Nothing Special   »   [go: up one dir, main page]

JP5790313B2 - Electric power leveling device - Google Patents

Electric power leveling device Download PDF

Info

Publication number
JP5790313B2
JP5790313B2 JP2011184209A JP2011184209A JP5790313B2 JP 5790313 B2 JP5790313 B2 JP 5790313B2 JP 2011184209 A JP2011184209 A JP 2011184209A JP 2011184209 A JP2011184209 A JP 2011184209A JP 5790313 B2 JP5790313 B2 JP 5790313B2
Authority
JP
Japan
Prior art keywords
power
command
converter
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011184209A
Other languages
Japanese (ja)
Other versions
JP2013046532A (en
Inventor
洋一郎 中島
洋一郎 中島
伊東 洋一
洋一 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2011184209A priority Critical patent/JP5790313B2/en
Publication of JP2013046532A publication Critical patent/JP2013046532A/en
Application granted granted Critical
Publication of JP5790313B2 publication Critical patent/JP5790313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、系統連系点における電力変動を補償する電力平準化装置に適用されるエネルギー蓄積要素の満充電制御に関するものである。   The present invention relates to a full charge control of an energy storage element applied to a power leveling device that compensates for power fluctuations at a grid connection point.

近年、太陽光発電装置や風力発電装置等の自然エネルギーを利用した分散型電源の導入が進んでいる。これら分散型電源は、安定な電力供給を行うために商用電力系統に接続される。しかし、自然エネルギーによる発電は、一般に発電量が安定していない。発電量が安定しないと系統側の電力変動が大きくなり、系統不安定状態から大規模停電が発生する可能性も危惧されている。   In recent years, the introduction of distributed power sources using natural energy, such as solar power generation devices and wind power generation devices, has progressed. These distributed power sources are connected to a commercial power system in order to provide stable power supply. However, the amount of power generated by natural energy is generally not stable. If the amount of power generation is not stable, power fluctuations on the grid side will increase, and there is also a concern that a large-scale power outage may occur due to grid instability.

このような問題を解決するため、従来から分散型電源と併用して、バッテリ等のエネルギー貯蔵要素と、半導体等によるスイッチング素子を使用した電力変換器とを用いた電力平準化装置を導入し、電力供給の安定化を図っている。また従来から、有効電力だけでなく無効電力の制御も行っており、これが電力系統の過渡安定度向上にも寄与している。   In order to solve such problems, a power leveling device using an energy storage element such as a battery and a power converter using a switching element made of a semiconductor or the like is introduced in combination with a distributed power source, The power supply is stabilized. Conventionally, not only active power but also reactive power has been controlled, which contributes to improvement of transient stability of the power system.

図4は、電力平準化装置の一例を示すブロック図であるが、一般的な構成の部分(公知技術の部分)については図示のみで、詳細な説明は省略する(図示した一般負荷106、電流検出器110、電流検出器111、電圧検出器109bは、図示のみで説明は省略)。通常、図4に示すような構成において、分散型電源108で発電した電力を、需要家の重要負荷115に供給しつつ、余剰となった電力を商用電力系統101側へ回生する。ただし系統連系点104での電力潮流の変動が大きい場合は、先に述べたように商用電力系統101側を不安定にさせてしまう虞があるので、なるべく系統連系点104での電力潮流を平準化させる必要がある。   FIG. 4 is a block diagram showing an example of a power leveling device, but only a general configuration part (a part of a known technique) is shown in the figure, and a detailed description thereof is omitted (the general load 106, current shown in the figure). The detector 110, the current detector 111, and the voltage detector 109b are only shown in the figure and description thereof is omitted). Usually, in the configuration as shown in FIG. 4, the surplus power is regenerated to the commercial power system 101 side while supplying the power generated by the distributed power source 108 to the important load 115 of the consumer. However, when the fluctuation of the power flow at the grid connection point 104 is large, there is a risk of destabilizing the commercial power grid 101 side as described above, so that the power flow at the grid connection point 104 is as much as possible. Need to be leveled.

そこで、分散型電源108、電力変換器112及び重要負荷115の接続ラインの電圧と負荷(重要負荷115)側および電力変換器112側に流れ込む電流を検出して、制御装置114にて負荷(重要負荷115)側および電力変換器112側それぞれの有効電力と無効電力を求めて、電力指令値(有効電力指令Pref及び無効電力指令Qref)通りに電力変換器112を制御することで系統連系点104の電力平準化を図るシステムとなっている。   Accordingly, the voltage of the connection line of the distributed power source 108, the power converter 112 and the important load 115 and the current flowing into the load (important load 115) side and the power converter 112 side are detected, and the load (important) A grid interconnection point is obtained by obtaining active power and reactive power on the load 115) side and the power converter 112 side and controlling the power converter 112 according to the power command values (active power command Pref and reactive power command Qref). 104 is a system for leveling power.

商用電力系統101側で停電が発生した場合、停電検出部103が停電を検出する。連系点CB(Circuit Breaker:遮断器)102は商用電力系統101を解列するとともに、電力変換器112を制御する制御装置114は停電検出信号を受け取る。非常用発電機105が動作を開始するまでは、高速スイッチ(交流スイッチ)107を切断状態とし、電力変換器112をUPS(Uninterruptible Power Supply:無停電電源装置)として動作させ、重要負荷115に電力供給を行う。
その後、非常用発電機105が動作を開始して電力供給可能な状態になると、図4に示す電力平準化装置150は、非常用発電機105の電力変動をアシストする動作に代わる。
When a power failure occurs on the commercial power system 101 side, the power failure detection unit 103 detects the power failure. A connection point CB (Circuit Breaker) 102 disconnects the commercial power system 101 and a control device 114 that controls the power converter 112 receives a power failure detection signal. Until the emergency generator 105 starts operation, the high-speed switch (AC switch) 107 is disconnected, the power converter 112 is operated as a UPS (Uninterruptible Power Supply), and power is supplied to the important load 115. Supply.
Thereafter, when the emergency generator 105 starts operating and can supply power, the power leveling device 150 shown in FIG. 4 replaces the operation of assisting the power fluctuation of the emergency generator 105.

図5は、図4に示す構成の電力平準化装置150における、従来の一般的な状態遷移を示す概念図であり、図4に示す構成において一般的に執り得る状態(ステータス)と、同様に遷移し得る方向を矢印線(ループを含む)で示している。
なお矢印線には遷移動作を表すAと、この遷移動作のきっかけとなる事象(イベント)Eの数字が記されているが、本図は各状態を説明する概念図であるので、動作と事象の詳細な説明は省略する。
FIG. 5 is a conceptual diagram showing a conventional general state transition in the power leveling apparatus 150 having the configuration shown in FIG. 4, and is similar to a state (status) that can be generally performed in the configuration shown in FIG. The direction in which transition is possible is indicated by an arrow line (including a loop).
In addition, although the arrow line indicates the transition operation A and the number of the event (event) E that triggers the transition operation, this figure is a conceptual diagram for explaining each state. The detailed description of is omitted.

図5に示す各状態については、概ね次の通りである。
ステータスS00は全停止状態を示している。本構成が起動した直後等である。
ステータスS02は停止待機状態を示している。連系点CB102をオンにした直後等の状態で、各種信号が接続されるのを待っている。
ステータスS14はソフトスタート状態を示している。電力変換器112等の動作状態を所定の時間をもって次のステータスにおける所定の定常状態に移行させる(コンデンサの充電等)。
About each state shown in FIG. 5, it is as follows in general.
Status S00 indicates a complete stop state. Immediately after this configuration is activated.
Status S02 indicates a stop standby state. Waiting for various signals to be connected, such as immediately after the connection point CB102 is turned on.
Status S14 indicates a soft start state. The operating state of the power converter 112 or the like is shifted to a predetermined steady state in the next status over a predetermined time (capacitor charging or the like).

ステータスS08は商用連系制御状態を示している。電力変換器112は商用電力系統101と連系して電流制御で運転される。
ステータスS18は、商用停電・連系インバータ制御状態を示している。商用電力系統101が停電して非常用発電機105が運転状態のとき、電力変換器112は非常用発電機105と連系して電流制御で運転される。
ステータスS10は、商用停電・CVCF制御状態を示している。商用電力系統101が停電し、非常用発電機105も電力供給できない状態のとき(停電直後の起動動作中や燃料が枯渇して停止したとき)、電力変換器112は、エネルギー蓄積要素113のエネルギーを使用して、電圧と周波数を一定に制御するよう自立運転制御される。
Status S08 indicates a commercial interconnection control state. The power converter 112 is operated by current control in conjunction with the commercial power system 101.
Status S18 indicates a commercial power failure / interconnection inverter control state. When the commercial power system 101 is blacked out and the emergency generator 105 is in operation, the power converter 112 is operated with current control in conjunction with the emergency generator 105.
Status S10 indicates a commercial power failure / CVCF control state. When the commercial power system 101 fails and the emergency generator 105 cannot supply power (during the start-up operation immediately after the power failure or when the fuel is depleted and stopped), the power converter 112 stores the energy of the energy storage element 113. Is used to control the voltage and frequency so that they are controlled independently.

特開2008−72774号公報JP 2008-72774 A 特開2011−10412号公報JP 2011-10412 A

このような従来技術の電力平準化装置150において、停電の発生していない状態では、制御装置114は図5に示す商用連系制御S08の状態にあり、電力変換器112によってエネルギー蓄積要素113の充電状態を制御・監視している。
また、エネルギー蓄積要素113の充放電制御は、図示しない上位コントローラ(外部機器)からの有効電力指令Prefにより行っている。エネルギー蓄積要素113が満充電状態になると、上位コントローラは有効電力指令Prefを0[kW]まで絞り、充放電ゼロの状態になるよう制御する。
In such a prior art power leveling device 150, when no power failure occurs, the control device 114 is in the state of commercial interconnection control S08 shown in FIG. 5, and the power converter 112 controls the energy storage element 113. Controls and monitors the state of charge.
The charge / discharge control of the energy storage element 113 is performed by an active power command Pref from a host controller (external device) (not shown). When the energy storage element 113 is in a fully charged state, the host controller controls the active power command Pref to 0 [kW] and controls to be in a charge / discharge zero state.

ただし、有効電力指令Prefを0[kW]にしても、直接はエネルギー蓄積要素113の充放電を制御していないため、わずかながら充放電が生じる。この状態を実機で確認したところ、わずかな放電状態となる場合が多く、せっかく蓄積したエネルギーを放出する状態となるという問題が生じていた。   However, even if the active power command Pref is set to 0 [kW], charging / discharging of the energy storage element 113 is not directly controlled, so that charging / discharging occurs slightly. When this state was confirmed with an actual machine, there was often a slight discharge state, and there was a problem that the accumulated energy was released.

本発明の目的は、上位コントローラからの有効電力指令から、エネルギー蓄積要素の満充電制御モードを電力平準化装置にて自動判別し、エネルギー蓄積要素の充放電がゼロになるよう直接充放電電流を制御できる技術を提供することにある。   The purpose of the present invention is to automatically determine the full charge control mode of the energy storage element from the active power command from the host controller using the power leveling device, and to directly charge / discharge current so that the charge / discharge of the energy storage element becomes zero. It is to provide a technology that can be controlled.

本発明の電力平準化装置は、商用電力系統と重要負荷及び分散型電源とを接続するスイッチと、前記スイッチと前記重要負荷及び前記分散型電源との接続ラインに、交流側が接続される交流直流変換器と、前記交流直流変換器の直流側に接続されるエネルギー蓄積要素と、前記スイッチと前記重要負荷及び前記分散型電源との接続ラインの電圧を検出する電圧検出部と、前記重要負荷に流れる電流を検出する第1電流検出部と、前記交流直流変換器の交流側に流れる電流を検出する第2電流検出部と、前記エネルギー蓄積要素に流れる電流を検出する第3電流検出部と、前記電圧検出部、前記第1電流検出部及び前記第2電流検出部からの各検出値と、上位コントローラからの有効電力指令及び無効電力指令とに基づいて前記交流直流変換器を制御する指令を出力する制御部と、前記第3電流検出部からの検出値に基づいて前記交流直流変換器を制御する指令を出力する充放電制御部と、を備え、前記交流直流変換器は、前記上位コントローラからの有効電力指令の絶対値がゼロ近くの基準値以上では、前記制御部からの指令で制御し、前記上位コントローラからの有効電力指令の絶対値がゼロ近くの基準値未満では、前記充放電制御部からの指令に切り替えて制御することを特徴とする。
また、本発明の電力平準化装置において、前記充放電制御部は、前記第3電流検出部からの検出値から高域成分を取り除く低域通過フィルタブロックと、前記第3電流検出部からの検出値とバッテリ電流基準値0[A]との差分が0となるように比例積分補償を行う比例積分補償ブロックと、該比例積分補償ブロックからの出力をリミット処理した値を前記交流直流変換器を制御する指令とするリミッタとから成るようにしてもよい。
The power leveling apparatus according to the present invention includes a switch for connecting a commercial power system, an important load and a distributed power source, and an AC / DC connected to an AC side of a connection line between the switch, the important load and the distributed power source. A converter, an energy storage element connected to a DC side of the AC / DC converter, a voltage detection unit for detecting a voltage of a connection line between the switch, the important load and the distributed power source, and the important load. A first current detection unit for detecting a flowing current, a second current detection unit for detecting a current flowing on the AC side of the AC / DC converter, a third current detection unit for detecting a current flowing in the energy storage element, the voltage detecting section, and the detected value of the first current detector and the second current detector or, et al., the AC-DC converter on the basis of the power command and the reactive power command from the host controller A control unit for outputting a command to control to, and a charge and discharge control unit for outputting a command for controlling the AC-DC converter based on a detected value from the third current detector, said AC-DC converter When the absolute value of the active power command from the host controller is greater than or equal to the reference value near zero, control is performed with the command from the control unit, and when the absolute value of the active power command from the host controller is less than the reference value near zero The control is performed by switching to a command from the charge / discharge control unit .
In the power leveling device of the present invention , the charge / discharge control unit includes a low-pass filter block that removes a high-frequency component from a detection value from the third current detection unit, and a detection from the third current detection unit. A proportional-integral compensation block that performs proportional-integral compensation so that the difference between the value and the battery current reference value 0 [A] becomes zero, and a value obtained by limiting the output from the proportional-integral-compensation block You may make it consist of the limiter used as the command to control .

本発明によれば、商用電力系統側へ電力回生が可能な電力平準化装置で、エネルギー蓄積要素が満充電状態になっても、充放電電流をゼロに制御することで、無駄なエネルギー放出をしない技術を提供することができる。   According to the present invention, in a power leveling device capable of regenerating power to the commercial power system side, even when the energy storage element is in a fully charged state, the charge / discharge current is controlled to zero, so that wasteful energy release is achieved. Can provide technology that does not.

本発明の実施形態に係る、電力平準化装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power leveling apparatus based on embodiment of this invention. 本発明の実施形態に係る、電力平準化装置の状態遷移を示す図である。It is a figure which shows the state transition of the power leveling apparatus based on embodiment of this invention. 本発明の実施形態に係る、バッテリ電流ゼロ制御の各処理について説明する図である。It is a figure explaining each process of battery current zero control based on embodiment of this invention. 従来技術に係る、電力平準化装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the power leveling apparatus based on a prior art. 従来技術に係る、電力平準化装置の状態遷移を示す図である。It is a figure which shows the state transition of the power leveling apparatus based on a prior art.

以下に、本発明の実施形態に係る電力平準化装置について、図面を参照して説明する。
図1は、本実施形態に係る電力平準化装置50の構成を示すブロック図である。
商用電力系統1は、本実施形態の電力平準化装置50を介して重要負荷15に電力を供給するように構成される。系統連系点4は、停電時等に遮断制御される連系点CB(遮断器)2を介して商用電力系統1に接続される。停電検出部3は、商用電力系統1の停電を検出して停電検出信号Sdを送出する。
Hereinafter, a power leveling apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a power leveling device 50 according to the present embodiment.
The commercial power system 1 is configured to supply power to the important load 15 via the power leveling device 50 of the present embodiment. The grid connection point 4 is connected to the commercial power grid 1 via a grid point CB (breaker) 2 that is controlled to be cut off during a power failure or the like. The power failure detection unit 3 detects a power failure in the commercial power system 1 and sends a power failure detection signal Sd.

系統連系点4には、非常用発電機5および一般負荷6が接続されるとともに、高速スイッチ(電力を接断する交流スイッチ)7を介して重要負荷接続点9aに接続される。また、重要負荷接続点9aは電圧検出器9bとなっている。
重要負荷接続点9aには、太陽光発電設備や風力発電設備あるいは燃料電池や常用型の自家発電設備等の分散型電源8が接続されるとともに、電流検出器10を介して電力変換器12が、また電流検出器11を介して重要負荷15が接続される。
An emergency generator 5 and a general load 6 are connected to the grid connection point 4 and also connected to an important load connection point 9 a via a high-speed switch (AC switch for connecting and disconnecting power) 7. The important load connection point 9a is a voltage detector 9b.
A distributed power source 8 such as a photovoltaic power generation facility, a wind power generation facility, a fuel cell, or a regular private power generation facility is connected to the important load connection point 9a, and a power converter 12 is connected via a current detector 10. Also, an important load 15 is connected via the current detector 11.

制御装置14には、電圧検出器9bによる検出値と電流検出器10による検出値と電流検出器11による検出値の他、後述する電流検出器30による検出値(バッテリ電流値Dib)が入力されるとともに、制御装置14は、上位コントローラ18(外部機器)からの有効電力指令Prefおよび無効電力指令Qrefを受けて電力変換器12を制御する。   In addition to the detection value by the voltage detector 9b, the detection value by the current detector 10 and the detection value by the current detector 11, the control device 14 receives a detection value (battery current value Dib) by a current detector 30 described later. In addition, the control device 14 receives the active power command Pref and the reactive power command Qref from the host controller 18 (external device) and controls the power converter 12.

この制御装置14は、幾つかのブロックから成る。制御部20は、電圧検出器9bによる検出値、電流検出器10による検出値、電流検出器11による検出値、および上位コントローラ18からの有効電力指令Pref、無効電力指令Qrefに基づいて、電力変換器12を制御する第1のIp指令(図示しないが、便宜上Ip20とする)を制御部20から出力する。   The control device 14 consists of several blocks. The control unit 20 performs power conversion based on the detection value by the voltage detector 9b, the detection value by the current detector 10, the detection value by the current detector 11, and the active power command Pref and the reactive power command Qref from the host controller 18. The control unit 20 outputs a first Ip command (not shown, for convenience, Ip20) for controlling the device 12.

充放電制御部26は、電流検出器30による検出値(バッテリ電流値Dib)に基づいて電力変換器12を制御する第2のIp指令(図示しないが、便宜上Ip26とする)を出力する。
第1のIp指令(Ip20)と第2のIp指令(Ip26)とは、ともに切替部24に送られる。切替部24は、有効電力指令Prefがゼロのとき(有効電力指令Prefの絶対値が0[kW]近くの任意の基準値未満のとき)には判別部22の指示によって第2のIp指令(Ip26)を選択し、有効電力指令Prefがゼロでない所定の値以上のとき(有効電力指令Prefの絶対値が0[kW]近くの任意の基準値以上のとき)には、判別部22の指示によって第1のIp指令(Ip20)を選択し、これをIp指令として電力変換器12へ送る。
The charge / discharge control unit 26 outputs a second Ip command (not shown, but is referred to as Ip26 for convenience) for controlling the power converter 12 based on a value detected by the current detector 30 (battery current value Dib).
Both the first Ip command (Ip20) and the second Ip command (Ip26) are sent to the switching unit 24. When the active power command Pref is zero (when the absolute value of the active power command Pref is less than an arbitrary reference value close to 0 [kW]), the switching unit 24 instructs the second Ip command ( Ip26) is selected, and when the active power command Pref is not less than a predetermined value that is not zero (when the absolute value of the active power command Pref is not less than an arbitrary reference value close to 0 [kW]), the instruction of the determination unit 22 To select the first Ip command (Ip20), and send it to the power converter 12 as the Ip command.

上述の電力変換器12は、交流電力と直流電力とを相互に変換可能な交流直流変換器であり、重要負荷接続点9aの電力の一部によってエネルギー蓄積要素13にエネルギーを充電するとともに、当該エネルギー蓄積要素13に蓄えられたエネルギーをパルス幅変調により所定の周波数および電圧の電力に変換して重要負荷接続点9aに供給する役割を担う。なお電流検出器30は、これら電力変換器12とエネルギー蓄積要素13との間のバッテリ電流値Dibを検出している。
また、エネルギー蓄積要素13は、例えば、鉛蓄電池等のような二次電池である。
The power converter 12 described above is an AC / DC converter that can convert AC power and DC power to each other, and charges the energy storage element 13 with a part of the power at the important load connection point 9a, and It plays the role of converting the energy stored in the energy storage element 13 into electric power of a predetermined frequency and voltage by pulse width modulation and supplying it to the important load connection point 9a. The current detector 30 detects the battery current value Dib between the power converter 12 and the energy storage element 13.
The energy storage element 13 is a secondary battery such as a lead storage battery, for example.

図2は、本実施形態に係る電力平準化装置50の状態遷移例を示す図である。図2では、本実施形態において執り得る状態(ステータス)と、同様に遷移し得る方向を矢印線(ループを含む)で示している。
これら各状態に関して、本発明の特徴である破線内を除いては図5に示すものと同様であるので、同一の符号を付し、詳細な説明は省略する。
遷移動作を表すAと、この遷移動作のきっかけとなる事象Eの数字についても、本実施の形態の説明に必要な部分を除いては、その詳細な説明は省略する。
FIG. 2 is a diagram illustrating an example of state transition of the power leveling device 50 according to the present embodiment. In FIG. 2, states (status) that can be taken in the present embodiment and directions that can similarly be changed are indicated by arrow lines (including loops).
Since these states are the same as those shown in FIG. 5 except for the inside of the broken line, which is a feature of the present invention, the same reference numerals are given, and detailed explanations are omitted.
A detailed description of A representing the transition operation and the number of the event E that triggers the transition operation will be omitted except for portions necessary for the description of the present embodiment.

上述の通り、図2においては破線内部分が本発明の特徴であり、エネルギー蓄積要素13の満充電制御に係る状態遷移である。
S09は、電力変換器12を介してエネルギー蓄積要素13の充放電を制御する満充電制御である。この満充電制御S09は、上位コントローラ18から受け取る有効電力指令Prefの絶対値が0[kW]近くの任意の基準値未満となる事象E16をきっかけに、電力平準化制御を行う商用連系制御S08からのみ遷移する。この任意の基準値は、本実施形態の電力平準化装置50の設置環境での調整要素であり、変更可能となっている。
As described above, the portion within the broken line in FIG. 2 is a feature of the present invention, and is a state transition related to the full charge control of the energy storage element 13.
S09 is full charge control for controlling charging / discharging of the energy storage element 13 via the power converter 12. The full charge control S09 is a commercial interconnection control S08 that performs power leveling control triggered by an event E16 in which the absolute value of the active power command Pref received from the host controller 18 is less than an arbitrary reference value near 0 [kW]. Transition from only. This arbitrary reference value is an adjustment factor in the installation environment of the power leveling device 50 of the present embodiment, and can be changed.

事象E16に対して、商用連系制御S08から満充電制御S09への状態遷移するための動作がA16である。動作A16は、後述する有効電力制御をバッテリ電流ゼロ制御S09aで継続し、無効電力制御を停止させる。   The operation for changing the state from the commercial interconnection control S08 to the full charge control S09 is A16 with respect to the event E16. In the operation A16, active power control, which will be described later, is continued with the battery current zero control S09a, and the reactive power control is stopped.

一方、満充電制御S09から他の制御への状態への遷移は3通り有り、1つ目は事象E17に対する動作A17である。事象E17は、上位コントローラ18から受け取る有効電力指令Prefの絶対値が0[kW]近くの任意の基準値以上のときに発生する。このときの動作A17は、商用連系制御S08へ状態遷移し、有効電力制御はバッテリ電流ゼロ制御から上位コントローラ18からの有効電力指令Prefによる制御で継続し、無効電力制御は上位コントローラ18からの無効電力指令Qrefで制御を開始させる。   On the other hand, there are three transitions from the full charge control S09 to the other control, and the first is the operation A17 for the event E17. The event E17 occurs when the absolute value of the active power command Pref received from the host controller 18 is equal to or larger than an arbitrary reference value near 0 [kW]. Operation A17 at this time makes a transition to commercial interconnection control S08, active power control continues from zero battery current control by control according to active power command Pref from host controller 18, and reactive power control from host controller 18 Control is started by the reactive power command Qref.

2つ目は、事象E05に対する動作A05である。動作A05は満充電制御S09中の停止動作で、有効電力制御および無効電力制御を終了し、制御系の変数や信号設定を停止時の設定にした上で、停止待機S02に状態遷移する。   The second is the operation A05 for the event E05. The operation A05 is a stop operation during the full charge control S09. The active power control and the reactive power control are ended, and the control system variables and signal settings are set at the stop time. Then, the state transition is made to the stop standby S02.

3つ目は、事象E04に対する動作A04である。動作A04は、満充電制御S09中の停電バックアップ動作で、有効電力制御および無効電力制御を終了し、制御系の変数や信号設定を停電時の設定にした上で、商用停電・CVCF(Constant Voltage Constant Frequency)制御S10に状態遷移し、停電中のバックアップ動作を行う。   The third is the operation A04 for the event E04. Operation A04 is a power failure backup operation during the full charge control S09. The active power control and the reactive power control are terminated, and the control system variables and signal settings are set at the time of the power failure. Then, the commercial power failure / CVCF (Constant Voltage The state transitions to the control frequency (S10), and the backup operation during a power failure is performed.

次に、エネルギー蓄積要素13の満充電制御S09中のバッテリ電流ゼロ制御S09aについて、図3のブロック図を基に説明する。バッテリ電流ゼロ制御S09aは、以下の各処理から成る。
St1:LPF(低域通過フィルタ)ブロック
St2:−1倍ゲイン(極性反転)
St3:PI(比例積分補償)ブロック
St4:リミッタ(制限器)
Next, the battery current zero control S09a during the full charge control S09 of the energy storage element 13 will be described based on the block diagram of FIG. The battery current zero control S09a includes the following processes.
St1: LPF (low pass filter) block St2: -1 times gain (polarity inversion)
St3: PI (proportional integral compensation) block St4: Limiter (limiter)

このSt1では、電流検出器30によって検出されたバッテリ電流値DibからLPFで高域成分を取り除き、続くSt2では、この値を−1倍する。これは、バッテリ電流指令値0[A](固定)に対する差分を求めるためであり、ここで極性を反転し、次にバッテリ電流基準値0[A]と加算する。
なお、St2とSt3との間に設けられた加算器40は、0を加算するのみなので、省略することができる。
その後、St3でPI補償を行い、その出力をSt4でリミット処理した値を第1のIp指令(Ip26)とする。
In St1, the high-frequency component is removed by the LPF from the battery current value Dib detected by the current detector 30, and in St2 that follows, this value is multiplied by -1. This is for obtaining a difference with respect to the battery current command value 0 [A] (fixed). Here, the polarity is reversed, and then the battery current reference value 0 [A] is added.
The adder 40 provided between St2 and St3 can be omitted because it only adds 0.
Thereafter, PI compensation is performed at St3, and a value obtained by limiting the output at St4 is defined as a first Ip command (Ip26).

ここで、充放電制御部26を図3のブロック図からなる構成とした場合、St2から出力されるIp指令(Ip26)を基に、電力変換器12を駆動する制御信号を生成するゲート信号生成回路(座標変換回路、パルス幅制御信号生成回路など)を設ける必要がある。
このゲート信号生成回路は充放電制御部26に設けられるが、制御部20にも同種のゲート信号生成回路が設けられる。この場合、これら充放電制御部26と制御部20のゲート信号生成回路の出力信号を切替部24で切り替えるように構成することができる。
また、充放電制御部26に設けられるゲート信号生成回路と制御部20に設けられるゲート信号生成回路は同じ構成とすることができるので、切替部24内に1組共通に設け、切り替えて使用することができる。このようにすればゲート信号生成回路を1組設けるだけでよいので構成が簡単になる。
Here, when the charge / discharge control unit 26 has the configuration shown in the block diagram of FIG. 3, gate signal generation that generates a control signal for driving the power converter 12 based on the Ip command (Ip26) output from St2. It is necessary to provide a circuit (coordinate conversion circuit, pulse width control signal generation circuit, etc.).
The gate signal generation circuit is provided in the charge / discharge control unit 26, but the control unit 20 is also provided with the same type of gate signal generation circuit. In this case, the switching unit 24 can be configured to switch the output signals of the gate signal generation circuits of the charge / discharge control unit 26 and the control unit 20.
In addition, since the gate signal generation circuit provided in the charge / discharge control unit 26 and the gate signal generation circuit provided in the control unit 20 can have the same configuration, a common set is provided in the switching unit 24 for switching. be able to. This simplifies the configuration because only one set of gate signal generation circuits need be provided.

このように、本実施の形態では、有効電力指令Prefがゼロのときには、バッテリ電流値Dibとバッテリ電流基準値0[A](バッテリ電流指令値0[A])との差分が0となるようにフィードバック制御され、これによりバッテリ電流値Dibが0[A]に制御される。
即ち、エネルギー蓄積要素が満充電状態になると、充放電電流がゼロに制御され、無駄なエネルギー放出をしない。
Thus, in the present embodiment, when the active power command Pref is zero, the difference between the battery current value Dib and the battery current reference value 0 [A] (battery current command value 0 [A]) is zero. Thus, the battery current value Dib is controlled to 0 [A].
That is, when the energy storage element is in a fully charged state, the charge / discharge current is controlled to zero, and no unnecessary energy is released.

以上、実施形態を基に本発明を説明した。この実施形態は例示であり、それらの各構成要素や処理の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described above based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications can be made to combinations of the respective components and processes, and such modifications are also within the scope of the present invention.

1 商用電力系統
2 連系点CB
3 停電検出部
4 系統連系点
5 非常用発電機
6 一般負荷
7 高速スイッチ(スイッチ)
8 分散型電源
9a 重要負荷接続点
9b 電圧検出器(電圧検出部)
10 電流検出器(第2電流検出部)
11 電流検出器(第1電流検出部)
12 電力変換器(交流直流変換器)
13 エネルギー蓄積要素
14 制御装置
15 重要負荷
18 上位コントローラ
20 制御部
22 判別部
24 切替部
26 充放電制御部
30 電流検出器(第3電流検出部)
50、150 電力平準化装置
Sd 停電検出信号
Dib バッテリ電流値
Pref 有効電力指令
Qref 無効電力指令
1 Commercial power system 2 Interconnection point CB
3 Power failure detection unit 4 Grid connection point 5 Emergency generator 6 General load 7 High-speed switch (switch)
8 Distributed power source 9a Important load connection point 9b Voltage detector (voltage detector)
10 Current detector (second current detector)
11 Current detector (first current detector)
12 Power converter (AC / DC converter)
13 Energy Storage Element 14 Control Device 15 Important Load 18 Host Controller 20 Control Unit 22 Discrimination Unit 24 Switching Unit 26 Charge / Discharge Control Unit 30 Current Detector (Third Current Detection Unit)
50, 150 Power leveling device Sd Power failure detection signal Dib Battery current value Pref Active power command Qref Reactive power command

Claims (2)

商用電力系統と重要負荷及び分散型電源とを接続するスイッチと、
前記スイッチと前記重要負荷及び前記分散型電源との接続ラインに、交流側が接続される交流直流変換器と、
前記交流直流変換器の直流側に接続されるエネルギー蓄積要素と、
前記スイッチと前記重要負荷及び前記分散型電源との接続ラインの電圧を検出する電圧検出部と、
前記重要負荷に流れる電流を検出する第1電流検出部と、
前記交流直流変換器の交流側に流れる電流を検出する第2電流検出部と、
前記エネルギー蓄積要素に流れる電流を検出する第3電流検出部と、
前記電圧検出部、前記第1電流検出部及び前記第2電流検出部からの各検出値と、上位コントローラからの有効電力指令及び無効電力指令とに基づいて前記交流直流変換器を制御する指令を出力する制御部と、
前記第3電流検出部からの検出値に基づいて前記交流直流変換器を制御する指令を出力する充放電制御部と、を備え、
前記交流直流変換器は、前記上位コントローラからの有効電力指令の絶対値がゼロ近くの基準値以上では、前記制御部からの指令で制御し、前記上位コントローラからの有効電力指令の絶対値がゼロ近くの基準値未満では、前記充放電制御部からの指令に切り替えて制御することを特徴とする電力平準化装置。
A switch for connecting the commercial power system with important loads and distributed power sources;
An AC / DC converter having an AC side connected to a connection line between the switch and the important load and the distributed power source;
An energy storage element connected to the DC side of the AC / DC converter;
A voltage detection unit for detecting a voltage of a connection line between the switch and the important load and the distributed power source;
A first current detector for detecting a current flowing through the important load;
A second current detector for detecting a current flowing on the AC side of the AC / DC converter;
A third current detector for detecting a current flowing through the energy storage element;
The voltage detection unit, a command for controlling the detection values of the first current detector and the second current detector or al, the AC-DC converter on the basis of the power command and the reactive power command from the host controller A control unit for outputting
A charge / discharge control unit that outputs a command to control the AC / DC converter based on a detection value from the third current detection unit ,
When the absolute value of the active power command from the host controller is greater than or equal to a reference value near zero, the AC / DC converter is controlled by a command from the control unit, and the absolute value of the active power command from the host controller is zero. The power leveling device is controlled by switching to a command from the charge / discharge control unit if it is less than a nearby reference value .
前記充放電制御部は、前記第3電流検出部からの検出値から高域成分を取り除く低域通過フィルタブロックと、前記第3電流検出部からの検出値とバッテリ電流基準値0[A]との差分が0となるように比例積分補償を行う比例積分補償ブロックと、該比例積分補償ブロックからの出力をリミット処理した値を前記交流直流変換器を制御する指令とするリミッタとから成ることを特徴とする請求項1記載の電力平準化装置。 The charge / discharge control unit includes a low-pass filter block that removes a high-frequency component from a detection value from the third current detection unit, a detection value from the third current detection unit, and a battery current reference value 0 [A]. A proportional-integral compensation block that performs proportional-integral compensation so that the difference between them is zero, and a limiter that uses a value obtained by limiting the output from the proportional-integral-compensation block as a command for controlling the AC / DC converter. The power leveling device according to claim 1, wherein:
JP2011184209A 2011-08-26 2011-08-26 Electric power leveling device Active JP5790313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011184209A JP5790313B2 (en) 2011-08-26 2011-08-26 Electric power leveling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011184209A JP5790313B2 (en) 2011-08-26 2011-08-26 Electric power leveling device

Publications (2)

Publication Number Publication Date
JP2013046532A JP2013046532A (en) 2013-03-04
JP5790313B2 true JP5790313B2 (en) 2015-10-07

Family

ID=48010005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011184209A Active JP5790313B2 (en) 2011-08-26 2011-08-26 Electric power leveling device

Country Status (1)

Country Link
JP (1) JP5790313B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022980B2 (en) * 2013-03-28 2016-11-09 京セラ株式会社 Sensor position determination method
CN103956749B (en) * 2013-12-27 2019-08-09 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 A kind of reactive voltage control method and system of micro-capacitance sensor
JP6535585B2 (en) * 2015-11-27 2019-06-26 リンナイ株式会社 Blackout detection system
CN105958528B (en) * 2016-05-11 2018-10-26 武汉大学 A kind of zero transition dynamic combination method of Wind turbines and device
WO2018078683A1 (en) * 2016-10-24 2018-05-03 東芝三菱電機産業システム株式会社 Power supply system
JP6879462B2 (en) * 2017-06-28 2021-06-02 株式会社ダイヘン Switching device and power conditioner system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653450B2 (en) * 1988-01-05 1997-09-17 株式会社東芝 Power storage system
JPH03245738A (en) * 1990-02-22 1991-11-01 Toshiba Corp Controller for power storage system
JP2947372B2 (en) * 1991-04-25 1999-09-13 株式会社関電工 Multifunction power converting system
JP2006101634A (en) * 2004-09-29 2006-04-13 Tokyo Electric Power Co Inc:The Distributed power supply device
JP4783237B2 (en) * 2006-08-11 2011-09-28 関西電力株式会社 Transmission loss reduction system and method using secondary battery

Also Published As

Publication number Publication date
JP2013046532A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
US8355265B2 (en) DC-to-DC power conversion
KR101454299B1 (en) Control Method of Stand-alone Microgrid using Inverter for ESS
JP5790313B2 (en) Electric power leveling device
US20140361624A1 (en) Apparatus and methods for control of load power quality in uninterruptible power systems
WO2015198448A1 (en) Uninterruptible power supply
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
KR101646170B1 (en) Power System Control Method for Operation With Grid-Connection and Isolation
KR102272665B1 (en) MAS(Multi-Agent Systems)-based distributed control system and method in DC microgrid
JP4293673B2 (en) Operation method of power supply system having a plurality of inverters
JP4761367B2 (en) Uninterruptible power system
JP5869312B2 (en) Load device and power consumption control method thereof
JP5961932B2 (en) Electric power leveling device
WO2021205700A1 (en) Power conversion device
JP2007215378A (en) Uninterruptible power unit
JP2001178024A (en) Emergency power supply unit
JP2009247185A (en) System-cooperative inverter and its self-sustaining operation method
JP2002176782A (en) Uninterruptible power supply unit
JP2006254659A (en) Distributed power unit
JP6479516B2 (en) Input control power storage system
WO2011013187A1 (en) Self-excited reactive power compensation device
JP2004072841A (en) Dc uninterruptible power supply system
JP2011139594A (en) System interconnection system
JP4497760B2 (en) Uninterruptible power supply system
JP2006067728A (en) Uninterruptible power supply apparatus
JP2013243934A (en) Self-excited reactive power compensation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent or registration of utility model

Ref document number: 5790313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250