Nothing Special   »   [go: up one dir, main page]

JP5783433B2 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP5783433B2
JP5783433B2 JP2013526643A JP2013526643A JP5783433B2 JP 5783433 B2 JP5783433 B2 JP 5783433B2 JP 2013526643 A JP2013526643 A JP 2013526643A JP 2013526643 A JP2013526643 A JP 2013526643A JP 5783433 B2 JP5783433 B2 JP 5783433B2
Authority
JP
Japan
Prior art keywords
negative electrode
graphite particles
region
current collector
perpendicularity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013526643A
Other languages
English (en)
Other versions
JPWO2013018180A1 (ja
Inventor
浩二 高畑
浩二 高畑
佐野 秀樹
秀樹 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2013018180A1 publication Critical patent/JPWO2013018180A1/ja
Application granted granted Critical
Publication of JP5783433B2 publication Critical patent/JP5783433B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池に関する。なお、本明細書において「二次電池」とは、繰り返し充電可能な蓄電デバイス一般をいう。また、本明細書において「リチウムイオン二次電池」は、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電子の移動により充放電が実現される二次電池をいう。
かかるリチウムイオン二次電池について、例えば、特開2003−197189号公報には、リチウムイオン二次電池の負極を製造する方法が開示されている。ここでは、負極の製造方法は、黒鉛粉末と結着材が溶媒に分散されてなるペーストが基材に塗布される。次に、該黒鉛粉末中に含まれる黒鉛粒子同士の(002)面が磁場中で同一方向に配向される。そして、この状態で、溶媒を除去して黒鉛粉末が結着材で固化成形される。
かかるリチウムイオン二次電池の製造方法によれば、負極に含まれる黒鉛粒子の(002)面が、黒鉛粒子間で相互に同一方向に配向しており、正極を当該(002)面の方向に配置することができる。このため、負極と正極の間を行き来するリチウムイオンが、充電時に黒鉛の層のエッジ部から層間に円滑に侵入させることができるとされている。
また、同様に、リチウムイオン二次電池用の負極について、黒鉛粒子を磁場配向させ、黒鉛粒子の002面を負極集電体に対して立てることは、例えば、特開2003−197182号公報、特開2004−220926号公報、特開平09−245770号公報に開示されている。
特開2003−197189号公報 特開2003−197182号公報 特開2004−220926号公報 特開平09−245770号公報
ところで、リチウムイオン二次電池は、ハイブリッド車やプラグインハイブリッド車やいわゆる電気自動車など、自動車を駆動させる機構の動力源として車載されるようになってきている。このような車両駆動用電池としての用途では、例えば、エネルギ効率を向上させるために、充放電の際に反応抵抗を低くすることが求められる。また、自動車を急加速させる時には、放電量が急激に多くなる。このため、ハイレートでの放電抵抗が低く抑えられていることが好ましい。かかる観点において、リチウムイオン二次電池用の負極について、磁場配向させて黒鉛粒子の002面を負極集電体に対して立てるのみでは、リチウムイオン二次電池の直流抵抗が悪い傾向があった。
本発明に係るリチウムイオン二次電池は、負極集電体と、負極集電体に形成された負極活物質層とを有している。負極活物質層は、鱗片状の黒鉛粒子を含み、負極集電体近傍の第1領域と、表面側近傍の第2領域とで、黒鉛粒子の垂直度が異なっている。
この場合、例えば、第1領域は、負極活物質層のうち負極集電体から厚さが0%〜30%の領域であり、かつ、第2領域は、負極活物質層のうち負極集電体から厚さが70%〜100%の領域と規定してもよい。
また、黒鉛粒子の垂直度は、負極集電体の表面に対する傾きθnが60°≦θn≦90°である黒鉛粒子の数をm1とし、負極集電体の表面に対する傾きθnが0°≦θn≦30°である黒鉛粒子の数をm2として、(m1/m2)とするとよい。
また、この場合、例えば、負極集電体に形成された負極活物質層について、複数の断面の断面SEM画像を用意し、複数の断面の断面SEM画像において、見かけの断面積が大きい方から予め定められた数の黒鉛粒子を抽出し、当該抽出された黒鉛粒子の断面における最長径に沿った直線に基づいて、それぞれ負極集電体の表面に対する傾きθnを特定するとよい。
また、第1領域の前記黒鉛粒子の垂直度N1と、第2領域の黒鉛粒子の垂直度N2との差(N2−N1)の絶対値は、例えば、0.2以上であるとよい。
また、第1領域の黒鉛粒子の垂直度N1がN1≦1であり、第2領域の黒鉛粒子の垂直度N2がN2≧1.2であってもよい。また、この場合、第2領域の黒鉛粒子の垂直度N2が、N2≧3.0であるとよい。これにより、リチウムイオン二次電池の拡散抵抗を低く抑えることができる。
また、この場合、第2領域の黒鉛粒子の垂直度N2と、第1領域の黒鉛粒子の垂直度N1との差(N2−N1)が、(N2−N1)≧1.4であるとよい。さらには、当該差(N2−N1)は、(N2−N1)≧2.5であるとよい。これにより、拡散抵抗を低く抑えることができるリチウムイオン二次電池をより確実に得られる。
また、第1領域の黒鉛粒子の垂直度N1が、N1≧1.2であり、第2領域の黒鉛粒子の垂直度N2がN2≦0.9であってもよい。この場合、容量維持率を高く維持し、かつ、抵抗上昇率を低く抑えることができる。この場合、第2領域の黒鉛粒子の垂直度N2と、第1領域の黒鉛粒子の垂直度N1との差(N2−N1)が、(N2−N1)≦−0.8であってもよい。
また、かかるリチウムイオン二次電池の製造方法は、少なくとも鱗片状の黒鉛粒子とバインダとを溶媒に混合した負極合剤を用意する工程Aと、工程Aで生成された負極合剤を、負極集電体に塗布し、負極集電体に負極活物質層を形成する工程Bとを含んでいるとよい。この場合、工程Bは、負極集電体に負極合剤を塗布する塗布工程と、負極集電体に塗布された負極合剤を乾燥する乾燥工程と、磁場を付与し、塗布された負極合剤中の黒鉛粒子の向きを調整する配向工程とを含んでいるとよい。そして、塗布工程と乾燥工程は、少なくとも2回行なわれ、負極集電体に対して重ねて負極合剤を塗布するとともに、配向工程は塗布工程後乾燥工程前に少なくとも1回行なわれるとよい。
また、配向工程は、例えば、最後の塗布工程後乾燥工程前に行ない、当該最後の塗布工程で塗布された負極合剤中の黒鉛粒子を負極集電体に対して立たせてもよい。これにより、表面側近傍の第2領域で黒鉛粒子の垂直度が高い負極活物質層を形成することができる。この場合、最後の塗布工程よりも前に、負極集電体に形成された負極合剤の層を圧延する圧延工程を備えていてもよい。これにより、負極集電体近傍の第1領域の黒鉛粒子の垂直度と、第2領域の黒鉛粒子の垂直度の差が大きい負極活物質層を形成することができる。
また、配向工程は、1回目の塗布工程後乾燥工程前に行なわれて、当該1回目の塗布工程で塗布された負極合剤中の黒鉛粒子を負極集電体に対して立たせてもよい。これにより、負極集電体近傍の第1領域で黒鉛粒子の垂直度が高い負極活物質層を形成することができる。この場合、最後の乾燥工程後に、負極集電体に形成された負極合剤の層を圧延する圧延工程を備えていてもよい。これにより、負極集電体近傍の第1領域の黒鉛粒子の垂直度と、第2領域の黒鉛粒子の垂直度の差が大きい負極活物質層を形成することができる。
図1は、リチウムイオン二次電池の構造の一例を示す図である。 図2は、リチウムイオン二次電池の捲回電極体を示す図である。 図3は、図2中のIII−III断面を示す断面図である。 図4は、正極活物質層の構造を示す断面図である。 図5は、負極活物質層の構造を示す断面図である。 図6は、捲回電極体の未塗工部と電極端子との溶接箇所を示す側面図である。 図7は、リチウムイオン二次電池の充電時の状態を模式的に示す図である。 図8は、リチウムイオン二次電池の放電時の状態を模式的に示す図である。 図9は、本発明の一実施形態に係るリチウムイオン二次電池を示す図である。 図10は、本発明の一実施形態に係るリチウムイオン二次電池の負極活物質層の構造を示す断面図である。 図11は、断面SEM画像を得る際の断面の取り方を示す図である。 図12は、当該抽出された黒鉛粒子の断面を模式的に示す図である。 図13は、負極活物質層243Aの他の形態を示す断面図である。 図14は、Cole−Coleプロット(ナイキスト・プロット)の典型的な図である。 図15は、表1のデータをサンプル毎にプロットした図である。 図16は、表2のデータをサンプル毎にプロットした図である。 図17は、表3のデータをサンプル毎にプロットした図である。 図18は、二次電池を搭載した車両を示す図である。
ここではまず、リチウムイオン二次電池の一構造例を説明する。その後、かかる構造例を適宜に参照しつつ、本発明の一実施形態に係るリチウムイオン二次電池を説明する。なお、同じ作用を奏する部材又は部位には適宜に同じ符号を付している。また、各図面は模式的に描かれており、必ずしも実物を反映していない。各図面は、一例を示すのみであり、特に言及されない限りにおいて本発明を限定しない。
図1は、リチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体200と電池ケース300とを備えている。図2は、捲回電極体200を示す図である。図3は、図2中のIII−III断面を示している。
捲回電極体200は、図2に示すように、正極シート220、負極シート240およびセパレータ262、264を有している。正極シート220、負極シート240およびセパレータ262、264は、それぞれ帯状のシート材である。
≪正極シート220≫
正極シート220は、帯状の正極集電体221と正極活物質層223とを備えている。正極集電体221には、正極に適する金属箔が好適に使用され得る。正極集電体221には、例えば、所定の幅を有し、厚さが凡そ15μmの帯状のアルミニウム箔を用いることができる。正極集電体221の幅方向片側の縁部に沿って未塗工部222が設定されている。図示例では、正極活物質層223は、図3に示すように、正極集電体221に設定された未塗工部222を除いて、正極集電体221の両面に保持されている。正極活物質層223には、正極活物質が含まれている。正極活物質層223は、正極活物質を含む正極合剤を正極集電体221に塗工することによって形成されている。
≪正極活物質層223および正極活物質粒子610≫
ここで、図4は、正極シート220の断面図である。なお、図4において、正極活物質層223の構造が明確になるように、正極活物質層223中の正極活物質粒子610と導電材620とバインダ630とを大きく模式的に表している。正極活物質層223には、図4に示すように、正極活物質粒子610と導電材620とバインダ630が含まれている。
正極活物質粒子610には、リチウムイオン二次電池の正極活物質として用いることができる物質を使用することができる。正極活物質粒子610の例を挙げると、LiNiCoMnO(リチウムニッケルコバルトマンガン複合酸化物)、LiNiO(ニッケル酸リチウム)、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)、LiFePO(リン酸鉄リチウム)などのリチウム遷移金属酸化物が挙げられる。ここで、LiMnは、例えば、スピネル構造を有している。また、LiNiO或いはLiCoOは層状の岩塩構造を有している。また、LiFePOは、例えば、オリビン構造を有している。オリビン構造のLiFePOには、例えば、ナノメートルオーダーの粒子がある。また、オリビン構造のLiFePOは、さらにカーボン膜で被覆することができる。
≪導電材620≫
導電材620としては、例えば、カーボン粉末、カーボンファイバーなどのカーボン材料が例示される。導電材620としては、このような導電材から選択される一種を単独で用いてもよく二種以上を併用してもよい。カーボン粉末としては、種々のカーボンブラック(例えば、アセチレンブラック、オイルファーネスブラック、黒鉛化カーボンブラック、カーボンブラック、黒鉛、ケッチェンブラック)、グラファイト粉末などのカーボン粉末を用いることができる。
≪バインダ630≫
また、バインダ630は、正極活物質層223に含まれる正極活物質粒子610と導電材620の各粒子を結着させたり、これらの粒子と正極集電体221とを結着させたりする。かかるバインダ630としては、使用する溶媒に溶解または分散可能なポリマーを用いることができる。例えば、水性溶媒を用いた正極合剤組成物においては、セルロース系ポリマー(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPMC)など)、フッ素系樹脂(例えば、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)など)、ゴム類(酢酸ビニル共重合体、スチレンブタジエン共重合体(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)など)などの水溶性または水分散性ポリマーを好ましく採用することができる。また、非水溶媒を用いた正極合剤組成物においては、ポリマー(ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリアクリルニトリル(PAN)など)を好ましく採用することができる。
≪増粘剤、溶媒≫
正極活物質層223は、例えば、上述した正極活物質粒子610と導電材620を溶媒にペースト状(スラリ状)に混ぜ合わせた正極合剤を作製し、正極集電体221に塗布し、乾燥させ、圧延することによって形成されている。この際、正極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN−メチル−2−ピロリドン(NMP)が挙げられる。上記バインダ630として例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
正極合剤全体に占める正極活物質の質量割合は、凡そ50wt%以上(典型的には50〜95wt%)であることが好ましく、通常は凡そ70〜95wt%(例えば75〜90wt%)であることがより好ましい。また、正極合剤全体に占める導電材の割合は、例えば凡そ2〜20wt%とすることができ、通常は凡そ2〜15wt%とすることが好ましい。バインダを使用する組成では、正極合剤全体に占めるバインダの割合を例えば凡そ1〜10wt%とすることができ、通常は凡そ2〜5wt%とすることが好ましい。
≪負極シート240≫
負極シート240は、図2に示すように、帯状の負極集電体241と、負極活物質層243とを備えている。負極集電体241には、負極に適する金属箔が好適に使用され得る。この負極集電体241には、所定の幅を有し、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電体241の幅方向片側には、縁部に沿って未塗工部242が設定されている。負極活物質層243は、負極集電体241に設定された未塗工部242を除いて、負極集電体241の両面に形成されている。負極活物質層243は、負極集電体241に保持され、少なくとも負極活物質が含まれている。負極活物質層243は、負極活物質を含む負極合剤が負極集電体241に塗工されている。
≪負極活物質層243≫
図5は、リチウムイオン二次電池100の負極シート240の断面図である。負極活物質層243には、図5に示すように、負極活物質粒子710、増粘剤(図示省略)、バインダ730などが含まれている。図5では、負極活物質層243の構造が明確になるように、負極活物質層243中の負極活物質粒子710とバインダ730とを大きく模式的に表している。
≪負極活物質粒子710≫
負極活物質粒子710としては、従来からリチウムイオン二次電池に用いられる材料の一種または二種以上を特に限定なく使用することができる。例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。より具体的には、負極活物質は、例えば、天然黒鉛、非晶質の炭素材料でコートした天然黒鉛、黒鉛質(グラファイト)、難黒鉛化炭素質(ハードカーボン)、易黒鉛化炭素質(ソフトカーボン)、または、これらを組み合わせた炭素材料でもよい。なお、ここでは、負極活物質粒子710は、いわゆる鱗片状黒鉛が用いられた場合を図示しているが、負極活物質粒子710は、図示例に限定されない。
≪増粘剤、溶媒≫
負極活物質層243は、例えば、上述した負極活物質粒子710とバインダ730を溶媒にペースト状(スラリ状)に混ぜ合わせた負極合剤を作製し、負極集電体241に塗布し、乾燥させ、圧延することによって形成されている。この際、負極合剤の溶媒としては、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN−メチル−2−ピロリドン(NMP)が挙げられる。バインダ730には、上記正極活物質層223(図4参照)のバインダ630として例示したポリマー材料を用いることができる。また、上記正極活物質層223のバインダ630として例示したポリマー材料は、バインダとしての機能の他に、正極合剤の増粘剤その他の添加剤としての機能を発揮する目的で使用されることもあり得る。
≪セパレータ262、264≫
セパレータ262、264は、図1または図2に示すように、正極シート220と負極シート240とを隔てる部材である。この例では、セパレータ262、264は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ262、264には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータ或いは積層構造のセパレータを用いることができる。この例では、図2および図3に示すように、負極活物質層243の幅b1は、正極活物質層223の幅a1よりも少し広い。さらにセパレータ262、264の幅c1、c2は、負極活物質層243の幅b1よりも少し広い(c1、c2>b1>a1)。
なお、図1および図2に示す例では、セパレータ262、264は、シート状の部材で構成されている。セパレータ262、264は、正極活物質層223と負極活物質層243とを絶縁するとともに、電解質の移動を許容する部材であればよい。したがって、シート状の部材に限定されない。セパレータ262、264は、シート状の部材に代えて、例えば、正極活物質層223または負極活物質層243の表面に形成された絶縁性を有する粒子の層で構成してもよい。ここで、絶縁性を有する粒子としては、絶縁性を有する無機フィラー(例えば、金属酸化物、金属水酸化物などのフィラー)、或いは、絶縁性を有する樹脂粒子(例えば、ポリエチレン、ポリプロピレンなどの粒子)で構成してもよい。
≪電池ケース300≫
また、この例では、電池ケース300は、図1に示すように、いわゆる角型の電池ケースであり、容器本体320と、蓋体340とを備えている。容器本体320は、有底四角筒状を有しており、一側面(上面)が開口した扁平な箱型の容器である。蓋体340は、当該容器本体320の開口(上面の開口)に取り付けられて当該開口を塞ぐ部材である。
車載用の二次電池では、車両の燃費を向上させるため、重量エネルギ効率(単位重量当りの電池の容量)を向上させることが望まれる。このため、この実施形態では、電池ケース300を構成する容器本体320と蓋体340は、アルミニウム、アルミニウム合金などの軽量金属が採用されている。これにより重量エネルギ効率を向上させることができる。
電池ケース300は、捲回電極体200を収容する空間として、扁平な矩形の内部空間を有している。また、図1に示すように、電池ケース300の扁平な内部空間は、捲回電極体200よりも横幅が少し広い。この実施形態では、電池ケース300は、有底四角筒状の容器本体320と、容器本体320の開口を塞ぐ蓋体340とを備えている。また、電池ケース300の蓋体340には、電極端子420、440が取り付けられている。電極端子420、440は、電池ケース300(蓋体340)を貫通して電池ケース300の外部に出ている。また、蓋体340には注液孔350と安全弁360とが設けられている。
捲回電極体200は、図2に示すように、捲回軸WLに直交する一の方向において扁平に押し曲げられている。図2に示す例では、正極集電体221の未塗工部222と負極集電体241の未塗工部242は、それぞれセパレータ262、264の両側において、らせん状に露出している。図6に示すように、この実施形態では、未塗工部222、242の中間部分224、244を寄せ集め、電極端子420、440の先端部420a、440aに溶接している。この際、それぞれの材質の違いから、電極端子420と正極集電体221の溶接には、例えば、超音波溶接が用いられる。また、電極端子440と負極集電体241の溶接には、例えば、抵抗溶接が用いられる。ここで、図6は、捲回電極体200の未塗工部222(242)の中間部分224(244)と電極端子420(440)との溶接箇所を示す側面図であり、図1のVI−VI断面図である。
捲回電極体200は、扁平に押し曲げられた状態で、蓋体340に固定された電極端子420、440に取り付けられる。かかる捲回電極体200は、図1に示すように、容器本体320の扁平な内部空間に収容される。容器本体320は、捲回電極体200が収容された後、蓋体340によって塞がれる。蓋体340と容器本体320の合わせ目322(図1参照)は、例えば、レーザ溶接によって溶接されて封止されている。このように、この例では、捲回電極体200は、蓋体340(電池ケース300)に固定された電極端子420、440によって、電池ケース300内に位置決めされている。
≪電解液≫
その後、蓋体340に設けられた注液孔350から電池ケース300内に電解液が注入される。電解液は、水を溶媒としていない、いわゆる非水電解液が用いられている。この例では、電解液は、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば、体積比1:1程度の混合溶媒)にLiPF6を約1mol/リットルの濃度で含有させた電解液が用いられている。その後、注液孔350に金属製の封止キャップ352を取り付けて(例えば溶接して)電池ケース300を封止する。なお、電解液は、ここで例示された電解液に限定されない。例えば、従来からリチウムイオン二次電池に用いられている非水電解液は適宜に使用することができる。
≪空孔≫
ここで、正極活物質層223は、例えば、正極活物質粒子610と導電材620の粒子間などに、空洞とも称すべき微小な隙間225を有している(図4参照)。かかる正極活物質層223の微小な隙間には電解液(図示省略)が浸み込み得る。また、負極活物質層243は、例えば、負極活物質粒子710の粒子間などに、空洞とも称すべき微小な隙間245を有している(図5参照)。ここでは、かかる隙間225、245(空洞)を適宜に「空孔」と称する。また、捲回電極体200は、図2に示すように、捲回軸WLに沿った両側において、未塗工部222、242が螺旋状に巻かれている。かかる捲回軸WLに沿った両側252、254において、未塗工部222、242の隙間から、電解液が浸み込みうる。このため、リチウムイオン二次電池100の内部では、正極活物質層223と負極活物質層243に電解液が浸み渡っている。
≪ガス抜け経路≫
また、この例では、当該電池ケース300の扁平な内部空間は、扁平に変形した捲回電極体200よりも少し広い。捲回電極体200の両側には、捲回電極体200と電池ケース300との間に隙間310、312が設けられている。当該隙間310、312は、ガス抜け経路になる。例えば、過充電が生じた場合などにおいて、リチウムイオン二次電池100の温度が異常に高くなると、電解液が分解されてガスが異常に発生する場合がある。この実施形態では、異常に発生したガスは、捲回電極体200の両側における捲回電極体200と電池ケース300との隙間310、312を通して安全弁360の方へ移動し、安全弁360から電池ケース300の外に排気される。
かかるリチウムイオン二次電池100では、正極集電体221と負極集電体241は、電池ケース300を貫通した電極端子420、440を通じて外部の装置に電気的に接続される。以下、充電時と放電時のリチウムイオン二次電池100の動作を説明する。
≪充電時の動作≫
図7は、かかるリチウムイオン二次電池100の充電時の状態を模式的に示している。充電時においては、図7に示すように、リチウムイオン二次電池100の電極端子420、440(図1参照)は、充電器290に接続される。充電器290の作用によって、充電時には、正極活物質層223中の正極活物質からリチウムイオン(Li)が電解液280に放出される。また、正極活物質層223からは電荷が放出される。放出された電荷は、導電材(図示省略)を通じて正極集電体221に送られ、さらに、充電器290を通じて負極シート240へ送られる。また、負極シート240では電荷が蓄えられるとともに、電解液280中のリチウムイオン(Li)が、負極活物質層243中の負極活物質に吸収され、かつ、貯蔵される。
≪放電時の動作≫
図8は、かかるリチウムイオン二次電池100の放電時の状態を模式的に示している。放電時には、図8に示すように、負極シート240から正極シート220に電荷が送られるとともに、負極活物質層243に貯蔵されたリチウムイオンが、電解液280に放出される。また、正極では、正極活物質層223中の正極活物質に電解液280中のリチウムイオンが取り込まれる。
このようにリチウムイオン二次電池100の充放電において、電解液280を介して、正極活物質層223と負極活物質層243との間でリチウムイオンが行き来する。また、充電時においては、正極活物質から導電材を通じて正極集電体221に電荷が送られる。これに対して、放電時においては、正極集電体221から導電材を通じて正極活物質に電荷が戻される。
充電時においては、リチウムイオンの移動および電子の移動がスムーズなほど、効率的で急速な充電が可能になると考えられる。放電時においては、リチウムイオンの移動および電子の移動がスムーズなほど、電池の抵抗が低下し、放電量が増加し、電池の出力が向上すると考えられる。
≪他の電池形態≫
なお、上記はリチウムイオン二次電池の一例を示すものである。リチウムイオン二次電池は上記形態に限定されない。また、同様に金属箔に電極合剤が塗工された電極シートは、他にも種々の電池形態に用いられる。例えば、他の電池形態として、円筒型電池或いはラミネート型電池などが知られている。円筒型電池は、円筒型の電池ケースに捲回電極体を収容した電池である。また、ラミネート型電池は、正極シートと負極シートとをセパレータを介在させて積層した電池である。
以下、本発明の一実施形態に係るリチウムイオン二次電池を説明する。なお、ここで説明するリチウムイオン二次電池は、基本的な構造が上述したリチウムイオン二次電池100と同じであるので、適宜に上述したリチウムイオン二次電池100の図を参照して説明する。
≪リチウムイオン二次電池100A≫
図9は、本発明の一実施形態に係るリチウムイオン二次電池100Aを示している。図9において、本発明の一実施形態では負極シート240Aの構造が、図1に示されるリチウムイオン二次電池100と異なっている。負極シート240Aの未塗工部は、符号242Aで示されている。図10は、本発明の一実施形態に係るリチウムイオン二次電池100Aの負極シート240Aの断面図である。
≪黒鉛粒子710A≫
このリチウムイオン二次電池100Aは、図10に示すように、負極集電体241Aと、負極集電体241Aに形成された負極活物質層243Aとを有している。負極活物質層243Aは、図10に示すように、負極活物質粒子710Aとしての鱗片状の黒鉛粒子(鱗片状の黒鉛粒子は、鱗片状黒鉛(Flake Graphite)とも称される。)含んでいる。
この黒鉛粒子710Aは、炭素六角網平面が複数の層を形成するように重なった層構造を有している。この黒鉛粒子710Aでは、充電時には、リチウムイオンは黒鉛粒子710Aのエッジ部(層のエッジ部)から黒鉛粒子710Aの層間に侵入し、黒鉛粒子710Aの層間に広がっていく。
この実施形態では、図10に示すように、かかる鱗片状の黒鉛粒子710Aは、少なくとも一部が非晶質炭素膜750によって覆われた黒鉛粒子が含まれている。ここで、非晶質炭素膜750によって覆われた負極活物質粒子710Aの核としては、例えば、天然黒鉛が挙げられる。
≪非晶質炭素膜750≫
また、非晶質炭素膜750は、非晶質な炭素材料よりなる膜である。例えば、負極活物質粒子710Aの核となる黒鉛粒子にピッチを混ぜて焼くことによって、少なくとも一部が非晶質炭素膜750によって覆われた黒鉛粒子を得ることができる。
ここで、負極活物質粒子710A中の非晶質炭素膜750の重量割合Xは、凡そ0.01≦X≦0.10であるとよい。当該非晶質炭素膜750の重量割合Xは、より好ましくは、0.02≦Xであるとよく、また上限は、より好ましくはX≦0.08、さらにはX≦0.06であるとよい。これにより、非晶質炭素膜750によって、より適当に覆われた負極活物質粒子710Aが得られる。
≪負極活物質層243A≫
負極活物質層243Aは、例えば、図10に示すように、負極集電体241A近傍の第1領域A1と、表面側近傍の第2領域A2とで、黒鉛粒子710Aの垂直度Nxが異なっている。
≪第1領域A1≫
ここで、第1領域A1は、負極活物質層243Aのうち負極集電体241A近傍の領域である。第1領域A1は、例えば、負極活物質層243Aのうち、負極集電体241Aから厚さが0%〜30%の領域である。負極活物質層243Aの厚さが100μm程度であれば、負極集電体241A近傍の第1領域A1は、負極集電体241Aの表面から30μm程度の厚さの領域である。
≪第2領域A2≫
第2領域A2は、負極活物質層243Aのうち表面側近傍の領域である。電池構成では、負極活物質層243Aのうちセパレータ262,264(正極活物質層223(例えば、図9参照))に対向する面の近傍領域である。第2領域A2は、例えば、負極活物質層243Aのうち、負極集電体241Aから厚さが70%〜100%の領域である。換言すれば、第2領域A2は、負極活物質層243Aのうち表面側から負極活物質層243Aの厚さが30%の領域である。ここで、第2領域A2は、別の見方では、負極活物質層243Aのうちセパレータ262,264(正極活物質層223(図9参照))に対向する面の近傍領域である。例えば、負極活物質層243Aの厚さが100μm程度であれば、表面側近傍の第2領域A2は、負極活物質層243Aの表面から30μm程度の厚さの領域である。
≪黒鉛粒子710Aの垂直度Nx≫
ここで、各領域における、黒鉛粒子710Aの垂直度Nxは、以下のように求めるとよい。
まず、負極集電体241Aに形成された負極活物質層243Aについて、複数の断面の断面SEM画像を用意する。次に、当該複数の断面SEM画像において、見かけの断面積が大きい方から予め定められた数の黒鉛粒子710Aを抽出する。次に、当該抽出された黒鉛粒子710Aの断面における最長径(当該抽出された黒鉛粒子710Aの断面における最も長い距離)に沿った直線に基づいて、それぞれ負極集電体241Aの表面に対する傾きθnを特定する。そして、傾きθnが60°≦θn≦90°である黒鉛粒子710Aの数をm1とし、傾きθnが0°≦θn≦30°である黒鉛粒子710Aの数をm2とする。そして、黒鉛粒子710Aの垂直度Nxを(m1/m2)とした。
「黒鉛粒子710Aの垂直度Nx」=(m1/m2)
ここで、m1は、負極集電体241Aに対して傾きθnが60°≦θn≦90°である程度で、負極集電体241Aに対して比較的立っている黒鉛粒子710Aの数である。また、m2は、負極集電体241Aに対して傾きθnが0°≦θn≦30°である程度で、負極集電体241Aに対して比較的寝ている黒鉛粒子710Aの数である。
このように、黒鉛粒子710Aの垂直度Nxは、(負極集電体241Aに対して比較的立っている黒鉛粒子710Aの数)/(負極集電体241Aに対して比較的寝ている黒鉛粒子710Aの数)で評価されている。このため、黒鉛粒子710Aの垂直度Nxは、負極活物質層243A中で、負極集電体241Aに対して、黒鉛粒子710Aがどの程度立っているかを評価する指標となり得る。すなわち、垂直度Nxが1であると、負極集電体241Aに対して比較的立っている黒鉛粒子710Aの数と、比較的寝ている黒鉛粒子710Aの数とが、同数であることを示している。これに対して、垂直度が1よりも大きくなればなるほど、黒鉛粒子710Aが負極集電体241Aに対して立っていると評価できる。また、これに対して、垂直度が1よりも小さくなればなるほど、黒鉛粒子710Aが負極集電体241Aに対して寝ていると評価できる。
≪断面SEM画像≫
ここで、黒鉛粒子710Aの垂直度Nxを求める際、複数の断面の断面SEM画像を用意する。この際、例えば、平面視において負極集電体に概ね均等に配置した複数の断面を設定し、当該複数の断面の断面SEM画像を用意するとよい。このように複数の断面における断面SEM画像を用意することによって、黒鉛粒子710Aが一様に一定の方向を向いている場合でも、適当に垂直度を評価することができる。
この場合、例えば、負極集電体241Aに形成された負極活物質層243Aについて、図11に示すように、平面視において負極集電体241Aに任意に設定された0°、45°、90°、135°の4つの断面における断面SEM画像を用意する。ここで、0°、45°、90°、135°の4つの断面は、それぞれ負極活物質層243Aを概ね所定の角度で切断した断面の断面SEM画像が得られるとよい。
図11では、各断面の交点が一致しているが、各断面の交点は一致している必要はない。また、ここでは、45°で均等に配置した4つの断面を考慮しているが、例えば、概ね30°で均等に配置した6つの断面を考慮してもよい。このように平面視において負極集電体241Aに概ね均等に配置した複数の断面を設定し、当該複数の断面の断面SEM画像を用意するとよい。
≪黒鉛粒子710Aの抽出≫
次に、当該複数の断面SEM画像において、見かけの断面積が大きい方から予め定められた数の黒鉛粒子710Aを抽出する。この実施形態では、第1領域A1と第2領域A2とでそれぞれ予め定められた数の黒鉛粒子710Aを抽出する。この際、上述した第1領域A1と第2領域A2に少なくとも一部が含まれる黒鉛粒子710Aから、予め定められた数の黒鉛粒子710Aを抽出している。
この実施形態では、例えば、第1領域A1と第2領域A2とで、それぞれ100個以上、黒鉛粒子710Aが写った断面SEM画像を用意するとよい。そして、当該断面SEM画像から第1領域A1と第2領域A2とで、それぞれ見かけの断面積が大きい方から、予め定められた数として3割程度(例えば、30個程度)の黒鉛粒子710Aを抽出するとよい。
この実施形態では、黒鉛粒子710Aは、鱗片状の黒鉛であり、球形ではない。この場合、断面SEM画像中、見かけの断面積が大きい黒鉛粒子710Aは、黒鉛粒子710Aの最も長い距離に沿った断面である可能性が高い。このため、見かけの断面積が大きい方から3割程度の黒鉛粒子710Aを抽出することによって、最も長い距離に沿った断面に近い黒鉛粒子710Aを抽出することができる。
≪黒鉛粒子710Aの傾きθn≫
図12は、当該抽出された黒鉛粒子710Aの断面を模式的に示す図である。当該抽出された黒鉛粒子710Aの最も長い距離に沿った直線Lを基に、当該黒鉛粒子710Aの負極集電体241Aの表面に対する傾きθnを特定する。
そして、傾きθnが60°≦θn≦90°である黒鉛粒子710Aの数をm1とし、傾きθnが0°≦θn≦30°である黒鉛粒子710Aの数をm2とし、黒鉛粒子710Aの垂直度Nxを、Nx=(m1/m2)とした。黒鉛粒子710Aの垂直度Nxは、第1領域A1と第2領域A2のそれぞれにおいて測定した。ここでは、負極活物質層243Aのうち、第1領域A1の黒鉛粒子710Aの垂直度Nxを「N1」といい、負極活物質層243Aのうち、第2領域A2の黒鉛粒子710Aの垂直度Nxを「N2」という。
ここで、負極活物質層243Aは、例えば、図10に示すように、負極集電体241A近傍の第1領域A1における黒鉛粒子710Aの垂直度N1と、表面側近傍の第2領域A2における黒鉛粒子710Aの垂直度N2とは異なっている。
例えば、図10に示す例では、負極集電体241A近傍の第1領域A1では、黒鉛粒子710Aの垂直度N1が小さく、表面側近傍の第2領域A2では、黒鉛粒子710Aの垂直度N2が大きい。すなわち、図10に示す例では、負極集電体241A近傍の第1領域A1では黒鉛粒子710Aが寝ており、表面側近傍の第2領域A2では黒鉛粒子710Aが立っている。
このように、この実施形態では、負極集電体241A近傍の第1領域A1と、表面側近傍の第2領域A2とで、黒鉛粒子710Aの垂直度Nxが異なる。かかる形態では、第1領域A1と第2領域A2の境界領域において、垂直度Nxが異なる黒鉛粒子710A群が交わっている。このため、当該境界領域において黒鉛粒子710A同士の接触が多くなっている。この場合、第1領域A1の黒鉛粒子710Aの垂直度N1と、第2領域A2の黒鉛粒子710Aの垂直度N2との差(N2−N1)の絶対値は、例えば、0.2以上(|N2−N1|≧0.2)、例えば、0.3以上(|N2−N1|≧0.3)であるとよい。これにより、第1領域A1の黒鉛粒子710Aの垂直度N1と、第2領域A2の黒鉛粒子710Aの垂直度N2とを異ならせた効果が、より確実に得られようになる。
≪負極活物質層243Aの作製方法≫
かかる負極活物質層243Aは、例えば、負極合剤を用意する工程Aと、負極集電体241Aに負極活物質層243Aを形成する工程Bとを含んでいる。工程Aでは、少なくとも鱗片状の黒鉛粒子710Aとバインダ730とを溶媒に混合した負極合剤が用意される。工程Bでは、工程Aで生成された負極合剤が負極集電体241Aに塗布される。
詳しくは、工程Bは、塗布工程と、乾燥工程と、配向工程とを含んでいる。塗布工程は、負極集電体241Aに負極合剤を塗布する工程である。乾燥工程は、負極集電体241Aに塗布された負極合剤を乾燥する工程である。配向工程は、磁場を付与し、塗布された負極合剤中の黒鉛粒子710Aの向きを調整する工程である。この実施形態では、塗布工程と乾燥工程は、少なくとも2回行なわれ、負極集電体241Aに対して重ねて負極合剤を塗布する。そして、配向工程は塗布工程後乾燥工程前に少なくとも1回行なわれるとよい。
≪第2領域A2で黒鉛粒子710Aが立った形態≫
この場合、配向工程は、最後の塗布工程後乾燥工程前に行なわれて、当該最後の塗布工程で塗布された負極合剤中の黒鉛粒子を負極集電体に対して立たせてもよい。これにより、図10に示すように、負極集電体241A近傍の第1領域A1で黒鉛粒子710Aが寝ており、表面側近傍の第2領域A2で黒鉛粒子710Aが立った負極活物質層243Aを作製することができる。
この場合、最後の塗布工程よりも前に、負極集電体241Aに形成された負極合剤の層を圧延する圧延工程を備えていてもよい。例えば、負極集電体241Aに対して、負極合剤を2回に分けて塗布する場合、圧延工程は、例えば、1回目の乾燥工程の後、回目の塗布工程の前に施してもよい。これにより、負極集電体241A近傍の第1領域A1で黒鉛粒子710Aの垂直度N1をより低くできるので、当該第1領域A1の黒鉛粒子710Aの垂直度N1と、第2領域A2の黒鉛粒子710Aの垂直度N2との差を大きくできる。
図10に示す例では、負極集電体241A近傍の第1領域A1において、黒鉛粒子710Aが寝ており、正極活物質層223(図9参照)に対向する表面側近傍の第2領域A2において、黒鉛粒子710Aが立っている。このため、充電時には、負極活物質層243Aにリチウムイオンが入り易く、放電時には、負極活物質層243Aからリチウムイオンが放出され易い。また、図10に示す例では、負極集電体241A近傍の第1領域A1では黒鉛粒子710Aが寝ている。この場合、リチウムイオンが負極活物質層243Aの表面側から入り易い。さらに、負極活物質層243Aに入ったリチウムイオンは、負極活物質層243A内、負極集電体241A近傍の第1領域A1で拡散し易い傾向がある。
図10に示されるように、第1領域A1において黒鉛粒子710Aが寝ており、第2領域A2において黒鉛粒子710Aが立っている形態においては、例えば、第1領域A1の黒鉛粒子710Aの垂直度Nx(m1/m2)が、(m1/m2)≦1であり、第2領域A2の黒鉛粒子710Aの垂直度Nx(m1/m2)が、(m1/m2)≧1.2であるとよい。
この場合、第1領域A1の黒鉛粒子710Aの垂直度Nx(m1/m2)は、(m1/m2)≦0.8であってもよい。さらに好ましくは、第1領域A1の黒鉛粒子710Aの垂直度Nx(m1/m2)は、(m1/m2)≦0.6であってもよい。
また、第2領域A2の黒鉛粒子710Aの垂直度Nx(m1/m2)は、(m1/m2)≧1.5であるとよい。さらに好ましくは、第2領域A2の黒鉛粒子710Aの垂直度Nx(m1/m2)は、(m1/m2)≧2.0であるとよい。さらに好ましくは、第2領域A2の黒鉛粒子710Aの垂直度Nx(m1/m2)は、(m1/m2)≧3.0であるとよい。
また、この場合、第2領域A2の黒鉛粒子710Aの垂直度N2と、第1領域A1の黒鉛粒子710Aの垂直度N1との差(N2−N1)が大きいほど、リチウムイオン二次電池100Aにおけるリチウムイオンの拡散抵抗が低下する傾向がある。例えば、第2領域A2の黒鉛粒子710Aの垂直度N2と、第1領域A1の黒鉛粒子710Aの垂直度N1との差(N2−N1)が、(N2−N1)≧1.4であるとよい。さらに好ましくは、第2領域A2の黒鉛粒子710Aの垂直度N2と、第1領域A1の黒鉛粒子710Aの垂直度N1との差(N2−N1)は、(N2−N1)≧2.5であるとよい。このように、第2領域A2の黒鉛粒子710Aの垂直度N2と、第1領域A1の黒鉛粒子710Aの垂直度N1との差(N2−N1)が、正であり、その差が大きいほど、リチウムイオン二次電池100Aにおけるリチウムイオンの拡散抵抗をより顕著に低下させる傾向がある。
≪第1領域A1で黒鉛粒子710Aが立った形態≫
また、図13は、負極活物質層243Aの他の形態を示す断面図である。図13に示す例では、第1領域A1で黒鉛粒子710Aが負極集電体241Aに対して立っており、第2領域A2で黒鉛粒子710Aが負極集電体241Aに対して寝ている。換言すれば、第1領域A1で黒鉛粒子710Aの垂直度Nxが大きく、第2領域A2で黒鉛粒子710Aの垂直度Nxが小さい。
この場合、配向工程は、1回目の塗布工程後乾燥工程前に行なわれて、当該1回目の塗布工程で塗布された負極合剤中の黒鉛粒子710Aを負極集電体241Aに対して立たせるとよい。さらに、この場合、1回目の乾燥工程で乾燥させた負極合剤は、圧延せずに2回目以降の塗布工程を行なうとよく、さらに、最後の乾燥工程で乾燥させた負極合剤を圧延するとよい。この際、負極集電体241A近傍の第1領域A1の黒鉛粒子710Aが寝ない程度に、圧延量を小さく抑えるとよい。これにより、負極集電体241A近傍の第1領域A1で黒鉛粒子710Aの垂直度Nxを大きく維持しつつ、表面側近傍の第2領域A2で黒鉛粒子710Aの垂直度Nxを小さくすることができる。このように、圧延工程を適宜に加えることによって、当該第1領域A1と表面側近傍の第2領域A2とで、黒鉛粒子710Aの垂直度Nxの差を適度に調整することができる。
図13に示す例では、負極集電体241A近傍の第1領域A1において黒鉛粒子710Aが立っており、正極活物質層223(図9参照)に対向する表面側近傍の第2領域A2において黒鉛粒子710Aが寝ている。このため、負極活物質層243Aは、負極集電体241A近傍の第1領域A1においてリチウムイオンの反応が早い。このため、例えば、ハイレートでの充電や放電の反応速度が高い負極活物質層243Aが得られる。また、表面側近傍の第領域Aにおいて、黒鉛粒子710Aが寝ているので、負極活物質層243Aに蓄えられたリチウムイオンが放出され難い。このため、リチウムイオン二次電池100A(図9参照)の容量を高く維持し易い。
この場合、第1領域A1の黒鉛粒子710Aの垂直度N1が、N1≧1.2であり、第2領域A2の黒鉛粒子710Aの垂直度N2が、N2≦0.9であるとよい。さらに、好ましい形態として、第2領域A2の黒鉛粒子710Aの垂直度N2と、第1領域A1の黒鉛粒子710Aの垂直度N1との差(N2−N1)が、(N2−N1)≦−0.8であるとよい。この場合、第2領域A2の黒鉛粒子710Aの垂直度N2と、第1領域A1の黒鉛粒子710Aの垂直度N1との差(N2−N1)が、負であり、その絶対値が大きいほど、リチウムイオン二次電池100Aの容量維持率および抵抗増加率が良い傾向がある。
≪評価用セル≫
本発明者は、負極シート240Aについて、負極集電体241A近傍の第1領域A1の黒鉛粒子710Aの垂直度N1と、表面側近傍の第2領域A2の黒鉛粒子710Aの垂直度N2とが異なる負極活物質層243Aが形成された複数のサンプルを用意した。そして、各負極シート240Aを用いて評価用セルを作製し、直流抵抗、拡散抵抗、容量維持率、抵抗増加率を評価した。ここで、評価用セルは、定格容量が250mAhの18650型電池である。
≪評価用セルの正極≫
ここで、評価用セルの正極は、厚さ15μmのアルミニウム箔を正極集電体に用いた。正極活物質層を形成する際に用意した正極合剤の固形分は、重量割合において正極活物質:導電材:バインダ=87:10:3とした。正極活物質としては、LiNiCoMnO(リチウムニッケルコバルトマンガン複合酸化物)の粒子が用いられており、各評価用セルにおいて共通の正極活物質が用いられている。導電材としてアセチレンブラックが用いられている。バインダとして、ポリフッ化ビニリデン(PVDF)が用いられている。
≪評価用セルの負極≫
評価用セルの負極は、厚さ10μmの銅箔を負極集電体に用いた。負極活物質層を形成する際に用意した負極合剤の固形分は、重量割合において負極活物質:増粘剤:バインダ=98:1:1とした。ここでは、増粘剤としてカルボキシメチルセルロース(CMC)が用いられている。また、バインダとしてスチレン・ブタジエンゴム(SBR)が用いられている。
≪評価用セルの負極活物質粒子710A≫
評価用セルの負極活物質粒子710Aには、負極活物質粒子710Aの核となる黒鉛粒子にピッチを混ぜて焼いて、少なくとも一部が非晶質炭素膜750によって覆われた黒鉛粒子を用いられている(図10参照)。ここでは、各評価用セルにおいて、第1領域A1の黒鉛粒子710Aの垂直度N1と第2領域A2の黒鉛粒子710Aの垂直度N2とが異なる負極活物質層243Aが形成された負極シート240Aが用いられている。各評価用セルは、負極シート240Aを除き同じ条件で作製されている。
評価用セルは、まず所定のコンディショニングが行なわれる。
≪コンディショニング≫
ここでコンディショニングは、次の手順1、2によって行なわれる。
手順1:1Cの定電流充電にて4.1Vに到達した後、5分間休止する。
手順2:手順1の後、定電圧充電にて1.5時間充電し、5分間休止する。
≪定格容量の測定≫
上記コンディショニングの後、評価用セルについて定格容量が測定される。定格容量の測定は、次の手順1〜3によって測定されている。なお、ここでは温度による影響を一定にするため、定格容量は温度25℃の温度環境において測定されている。
手順1:1Cの定電流放電によって3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間休止する。
手順2:1Cの定電流充電によって4.1Vに到達後、定電圧充電にて2.5時間充電し、その後、10秒間休止する。
手順3:0.5Cの定電流放電によって3.0Vに到達後、定電圧放電にて2時間放電し、その後、10秒間停止する。
定格容量:手順3における定電流放電から定電圧放電に至る放電における放電容量(CCCV放電容量)を定格容量とする。この評価用セルでは、定格容量が凡そ1Ahになる。
≪SOC調整≫
SOC調整は、次の1、2の手順によって調整される。ここで、SOC調整は、上記コンディショニング工程および定格容量の測定の後で行なうとよい。また、ここでは、温度による影響を一定にするため、25℃の温度環境下でSOC調整を行なっている。
手順1:3Vから1Cの定電流で充電し、定格容量の凡そ60%の充電状態(SOC60%)にする。
手順2:手順1の後、2.5時間、定電圧充電する。
これにより、評価用セルは、所定の充電状態に調整することができる。
次に、かかる評価用セルについて、直流抵抗、拡散抵抗、容量維持率、抵抗増加率を評価した。
≪直流抵抗≫
ここで、直流抵抗は、リチウムイオン二次電池の中の電子抵抗と電解液抵抗に基づく抵抗であり、交流インピーダンス測定法によって測定することができる。図14は、交流インピーダンス測定法における、Cole−Coleプロット(ナイキスト・プロット)の典型例を示す図である。図14に示すように、交流インピーダンス測定法における等価回路フィッティングによって得られるCole−Coleプロットを基に、直流抵抗(Rsol)と、反応抵抗(Rct)を算出することができる。ここで、反応抵抗(Rct)は、下記の式で求めることができる。
ct=(Rsol+Rct)−Rsol
このような測定、および、直流抵抗(Rsol)と反応抵抗(Rct)の算出は、予めプログラムされた市販の装置を用いて実施できる。かかる装置としては、例えば、Solartron社製の電気化学インピーダンス測定装置がある。ここでは、室温(約25℃)の温度環境で、SOC40%(定格容量の凡そ40%の充電状態)に調整された評価用セルを基に、10−1〜10Hzの周波数範囲で複素インピーダンス測定を行なった。ここでは、図14で示すように、ナイキスト・プロットの等価回路フィッティングによって得られる反応抵抗(Rsol)を「直流抵抗」とした。
≪拡散抵抗≫
拡散抵抗は、リチウムイオンの拡散に基づく抵抗であり、以下の手順によって測定されている。なお、ここでは温度による影響を一定にするため、定格容量は温度25℃の温度環境において測定されている。
手順1:評価用セルをSOC60%に調整し、1Cで、45秒間CC放電(定電流放電)を行ない、放電後の評価用セルの電圧を測定する。
手順2:評価用セルをSOC60%に調整し、30Cで、45秒間CC放電(定電流放電)を行い、放電後の評価用セルの電圧を測定する。
手順3:手順1と手順2で測定された放電後の評価用セルの電圧の差を求める。
≪容量維持率≫
ここで、容量維持率(サイクル後容量維持率)は、所定の充電状態に調整された評価用セルの初期容量と、所定の充放電サイクル後の評価用セルの容量(以下、適宜に「サイクル後容量」という。)との比(サイクル後容量)/(初期容量)で求められる。
「サイクル後容量維持率」=(サイクル後容量)/(初期容量)×100(%)
ここでは、「初期容量」は、25℃においてSOC60%に調整された評価用セルを基に測定した放電容量である。ここで、「放電容量」は、それぞれ25℃において、4.1Vから3.0Vまで1Cの定電流で放電させ、続いて合計放電時間が2時間となるまで定電圧で放電させた際に測定される積算容量(放電容量)である。
また、「サイクル後容量」は、評価用セルを、所定の温度環境で所定の充放電サイクルを行う。そして、充放電後の評価用セルを基に、25℃の温度環境において測定した放電容量を測定する。ここでの「放電容量」の測定は、初期容量の「放電容量」の測定に準じている。ここで、容量維持率(サイクル後容量維持率)は、−30℃の温度環境で所定の充放電サイクルを、8000サイクル後の容量維持率である。かかる容量維持率は、25℃の温度環境において、評価用セルに上記コンディショニングを施した後、3.0Vまで定電流放電した後、定電流定電圧で充電を行ってSOC60%に調整する。その後、所定の充放電サイクルを行なうとよい。
ここで、充放電の1サイクルは、以下の(I)〜(IV)の手順からなる。
(I)30Cの定電流にて0.1秒間放電する(CC放電)。
(II)5Cの定電流にて0.4秒間放電する(CC放電)。
(III)30Cの定電流にて0.5秒間充電する(CC充電)。
(IV)5C、20秒のCC−CV放電にて、SOC60%にする。
(I)〜(IV)の手順では、それぞれ所定のインターバル(例えば、10分程度)を設けるとよい。また、−30℃8000サイクル後の容量維持率の測定では、かかる(I)〜(IV)からなる充放電の1サイクルを8000回繰り返す。
≪抵抗増加率≫
ここで、抵抗増加率は、ハイレート放電サイクル後抵抗上昇率(ハイレート放電劣化率)とも称される。ここでは、25℃の温度環境において、評価用セルに上記コンディショニングを施した後、3.0Vまで定電流放電し、その後、定電流定電圧で充電してSOC(state
of charge)60%(SOC60%:定格容量の60%)に調整する。そして、ハイレートでの充放電を繰り返した後、評価用セルの抵抗上昇率を測定する。ここでは、温度による影響を一定にするため、ハイレート劣化試験は、概ね20℃〜25℃の温度環境下で行なっている。
ハイレートでの充放電の1サイクルは、以下の(I)〜(V)の通りである。
(I)30Cの定電流で10秒間放電する。
(II)10秒間休止する。
(III)5Cの定電流で60秒間(1分間)充電する。
(IV)10分間休止する。
(V)サイクル毎に(I)の放電に対する評価用セルの抵抗を測定する。
かかる(I)〜(V)からなる充放電の1サイクルを6000回繰り返す。この際、100サイクル毎に、上記のように評価用セルをSOC60%に調整する。そして、評価用セルのハイレート放電抵抗上昇率は、かかるハイレートでの充放電のサイクルにおいて、1サイクル目に測定された抵抗Ωと、6000サイクル目に測定された抵抗Ωとの比(Ω/Ω)に基づいて抵抗上昇率を算出している。
「抵抗上昇率」=(Ω/Ω
≪サンプルとその評価≫
本発明者は、第1領域A1の黒鉛粒子710Aの垂直度N1と、第2領域A2の黒鉛粒子710Aの垂直度N2が異なる負極活物質層243Aが形成された負極シート240Aを用いて作製した評価用セルを、それぞれ複数用意した。そして、各評価用セルについて、それぞれ直流抵抗、拡散抵抗、容量維持率、抵抗上昇率を測定した。表1〜表3は、当該試験の結果を示している。図15は、表1のデータをサンプル毎にプロットした図である。図15中、黒塗りの四角「■」のプロット群D1は直流抵抗を示しており、黒塗りのひし形「◆」のプロット群D2は拡散抵抗を示している。図16は、表2のデータをサンプル毎にプロットした図である。図17は、表3のデータをサンプル毎にプロットした図である。図17中、黒塗りの四角「■」のプロット群D3は容量維持率を示しており、黒塗りのひし形「◆」のプロット群D4は抵抗上昇率を示している。
Figure 0005783433
Figure 0005783433
Figure 0005783433
負極集電体241A近傍の第1領域A1の黒鉛粒子710Aの垂直度N1がN1≦1であり、かつ、表面側近傍の第2領域A2の黒鉛粒子710Aの垂直度N2がN2≧1.2である場合には、直流抵抗および拡散抵抗が低く抑えられる傾向がある(例えば、サンプル1〜5)。
また、第1領域A1の黒鉛粒子710Aの垂直度N1および第2領域A2の黒鉛粒子710Aの垂直度N2が何れも0.3〜0.8程度である場合には、拡散抵抗が高くなる傾向があった(例えば、サンプル6〜8)。また、負極集電体241A近傍の第1領域A1の黒鉛粒子710Aの垂直度N1が1.2〜2.2程度であっても、表面側近傍の第2領域A2の黒鉛粒子710Aの垂直度N2が0.4〜0.5程度である場合には、拡散抵抗が高くなる傾向があった(例えば、サンプル9、10)。また、第1領域A1の黒鉛粒子710Aの垂直度N1および第2領域A2の黒鉛粒子710Aの垂直度N2が何れも1.3〜1.5程度である場合には、直流抵抗が高くなる傾向があった(例えば、サンプル11)。
また、負極集電体241A近傍の第1領域A1の黒鉛粒子710Aの垂直度N1がN1≦1であり、かつ、第2領域A2の黒鉛粒子710Aの垂直度N2が、N2≧3.0である場合には、拡散抵抗が大幅に低下する傾向があった(例えば、サンプル12〜14)。
第2領域A2の黒鉛粒子710Aの垂直度N2と、第1領域A1の黒鉛粒子710Aの垂直度N1との差(N2−N1)は、例えば、(N2−N1)≧1.4であるとよい。この場合、拡散抵抗が低くなる傾向がある(例えば、サンプル3〜5)。さらに、当該(N2−N1)は、(N2−N1)≧2.0、より好ましくは(N2−N1)≧2.4、であるとよい。これにより、拡散抵抗が顕著に低くなる傾向がある(例えば、サンプル12〜14)。
また、第1領域A1の黒鉛粒子710Aの垂直度N1がN1≧1.2であり、第2領域A2の黒鉛粒子710Aの垂直度N2がN2≦0.9であるとよい。これにより、容量維持率を高く維持し、抵抗上昇率を低く抑えることができる(例えば、サンプル21〜25)。この場合、第1領域A1の黒鉛粒子710Aの垂直度N1がN1≧1.4としてもよい。また、第2領域A2の黒鉛粒子710Aの垂直度N2がN2≦0.7としてもよい。また、この場合、第2領域A2の黒鉛粒子710Aの垂直度N2と、第1領域A1の黒鉛粒子710Aの垂直度N1との差(N2−N1)が、(N2−N1)≦−0.8であるとよい。
なお、第1領域A1の黒鉛粒子710Aの垂直度N1および第2領域A2の黒鉛粒子710Aの垂直度N2が何れも0.3〜0.6程度である場合には、抵抗増加率が高くなる傾向があった(例えば、サンプル26、27)。また、第1領域A1の黒鉛粒子710Aの垂直度N1および第2領域A2の黒鉛粒子710Aの垂直度N2が何れも0.4〜0.6程度である場合に、表面側近傍の第2領域A2の黒鉛粒子710Aの垂直度N2が0.8〜2.0程度に高い場合には、容量維持率が低くなる傾向があった(例えば、サンプル28〜30)。したがって、容量維持率を高くし、かつ、抵抗上昇率を低く抑えるには、第1領域A1の黒鉛粒子710Aの垂直度N1がN1≧1.2であり、第2領域A2の黒鉛粒子710Aの垂直度N2がN2≦0.9であるとよい。
以上、本発明の一実施形態に係るリチウムイオン二次電池100Aを説明したが、本発明に係るリチウムイオン二次電池は、上述した何れの実施形態にも限定されない。
上述したように、本発明は、リチウムイオン二次電池の出力特性向上に寄与する。このため、本発明に係るリチウムイオン二次電池は、特に、ハイレートでの出力特性若しくはサイクル特性について要求されるレベルが高いハイブリッド車、さらには、特に容量について要求されるレベルが高い、プラグインハイブリッド車若しくは電気自動車の駆動用電池など車両駆動電源用の二次電池に好適である。
この場合、例えば、図18に示すように、二次電池の複数個を接続して組み合わせた組電池の形態で、自動車などの車両1のモータ(電動機)を駆動させる車両駆動用電池1000として好適に利用され得る。特に、本発明の一実施形態では、リチウムイオン二次電池は、直流抵抗および拡散抵抗を適宜に低く抑えられる。また、本発明の一実施形態では、リチウムイオン二次電池は、容量維持率を高く維持し、かつ、抵抗上昇率を低く抑え得る。このため、本発明に係るリチウムイオン二次電池は、抵抗を低く抑えること、容量を高く維持すること、若しくは、抵抗上昇率を低く抑えることが求められる車両駆動用電池1000として特に好適である。本発明の一実施形態に係るリチウムイオン二次電池は、例えば、ハイブリッド車(特に、プラグインハイブリッド車)若しくは電気自動車の駆動用電池として、例えば、定格容量が3.0Ah以上のリチウムイオン二次電池に好適である。
1 車両
100、100A リチウムイオン二次電池
200、200A 捲回電極体
220 正極シート
221 正極集電体
222 未塗工部
223 正極活物質層
224 中間部分
225 隙間(空洞)
240、240A 負極シート
241、241A 負極集電体
242、242A 未塗工部
243、243A 負極活物質層
245 隙間(空洞)
262,264 セパレータ
280 電解液
290 充電器
300 電池ケース
310,312 隙間
320 容器本体
322 蓋体と容器本体の合わせ目
340 蓋体
350 注液孔
352 封止キャップ
360 安全弁
420 電極端子
420a 電極端子420の先端部
440 電極端子
440a 電極端子440の先端部
610 正極活物質粒子
620 導電材
630 バインダ
710 負極活物質粒子
710A 黒鉛粒子(負極活物質粒子)
730 バインダ
750 非晶質炭素膜
1000 車両駆動用電池
A1 第1領域
A2 第2領域
WL 捲回軸

Claims (15)

  1. 負極集電体と、
    前記負極集電体に形成された負極活物質層と
    を有し、
    前記負極活物質層は、鱗片状の黒鉛粒子を含み、前記負極集電体近傍の第1領域と、表面側近傍の第2領域とで、前記黒鉛粒子の垂直度が異なっており、
    前記黒鉛粒子の垂直度は、前記負極集電体の表面に対する傾きθnが60°≦θn≦90°である前記黒鉛粒子の数をm1とし、前記負極集電体の表面に対する傾きθnが0°≦θn≦30°である前記黒鉛粒子の数をm2とし、黒鉛粒子の垂直度=(m1/m2)で求められた値である、リチウムイオン二次電池。
  2. 前記黒鉛粒子の前記負極集電体に対する傾きθnは、
    前記負極集電体に形成された前記負極活物質層について、複数の断面の断面SEM画像を用意し、
    前記複数の断面の断面SEM画像において、見かけの断面積が大きい方から予め定められた数の黒鉛粒子を抽出し、
    当該抽出された黒鉛粒子の断面における最長径に沿った直線に基づいて、それぞれ前記負極集電体の表面に対する傾きによって特定された、請求項に記載されたリチウムイオン二次電池。
  3. 前記第1領域の前記黒鉛粒子の垂直度N1と、前記第2領域の前記黒鉛粒子の垂直度N2との差(N2−N1)の絶対値が0.2以上である、請求項又は2に記載されたリチウムイオン二次電池。
  4. 前記第1領域の黒鉛粒子の垂直度N1が、N1≦1であり、前記第2領域の黒鉛粒子の垂直度N2が、N2≧1.2である、請求項からまでの何れか一項に記載されたリチウムイオン二次電池。
  5. 前記第2領域の黒鉛粒子の垂直度N2が、N2≧3.0である、請求項に記載されたリチウムイオン二次電池。
  6. 前記第2領域の黒鉛粒子の垂直度N2と、前記第1領域の黒鉛粒子の垂直度N1との差(N2−N1)が、(N2−N1)≧1.4である、請求項又はに記載されたリチウムイオン二次電池。
  7. 前記第2領域の黒鉛粒子の垂直度N2と、前記第1領域の黒鉛粒子の垂直度N1との差(N2−N1)が、(N2−N1)≧2.5である、請求項又はに記載されたリチウムイオン二次電池。
  8. 前記第1領域の黒鉛粒子の垂直度N1が、N1≧1.2であり、前記第2領域の黒鉛粒子の垂直度N2が、N2≦0.9である、請求項からまでの何れか一項に記載されたリチウムイオン二次電池。
  9. 前記第2領域の黒鉛粒子の垂直度N2と、前記第1領域の黒鉛粒子の垂直度N1との差(N2−N1)が、(N2−N1)≦−0.8である、請求項に記載されたリチウムイオン二次電池。
  10. 前記第1領域は、前記負極活物質層のうち前記負極集電体から厚さが0%〜30%の領域であり、かつ、
    前記第2領域は、前記負極活物質層のうち前記負極集電体から厚さが70%〜100%の領域である、請求項1からまでの何れか一項に記載されたリチウムイオン二次電池。
  11. 少なくとも鱗片状の黒鉛粒子とバインダとを溶媒に混合した負極合剤を用意する工程Aと、
    前記工程Aで生成された前記負極合剤を、前記負極集電体に塗布し、前記負極集電体に負極活物質層を形成する工程Bと
    を含み、
    前記工程Bは、前記負極集電体に前記負極合剤を塗布する塗布工程と、前記負極集電体に塗布された負極合剤を乾燥する乾燥工程と、磁場を付与し、塗布された負極合剤中の黒鉛粒子の向きを調整する配向工程とを含み、
    前記塗布工程と前記乾燥工程は、少なくとも2回行なわれ、前記負極集電体に対して重ねて前記負極合剤を塗布するとともに、
    前記配向工程は、少なくとも2回行なわれる前記塗布工程と前記乾燥工程のうち1回の塗布工程後乾燥工程前に行なわれる、リチウムイオン二次電池の製造方法。
  12. 前記配向工程は、最後の塗布工程後乾燥工程前に行なわれて、当該最後の塗布工程で塗布された負極合剤中の黒鉛粒子を前記負極集電体に対して立たせた、請求項11に記載されたリチウムイオン二次電池の製造方法。
  13. 前記最後の前記塗布工程よりも前に、前記負極集電体に形成された前記負極合剤の層を圧延する圧延工程を備えた、請求項12に記載されたリチウムイオン二次電池の製造方法。
  14. 前記配向工程は、1回目の前記塗布工程後乾燥工程前に行なわれて、当該1回目の塗布工程で塗布された負極合剤中の黒鉛粒子を前記負極集電体に対して立たせた、請求項11に記載されたリチウムイオン二次電池の製造方法。
  15. 最後の乾燥工程後に、前記負極集電体に形成された前記負極合剤の層を圧延する圧延工程を備えた、請求項14に記載されたリチウムイオン二次電池の製造方法。
JP2013526643A 2011-07-29 2011-07-29 リチウムイオン二次電池 Active JP5783433B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067535 WO2013018180A1 (ja) 2011-07-29 2011-07-29 リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JPWO2013018180A1 JPWO2013018180A1 (ja) 2015-03-02
JP5783433B2 true JP5783433B2 (ja) 2015-09-24

Family

ID=47628748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013526643A Active JP5783433B2 (ja) 2011-07-29 2011-07-29 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US9553299B2 (ja)
JP (1) JP5783433B2 (ja)
KR (1) KR101631776B1 (ja)
CN (1) CN103733390B (ja)
WO (1) WO2013018180A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312568B2 (en) * 2011-12-21 2016-04-12 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery
JP6358466B2 (ja) 2014-10-10 2018-07-18 トヨタ自動車株式会社 非水電解液二次電池
JP6390902B2 (ja) * 2014-10-10 2018-09-19 トヨタ自動車株式会社 非水電解液二次電池
CN105355847B (zh) * 2015-10-16 2018-08-03 广东烛光新能源科技有限公司 一种电化学电池电极、含有该电极的电化学电池及其制备方法
CN105322178B (zh) * 2015-10-16 2019-01-01 广东烛光新能源科技有限公司 一种电化学电池电极、含有该电极的电化学电池及其制备方法
KR102255126B1 (ko) * 2016-11-29 2021-05-21 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 이차 전지
KR102657578B1 (ko) 2016-11-30 2024-04-15 삼성에스디아이 주식회사 이차 전지용 음극 및 이를 포함하는 이차 전지
WO2018101765A1 (ko) * 2016-11-30 2018-06-07 삼성에스디아이 주식회사 이차 전지용 음극 및 이를 포함하는 이차 전지
KR102483995B1 (ko) * 2016-12-07 2022-12-30 삼성에스디아이 주식회사 이차 전지용 음극 및 그의 제조 방법
KR20190109284A (ko) 2018-03-15 2019-09-25 에스케이이노베이션 주식회사 이차전지용 전극 및 이의 제조방법
KR102722956B1 (ko) * 2018-09-06 2024-10-25 주식회사 엘지에너지솔루션 이차전지용 음극 및 그를 포함하는 이차전지
CN111490253B (zh) * 2019-01-29 2021-12-10 宁德时代新能源科技股份有限公司 一种负极极片及其锂离子二次电池
JP7261868B2 (ja) * 2020-01-02 2023-04-20 寧徳新能源科技有限公司 負極及び当該負極を含む電気化学装置
WO2022102724A1 (ja) * 2020-11-13 2022-05-19 日本ゼオン株式会社 非水系二次電池用負極材料シートおよびその製造方法、非水系二次電池用負極、並びに、非水系二次電池
KR20220085014A (ko) * 2020-12-14 2022-06-21 도요타 지도샤(주) 전고체 전지
CN113410426A (zh) * 2021-07-30 2021-09-17 湖南立方新能源科技有限责任公司 一种锂离子电池
WO2024007184A1 (zh) * 2022-07-06 2024-01-11 宁德新能源科技有限公司 二次电池和电子装置
KR20240142144A (ko) * 2023-03-21 2024-09-30 (주)아이엠혁신소재 기능성 구조체 제조방법, 이를 통해서 형성된 기능성 구조체를 이용한 기능성 시트 제조방법, 이러한 방법을 통해 제조된 기능성 시트를 이용한 이차전지

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443227B2 (ja) * 1996-03-06 2003-09-02 三洋電機株式会社 非水電解液電池
JPH09306477A (ja) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP4719982B2 (ja) 2001-01-30 2011-07-06 パナソニック株式会社 非水電解液二次電池とその製造方法
JP4150516B2 (ja) 2001-12-21 2008-09-17 三星エスディアイ株式会社 リチウム二次電池の負極用の黒鉛含有組成物の製造方法並びにリチウム二次電池用の負極の製造方法及びリチウム二次電池の製造方法
JP2003197182A (ja) * 2001-12-21 2003-07-11 Samsung Sdi Co Ltd 黒鉛含有組成物並びにリチウム二次電池用の負極及びリチウム二次電池
US7326497B2 (en) 2001-12-21 2008-02-05 Samsung Sdi Co., Ltd. Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery
JP2004220926A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JP4713068B2 (ja) * 2003-08-01 2011-06-29 パナソニック株式会社 非水電解質二次電池
EP1775785B1 (en) * 2004-06-30 2013-08-21 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP2007200862A (ja) * 2005-12-28 2007-08-09 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008059999A (ja) * 2006-09-01 2008-03-13 Sony Corp 負極およびそれを用いた非水電解質二次電池
JP2010108716A (ja) 2008-10-29 2010-05-13 Toyota Motor Corp 電極、電池およびその処理方法
CN103081202B (zh) 2010-09-01 2015-04-22 丰田自动车株式会社 二次电池以及二次电池的制造方法
JP2013012320A (ja) 2011-06-28 2013-01-17 Toyota Motor Corp リチウムイオン二次電池
CN103636033B (zh) * 2011-07-05 2016-02-10 丰田自动车株式会社 锂离子二次电池和锂离子二次电池的制造方法

Also Published As

Publication number Publication date
KR20140044914A (ko) 2014-04-15
KR101631776B1 (ko) 2016-06-17
JPWO2013018180A1 (ja) 2015-03-02
WO2013018180A1 (ja) 2013-02-07
US20140170487A1 (en) 2014-06-19
CN103733390A (zh) 2014-04-16
CN103733390B (zh) 2016-08-17
US9553299B2 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
JP5783433B2 (ja) リチウムイオン二次電池
JP5787196B2 (ja) リチウムイオン二次電池
JP5737596B2 (ja) 二次電池
JP6144626B2 (ja) リチウムイオン二次電池
US9184442B2 (en) Secondary battery
JP5783432B2 (ja) リチウムイオン二次電池およびその製造方法
JP5510761B2 (ja) 二次電池
JP5787194B2 (ja) 電源システム
JP5924550B2 (ja) 非水系二次電池
JP2013004307A (ja) 二次電池
JP5725351B2 (ja) リチウムイオン二次電池
JP5828347B2 (ja) リチウム二次電池
JP2013246900A (ja) 二次電池
JP2013235795A (ja) 非水系二次電池
WO2013018181A1 (ja) リチウムイオン二次電池
JP2013120734A (ja) 非水系二次電池
JP2013171806A (ja) 二次電池
JP2013109929A (ja) 非水系二次電池
JP6120113B2 (ja) リチウムイオン二次電池
JP2013137955A (ja) 非水系二次電池
JP2012243455A (ja) リチウムイオン二次電池
JP5783415B2 (ja) リチウムイオン二次電池
JP2015149308A (ja) リチウムイオン二次電池
JPWO2013018181A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150708

R151 Written notification of patent or utility model registration

Ref document number: 5783433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250