JPH04217788A - Vaporizer for liquefied natural gas - Google Patents
Vaporizer for liquefied natural gasInfo
- Publication number
- JPH04217788A JPH04217788A JP40284890A JP40284890A JPH04217788A JP H04217788 A JPH04217788 A JP H04217788A JP 40284890 A JP40284890 A JP 40284890A JP 40284890 A JP40284890 A JP 40284890A JP H04217788 A JPH04217788 A JP H04217788A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- natural gas
- header
- liquefied natural
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003949 liquefied natural gas Substances 0.000 title claims abstract description 48
- 239000006200 vaporizer Substances 0.000 title description 5
- 230000008016 vaporization Effects 0.000 claims abstract description 22
- 238000009834 vaporization Methods 0.000 claims abstract description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 239000011810 insulating material Substances 0.000 claims description 13
- 239000003345 natural gas Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 2
- 239000013535 sea water Substances 0.000 abstract description 13
- 230000008602 contraction Effects 0.000 abstract description 6
- 238000009413 insulation Methods 0.000 abstract description 6
- 239000012774 insulation material Substances 0.000 abstract description 6
- 238000013459 approach Methods 0.000 abstract description 5
- 238000001816 cooling Methods 0.000 abstract 1
- 238000002309 gasification Methods 0.000 abstract 1
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 230000001737 promoting effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D3/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
- F28D3/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/14—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、液化天然ガスを気化さ
せるためのオープンラック型気化装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an open rack type vaporizer for vaporizing liquefied natural gas.
【0002】0002
【従来の技術】従来、液化天然ガスの気化装置としては
、例えば実開昭62−75388号公報に示されるよう
なオープンラックの気化装置が広く知られている。2. Description of the Related Art Hitherto, as a vaporizer for liquefied natural gas, an open rack vaporizer as shown in, for example, Japanese Utility Model Application No. 62-75388 has been widely known.
【0003】その一例を図6に示す。An example is shown in FIG.
【0004】図において90は、図面の奥行き方向に延
び、かつ内部に液化天然ガス91が流される下部ヘッダ
であり、この下部ヘッダ90の上方にはこれと平行に上
部ヘッダ92が設けられ、両者が多数本の伝熱管94を
介して連通されている。この伝熱管94は上記下部ヘッ
ダ90の軸方向(図の奥行き方向)に並設され、各伝熱
管94の外面には上記下部ヘッダ90の軸方向に延びる
一対のフィン(図示せず)が突設されており、これらの
伝熱管94によって伝熱パネルが構成されている。各伝
熱管94の上部には海水側トラフ96が設けられ、ここ
から各伝熱管94の外表面に沿って加温媒体である海水
98が流されるようになっており、この海水98との熱
交換によって上記液化天然ガスが蒸発しながら伝熱管9
4内を上昇し、上部ヘッダ92から天然ガスとして回収
されるようになっている。In the figure, 90 is a lower header that extends in the depth direction of the figure and into which liquefied natural gas 91 flows, and an upper header 92 is provided above and parallel to this lower header 90, so that both are communicated via a large number of heat transfer tubes 94. The heat exchanger tubes 94 are arranged in parallel in the axial direction (depth direction in the figure) of the lower header 90, and a pair of fins (not shown) extending in the axial direction of the lower header 90 protrude on the outer surface of each heat exchanger tube 94. These heat transfer tubes 94 constitute a heat transfer panel. A seawater side trough 96 is provided at the top of each heat exchanger tube 94, from which seawater 98, which is a heating medium, is flowed along the outer surface of each heat exchanger tube 94, and heat exchange with this seawater 98 occurs. As the liquefied natural gas is evaporated by the exchange, the heat exchanger tube 9
4 and is recovered as natural gas from an upper header 92.
【0005】[0005]
【発明が解決しようとする課題】上記装置において、下
部ヘッダ90および伝熱管94の下部は直接液化天然ガ
スと接触しており、これらは極めて低い温度に冷却され
る。しかも、その外表面で氷結が生じ、この氷によって
図6の右側に示されるような断熱層99が形成されるた
め、この部分での熱交換が抑えられて伝熱管94の下部
の温度はますます低温側に維持され、極端な低温状態と
なる。すなわち、伝熱管94は、その内部を流れる液化
天然ガスと同様に、図7に示されるような極端な温度勾
配をとる。In the above device, the lower header 90 and the lower portions of the heat transfer tubes 94 are in direct contact with the liquefied natural gas, and are cooled to an extremely low temperature. In addition, freezing occurs on the outer surface of the heat exchanger tube 94, and this ice forms a heat insulating layer 99 as shown on the right side of FIG. The temperature is kept on the low temperature side, resulting in an extremely low temperature state. That is, the heat exchanger tube 94 has an extreme temperature gradient as shown in FIG. 7, similar to the liquefied natural gas flowing therein.
【0006】このようにして伝熱管94の下部が極端に
冷却されると、伝熱管94の収縮量は大きくなる。従っ
て、海水98の分散に僅かなバラツキがあるだけでも、
各伝熱管94の収縮量には大きな差が生じ、最悪の場合
には伝熱管94の局部的な変形をも生じるおそれがある
。また、このような事態を回避するために伝熱管94の
伝熱係数を大きくして液化天然ガスと海水との熱交換を
促進させようとしても、このように伝熱係数を大きくし
た分、上記氷による断熱層99がますます分厚くなるた
め、結果として上記熱交換の促進を果たすことはできず
、伝熱管94下部の低温化を防ぐことはできない。[0006] When the lower portion of the heat exchanger tube 94 is extremely cooled in this way, the amount of contraction of the heat exchanger tube 94 increases. Therefore, even if there is only a slight variation in the dispersion of seawater 98,
There will be a large difference in the amount of contraction of each heat exchanger tube 94, and in the worst case, there is a possibility that local deformation of the heat exchanger tube 94 will occur. In addition, even if an attempt is made to increase the heat transfer coefficient of the heat transfer tube 94 to promote heat exchange between the liquefied natural gas and seawater in order to avoid such a situation, the above-mentioned problems will occur due to the increased heat transfer coefficient. Since the heat insulating layer 99 made of ice becomes thicker and thicker, it is not possible to promote the heat exchange as described above, and it is not possible to prevent the lower part of the heat exchanger tube 94 from becoming lower in temperature.
【0007】本発明は、このような事情に鑑み、装置全
体の気化効率を妨げることなく、伝熱管が極端に冷却さ
れることを未然に防ぐことができる液化天然ガスの気化
装置を提供することを目的とする。In view of these circumstances, the present invention provides a liquefied natural gas vaporization device that can prevent heat transfer tubes from being excessively cooled without impairing the vaporization efficiency of the entire device. With the goal.
【0008】[0008]
【課題を解決するための手段】本発明は、液化天然ガス
が導入される入口側ヘッダと、この入口側ヘッダ内に連
通され、同入口側ヘッダに対して略直交する方向に延び
、その外方に加温媒体が流される複数の伝熱管と、これ
らの伝熱管を介して上記入口側ヘッダ内に連通され、上
記伝熱管内で気化された天然ガスが導入される出口側ヘ
ッダとを備えた液化天然ガスの気化装置において、上記
伝熱管内において上記出口側ヘッダに近い側の部分を除
く部分に、この伝熱管内を流れる天然ガスと伝熱管との
伝熱を阻み、かつ上記出口側ヘッダに向かうに従って熱
伝導の大きくなる構造を持つ断熱部を設けたものである
(請求項1)。[Means for Solving the Problems] The present invention includes an inlet header into which liquefied natural gas is introduced, and an inlet header that communicates with the inlet header, extends in a direction substantially perpendicular to the inlet header, and extends outside the inlet header. a plurality of heat exchanger tubes through which a heating medium is flowed in one direction, and an outlet side header that communicates with the inlet side header through these heat exchanger tubes and into which natural gas vaporized in the heat exchanger tubes is introduced. In the liquefied natural gas vaporization device, a portion of the heat transfer tube other than a portion near the outlet side header is provided with a heat exchanger that prevents heat transfer between the natural gas flowing in the heat transfer tube and the heat transfer tube, and that A heat insulating portion having a structure in which heat conduction increases toward the header is provided (claim 1).
【0009】ここで、上記断熱部を具体的に構成する手
段としては、上記伝熱管において上記出口側ヘッダに近
い側の部分の内面に、上記出口側ヘッダに向かうに従っ
て肉厚の小さくなる筒状の断熱材を固定することや(請
求項2)、上記伝熱管内において上記出口側ヘッダに近
い側の部分に、この伝熱管から離間する状態で、上記出
口側ヘッダに向かうに従って断面形状の大きくなる断熱
管を設け、この断熱管と上記伝熱管と間に断熱層を形成
すること(請求項3)が好適である。[0009] Here, as a concrete means for configuring the heat insulating part, a cylindrical shape whose wall thickness becomes smaller toward the outlet header is provided on the inner surface of the portion of the heat exchanger tube closer to the outlet header. (Claim 2) A heat insulating material is fixed to a portion of the heat exchanger tube near the outlet side header, and the cross-sectional shape becomes larger toward the outlet side header while being spaced apart from the heat exchanger tube. Preferably, a heat insulating tube is provided, and a heat insulating layer is formed between the heat insulating tube and the heat transfer tube.
【0010】0010
【作用】上記構成によれば、伝熱管内において入口側ヘ
ッダに近くなるほど、すなわち、液化天然ガスとの接触
により低温に冷却される部分であるほど、熱伝導の小さ
い、すなわち断熱効果の高い断熱部が配されることにな
るため、伝熱管自身が比較的高い温度に維持されること
により、その収縮量も小さくなる。なお、この断熱部の
存在により、液化天然ガスと加温媒体との熱交換は阻害
されるが、この部分に断熱部がない場合には、その分伝
熱管が冷却されてその表面に氷が付着し、これが断熱層
として作用して上記熱交換を結局は阻むことになるため
、この部分での気化効率は従来と比べても劣らない。[Function] According to the above configuration, the closer to the inlet side header in the heat transfer tube, that is, the part that is cooled to a lower temperature by contact with liquefied natural gas, the smaller the heat conduction, that is, the higher the insulation effect. Since the heat exchanger tube itself is maintained at a relatively high temperature, the amount of shrinkage thereof is also reduced. The presence of this heat-insulating part impedes heat exchange between the liquefied natural gas and the heating medium, but if there is no heat-insulating part in this part, the heat transfer tube will be cooled down and ice will form on its surface. This adheres and acts as a heat insulating layer and ultimately prevents the above heat exchange, so the vaporization efficiency in this area is no worse than in the past.
【0011】一方、上記伝熱管内において出口側ヘッダ
に近くなるほど、すなわち、温度が高い部分であるほど
、伝熱係数の大きな断熱層が配され、あるいは断熱層が
全く配されない状態となっているので、この部分では液
化天然ガスと加温媒体との熱交換が促進され、液化天然
ガスの気化及び高温化が進められる。On the other hand, in the heat transfer tube, the closer to the outlet side header, that is, the higher the temperature, the more a heat insulating layer with a larger heat transfer coefficient is disposed, or the more a heat insulating layer is disposed at all, the more the temperature is higher. Therefore, heat exchange between the liquefied natural gas and the heating medium is promoted in this part, and the liquefied natural gas is vaporized and heated to a high temperature.
【0012】0012
【実施例】図2は、本発明の一実施例における液化天然
ガスの気化装置の全体構成を示したものである。Embodiment FIG. 2 shows the overall structure of a liquefied natural gas vaporization apparatus in an embodiment of the present invention.
【0013】この装置は、水平な一方向に延びる複数本
の下部ヘッダ(入口側ヘッダ)10を備え、各下部ヘッ
ダ10には、所定本数ごとに、共通の供給マニホールド
12,14を介して液化天然ガスが導入されるようにな
っている。詳しくは、各下部ヘッダ10の内部に、図1
に示されるように側壁に多数の孔23をもつスパージ管
24が設けられており、このスパージ管28内に供給さ
れた液化天然ガスが上記孔23を通じて上記下部ヘッダ
10内に送りこまれるようになっている。This device includes a plurality of lower headers (inlet side headers) 10 extending in one horizontal direction, and a predetermined number of lower headers 10 are supplied with liquefaction through a common supply manifold 12, 14. Natural gas is being introduced. In detail, inside each lower header 10, as shown in FIG.
As shown in the figure, a sparge pipe 24 having a large number of holes 23 is provided on the side wall, and the liquefied natural gas supplied into the sparge pipe 28 is sent into the lower header 10 through the holes 23. ing.
【0014】各下部ヘッダ10の上方には、これと平行
に上部ヘッダ16が配され、これらの上部ヘッダ16は
、所定本数ごとに共通の排出マニホールド18,20に
集結している。そして、各下部ヘッダ10と上部ヘッダ
16との間に、多数本の伝熱管22からなる伝熱パネル
が配されており、各伝熱管22によって両ヘッダ16の
内部同士が連通されている。各伝熱管22の外周面には
、上記上部ヘッダ16の軸方向と平行な方向に延びる前
後一対のフィン(図示せず)が設けられており、これに
沿って前記図6に示されるようにして海水が流され、こ
の海水と上記液化天然ガスとの熱交換により同液化天然
ガスが順次気化され、各伝熱管22および上部ヘッダ1
6を介して回収されるようになっている。Upper headers 16 are disposed above and parallel to each lower header 10, and a predetermined number of these upper headers 16 are assembled in a common discharge manifold 18, 20. A heat transfer panel consisting of a large number of heat transfer tubes 22 is disposed between each lower header 10 and upper header 16, and the interiors of both headers 16 are communicated with each other by each heat transfer tube 22. A pair of front and rear fins (not shown) extending in a direction parallel to the axial direction of the upper header 16 is provided on the outer circumferential surface of each heat transfer tube 22, and a pair of front and rear fins (not shown) are provided along the fins as shown in FIG. Seawater is flowed through the liquefied natural gas, and the liquefied natural gas is sequentially vaporized by heat exchange between the seawater and the liquefied natural gas, and the liquefied natural gas is sequentially vaporized.
It is designed to be collected via 6.
【0015】さらに、この装置の特徴として、各伝熱管
22の下部内面に、図1に示されるような断熱材(断熱
手段)28が接着等の手段で固定されている。この断熱
材28は、下部ヘッダ10に近づくに従って内径が小さ
くなるテーパー状の内周面をもつ円筒状、換言すれば、
下部ヘッダ10に近づくに従って肉厚が大きくなる円筒
状に形成されており、上部ヘッダ10に近づくほど熱伝
導の大きくなる構造とされている。より具体的には、こ
の断熱材28が存在しないとした場合に形成されると予
想されるテーパー状の氷の層(図の二点鎖線)26と同
じ断熱効果を有するように、断熱材28の肉厚が設定さ
れている。Further, as a feature of this device, a heat insulating material (insulating means) 28 as shown in FIG. 1 is fixed to the lower inner surface of each heat transfer tube 22 by adhesive or other means. This heat insulating material 28 has a cylindrical shape with a tapered inner peripheral surface whose inner diameter decreases as it approaches the lower header 10, in other words,
It is formed into a cylindrical shape whose wall thickness increases as it approaches the lower header 10, and has a structure in which heat conduction increases as it approaches the upper header 10. More specifically, the insulation material 28 is designed to have the same insulation effect as the tapered ice layer (double-dashed line in the figure) 26 that would be expected to form if the insulation material 28 were not present. The wall thickness is set.
【0016】次に、この装置の作用を説明する。Next, the operation of this device will be explained.
【0017】上述のように、スパージ管24内に供給さ
れた液化天然ガスは各孔23を通じて下部ヘッダ10内
さらには伝熱管22内に流出し、その外方を流れる海水
との熱交換により気化及び高温化され、上部ヘッダ16
を通じて装置外部で回収される。As described above, the liquefied natural gas supplied into the sparge pipe 24 flows into the lower header 10 and further into the heat transfer pipe 22 through each hole 23, and is vaporized by heat exchange with the seawater flowing outside. and heated to high temperature, the upper header 16
collected outside the device through
【0018】ここで、各伝熱管22の下部には断熱材2
8が設けられ、その存在により、液化天然ガスと伝熱管
22とが直接に接触することが阻止されており、しかも
、下部ヘッダ10に近づくほど断熱の度合いが高まめら
れているので、この部分が過度に冷却されるおそれがな
く、よって各伝熱管22の熱収縮量ひいてはそのバラツ
キを大幅に抑制することができる。Here, a heat insulating material 2 is provided at the bottom of each heat transfer tube 22.
8 is provided, and its presence prevents direct contact between the liquefied natural gas and the heat transfer tubes 22.Moreover, the degree of insulation increases as it approaches the lower header 10, so that this portion There is no risk that the heat exchanger tubes 22 will be excessively cooled, and therefore the amount of thermal contraction of each heat transfer tube 22 and its variation can be significantly suppressed.
【0019】これに対し、液化天然ガスがほとんど気化
された伝熱管22の上部においては、断熱材28の肉厚
が極めて薄く、あるいはほとんど存在しない状態にある
ので、海水との熱交換が活発に行われ、液化天然ガスの
気化及び高温化が促進される。On the other hand, in the upper part of the heat exchanger tube 22 where most of the liquefied natural gas has been vaporized, the thickness of the heat insulating material 28 is extremely thin or almost non-existent, so heat exchange with seawater is active. This accelerates the vaporization and temperature increase of liquefied natural gas.
【0020】なお、上記のような断熱材28の存在によ
り、液化天然ガスと海水との熱交換が妨げられ、その分
、液化天然ガスの気化効率が減少するように一見見受け
られるが、もしこのような断熱材28が存在しない場合
には、上述のようにこれと同じ断熱効果をもつ氷の層2
6が形成されるので、結局、上記断熱材28を配しても
、装置全体の気化効率は全く損なわれない。[0020] At first glance, it appears that the presence of the heat insulating material 28 as described above impedes heat exchange between the liquefied natural gas and seawater, reducing the vaporization efficiency of the liquefied natural gas. If such a heat insulating material 28 is not present, an ice layer 2 having the same heat insulating effect as described above is provided.
6 is formed, so even if the heat insulating material 28 is provided, the vaporization efficiency of the entire device is not impaired at all.
【0021】これを図3を用いて説明する。この図は、
従来構造及び本実施例構造の各層における温度勾配を示
したものであるが、この図に明示されるように、両構造
とも互いに同等の断熱層(図の斜線部分)を有している
にもかかわらず、従来構造の場合には、伝熱管と海水と
の間に断熱層である氷の層が存在するため、伝熱管が液
化天然ガスに直接接触して極めて低い温度となるのに対
し、本実施例構造の場合には、伝熱管の内側に断熱層が
存在するので、伝熱管を比較的高い温度に保持すること
ができ、その熱収縮量を抑えることができる。This will be explained using FIG. 3. This diagram is
This figure shows the temperature gradient in each layer of the conventional structure and the structure of this example, but as clearly shown in this figure, even though both structures have the same heat insulating layer (the shaded area in the figure), However, in the case of conventional structures, there is a layer of ice that acts as a heat insulator between the heat exchanger tubes and the seawater, so the heat exchanger tubes come into direct contact with the liquefied natural gas, resulting in extremely low temperatures. In the case of the structure of this embodiment, since the heat insulating layer exists inside the heat exchanger tube, the heat exchanger tube can be maintained at a relatively high temperature, and the amount of thermal contraction thereof can be suppressed.
【0022】次に、第2実施例を図4に基づいて説明す
る。Next, a second embodiment will be explained based on FIG. 4.
【0023】ここでは、上記断熱材28を設ける代りに
、上記下部ヘッダ10及び各伝熱管22の下部の内部に
断熱管30が設けられている。この断熱管30は、上記
スパージ管24と下部ヘッダ10との間に設けられた第
1管32と、この第1管32からこれと直交する方向に
延び、各伝熱管22内に下部から挿入される第2管34
とを有し、各第2管34は、上部ヘッダ16に向かうに
従って拡径するテーパー状に形成されている。そして、
この断熱管30の外面と、上記下部ヘッダ10及び伝熱
管22の内面との間に空間が確保され、この部分にガス
からなる断熱層35が形成されるようになっている。Here, instead of providing the heat insulating material 28, a heat insulating pipe 30 is provided inside the lower header 10 and the lower part of each heat transfer tube 22. This heat insulating tube 30 extends from a first tube 32 provided between the sparge tube 24 and the lower header 10 in a direction perpendicular thereto, and is inserted into each heat transfer tube 22 from the bottom. second pipe 34
Each second pipe 34 is formed in a tapered shape whose diameter increases toward the upper header 16. and,
A space is secured between the outer surface of the heat insulating tube 30 and the inner surfaces of the lower header 10 and the heat transfer tube 22, and a heat insulating layer 35 made of gas is formed in this portion.
【0024】なお、図4において36は、上記第1管3
2と上部ヘッダ10との間に侵入した、液化天然ガスの
重質成分を取出すためのドレン弁である。In FIG. 4, 36 indicates the first pipe 3.
This is a drain valve for removing heavy components of liquefied natural gas that have entered between the liquefied natural gas and the upper header 10.
【0025】このような構造においても、伝熱管22の
下部には、上部ヘッダ16に向かうに従って熱伝導の大
きくなる断熱層35が形成されることになるので、上記
第1実施例と同様の効果を得ることができる。Even in this structure, the heat insulating layer 35 whose heat conduction becomes larger toward the upper header 16 is formed at the lower part of the heat exchanger tube 22, so that the same effect as in the first embodiment can be obtained. can be obtained.
【0026】また、第3実施例として図5に示すように
、上記第1実施例における断熱材28と、上記第2実施
例における断熱管30とを組み合わせて用いるようにす
れば、より効果的となる。Further, as shown in FIG. 5 as a third embodiment, if the heat insulating material 28 in the first embodiment and the heat insulating pipe 30 in the second embodiment are used in combination, it will be more effective. becomes.
【0027】なお、本発明は上記実施例に限定されるも
のではなく、例として次のような態様を採ることも可能
である。It should be noted that the present invention is not limited to the above-mentioned embodiments, and the following embodiments can be adopted as examples.
【0028】■ 本発明における断熱部は、出口側ヘ
ッダに向かうに従って熱伝導の大きくなる構造であれば
よく、上記テーパー状の断熱材28や断熱管30の他、
例えば階段状の断熱材や断熱管を用いるようにしてもよ
い。また、断熱管を用いる場合には、この断熱管の上部
に向かうほどその側壁に多くの連通孔を設けるようにし
てもよい。[0028] The heat insulating part in the present invention may have a structure in which heat conduction increases toward the outlet side header, and may include the tapered heat insulating material 28, the heat insulating pipe 30, etc.
For example, stepped heat insulating material or heat insulating pipes may be used. Further, when a heat insulating pipe is used, more communication holes may be provided in the side wall toward the top of the heat insulating pipe.
【0029】■ 本発明では伝熱管22の方向を問わ
ず、例えば上記各実施例と配置が上下逆様のもの、すな
わち上部ヘッダが入口側で下部ヘッダが出口側であるよ
うな装置にも適用することが可能である。[0029] The present invention can be applied to a device regardless of the direction of the heat transfer tubes 22, for example, where the arrangement of each of the above embodiments is upside down, that is, where the upper header is on the inlet side and the lower header is on the outlet side. It is possible to do so.
【0030】■ 本発明では、断熱部の実際の熱伝導
率を問わず、適宜設定すればよい。但し、上記のように
断熱部がない場合に形成されると予想される氷の層の断
熱効果を考慮して肉厚を設定するようにすれば、より合
理的となる。[0030] In the present invention, the actual thermal conductivity of the heat insulating portion may be set as appropriate, regardless of the actual thermal conductivity. However, it would be more reasonable to set the wall thickness by taking into consideration the heat insulating effect of the ice layer that would be formed in the absence of the heat insulating part as described above.
【0031】■ 上記実施例では、下部ヘッダ10の
内部にスパージ管24が配されたものを示したが、本発
明ではスパージ管24は必ずしも要しない。但し、この
スパージ管24を設けることにより、液化天然ガスをよ
り均等に下部ヘッダ10内に供給することができる効果
がある。[0031] In the above embodiment, the sparge pipe 24 is arranged inside the lower header 10, but the sparge pipe 24 is not necessarily required in the present invention. However, by providing this sparge pipe 24, there is an effect that the liquefied natural gas can be more evenly supplied into the lower header 10.
【0032】[0032]
【発明の効果】以上のように本発明は、各伝熱管内にお
いて出口側ヘッダに近い側の部分を除く部分に、この伝
熱管内を流れる天然ガスと伝熱管との伝熱を阻み、かつ
上記出口側ヘッダに向かうに従って熱伝導の大きくなる
構造を持つ断熱部を設けたものであるので、装置全体の
気化効率を損なうことなく、各伝熱管が極度に冷却され
ることを防ぐことができ、これにより、各伝熱管の熱収
縮量のバラツキを抑え、これに起因する伝熱管の変形を
未然に防止することができる効果がある。[Effects of the Invention] As described above, the present invention prevents heat transfer between the natural gas flowing inside the heat transfer tube and the heat transfer tube in a portion of each heat transfer tube except for the portion near the outlet side header, and Since the heat insulating section has a structure in which heat conduction increases toward the outlet header, it is possible to prevent each heat transfer tube from being extremely cooled without impairing the vaporization efficiency of the entire device. This has the effect of suppressing variations in the amount of thermal contraction of each heat exchanger tube and preventing deformation of the heat exchanger tubes caused by this.
【図1】本発明の第1実施例における液化天然ガス気化
装置の要部を示す断面正面図である。FIG. 1 is a sectional front view showing the main parts of a liquefied natural gas vaporization apparatus in a first embodiment of the present invention.
【図2】上記液化天然ガス気化装置の全体斜視図である
。FIG. 2 is an overall perspective view of the liquefied natural gas vaporization apparatus.
【図3】上記液化天然ガス気化装置および従来の液化天
然ガス気化装置における各層の温度勾配を示した図であ
る。FIG. 3 is a diagram showing the temperature gradient of each layer in the above-mentioned liquefied natural gas vaporization apparatus and a conventional liquefied natural gas vaporization apparatus.
【図4】本発明の第2実施例における液化天然ガス気化
装置の要部を示す断面正面図である。FIG. 4 is a sectional front view showing main parts of a liquefied natural gas vaporization apparatus in a second embodiment of the present invention.
【図5】本発明の第3実施例における液化天然ガス気化
装置の要部を示す断面正面図である。FIG. 5 is a cross-sectional front view showing the main parts of a liquefied natural gas vaporization apparatus in a third embodiment of the present invention.
【図6】従来の液化天然ガス気化装置において形成され
る氷の層を説明するための断面正面図である。FIG. 6 is a cross-sectional front view for explaining an ice layer formed in a conventional liquefied natural gas vaporizer.
【図7】従来の液化天然ガス気化装置における液化天然
ガス及び伝熱管の高さ位置と温度との関係を示すグラフ
である。FIG. 7 is a graph showing the relationship between the height position and temperature of liquefied natural gas and heat exchanger tubes in a conventional liquefied natural gas vaporization apparatus.
10 下部ヘッダ(入口側ヘッダ) 16 上部ヘッダ(出口側ヘッダ) 22 伝熱管 28 断熱材 30 断熱管 35 断熱層 10 Lower header (inlet side header) 16 Upper header (outlet side header) 22 Heat exchanger tube 28 Insulation material 30 Insulated pipe 35 Heat insulation layer
Claims (3)
ダと、この入口側ヘッダ内に連通され、同入口側ヘッダ
に対して略直交する方向に延び、その外方に加温媒体が
流される複数の伝熱管と、これらの伝熱管を介して上記
入口側ヘッダ内に連通され、上記伝熱管内で気化された
天然ガスが導入される出口側ヘッダとを備えた液化天然
ガスの気化装置において、上記伝熱管内において上記出
口側ヘッダに近い側の部分を除く部分に、この伝熱管内
を流れる天然ガスと伝熱管との伝熱を阻み、かつ上記出
口側ヘッダに向かうに従って熱伝導の大きくなる構造を
持つ断熱部を設けたことを特徴とする液化天然ガスの気
化装置。Claim 1: An inlet header into which liquefied natural gas is introduced, and an inlet header that communicates with the inlet header and extends in a direction substantially perpendicular to the inlet header, with a heating medium flowing outward. In a liquefied natural gas vaporization device comprising a plurality of heat transfer tubes and an outlet side header that communicates with the inlet side header through these heat transfer tubes and into which the natural gas vaporized in the heat transfer tubes is introduced. , in the heat transfer tube, except for the portion near the outlet side header, which prevents heat transfer between the natural gas flowing in the heat transfer tube and the heat transfer tube, and increases the heat conduction toward the outlet side header. A liquefied natural gas vaporization device characterized by being provided with a heat insulating section having a structure.
に近い側の部分の内面に、上記出口側ヘッダに向かうに
従って肉厚の小さくなる筒状の断熱材を固定したことを
特徴とする請求項1記載の液化天然ガスの気化装置。2. A cylindrical heat insulating material whose wall thickness decreases toward the outlet header is fixed to the inner surface of a portion of the heat transfer tube closer to the outlet header. The liquefied natural gas vaporization device described above.
ダに近い側の部分に、この伝熱管から離間する状態で、
上記出口側ヘッダに向かうに従って断面形状の大きくな
る断熱管を設け、この断熱管と上記伝熱管と間に断熱層
を形成したことを特徴とする請求項1記載の液化天然ガ
スの気化装置。3. A portion of the heat exchanger tube near the outlet header, spaced apart from the heat exchanger tube,
2. The liquefied natural gas vaporization apparatus according to claim 1, further comprising a heat insulating pipe whose cross-sectional shape increases toward the outlet header, and a heat insulating layer is formed between the heat insulating pipe and the heat transfer tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40284890A JPH04217788A (en) | 1990-12-17 | 1990-12-17 | Vaporizer for liquefied natural gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40284890A JPH04217788A (en) | 1990-12-17 | 1990-12-17 | Vaporizer for liquefied natural gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04217788A true JPH04217788A (en) | 1992-08-07 |
Family
ID=18512629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP40284890A Pending JPH04217788A (en) | 1990-12-17 | 1990-12-17 | Vaporizer for liquefied natural gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04217788A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996002803A1 (en) | 1994-07-20 | 1996-02-01 | Kabushiki Kaisha Kobe Seiko Sho | Low-temperature liquid evaporator |
WO2012120580A1 (en) * | 2011-03-10 | 2012-09-13 | 株式会社神戸製鋼所 | Gasification device for low-temperature liquefied gas |
JP6118008B1 (en) * | 2016-10-07 | 2017-04-19 | 住友精密工業株式会社 | Heat exchanger |
-
1990
- 1990-12-17 JP JP40284890A patent/JPH04217788A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996002803A1 (en) | 1994-07-20 | 1996-02-01 | Kabushiki Kaisha Kobe Seiko Sho | Low-temperature liquid evaporator |
WO2012120580A1 (en) * | 2011-03-10 | 2012-09-13 | 株式会社神戸製鋼所 | Gasification device for low-temperature liquefied gas |
CN103403483A (en) * | 2011-03-10 | 2013-11-20 | 株式会社神户制钢所 | Gasification device for low-temperature liquefied gas |
JP6118008B1 (en) * | 2016-10-07 | 2017-04-19 | 住友精密工業株式会社 | Heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950011704B1 (en) | Voporiere for liquiefied mataral gas | |
KR101489114B1 (en) | Gasification device for low-temperature liquefied gas | |
JP6198452B2 (en) | Intermediate medium vaporizer | |
JP2003194452A (en) | Device for defrosting evaporator for refrigerator | |
JP3572250B2 (en) | Condenser for refrigerator | |
US8069906B2 (en) | Vehicular exhaust heat recovery apparatus with frozen working fluid melting | |
JPH04217788A (en) | Vaporizer for liquefied natural gas | |
JP3037073B2 (en) | Cryogenic liquid vaporizer | |
JPS6214541Y2 (en) | ||
JP2001182894A (en) | Forced circulation type air-temperature liquefied gas vaporizer and method of vaporazing liquefied gas | |
US4416223A (en) | Heat exchangers | |
JPH0741268U (en) | Open rack type liquefied low temperature gas vaporizer heat transfer tube | |
JP2548380B2 (en) | Heat exchanger | |
JPH04217789A (en) | Vaporizer for liquefied natural gas | |
JP4181250B2 (en) | Natural gas heating method | |
JPH0227352Y2 (en) | ||
JPH0626783A (en) | Gasification device for liquefied natural gas | |
JPH04167A (en) | Heat exchanger | |
CN112592033B (en) | Molten tin bath cooling water drum structure | |
JP3965012B2 (en) | Hot water bath vaporizer | |
JPS5821195B2 (en) | Open type sprinkler type evaporator | |
JPH0229437Y2 (en) | ||
JPH05312056A (en) | Intake air cooling system of gas turbine | |
JPH10227498A (en) | Thermal storage type cooling and heating method | |
JPH03279790A (en) | Heat cyphone type heat exchanger |