A1 First area A2 of supply-side header Second area of supply-side header

Claims (6)

低温液化ガスを気化するための装置であって、
垂直方向に延び且つ内部に流される前記低温液化ガスを外部との熱交換によって気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、
前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、
前記複数の気化管が配置されている前記気化管間分配管の第1領域に向かって流れ落ちる熱交換用液体の温度に比べて、前記水平方向において前記第1領域の外側である前記気化管間分配管の第2領域に向かって流れ落ちる熱交換用液体の温度の方が高い場合であっても、前記第1領域伝わる前記熱交換用液体からの単位面積当たりの伝熱量と比べて、前記第2領域に伝わる熱交換用液体からの単位面積当たりの伝熱量を同程度以下に抑える伝熱抑制部と、を備える低温液化ガスの気化装置。
An apparatus for vaporizing a low-temperature liquefied gas,
There are a plurality of vaporization tubes for evaporating the low-temperature liquefied gas flowing in the vertical direction and flowing inside by heat exchange with the outside, and an inter-vaporization pipe distribution pipe for distributing the low-temperature liquefied gas to each of the vaporization tubes. And a plurality of vaporization tubes arranged in a horizontal direction on a vertical plane, and the vaporization pipe distribution pipe extends in the horizontal direction and is connected to a lower end portion of each vaporization pipe, and
A liquid supply section for supplying a heat exchange liquid from an upper end of the vaporization tube panel so as to flow down along the plurality of vaporization tubes;
Compared to the temperature of the heat exchange liquid flowing down toward the first region of the inter-vaporization tube distribution pipe in which the plurality of vaporization tubes are arranged, the space between the vaporization tubes outside the first region in the horizontal direction even if better temperature higher heat exchange fluid flows down towards the second region of the distribution pipe, in comparison with the amount of heat transfer per unit area from the heat transfer fluid that Tsutawa to the first region, before SL vaporizer of low-temperature liquefied gas and a heat transfer suppressing portion REDUCE below comparable amount of heat transfer per unit area of the heat transfer fluid that Tsutawa the second region.
前記伝熱抑制部は、前記気化管間分配管の第2領域を囲う断熱部材であり、
前記断熱部材の熱伝導率が前記気化管間分配管の熱伝導率よりも小さい請求項1に記載の低温液化ガスの気化装置。
The heat transfer suppression unit is a heat insulating member that surrounds a second region of the inter-vaporization pipe distribution pipe,
The low-temperature liquefied gas vaporizer according to claim 1, wherein a thermal conductivity of the heat insulating member is smaller than a thermal conductivity of the inter-vaporization pipe distribution pipe.
前記断熱部材は、所定の伸縮性を有する請求項2に記載の低温液化ガスの気化装置。   The low-temperature liquefied gas vaporizer according to claim 2, wherein the heat insulating member has a predetermined elasticity. 前記伝熱抑制部は、前記気化管間分配管の第2領域の上側に配置され、平面視において前記分配管の第2領域を覆い隠す形状を有するカバー部材である請求項1に記載の低温液化ガスの気化装置。   2. The low temperature according to claim 1, wherein the heat transfer suppression unit is a cover member that is disposed above the second region of the inter-vaporization pipe distribution pipe and has a shape that covers the second area of the distribution pipe in a plan view. Liquefied gas vaporizer. 前記気化管間分配管におけるその端部と当該端部側に位置する気化管との間の部位が仕切り壁を貫通し、
前記第2領域は、前記仕切り壁と前記端部側に位置する気化管までの領域である請求項1乃至4のいずれか1項に記載の低温液化ガスの気化装置。
The portion between the end of the inter-vaporization pipe distribution pipe and the vaporization pipe located on the end side passes through the partition wall,
The low-temperature liquefied gas vaporizer according to any one of claims 1 to 4, wherein the second region is a region from the partition wall to a vaporization tube located on the end side.
低温液化ガスを気化するための装置であって、
垂直方向に延び且つ内部に流される前記低温液化ガスを外部との熱交換によって気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が特定の垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、
前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、を備え、
前記複数の気化管が配置されている前記気化管間分配管の第1領域における管壁よりも、前記水平方向において前記第1領域の外側の前記気化管間分配管の第2領域における管壁の方が熱伝導率が小さい低温液化ガスの気化装置。
An apparatus for vaporizing a low-temperature liquefied gas,
There are a plurality of vaporization tubes for evaporating the low-temperature liquefied gas flowing in the vertical direction and flowing inside by heat exchange with the outside, and an inter-vaporization pipe distribution pipe for distributing the low-temperature liquefied gas to each of the vaporization tubes. And a plurality of vaporization tubes arranged in a horizontal direction on a specific vertical plane, and the vaporization pipe distribution pipes extending in the horizontal direction and connected to the lower ends of the vaporization pipes, respectively,
A liquid supply unit for supplying a heat exchange liquid from an upper end of the vaporization tube panel so as to flow down along the plurality of vaporization tubes,
The tube wall in the second region of the inter-vaporization tube distribution pipe outside the first region in the horizontal direction, rather than the tube wall in the first region of the inter-vaporization tube distribution tube in which the plurality of vaporization tubes are arranged. Is a low-temperature liquefied gas vaporizer with lower thermal conductivity.
JP2011052378A 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer Active JP5714944B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011052378A JP5714944B2 (en) 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer
EP11860385.1A EP2672213B1 (en) 2011-03-10 2011-12-19 Gasification device for low-temperature liquefied gas
CN201180068641.5A CN103403483B (en) 2011-03-10 2011-12-19 The gasification installation of liquefied gas at low temp
KR1020137026252A KR101489114B1 (en) 2011-03-10 2011-12-19 Gasification device for low-temperature liquefied gas
PCT/JP2011/007075 WO2012120580A1 (en) 2011-03-10 2011-12-19 Gasification device for low-temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052378A JP5714944B2 (en) 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer

Publications (2)

Publication Number Publication Date
JP2012189125A JP2012189125A (en) 2012-10-04
JP5714944B2 true JP5714944B2 (en) 2015-05-07

Family

ID=46797592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052378A Active JP5714944B2 (en) 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer

Country Status (5)

Country Link
EP (1) EP2672213B1 (en)
JP (1) JP5714944B2 (en)
KR (1) KR101489114B1 (en)
CN (1) CN103403483B (en)
WO (1) WO2012120580A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087219A (en) * 2012-12-28 2014-07-09 재단법인 포항산업과학연구원 High efficiency regenerator
CN104089499B (en) * 2014-06-27 2017-03-15 山东诺维科轻量化装备有限公司 Liquified natural gas vaporizer and its production equipment and method
CN104197189B (en) * 2014-07-21 2017-06-30 中国科学院力学研究所 A kind of liquid oxygen gasifier device
JP6420223B2 (en) * 2015-10-14 2018-11-07 株式会社神戸製鋼所 Gas vaporizer
CN106989630B (en) * 2017-03-16 2018-12-25 上海交通大学 A kind of piping and the large-scale ice chest with the piping structure
CN110080846A (en) * 2018-04-23 2019-08-02 江苏科技大学 A kind of the monoblock type intermediate medium vaporizer and electricity generation system of band LNG cold energy use function
JP6988035B2 (en) * 2018-07-13 2022-01-05 株式会社三井E&Sマシナリー Vaporizer
WO2020013319A1 (en) * 2018-07-13 2020-01-16 株式会社三井E&Sマシナリー Vaporizer
JP6740289B2 (en) * 2018-07-13 2020-08-12 株式会社三井E&Sマシナリー Vaporizer
CN108649470B (en) * 2018-07-19 2024-01-26 珠海市伟名发展有限公司 Explosion-proof case system based on cryogenic liquid pump
JP7467028B2 (en) * 2018-10-29 2024-04-15 株式会社神戸製鋼所 Low-temperature liquefied gas vaporizer, cooling system, and method for suppressing ice formation in the vaporizer
JP2020169783A (en) * 2019-04-05 2020-10-15 株式会社神戸製鋼所 Vaporizer and maintenance method of vaporizer
WO2021081985A1 (en) * 2019-11-01 2021-05-06 Cryostar Sas Vaporizer for vaporization of liquefied gases and method of vaporizing liquefied gas

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447706A (en) * 1977-09-24 1979-04-14 Osaka Gas Co Ltd Equipment for gasifying liquefied gas of multi-components
JPS5838677B2 (en) 1980-09-20 1983-08-24 住友精密工業株式会社 Open rack type vaporizer water sprinkler system
JPH0648146B2 (en) * 1990-03-30 1994-06-22 東京瓦斯株式会社 Double pipe type open rack type vaporizer
JPH04217788A (en) * 1990-12-17 1992-08-07 Kobe Steel Ltd Vaporizer for liquefied natural gas
JPH0626783A (en) * 1992-07-10 1994-02-04 Kobe Steel Ltd Gasification device for liquefied natural gas
JP3037073B2 (en) * 1994-07-20 2000-04-24 株式会社神戸製鋼所 Cryogenic liquid vaporizer
JPH08183970A (en) * 1994-12-28 1996-07-16 Tokyo Gas Co Ltd Apparatus for preventing heat input of lower header in open rack type liquefied natural gas vaporizer
JP3764956B2 (en) * 1996-05-27 2006-04-12 住友精密工業株式会社 Open rack type vaporizer
JP3578693B2 (en) * 1999-10-14 2004-10-20 株式会社コーアガス日本 Air / hot water type gas production plant
JP2007016968A (en) * 2005-07-11 2007-01-25 Kansai Electric Power Co Inc:The Open rack type carburetor
JP4796362B2 (en) * 2005-09-13 2011-10-19 株式会社神戸製鋼所 Heat transfer tube for LNG vaporizer and method for manufacturing the same

Also Published As

Publication number Publication date
EP2672213B1 (en) 2018-02-14
EP2672213A4 (en) 2015-03-04
JP2012189125A (en) 2012-10-04
EP2672213A1 (en) 2013-12-11
CN103403483B (en) 2015-09-09
KR20130132638A (en) 2013-12-04
WO2012120580A1 (en) 2012-09-13
KR101489114B1 (en) 2015-02-02
CN103403483A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5714944B2 (en) Low temperature liquefied gas vaporizer
CN102226487B (en) Heat-supply three-layer casing system based on countercurrent heat exchange principle
BRPI1102318A2 (en) heat exchanger set
JP7467028B2 (en) Low-temperature liquefied gas vaporizer, cooling system, and method for suppressing ice formation in the vaporizer
JP6869366B2 (en) D-shaped tube wraparound type evaporator and micro frost type upper refrigeration / lower refrigeration type direct cooling refrigerator
JP5183744B2 (en) Piping device and fluid transfer device
JP2018532093A (en) Heat exchanger
US5570723A (en) Support system and method for jacketed multiple cryogenic pipes for cyrogenic fluid transfer
WO1996002803A1 (en) Low-temperature liquid evaporator
JP2012184865A (en) Hot water supply system
JP2011052744A (en) Air temperature type liquefied gas vaporizer
JP2018003860A (en) Carburetor
JP5523944B2 (en) Low temperature liquefied gas vaporizer
JP5789386B2 (en) Low temperature liquefied gas vaporizer
JP2013213624A (en) Heat storage tank structure
JP6718803B2 (en) Vaporizer and manufacturing method thereof
JP2011002120A (en) Hot water bath type vaporizer
JP6086187B2 (en) Cryogenic liquid storage tank
JP6136944B2 (en) Evaporator
JP6888211B2 (en) Vaporizer
JP2012132574A (en) Device for vaporizing low temperature liquid
JP4649349B2 (en) Evaporator with excellent distribution performance
CN212273297U (en) Nano antibacterial PE-RT thermal insulation pipe
JP7333022B2 (en) Heat exchanger
CN112592033B (en) Molten tin bath cooling water drum structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150312

R150 Certificate of patent or registration of utility model

Ref document number: 5714944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150