Nothing Special   »   [go: up one dir, main page]

JP5761710B2 - Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition - Google Patents

Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition Download PDF

Info

Publication number
JP5761710B2
JP5761710B2 JP2011129582A JP2011129582A JP5761710B2 JP 5761710 B2 JP5761710 B2 JP 5761710B2 JP 2011129582 A JP2011129582 A JP 2011129582A JP 2011129582 A JP2011129582 A JP 2011129582A JP 5761710 B2 JP5761710 B2 JP 5761710B2
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
component
ammonia decomposition
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011129582A
Other languages
Japanese (ja)
Other versions
JP2012254419A (en
Inventor
江口 浩一
浩一 江口
松井 敏明
敏明 松井
広樹 室山
広樹 室山
主税 佐分
主税 佐分
吉宗 壮基
壮基 吉宗
麻沙美 一瀬
麻沙美 一瀬
岡村 淳志
淳志 岡村
英昭 常木
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nippon Shokubai Co Ltd
Original Assignee
Kyoto University
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nippon Shokubai Co Ltd filed Critical Kyoto University
Priority to JP2011129582A priority Critical patent/JP5761710B2/en
Publication of JP2012254419A publication Critical patent/JP2012254419A/en
Application granted granted Critical
Publication of JP5761710B2 publication Critical patent/JP5761710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)

Description

本発明は、アンモニア分解用触媒に関するものであり、特に、アンモニア分解反応に使用することで、触媒成分の粒子径が増大し触媒性能が劣化した際に、触媒成分を再分散させることができるアンモニア分解用触媒に関するものである。   The present invention relates to an ammonia decomposition catalyst, and in particular, ammonia that can be used for an ammonia decomposition reaction to redisperse the catalyst component when the particle size of the catalyst component increases and the catalyst performance deteriorates. The present invention relates to a cracking catalyst.

従来、アンモニアを分解して水素を製造する技術が提案されている。このようなアンモニアの分解に使用される触媒として、例えば、特許文献1には、触媒成分としてコバルト、ニッケル等の特定成分を含む触媒が提案されており、具体例として、ペロブスカイト構造を有するランタン−コバルト複合酸化物触媒、ペロブスカイト構造を有するニッケル−ランタン複合酸化物触媒が記載されている(特許文献1(段落[0025]、[0026])参照)。特許文献2には、アンモニア燃焼触媒とアンモニア分解触媒とを含み、アンモニア燃焼触媒としてペロブスカイト構造を有するマンガン−ランタン酸化物を含有する触媒が提案されている(特許文献2(請求項6)参照)。また、特許文献3には、ペロブスカイト構造を有するランタン−コバルト複合酸化物触媒、ペロブスカイト構造を有するランタン−ニッケル複合酸化物触媒(特許文献3(段落[0037]、[0039])参照)が提案されている。
なお、これらの特許文献に記載された触媒は、いずれもペロブスカイト構造を維持したものである。
Conventionally, a technique for decomposing ammonia to produce hydrogen has been proposed. As a catalyst used for the decomposition of ammonia, for example, Patent Document 1 proposes a catalyst containing a specific component such as cobalt or nickel as a catalyst component. As a specific example, a lanthanum having a perovskite structure is proposed. A cobalt composite oxide catalyst and a nickel-lanthanum composite oxide catalyst having a perovskite structure are described (see Patent Document 1 (paragraphs [0025] and [0026])). Patent Document 2 proposes a catalyst containing an ammonia combustion catalyst and an ammonia decomposition catalyst and containing a manganese-lanthanum oxide having a perovskite structure as the ammonia combustion catalyst (see Patent Document 2 (Claim 6)). . Patent Document 3 proposes a lanthanum-cobalt composite oxide catalyst having a perovskite structure and a lanthanum-nickel composite oxide catalyst having a perovskite structure (see Patent Document 3 (paragraphs [0037] and [0039])). ing.
In addition, all of the catalysts described in these patent documents maintain the perovskite structure.

特開2010−240644号公報JP 2010-240644 A 特開2010−240646号公報JP 2010-240646 A 特開2010−241675号公報JP 2010-241675 A

上記特許文献1〜3に記載されたような、ペロブスカイト構造を維持した触媒では、アンモニア分解反応に使用した際に、アンモニアによって触媒が還元されて触媒成分となる金属粒子が生成し、触媒性能を発揮することとなる。しかしながら、このようなペロブスカイト構造を維持した触媒をそのまま使用した場合、触媒の還元が充分でなく、触媒性能を充分に発揮できていなかった。
また、アンモニア分解用触媒は、アンモニア分解反応に使用すると、触媒成分となる金属粒子の粒子径が増大し、触媒成分の比表面積が低下するため、触媒性能が低下する。このように触媒性能が低下した触媒は、もはや使用できないため、定期的にアンモニア分解触媒を交換する必要があった。
本発明は上記事情に鑑みてなされたものであり、アンモニア分解反応に使用することで劣化した場合に、触媒性能を再生できるアンモニア分解用触媒を提供することを目的とする。また、本発明は、上記アンモニア分解用触媒を用いたアンモニアの分解方法、及び、上記アンモニア分解用触媒の再生方法を提供することも目的とする。
In the catalyst that maintains the perovskite structure as described in Patent Documents 1 to 3 above, when used in the ammonia decomposition reaction, the catalyst is reduced by ammonia to generate metal particles as a catalyst component, thereby improving the catalyst performance. Will be demonstrated. However, when such a catalyst maintaining the perovskite structure is used as it is, the reduction of the catalyst is not sufficient and the catalyst performance cannot be sufficiently exhibited.
Further, when an ammonia decomposition catalyst is used for an ammonia decomposition reaction, the particle size of metal particles as a catalyst component increases and the specific surface area of the catalyst component decreases, so that the catalyst performance decreases. Since the catalyst having such a lowered catalyst performance can no longer be used, it is necessary to periodically replace the ammonia decomposition catalyst.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ammonia decomposition catalyst that can regenerate the catalyst performance when used in an ammonia decomposition reaction. Another object of the present invention is to provide a method for decomposing ammonia using the catalyst for decomposing ammonia and a method for regenerating the catalyst for decomposing ammonia.

本発明者らは、アンモニア分解反応に使用することで触媒成分である金属粒子の粒子径が増大した場合に、この金属粒子を再度、微粒子状に分散させる方法について検討を進めた。その結果、ペロブスカイト構造を還元処理により崩壊させて金属微粒子を生成させた場合には、金属粒子の粒子径が増大した場合であっても、再度ペロブスカイト構造を構築、崩壊させることにより、金属粗粒子を再度微粒子に分散できることを見出し、本発明を完成した。   When the particle diameter of the metal particle which is a catalyst component increases by using for ammonia decomposition | disassembly reaction, the present inventors advanced examination about the method of disperse | distributing this metal particle to a fine particle shape again. As a result, when the perovskite structure is collapsed by reduction treatment to produce fine metal particles, even if the particle size of the metal particles is increased, the perovskite structure is reconstructed and collapsed to form coarse metal particles. Was found to be dispersible in fine particles again, and the present invention was completed.

本発明のアンモニア分解用触媒は、希土類、アルカリ金属及びアルカリ土類金属よりなる群から選ばれる少なくとも一種の元素(A成分)の酸化物と、Co、Ni及びFeよりなる群から選ばれる少なくとも一種の元素(B成分)の金属微粒子とを含有する触媒であって、前記A成分と前記B成分とで形成されるペロブスカイト構造を有する酸化物を、還元処理して得られたことを特徴とする。前記B成分の金属微粒子のX線回折法で測定される結晶子径は、25nm以下であることが好ましい。アンモニアの分解反応に用いた使用済み触媒を、酸化処理して、前記A成分と前記B成分とで形成されるペロブスカイト構造を有する酸化物を再構築し、これを還元処理して得られたものも好ましい態様である。   The catalyst for decomposing ammonia of the present invention is at least one selected from the group consisting of an oxide of at least one element (component A) selected from the group consisting of rare earths, alkali metals and alkaline earth metals, and Co, Ni and Fe. A catalyst containing metal fine particles of the element (component B) obtained by reduction treatment of an oxide having a perovskite structure formed by the component A and the component B . The crystallite diameter of the B component metal fine particles measured by X-ray diffraction is preferably 25 nm or less. What was obtained by oxidizing the spent catalyst used in the decomposition reaction of ammonia to reconstruct an oxide having a perovskite structure formed by the A component and the B component, and reducing this. Is also a preferred embodiment.

本発明には、前記アンモニア分解用触媒を用いるアンモニアの分解方法も含まれる。アンモニア分解方法としては、前記アンモニア分解用触媒を用いてアンモニアを分解する分解工程;アンモニア分解反応後のアンモニア分解用触媒を酸化処理する酸化工程;及び、アンモニア分解用触媒の酸化処理物を、還元処理する還元工程とを含む態様が好ましい。また、本発明には、アンモニアの分解反応に用いた使用済み触媒を、酸化処理した後、さらに還元処理するアンモニア分解用触媒の再生方法も含まれる。   The present invention also includes a method for decomposing ammonia using the ammonia decomposing catalyst. As an ammonia decomposition method, a decomposition step of decomposing ammonia using the ammonia decomposition catalyst; an oxidation step of oxidizing the ammonia decomposition catalyst after the ammonia decomposition reaction; and an oxidation treatment product of the ammonia decomposition catalyst being reduced The aspect including the reduction process to process is preferable. The present invention also includes a method for regenerating an ammonia decomposition catalyst, in which a used catalyst used in an ammonia decomposition reaction is oxidized and then further reduced.

本発明のアンモニア分解用触媒は、アンモニア分解反応に使用して劣化した場合であっても、使用済みの触媒に酸化処理、還元処理を施すことにより、触媒性能を再生できるため、長期間にわたって使用することができる。
また、上記アンモニア分解用触媒を用いたアンモニアの分解方法は、触媒が劣化しても、酸化工程、還元工程を経ることで、触媒性能を再生できるため、触媒を交換することなく長期間にわたってアンモニア分解反応を行うことができ、作業性が向上する。
The catalyst for decomposing ammonia according to the present invention can be used over a long period of time because the catalyst performance can be regenerated by subjecting the used catalyst to oxidation treatment and reduction treatment even when it is deteriorated by use in the ammonia decomposition reaction. can do.
In addition, the ammonia decomposition method using the catalyst for ammonia decomposition can regenerate the catalyst performance through the oxidation process and the reduction process even if the catalyst deteriorates. A decomposition reaction can be performed, and workability is improved.

触媒前駆体5−1〜5−6のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of the catalyst precursor 5-1 to 5-6. 触媒5−1〜5−6のアンモニア分解率を示す図である。It is a figure which shows the ammonia decomposition rate of the catalysts 5-1 to 5-6. 触媒前駆体6−1〜6−5のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of catalyst precursor 6-1 to 6-5. 触媒6−1〜6−5のアンモニア分解率を示す図である。It is a figure which shows the ammonia decomposition rate of the catalysts 6-1 to 6-5. 触媒前駆体7−1〜7−5のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of the catalyst precursors 7-1 to 7-5. 触媒前駆体8−1〜8−5のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of the catalyst precursors 8-1 to 8-5. 触媒7−1〜7−5、8−1〜8−5のアンモニア分解率、Niの比表面積を示す図である。It is a figure which shows the ammonia decomposition rate of the catalysts 7-1 to 7-5 and 8-1 to 8-5, and the specific surface area of Ni. 触媒前駆体8−3、触媒8−3、アンモニア分解反応に使用した後の触媒8−3のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of catalyst 8-3 after using for catalyst precursor 8-3, catalyst 8-3, and ammonia decomposition reaction. 触媒前駆体9−1〜9−5のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of the catalyst precursors 9-1 to 9-5. 触媒9−1〜9−5のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of the catalysts 9-1 to 9-5. 触媒10−1〜10−5のX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result of the catalysts 10-1 to 10-5. 触媒9−1〜9−5、10−1〜10−5のアンモニア分解率を示す図である。It is a figure which shows the ammonia decomposition rate of the catalysts 9-1 to 9-5, 10-1 to 10-5.

本発明のアンモニア分解用触媒(以下、単に「触媒」と称する場合がある。)は、希土類、アルカリ金属及びアルカリ土類金属よりなる群から選ばれる少なくとも一種の元素(A成分)と、Co、Ni及びFeよりなる群から選ばれる少なくとも一種の元素(B成分)とで形成されるペロブスカイト構造を有する酸化物を、還元処理して得られたことを特徴とする。   The ammonia decomposition catalyst of the present invention (hereinafter sometimes simply referred to as “catalyst”) includes at least one element (component A) selected from the group consisting of rare earths, alkali metals and alkaline earth metals, Co, It is characterized by being obtained by reduction treatment of an oxide having a perovskite structure formed with at least one element (B component) selected from the group consisting of Ni and Fe.

A成分とB成分とで形成されるペロブスカイト構造を構築した後、これを崩壊させてB成分の金属微粒子を生成させた場合、A成分とB成分との元素の配置は、再度ペロブスカイト構造を構築し易い配置となる。よって、本発明の触媒は、酸化処理を施すことにより、A成分とB成分とで形成されるペロブスカイト構造を容易に再構築することができる。
そのため、本発明の触媒では、B成分の金属粒子の粒子径が増大した場合でも、酸化処理を施しペロブスカイト構造を再構築すれば、B成分が各結晶構造中に取り込まれるため、B成分を原子レベルにまで細分化することができる。そして、さらに還元処理を施し、再構築したペロブスカイト構造を再崩壊させることで、B成分の金属微粒子を再度生成させることができる。よって、本発明の触媒は、アンモニア分解反応に使用して劣化した場合であっても、このような劣化した使用済みの触媒に酸化処理、還元処理を施すことにより、触媒性能を再生できる。
When the perovskite structure formed by the A component and the B component is constructed and then collapsed to form the B component fine metal particles, the arrangement of the elements of the A component and the B component again builds the perovskite structure. It becomes the arrangement which is easy to do. Therefore, the catalyst of the present invention can easily reconstruct the perovskite structure formed by the A component and the B component by performing an oxidation treatment.
Therefore, in the catalyst of the present invention, even when the particle size of the B component metal particles is increased, if the perovskite structure is reconstructed by performing oxidation treatment, the B component is incorporated into each crystal structure. Can be subdivided into levels. Further, by performing reduction treatment and re-disintegrating the reconstructed perovskite structure, the B component metal fine particles can be generated again. Therefore, the catalyst performance of the present invention can be regenerated by performing oxidation treatment and reduction treatment on such a deteriorated used catalyst even when it is deteriorated by use in an ammonia decomposition reaction.

本発明の触媒は、希土類、アルカリ金属及びアルカリ土類金属よりなる群から選ばれる少なくとも一種の元素(A成分)の酸化物と、Co、Ni及びFeよりなる群から選ばれる少なくとも一種の元素(B成分)の金属微粒子とを含有する。B成分の金属微粒子が触媒として作用する。   The catalyst of the present invention comprises an oxide of at least one element (component A) selected from the group consisting of rare earths, alkali metals and alkaline earth metals, and at least one element selected from the group consisting of Co, Ni and Fe ( B component) metal fine particles. B component metal fine particles act as a catalyst.

前記A成分としては、具体的には、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等の希土類元素;リチウム、ナトリウム、カリウム、ルビジウム、セシウム等のアルカリ金属元素;マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属が挙げられる。これらのA成分は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、A成分としては、希土類元素、アルカリ土類金属元素が好ましく、より好ましくはランタン、カルシウム、ストロンチウム、バリウムである。
前記A成分の酸化物としては、具体的には、酸化ランタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム等が挙げられる。
Specific examples of the component A include rare earth elements such as scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium; lithium Alkali metal elements such as sodium, potassium, rubidium and cesium; alkaline earth metals such as magnesium, calcium, strontium and barium. These A components may be used independently and may use 2 or more types together. Among these, as the component A, rare earth elements and alkaline earth metal elements are preferable, and lanthanum, calcium, strontium, and barium are more preferable.
Specific examples of the A component oxide include lanthanum oxide, calcium oxide, strontium oxide, and barium oxide.

前記B成分としては、Co、Ni、Feを単独で使用してもよいし、2種以上を併用してもよい。これらの中でもCo、Niが好ましい。
前記B成分の金属微粒子の結晶子径は、25nm以下が好ましく、より好ましくは20nm以下、さらに好ましくは18nm以下である。前記結晶子径が25nm以下であれば、再生処理において酸化処理を施した際に、ペロブスカイト構造が構築され易くなるため、B成分の再分散効果がより良好となり、触媒性能の回復率が向上する。前記結晶子径の下限は特に限定されないが、通常5nm程度である。なお、本発明において金属微粒子の結晶子径は、X線回折法で測定される値であり、測定方法は後述する。
As said B component, Co, Ni, and Fe may be used independently and 2 or more types may be used together. Of these, Co and Ni are preferable.
The crystallite size of the B metal fine particles is preferably 25 nm or less, more preferably 20 nm or less, and still more preferably 18 nm or less. When the crystallite diameter is 25 nm or less, a perovskite structure is easily constructed when an oxidation treatment is performed in the regeneration treatment, so that the redispersion effect of the B component is improved and the recovery rate of the catalyst performance is improved. . The lower limit of the crystallite diameter is not particularly limited, but is usually about 5 nm. In the present invention, the crystallite diameter of the metal fine particle is a value measured by an X-ray diffraction method, and the measurement method will be described later.

触媒中の前記B成分の含有量は、5質量%以上が好ましく、より好ましくは15質量%以上、さらに好ましくは25質量%以上であり、80質量%以下が好ましく、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。前記B成分の含有量が5質量%以上であれば触媒性能がより向上し、80質量%以下であれば、B成分が過剰とならず、再生処理において酸化処理を施した際にB成分の大部分がペロブスカイト構造に取り込まれることとなり、B成分の再分散効果がより良好となる。   The content of the component B in the catalyst is preferably 5% by mass or more, more preferably 15% by mass or more, further preferably 25% by mass or more, preferably 80% by mass or less, more preferably 60% by mass or less. More preferably, it is 50 mass% or less. When the content of the B component is 5% by mass or more, the catalyst performance is further improved. When the B component is 80% by mass or less, the B component does not become excessive, and when the oxidation treatment is performed in the regeneration treatment, Most of it is taken into the perovskite structure, and the redispersion effect of the B component becomes better.

触媒中の前記B成分と前記A成分とのモル比(A成分/B成分)は、0.1以上が好ましく、より好ましくは0.5以上、さらに好ましくは0.8以上であり、10以下が好ましく、より好ましくは3以下、さらに好ましくは1.5以下である。前記モル比が上記範囲内であれば、再生処理において酸化処理を施した際に構築されるペロブスカイト構造の量が多くなり、B成分の再分散効果がより良好となる。   The molar ratio (component A / component B) between the component B and the component A in the catalyst is preferably 0.1 or more, more preferably 0.5 or more, still more preferably 0.8 or more, and 10 or less. Is preferable, more preferably 3 or less, and still more preferably 1.5 or less. When the molar ratio is within the above range, the amount of the perovskite structure that is constructed when the oxidation treatment is performed in the regeneration treatment increases, and the redispersion effect of the B component becomes better.

本発明の触媒の製造方法の一例について説明する。本発明の触媒は、A成分とB成分とを含有する複合物を作製し、この複合物を酸化性雰囲気で焼成して、A成分とB成分とで形成されるペロブスカイト構造を有する酸化物(以下、「触媒前駆体」と称する場合がある。)を作製し、この触媒前駆体を還元処理することで得られる。   An example of the manufacturing method of the catalyst of this invention is demonstrated. The catalyst of the present invention is a composite containing an A component and a B component, and this composite is fired in an oxidizing atmosphere to form an oxide having a perovskite structure formed by the A component and the B component ( Hereinafter, the catalyst precursor may be referred to as “catalyst precursor”), and the catalyst precursor is reduced.

前記複合物を作製する方法は特に限定されず、例えば、共沈法、含浸法、クエン酸錯体法等が挙げられる。
共沈法としては、例えば、B成分の水溶性塩とA成分の水溶性塩を溶解させた水溶液と、アルカリ性化合物(好ましくは水溶液)とを混合し、A成分を含有する微粒子とB成分を含有する微粒子からなる沈殿物を生成させ、これをろ過により取り出し、水洗、乾燥する方法が挙げられる。含浸法としては、例えば、B成分の水溶性塩を溶解させた溶液を、A成分の酸化物に含浸させ、水分を蒸発させる方法が挙げられる。クエン酸錯体法としては、例えば、A成分の水溶性塩とB成分の水溶性塩とを溶解させた水溶液に、クエン酸水和物を加えて攪拌し、溶液がゲル状になったところで、加熱して熱分解する方法が挙げられる。
The method for producing the composite is not particularly limited, and examples thereof include a coprecipitation method, an impregnation method, and a citric acid complex method.
As the coprecipitation method, for example, an aqueous solution in which a water-soluble salt of component B and a water-soluble salt of component A are dissolved and an alkaline compound (preferably an aqueous solution) are mixed, and fine particles containing component A and component B are mixed. Examples include a method in which a precipitate composed of the contained fine particles is generated, taken out by filtration, washed with water, and dried. Examples of the impregnation method include a method in which a solution in which a water-soluble salt of the B component is dissolved is impregnated in the oxide of the A component and the water is evaporated. As the citric acid complex method, for example, citric acid hydrate is added to an aqueous solution in which the water-soluble salt of the component A and the water-soluble salt of the component B are dissolved, and the solution becomes a gel. The method of thermally decomposing by heating is mentioned.

前記A成分の水溶性塩としては、例えば、硝酸塩、酢酸塩、塩化物等が挙げられる。前記A成分の水溶性塩としては、例えば、硝酸コバルト六水和物、酢酸コバルト四水和物、塩化コバルト六水和物等のコバルトの水溶性塩;硝酸ニッケル六水和物、二酢酸ニッケル四水和物等のニッケルの水溶性塩;硝酸鉄(II)六水和物、硝酸鉄(III)九水和物等の鉄の水溶性塩;等が挙げられる。   Examples of the water-soluble salt of the component A include nitrates, acetates, chlorides and the like. Examples of the water-soluble salt of the component A include water-soluble salts of cobalt such as cobalt nitrate hexahydrate, cobalt acetate tetrahydrate, cobalt chloride hexahydrate; nickel nitrate hexahydrate, nickel diacetate Water-soluble nickel salts such as tetrahydrate; Water-soluble iron salts such as iron (II) nitrate hexahydrate and iron (III) nitrate nonahydrate;

B成分の水溶性塩としては、例えば、硝酸塩、酢酸塩、塩化物、硫酸塩等が挙げられる。前記B成分の水溶性塩としては、例えば、硝酸ランタン六水和物等のランタンの水溶性塩;硝酸マグネシウム六水和物等のマグネシウムの水溶性塩;硝酸セリウム六水和物等のセリウムの水溶性塩;等が挙げられる。   Examples of the water-soluble salt of component B include nitrates, acetates, chlorides, sulfates, and the like. Examples of the water-soluble salt of the component B include water-soluble lanthanum salts such as lanthanum nitrate hexahydrate; water-soluble salts of magnesium such as magnesium nitrate hexahydrate; and cerium nitrate such as cerium nitrate hexahydrate. Water-soluble salts; and the like.

前記アルカリ性化合物としては、例えば、アンモニア、炭酸アンモニウム、水酸化テトラメチルアンモニウム等のアンモニア系化合物;水酸化カリウム等のアルカリ金属水酸化物;等が挙げられる。   Examples of the alkaline compound include ammonia compounds such as ammonia, ammonium carbonate, and tetramethylammonium hydroxide; alkali metal hydroxides such as potassium hydroxide; and the like.

前記複合物を酸化性雰囲気で焼成することにより、触媒前駆体を得る。前記酸化性雰囲気としては、例えば、空気雰囲気が挙げられる。前記複合物を焼成する温度は、550℃以上が好ましく、より好ましくは650℃以上、さらに好ましくは750℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。焼成時間は、0.5時間以上が好ましく、より好ましくは2時間以上であり、48時間以下が好ましく、より好ましくは24時間以下、さらに好ましくは12時間以下である。   A catalyst precursor is obtained by firing the composite in an oxidizing atmosphere. Examples of the oxidizing atmosphere include an air atmosphere. The temperature for firing the composite is preferably 550 ° C. or higher, more preferably 650 ° C. or higher, further preferably 750 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. The firing time is preferably 0.5 hours or longer, more preferably 2 hours or longer, 48 hours or shorter, more preferably 24 hours or shorter, still more preferably 12 hours or shorter.

また、触媒前駆体中のペロブスカイト構造の含有量を増加させるために、焼成を2段階の温度で行うことも好ましい。この場合、第一焼成の焼成温度は300℃以上が好ましく、より好ましくは350℃以上であり、550℃以下が好ましく、より好ましくは450℃以下が好ましい。第一焼成の焼成時間は0.5時間以上が好ましく、より好ましくは2時間以上であり、24時間以下が好ましく、より好ましくは12時間以下である。また、第二焼成の焼成温度は550℃以上が好ましく、より好ましくは650℃以上、さらに好ましくは750℃以上であり、950℃以下が好ましく、より好ましくは900℃以下が好ましい。第二焼成の焼成時間は0.5時間以上が好ましく、より好ましくは2時間以上であり、48時間以下が好ましく、より好ましくは24時間以下、さらに好ましくは12時間以下である。   In order to increase the content of the perovskite structure in the catalyst precursor, it is also preferable to perform calcination at two stages of temperature. In this case, the firing temperature of the first firing is preferably 300 ° C. or higher, more preferably 350 ° C. or higher, preferably 550 ° C. or lower, more preferably 450 ° C. or lower. The firing time of the first firing is preferably 0.5 hours or more, more preferably 2 hours or more, preferably 24 hours or less, more preferably 12 hours or less. The firing temperature in the second firing is preferably 550 ° C. or higher, more preferably 650 ° C. or higher, further preferably 750 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. The firing time of the second firing is preferably 0.5 hours or longer, more preferably 2 hours or longer, 48 hours or shorter, more preferably 24 hours or shorter, and even more preferably 12 hours or shorter.

前記触媒前駆体を還元処理することにより、本発明の触媒が得られる。前記還元処理の方法としては、還元性雰囲気(例えば、水素等の還元性ガスを含む還元性ガス雰囲気)中で熱処理する方法が挙げられる。前記触媒前駆体を焼成する温度は、300℃以上が好ましく、より好ましくは400℃以上であり、800℃以下が好ましく、より好ましくは700℃以下である。焼成時間は、0.5時間以上が好ましく、より好ましくは2時間以上であり、24時間以下が好ましく、より好ましくは12時間以下である。   The catalyst of the present invention can be obtained by reducing the catalyst precursor. Examples of the reduction treatment include a heat treatment method in a reducing atmosphere (for example, a reducing gas atmosphere containing a reducing gas such as hydrogen). The temperature for calcining the catalyst precursor is preferably 300 ° C. or higher, more preferably 400 ° C. or higher, preferably 800 ° C. or lower, and more preferably 700 ° C. or lower. The firing time is preferably 0.5 hours or more, more preferably 2 hours or more, preferably 24 hours or less, more preferably 12 hours or less.

上述したように、本発明の触媒は、ペロブスカイト構造を再構築、再崩壊させることにより、触媒性能を再生することができる。本発明の触媒の再生方法としては、例えば、アンモニアの分解反応に用いた使用済み触媒を、酸化処理した後、さらに還元処理する方法が挙げられる。本発明の触媒には、アンモニアの分解反応に用いた使用済み触媒を、酸化処理して、前記A成分と前記B成分とで形成されるペロブスカイト構造を有する酸化物を再構築し、これを還元処理して得られたものも含まれる。   As described above, the catalyst of the present invention can regenerate the catalyst performance by reconstructing and re-disintegrating the perovskite structure. Examples of the method for regenerating the catalyst of the present invention include a method in which a used catalyst used in the ammonia decomposition reaction is oxidized and then further reduced. In the catalyst of the present invention, the spent catalyst used in the decomposition reaction of ammonia is oxidized to reconstruct an oxide having a perovskite structure formed by the A component and the B component, and this is reduced. The thing obtained by processing is also included.

前記酸化処理の方法としては、酸化性雰囲気(例えば、空気雰囲気)中で熱処理する方法が挙げられる。熱処理温度は、550℃以上が好ましく、より好ましくは650℃以上、さらに好ましくは750℃以上であり、950℃以下が好ましく、より好ましくは900℃以下である。熱処理時間は、0.5時間以上が好ましく、より好ましくは2時間以上であり、48時間以下が好ましく、より好ましくは24時間以下、さらに好ましくは12時間以下である。触媒の再生方法における還元処理は、前記触媒製造方法における還元処理と同様に行えばよい。   Examples of the oxidation treatment method include a heat treatment method in an oxidizing atmosphere (for example, an air atmosphere). The heat treatment temperature is preferably 550 ° C. or higher, more preferably 650 ° C. or higher, further preferably 750 ° C. or higher, preferably 950 ° C. or lower, more preferably 900 ° C. or lower. The heat treatment time is preferably 0.5 hours or longer, more preferably 2 hours or longer, 48 hours or shorter, more preferably 24 hours or shorter, still more preferably 12 hours or shorter. What is necessary is just to perform the reduction process in the regeneration method of a catalyst similarly to the reduction process in the said catalyst manufacturing method.

本発明の触媒を用いたアンモニアの分解方法について説明する。
本発明の触媒を用いたアンモニアの分解方法としては、アンモニアを分解する分解工程;アンモニア分解反応後のアンモニア分解用触媒を酸化処理する酸化工程;及び、アンモニア分解用触媒の酸化処理物を、還元処理する還元工程とを含む態様が好ましい。
A method for decomposing ammonia using the catalyst of the present invention will be described.
The ammonia decomposition method using the catalyst of the present invention includes a decomposition step of decomposing ammonia; an oxidation step of oxidizing the ammonia decomposition catalyst after the ammonia decomposition reaction; and reducing the oxidized product of the ammonia decomposition catalyst. The aspect including the reduction process to process is preferable.

前記分解工程では、加熱下で触媒とアンモニアとを接触させることにより、アンモニアを水素と窒素に分解する。
アンモニアの分解反応に使用する原料ガスは、アンモニアガスであるが、分解反応を阻害しないものであれば、他のガスを加えることができる。他のガスとしては、例えば、窒素、アルゴン、ヘリウム、一酸化炭素、酸素が挙げられる。特に、原料ガスが酸素を含む場合、アンモニアガスやアンモニア分解反応で生成した水素の一部を燃焼し、その燃焼熱をアンモニア分解反応の反応熱として使用するオートサーマルリフォーマーによるアンモニア分解を行うことができる。この場合、アンモニアに対する酸素のモル比(酸素/アンモニア)は、0.75未満とする必要がある。また、アンモニア分解により得られる水素量と、燃焼反応による燃焼熱とを両立させる観点から、モル比(酸素/アンモニア)は0.05以上が好ましく、より好ましくは0.1以上、さらに好ましくは0.12以上であり、0.5以下が好ましく、より好ましくは0.3以下である。
In the decomposition step, ammonia is decomposed into hydrogen and nitrogen by bringing the catalyst into contact with ammonia under heating.
The source gas used for the decomposition reaction of ammonia is ammonia gas, but other gases can be added as long as they do not inhibit the decomposition reaction. Examples of other gases include nitrogen, argon, helium, carbon monoxide, and oxygen. In particular, when the source gas contains oxygen, ammonia decomposition can be performed by an autothermal reformer that burns part of the ammonia gas or hydrogen produced by the ammonia decomposition reaction and uses the combustion heat as the reaction heat of the ammonia decomposition reaction. it can. In this case, the molar ratio of oxygen to ammonia (oxygen / ammonia) needs to be less than 0.75. Further, from the viewpoint of achieving both the amount of hydrogen obtained by ammonia decomposition and the combustion heat by the combustion reaction, the molar ratio (oxygen / ammonia) is preferably 0.05 or more, more preferably 0.1 or more, and even more preferably 0. .12 or more, preferably 0.5 or less, more preferably 0.3 or less.

アンモニア分解反応の反応温度(例えば、触媒を加熱するための電気炉の設定温度)は、300℃以上が好ましく、より好ましくは400℃以上であり、900℃以下が好ましく、より好ましくは700℃以下である。反応圧力は、絶対圧で、0.002MPa以上が好ましく、より好ましくは0.004MPa以上であり、2MPa以下が好ましく、より好ましくは1MPa以下である。反応ガス(原料ガス)導入時の空間速度(SV)は1,000h-1以上が好ましく、より好ましくは2,000h-1以上であり、500,000h-1以下が好ましく、より好ましくは200,000h-1以下である。 The reaction temperature of the ammonia decomposition reaction (for example, the set temperature of the electric furnace for heating the catalyst) is preferably 300 ° C. or higher, more preferably 400 ° C. or higher, preferably 900 ° C. or lower, more preferably 700 ° C. or lower. It is. The reaction pressure is preferably an absolute pressure of 0.002 MPa or more, more preferably 0.004 MPa or more, preferably 2 MPa or less, more preferably 1 MPa or less. The reaction gas (raw material gas) space velocity (SV) during the introduction is preferably at least 1,000 h -1, more preferably 2,000 h -1 or more, preferably 500,000 -1 or less, more preferably 200, 000 h -1 or less.

前記酸化工程では、アンモニア分解反応に使用した後の使用済み触媒に酸化処理を施し、ペロブスカイト構造を再構築させる。前記酸化処理の方法としては、前記触媒再生方法における酸化処理と同様に行えばよい。前記還元工程では、触媒の酸化処理物に還元処理を施し、酸化工程で構築されたペロブスカイト構造を崩壊させ、B成分を再分散させる。前記還元処理の方法としては、前記触媒再生方法における還元処理と同様に行えばよい。   In the oxidation step, the spent catalyst after being used for the ammonia decomposition reaction is subjected to an oxidation treatment to reconstruct the perovskite structure. The oxidation treatment may be performed in the same manner as the oxidation treatment in the catalyst regeneration method. In the reduction step, the oxidation product of the catalyst is subjected to reduction treatment, the perovskite structure constructed in the oxidation step is destroyed, and the B component is redispersed. The reduction treatment may be performed in the same manner as the reduction treatment in the catalyst regeneration method.

本発明の触媒を用いたアンモニアの分解方法では、触媒が劣化しても、酸化工程、還元工程を経ることで、触媒性能を再生できるため、触媒を交換することなく長期間にわたってアンモニア分解反応を行うことができ、作業性が向上する。なお、上述したようにB成分の金属微粒子の結晶子径が小さい状態で、酸化処理及び還元処理を施したほうが、B成分の再分散効果が高くなる。そのため、上記分解方法では、触媒のB成分の金属微粒子の結晶子径が25nm(より好ましくは20nm、さらに好ましくは18nm)以下の状態で酸化工程を行うことが好ましい。   In the method for decomposing ammonia using the catalyst of the present invention, even if the catalyst deteriorates, the catalytic performance can be regenerated through the oxidation step and the reduction step. Therefore, the ammonia decomposition reaction can be performed over a long period of time without replacing the catalyst. Can be performed, and workability is improved. As described above, the redispersion effect of the B component becomes higher when the oxidation treatment and the reduction treatment are performed in a state where the crystallite diameter of the B component metal fine particles is small. Therefore, in the decomposition method, the oxidation step is preferably performed in a state where the crystallite size of the metal fine particles of the B component of the catalyst is 25 nm (more preferably 20 nm, more preferably 18 nm).

触媒の劣化速度、すなわちB成分の金属微粒子の結晶子径が増大する速度は、アンモニア分解反応の反応温度、反応時間、アンモニア導入量等により決まる。そのため、実際に分解反応を行う条件で予備試験を行い、触媒の劣化速度を確認しておくことで、分解工程から酸化工程に移行する時期を決定すればよい。   The rate of deterioration of the catalyst, that is, the rate at which the crystallite size of the B component metal fine particles increases depends on the reaction temperature, reaction time, amount of ammonia introduced, and the like. For this reason, a preliminary test is performed under the conditions under which the actual decomposition reaction is performed, and the deterioration rate of the catalyst is confirmed to determine the timing for shifting from the decomposition step to the oxidation step.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

<評価方法>
B金属微粒子の結晶子径
B金属微粒子の結晶子径の測定は、X線回折測定の結果について、結晶構造の帰属を行い、最大強度を示すピークの半値幅から下記のシェラー式を用いて算出した。
結晶子径(nm) = Kλ/βcosθ
ここで、Kは形状ファクター(球状として0.9を代入)、λは測定X線波長(CuKα:0.154nm)、βは半値幅(rad)、θはブラッグ角(回折角2θの半分;deg)である。
<Evaluation method>
Crystallite diameter of B metal fine particle The crystallite diameter of B metal fine particle is calculated by assigning the crystal structure to the result of X-ray diffraction measurement, and calculating from the half width of the peak indicating the maximum intensity using the following Scherrer equation did.
Crystallite diameter (nm) = Kλ / βcosθ
Here, K is a shape factor (0.9 is substituted as a sphere), λ is a measured X-ray wavelength (CuKα: 0.154 nm), β is a half width (rad), θ is a Bragg angle (half of the diffraction angle 2θ; deg).

X線回折測定条件
X線回折装置(製品名「RINT−TTRIII」、株式会社リガク製)を用いた。X線源には、CuKα(0.154nm)を用い、測定条件として、X線出力50kV、300mA、サンプリング幅0.02°、測定温度25℃であり、測定範囲は測定すべき物質に応じて適宜選択して実施した。
X-ray diffraction measurement conditions An X-ray diffraction apparatus (product name “RINT-TTRIII”, manufactured by Rigaku Corporation) was used. CuKα (0.154 nm) is used as the X-ray source, and the measurement conditions are an X-ray output of 50 kV, 300 mA, a sampling width of 0.02 °, a measurement temperature of 25 ° C., and the measurement range depends on the substance to be measured. It selected and implemented suitably.

製造例1−1
硝酸ニッケル六水和物(Ni(NO32・6H2O)23.26g、硝酸ランタン六水和物(La(NO33・6H2O)34.64gを純水430mLに投入し、ニッケル−ランタン混合水溶液を調製した。25質量%TMAH(水酸化テトラメチルアンモニウム)水溶液175gに純水を追加して液量約600mLにした希釈TMAH水溶液を調製した。
この希釈TMAH水溶液を激しく撹拌した状態で、ここに前記ニッケル−ランタン混合水溶液を1時間かけてゆっくりと滴下した。滴下終了後、1時間程度撹拌を継続することで熟成を行った。ブフナー漏斗を用いてろ過し、ろ取物を純水で水洗し、110℃で乾燥した。乾燥物を粉砕後、空気雰囲気中、400℃で1時間、更に昇温して850℃で2時間焼成して、ペロブスカイト構造を有するニッケル−ランタン複合酸化物(触媒前駆体1)を得た。
触媒前駆体1を管状炉に充填して、10体積%水素ガス(窒素希釈)を流通させながら、600℃で1時間熱処理(還元処理)し、酸化ランタン−ニッケル金属微粒子触媒(触媒1)を得た。触媒1のニッケルの結晶子径の値を表1に示した。
Production Example 1-1
Charge 23.26 g of nickel nitrate hexahydrate (Ni (NO 3 ) 2 .6H 2 O) and 34.64 g of lanthanum nitrate hexahydrate (La (NO 3 ) 3 .6H 2 O) to 430 mL of pure water. A nickel-lanthanum mixed aqueous solution was prepared. A diluted TMAH aqueous solution was prepared by adding pure water to 175 g of a 25 mass% TMAH (tetramethylammonium hydroxide) aqueous solution to a volume of about 600 mL.
While the diluted TMAH aqueous solution was vigorously stirred, the nickel-lanthanum mixed aqueous solution was slowly added dropwise over 1 hour. After completion of the dropwise addition, the mixture was aged by continuing stirring for about 1 hour. The mixture was filtered using a Buchner funnel, and the filtered product was washed with pure water and dried at 110 ° C. The dried product was pulverized, and then heated in an air atmosphere at 400 ° C. for 1 hour, further heated and calcined at 850 ° C. for 2 hours to obtain a nickel-lanthanum composite oxide (catalyst precursor 1) having a perovskite structure.
The catalyst precursor 1 is filled into a tubular furnace, and heat treated (reduced) at 600 ° C. for 1 hour while circulating 10 vol% hydrogen gas (diluted with nitrogen) to obtain a lanthanum oxide-nickel metal fine particle catalyst (catalyst 1). Obtained. The values of the crystallite diameter of the catalyst 1 are shown in Table 1.

製造例2−1
硝酸コバルト六水和物23.28g、硝酸ランタン六水和物34.64gを純水430mLに投入し、コバルト−ランタン混合水溶液を調製した。25質量%TMAH水溶液175gに純水を追加して液量約700mLにした希釈TMAH水溶液を調製した。
この希釈TMAH水溶液を激しく撹拌した状態で、ここに前記コバルト−ランタン混合水溶液を1時間かけてゆっくりと滴下した。滴下終了後、1時間程度撹拌を継続することで熟成を行った。ブフナー漏斗を用いてろ過し、ろ取物を純水で水洗し、110℃で乾燥した。乾燥物を粉砕後、空気雰囲気中、400℃で1時間、更に昇温して850℃で2時間焼成して、ペロブスカイト構造を有するランタン−コバルト複合酸化物(触媒前駆体2)を得た。
触媒前駆体2を管状炉に充填して、10体積%水素ガス(窒素希釈)を流通させながら、600℃で1時間熱処理(還元処理)し、酸化ランタン−コバルト金属微粒子触媒(触媒2)を得た。触媒2のコバルトの結晶子径の値を表1に示した。
Production Example 2-1
Cobalt nitrate hexahydrate 23.28 g and lanthanum nitrate hexahydrate 34.64 g were added to 430 mL of pure water to prepare a cobalt-lanthanum mixed aqueous solution. A diluted TMAH aqueous solution was prepared by adding pure water to 175 g of a 25 mass% TMAH aqueous solution to a liquid volume of about 700 mL.
While the diluted TMAH aqueous solution was vigorously stirred, the cobalt-lanthanum mixed aqueous solution was slowly added dropwise over 1 hour. After completion of the dropwise addition, the mixture was aged by continuing stirring for about 1 hour. The mixture was filtered using a Buchner funnel, and the filtered product was washed with pure water and dried at 110 ° C. After the dried product was pulverized, it was heated in an air atmosphere at 400 ° C. for 1 hour and further heated and calcined at 850 ° C. for 2 hours to obtain a lanthanum-cobalt composite oxide (catalyst precursor 2) having a perovskite structure.
The catalyst precursor 2 is filled into a tubular furnace and heat treated (reduced) at 600 ° C. for 1 hour while circulating 10 vol% hydrogen gas (diluted with nitrogen) to obtain a lanthanum oxide-cobalt metal fine particle catalyst (catalyst 2). Obtained. The value of the crystallite diameter of cobalt of the catalyst 2 is shown in Table 1.

製造例3−1
硝酸コバルト六水和物11.64g、硝酸ランタン六水和物10.39g、硝酸ストロンチウム(Sr(NO32)3.39gを純水300mLに投入し、コバルト−ランタン−ストロンチウム混合水溶液を調製した。7.7質量%TMAH水溶液33.5gに純水を追加して液量約400mLにした希釈TMAH水溶液を調製した。
この希釈TMAH水溶液を激しく撹拌した状態で、ここに前記コバルト−ランタン−ストロンチウム混合水溶液を1時間かけてゆっくりと滴下した。滴下終了後、1時間程度撹拌を継続することで熟成を行った。ブフナー漏斗を用いてろ過し、ろ取物を純水で水洗し、110℃で乾燥した。乾燥物を粉砕後、空気雰囲気中、400℃で1時間、更に昇温して650℃で2時間焼成して、ペロブスカイト構造を有するストロンチウム−ランタン−コバルト複合酸化物(触媒前駆体3)を得た。
触媒前駆体3を管状炉に充填して、10体積%水素ガス(窒素希釈)を流通させながら、600℃で1時間熱処理(還元処理)し、酸化ストロンチウム−酸化ランタン−コバルト金属微粒子触媒(触媒3)を得た。触媒3のコバルトの結晶子径の値を表1に示した。
Production Example 3-1
11.64 g of cobalt nitrate hexahydrate, 10.39 g of lanthanum nitrate hexahydrate, and 3.39 g of strontium nitrate (Sr (NO 3 ) 2 ) were added to 300 mL of pure water to prepare a cobalt-lanthanum-strontium mixed aqueous solution. did. A diluted TMAH aqueous solution was prepared by adding pure water to 33.5 g of a 7.7 mass% TMAH aqueous solution to a liquid volume of about 400 mL.
While the diluted TMAH aqueous solution was vigorously stirred, the cobalt-lanthanum-strontium mixed aqueous solution was slowly added dropwise thereto over 1 hour. After completion of the dropwise addition, the mixture was aged by continuing stirring for about 1 hour. The mixture was filtered using a Buchner funnel, and the filtered product was washed with pure water and dried at 110 ° C. The dried product is pulverized and then heated in an air atmosphere at 400 ° C. for 1 hour, further heated to 650 ° C. for 2 hours to obtain a strontium-lanthanum-cobalt composite oxide (catalyst precursor 3) having a perovskite structure. It was.
The catalyst precursor 3 is filled in a tubular furnace and heat treated (reduced) at 600 ° C. for 1 hour while flowing 10% by volume hydrogen gas (diluted with nitrogen), and strontium oxide-lanthanum oxide-cobalt metal fine particle catalyst (catalyst 3) was obtained. The value of the crystallite diameter of cobalt of the catalyst 3 is shown in Table 1.

製造例1−1、2−1、3−1で得られた触媒1〜3を用いて、99.9体積%以上の純度のアンモニアガスについて、アンモニア分解反応を行った(常圧下、SV=6,000h-1)。反応温度を変更してアンモニア分解率(以下、分解率)を測定した。結果を表2に示した。なお、分解率は以下の式で求めた。 Using the catalysts 1 to 3 obtained in Production Examples 1-1, 2-1, and 3-1, an ammonia decomposition reaction was performed on ammonia gas having a purity of 99.9% by volume or more (under normal pressure, SV = 6,000 h -1 ). The ammonia decomposition rate (hereinafter, decomposition rate) was measured by changing the reaction temperature. The results are shown in Table 2. In addition, the decomposition rate was calculated | required with the following formula | equation.

製造例1−2a、2−2a
上記製造例1−1、2−1のアンモニア分解反応後の使用済みの触媒1及び2を管状炉に充填して、10体積%水素ガス(窒素希釈)を流通させながら750℃で1時間熱処理(還元処理)した。還元処理後のコバルト又はニッケルの結晶子径の値を表3に示した。還元後の触媒1及び2は、いずれもB金属微粒子の結晶子径が増大していた。続いて製造例1−1、2−1と同様にアンモニア分解反応を行い、反応温度を変更して分解率を測定した。結果を表3に示した。
Production Example 1-2a, 2-2a
The spent catalysts 1 and 2 after the ammonia decomposition reaction of the above production examples 1-1 and 2-1 are filled into a tubular furnace, and heat-treated at 750 ° C. for 1 hour while circulating 10 vol% hydrogen gas (nitrogen dilution). (Reduction treatment). Table 3 shows the crystallite diameter values of cobalt or nickel after the reduction treatment. In both the catalysts 1 and 2 after reduction, the crystallite size of the B metal fine particles was increased. Subsequently, ammonia decomposition reaction was performed in the same manner as in Production Examples 1-1 and 2-1, and the decomposition rate was measured by changing the reaction temperature. The results are shown in Table 3.

製造例1−3a、2−3a
上記製造例1−2a、2−2aのアンモニア分解反応後の使用済みの触媒1及び2を管状炉に充填して、体積比10/90の空気/窒素ガスを流通させながら、650℃で3時間熱処理(酸化処理(再生処理))した後、10体積%水素ガス(窒素希釈)を流通させながら、600℃で1時間熱処理(還元処理)した。還元処理後のコバルトまたはニッケルの結晶子径の値を表3に示した。続いて製造例1−1、2−1と同様にアンモニア分解反応を行い、反応温度を変更して分解率を測定した。結果を表3に示した。製造例1−2a、2−2aと製造例1−3a、2−3aとの比較により、再生処理によって分解率の回復が見られた。
Production Example 1-3a, 2-3a
The spent catalysts 1 and 2 after the ammonia decomposition reaction of the above production examples 1-2a and 2-2a were filled in a tubular furnace, and air / nitrogen gas at a volume ratio of 10/90 was circulated at 650 ° C. 3 After time heat treatment (oxidation treatment (regeneration treatment)), heat treatment (reduction treatment) was performed at 600 ° C. for 1 hour while flowing 10% by volume of hydrogen gas (diluted with nitrogen). Table 3 shows the crystallite diameter values of cobalt or nickel after the reduction treatment. Subsequently, ammonia decomposition reaction was performed in the same manner as in Production Examples 1-1 and 2-1, and the decomposition rate was measured by changing the reaction temperature. The results are shown in Table 3. By comparison between Production Examples 1-2a and 2-2a and Production Examples 1-3a and 2-3a, the recovery of the decomposition rate was observed by the regeneration process.

製造例1−2b、2−2b
上記製造例1−1、2−1のアンモニア分解反応後の使用済みの触媒1及び2を管状炉に充填して、10体積%水素ガス(窒素希釈)を流通させながら、850℃で1時間熱処理(還元処理)した。還元処理後のコバルト又はニッケルの結晶子径の値を表4に示した。還元後の触媒1及び2は、いずれもB金属微粒子の結晶子径が25nm超に増大していた。続いて製造例1−1、2−1と同様にアンモニア分解反応を行い、反応温度を変更して分解率を測定した。結果は表4に示した。
Production Example 1-2b, 2-2b
The spent catalysts 1 and 2 after the ammonia decomposition reaction of Production Examples 1-1 and 2-1 were filled in a tubular furnace, and 10% by volume of hydrogen gas (diluted with nitrogen) was circulated at 850 ° C. for 1 hour. Heat treatment (reduction treatment) was performed. Table 4 shows the crystallite diameter values of cobalt or nickel after the reduction treatment. In both catalysts 1 and 2 after reduction, the crystallite size of the B metal fine particles increased to more than 25 nm. Subsequently, ammonia decomposition reaction was performed in the same manner as in Production Examples 1-1 and 2-1, and the decomposition rate was measured by changing the reaction temperature. The results are shown in Table 4.

製造例1−3b、2−3b
上記製造例1−2b、2−2bのアンモニア分解反応後の使用済みの触媒1及び2を管状炉に充填して、体積比10/90の空気/窒素ガスを流通させながら、650℃で3時間熱処理(酸化処理(再生処理))した後、10体積%水素ガス(窒素希釈)を流通させながら、600℃で1時間熱処理(還元処理)した。還元処理後のコバルト又はニッケルの結晶子径の値を表4に示した。続いて製造例1−1、2−1と同様にアンモニア分解反応を行い、反応温度を変更して分解率を測定した。結果は表4に示した。製造例1−2b、2−2bと製造例1−3b、2−3bとの比較により、再生処理によって分解率の回復が見られた。なお、分解率の回復の度合いは、前記製造例1−3a、2−3aよりも小さいものとなった。これは、再生処理前のB金属微粒子の結晶子径が25nm超であり、酸化処理において再構築されるペロブスカイト構造が少なくなり、再分散されるB金属微粒子が少なくなったためと考えられる。
Production Example 1-3b, 2-3b
The spent catalysts 1 and 2 after the ammonia decomposition reaction of the above production examples 1-2b and 2-2b were filled in a tubular furnace, and air / nitrogen gas with a volume ratio of 10/90 was circulated at 650 ° C. 3 After time heat treatment (oxidation treatment (regeneration treatment)), heat treatment (reduction treatment) was performed at 600 ° C. for 1 hour while flowing 10% by volume of hydrogen gas (diluted with nitrogen). Table 4 shows the crystallite diameter values of cobalt or nickel after the reduction treatment. Subsequently, ammonia decomposition reaction was performed in the same manner as in Production Examples 1-1 and 2-1, and the decomposition rate was measured by changing the reaction temperature. The results are shown in Table 4. By comparison between Production Examples 1-2b and 2-2b and Production Examples 1-3b and 2-3b, recovery of the decomposition rate was observed by the regeneration process. Note that the degree of recovery of the decomposition rate was smaller than that in Production Examples 1-3a and 2-3a. This is presumably because the crystallite size of the B metal fine particles before the regeneration treatment is more than 25 nm, the perovskite structure reconstructed in the oxidation treatment is reduced, and the B metal fine particles redispersed are reduced.

比較例1−1
120℃で一晩乾燥させたγ−アルミナ(Strem Chemicals Inc.製)10.02gに、硝酸ニッケル六水和物12.39gを蒸留水5.00gに溶解させた水溶液を滴下して混合した。この混合物を密閉して1時間静置した後、湯浴上で乾燥させた。この乾燥した混合物を、窒素気流下、350℃で5時間焼成した後、空気気流下、500℃で3時間焼成した。この焼成物を管状炉に充填し、10体積%水素ガス(窒素希釈)を流通させながら、450℃で5時間熱処理(還元処理)して、触媒4を得た。なお、触媒4のニッケル担持量は、20質量%であった。触媒4のニッケルの結晶子径の値を表5に示した。
触媒4を用いて、99.9体積%以上の純度のアンモニアについて、アンモニア分解反応を行った(常圧下、SV=6,000h-1)。反応温度を変更してアンモニア分解率(以下、分解率)を測定した。結果は表5に示した。
Comparative Example 1-1
An aqueous solution in which 12.39 g of nickel nitrate hexahydrate was dissolved in 5.00 g of distilled water was added dropwise to 10.02 g of γ-alumina (manufactured by Strem Chemicals Inc.) dried at 120 ° C. overnight. The mixture was sealed and allowed to stand for 1 hour, and then dried on a hot water bath. The dried mixture was baked at 350 ° C. for 5 hours under a nitrogen stream, and then baked at 500 ° C. for 3 hours under an air stream. The fired product was filled in a tubular furnace and heat treated (reduced) at 450 ° C. for 5 hours while flowing 10% by volume hydrogen gas (diluted with nitrogen) to obtain catalyst 4. The amount of nickel supported on catalyst 4 was 20% by mass. Table 5 shows the values of the crystallite diameter of nickel of the catalyst 4.
Using catalyst 4, ammonia decomposition reaction was performed on ammonia having a purity of 99.9% by volume or higher (SV = 6,000 h −1 under normal pressure). The ammonia decomposition rate (hereinafter, decomposition rate) was measured by changing the reaction temperature. The results are shown in Table 5.

比較例1−2
上記比較例1−1のアンモニア分解反応後の使用済みの触媒4を管状炉に充填して、10体積%水素ガス(窒素希釈)を流通させながら、750℃で1時間熱処理(還元処理)した。還元処理後のニッケルの結晶子径の値を表5に示した。続いて比較例1−1と同様にアンモニア分解反応を行い、反応温度を変更して分解率を測定した。結果は表5に示した。
Comparative Example 1-2
The spent catalyst 4 after the ammonia decomposition reaction of Comparative Example 1-1 was filled in a tubular furnace, and heat treated (reduced) at 750 ° C. for 1 hour while circulating 10 vol% hydrogen gas (nitrogen dilution). . Table 5 shows the crystallite size values of nickel after the reduction treatment. Subsequently, ammonia decomposition reaction was performed in the same manner as in Comparative Example 1-1, and the decomposition rate was measured by changing the reaction temperature. The results are shown in Table 5.

比較例1−3
上記比較例1−2のアンモニア分解反応後の使用済みの触媒4を管状炉に充填して、体積比10/90の空気/窒素ガスを流通させながら、650℃で3時間熱処理(酸化処理(再生処理))した後、10体積%水素ガス(窒素希釈)を流通させながら、600℃で1時間還元処理した。還元処理後のニッケルの結晶子径の値を表5に示した。続いて比較例1−1と同様にアンモニア分解反応を行い、反応温度を変更して分解率を測定した。結果は表5に示した。比較例1−2と比較例1−3との比較により、再生処理によって分解率の回復は見られなかった。
Comparative Example 1-3
The spent catalyst 4 after the ammonia decomposition reaction of Comparative Example 1-2 was filled in a tubular furnace, and a heat treatment (oxidation treatment (oxidation treatment) was performed at 650 ° C. for 3 hours while circulating air / nitrogen gas at a volume ratio of 10/90. After the regeneration treatment)), reduction treatment was performed at 600 ° C. for 1 hour while circulating 10 vol% hydrogen gas (diluted with nitrogen). Table 5 shows the crystallite size values of nickel after the reduction treatment. Subsequently, ammonia decomposition reaction was performed in the same manner as in Comparative Example 1-1, and the decomposition rate was measured by changing the reaction temperature. The results are shown in Table 5. As a result of comparison between Comparative Example 1-2 and Comparative Example 1-3, no recovery of the decomposition rate was observed by the regeneration process.

製造例4
硝酸ニッケル六水和物(和光純薬工業社製、純度99.9質量%以上)を純水に溶解させた水溶液に、酸化ランタン(信越化学工業社製、純度99.99質量%以上)を加え、80℃に設定したスチームバス上で、蒸発、乾固した。乾固物を、空気雰囲気中、600℃で5時間焼成し、触媒前駆体5−1〜5−6を得た。各触媒前駆体のNi担持量は、触媒前駆体5−1〜5−6の順に、それぞれ10、20、30、40、50、70質量%となるように調整した。得られた触媒前駆体についてX線回折(XRD)測定を行い、結果を図1に示した。図1に示すように、Ni含有量が10質量%から40質量%では、Ni含有量が増加するにしたがい、ペロブスカイト構造であるLaNiO3のピーク強度が増大し、La23及びLa(OH)のピーク強度が低下している。一方、Ni含有量が40質量%から70質量%では、Ni含有量が増加するにしたがい、LaNiO3のピーク強度が低下し、NiOのピーク強度が増大している。
Production Example 4
To an aqueous solution in which nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass or more) is dissolved in pure water, lanthanum oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99% by mass or more) is added. In addition, it was evaporated and dried on a steam bath set at 80 ° C. The dried product was calcined at 600 ° C. for 5 hours in an air atmosphere to obtain catalyst precursors 5-1 to 5-6. The amount of Ni supported on each catalyst precursor was adjusted to be 10, 20, 30, 40, 50, and 70% by mass in the order of catalyst precursors 5-1 to 5-6, respectively. The obtained catalyst precursor was subjected to X-ray diffraction (XRD) measurement, and the result is shown in FIG. As shown in FIG. 1, when the Ni content is 10% by mass to 40% by mass, the peak intensity of LaNiO 3 having a perovskite structure increases as the Ni content increases, and La 2 O 3 and La (OH ) Peak intensity is reduced. On the other hand, when the Ni content is 40 mass% to 70 mass%, the peak intensity of LaNiO 3 decreases and the peak intensity of NiO increases as the Ni content increases.

続いて、前記触媒前駆体5−1〜5−6を、電気炉を用いて、体積比50/50の水素/ヘリウム混合ガスを流通させながら(100ml/min)、600℃で2時間熱処理(還元処理)し、触媒5−1〜5−6を得た。得られた触媒を用いて、純度100体積%のアンモニアガスについてアンモニア分解反応を行った。なお、アンモニアガスの流通量は、30ml/min、SV=6,000lkg-1-1、反応温度は550℃とした。結果を図2に示した。 Subsequently, the catalyst precursors 5-1 to 5-6 were heat-treated at 600 ° C. for 2 hours while circulating a hydrogen / helium mixed gas having a volume ratio of 50/50 (100 ml / min) using an electric furnace. Reduction treatment) to obtain catalysts 5-1 to 5-6. Using the obtained catalyst, an ammonia decomposition reaction was performed on ammonia gas having a purity of 100% by volume. The circulation amount of ammonia gas was 30 ml / min, SV = 6,000 lkg −1 h −1 , and the reaction temperature was 550 ° C. The results are shown in FIG.

図2に示すように、Ni含有量が10質量%から40質量%では、Ni含有量が増加するにしたがい、アンモニア分解率が上昇し、一方、Ni含有量が40質量%から70質量%では、Ni含有量が増加するにしたがい、アンモニア分解率が減少している。   As shown in FIG. 2, when the Ni content is 10% by mass to 40% by mass, the ammonia decomposition rate increases as the Ni content increases. On the other hand, when the Ni content is 40% by mass to 70% by mass, As the Ni content increases, the ammonia decomposition rate decreases.

製造例5
硝酸ニッケル六水和物(和光純薬工業社製、純度99.9質量%以上)を純水に溶解させた水溶液に、酸化ランタン(信越化学工業社製、純度99.99質量%以上)を加え、80℃に設定したスチームバス上で、蒸発、乾固した。なお、触媒前駆体のNi担持量は、40質量%となるように調整した。乾固物を、空気雰囲気中、5時間焼成し、触媒前駆体6−1〜6−5を得た。各触媒前駆体の焼成温度は、触媒前駆体6−1〜6−5の順に、それぞれ400、500、600、700、800℃とした。得られた触媒前駆体についてX線回折(XRD)測定を行い、結果を図3に示した。図3に示すように、焼成温度600、700、800℃では、LaNiO3のピークが確認され、且つ焼成温度が高くなるほど、強度が増大している。一方、焼成温度400、500℃では、LaNiO3のピークが確認されなかった。
Production Example 5
To an aqueous solution in which nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass or more) is dissolved in pure water, lanthanum oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99% by mass or more) is added. In addition, it was evaporated and dried on a steam bath set at 80 ° C. The amount of Ni supported on the catalyst precursor was adjusted to 40% by mass. The dried product was calcined in an air atmosphere for 5 hours to obtain catalyst precursors 6-1 to 6-5. The firing temperature of each catalyst precursor was set to 400, 500, 600, 700, and 800 ° C. in the order of catalyst precursors 6-1 to 6-5. The obtained catalyst precursor was subjected to X-ray diffraction (XRD) measurement, and the results are shown in FIG. As shown in FIG. 3, at the firing temperatures of 600, 700, and 800 ° C., the peak of LaNiO 3 is confirmed, and the strength increases as the firing temperature increases. On the other hand, no LaNiO 3 peak was observed at firing temperatures of 400 and 500 ° C.

続いて、前記触媒前駆体6−1〜6−5を、前記製造例4と同様にして還元処理し、触媒6−1〜6−5を得た。得られた触媒を用いて、前記製造例4と同様にしてアンモニア分解反応を行い、分解率を測定した。結果を図4に示した。図4に示すように、触媒前駆体においてLaNiO3のピークが確認されなかった触媒6−1、6−2はアンモニア分解率が低いのに対して、触媒前駆体においてLaNiO3のピークが確認された触媒6−3ではアンモニア分解率が上昇している。一方、触媒前駆体においてLaNiO3のピークが確認された触媒6−3〜6−5を比較すると、触媒前駆体におけるLaNiO3のピーク強度が増大するほど、触媒性能が低下していることがわかる。このことから、あまり結晶化させすぎても触媒性能が向上しないことがわかる。 Subsequently, the catalyst precursors 6-1 to 6-5 were reduced in the same manner as in Production Example 4 to obtain catalysts 6-1 to 6-5. Using the obtained catalyst, an ammonia decomposition reaction was performed in the same manner as in Production Example 4, and the decomposition rate was measured. The results are shown in FIG. As shown in FIG. 4, the catalysts 6-1 and 6-2, in which the LaNiO 3 peak was not confirmed in the catalyst precursor, had a low ammonia decomposition rate, whereas the LaNiO 3 peak was confirmed in the catalyst precursor. Further, in the catalyst 6-3, the ammonia decomposition rate is increased. On the other hand, when the catalysts 6-3 to 6-5 in which the peak of LaNiO 3 was confirmed in the catalyst precursor were compared, it was found that the catalyst performance decreased as the peak intensity of LaNiO 3 in the catalyst precursor increased. . From this, it can be seen that the catalyst performance is not improved even if it is crystallized too much.

製造例6
硝酸ニッケル六水和物(和光純薬工業社製、純度99.9質量%以上)を純水に溶解させた水溶液に、酸化ランタン(信越化学工業社製、純度99.99質量%以上)を加え、80℃に設定したスチームバス上で、蒸発、乾固した。なお、触媒前駆体のNi担持量は、26.5質量%となるように調整した。乾固物を、空気雰囲気中、5時間焼成し、触媒前駆体7−1〜7−5を得た。各触媒前駆体の焼成温度は、触媒前駆体7−1〜7−5の順に、それぞれ500、600、700、800、900℃とした。得られた触媒前駆体についてX線回折(XRD)測定を行い、結果を図5に示した。図5に示すように、焼成温度600、700、800、900℃では、LaNiO3のピークが確認され、且つ焼成温度が高くなるほど、強度が増大している。一方、焼成温度500℃では、LaNiO3のピークが確認されなかった。
Production Example 6
To an aqueous solution in which nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass or more) is dissolved in pure water, lanthanum oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99% by mass or more) is added. In addition, it was evaporated and dried on a steam bath set at 80 ° C. The amount of Ni supported on the catalyst precursor was adjusted to 26.5% by mass. The dried product was calcined in an air atmosphere for 5 hours to obtain catalyst precursors 7-1 to 7-5. The firing temperature of each catalyst precursor was set to 500, 600, 700, 800, and 900 ° C. in the order of catalyst precursors 7-1 to 7-5. The obtained catalyst precursor was subjected to X-ray diffraction (XRD) measurement, and the results are shown in FIG. As shown in FIG. 5, at the firing temperatures of 600, 700, 800, and 900 ° C., the peak of LaNiO 3 is confirmed, and the strength increases as the firing temperature increases. On the other hand, no LaNiO 3 peak was observed at a firing temperature of 500 ° C.

続いて、前記触媒前駆体7−1〜7−5を、前記製造例4と同様にして還元処理し、触媒7−1〜7−5を得た。得られた触媒を用いて、前記製造例4と同様にしてアンモニア分解反応を行い、分解率を測定した。結果を図7に示した。   Subsequently, the catalyst precursors 7-1 to 7-5 were reduced in the same manner as in Production Example 4 to obtain catalysts 7-1 to 7-5. Using the obtained catalyst, an ammonia decomposition reaction was performed in the same manner as in Production Example 4, and the decomposition rate was measured. The results are shown in FIG.

製造例7
モル比でNi:La=1:1となるように硝酸ニッケル六水和物(和光純薬工業社製、純度99.9質量%以上)と硝酸ランタン六水和物(和光純薬工業社製、純度99.9質量%以上)を秤量して、純水に溶解させた。この水溶液を60℃で1時間攪拌した後、総カチオン量の1.5倍(モル比)のクエン酸水和物を加え、さらに攪拌を続けた。溶液がゲル状になったところで、液温を350℃まで段階的に昇温して、熱分解した。得られた粉末試料を空気中、350℃で24時間熱処理した後、空気雰囲気中で、5時間焼成し、触媒前駆体8−1〜8−5を得た。各触媒前駆体の焼成温度は、触媒前駆体8−1〜8−5の順に、それぞれ400、500、600、700、800℃とした。なお、各触媒前駆体のNi担持量は、26.5質量%である。得られた触媒前駆体についてX線回折(XRD)測定を行い、結果を図6に示した。図6に示すように、焼成温度600、700、800℃では、LaNiO3のピークが確認され、且つ焼成温度が高くなるほど、強度が増大している。一方、焼成温度400、500℃では、LaNiO3のピークが確認されなかった。
Production Example 7
Nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass or more) and lanthanum nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) so that the molar ratio is Ni: La = 1: 1 , A purity of 99.9% by mass or more) was weighed and dissolved in pure water. After stirring this aqueous solution at 60 ° C. for 1 hour, 1.5 times (molar ratio) citric acid hydrate of the total cation amount was added, and stirring was further continued. When the solution turned into a gel, the temperature of the solution was raised stepwise to 350 ° C. and thermally decomposed. The obtained powder sample was heat-treated in air at 350 ° C. for 24 hours and then calcined in an air atmosphere for 5 hours to obtain catalyst precursors 8-1 to 8-5. The firing temperature of each catalyst precursor was set to 400, 500, 600, 700, and 800 ° C. in the order of catalyst precursors 8-1 to 8-5. In addition, the Ni carrying amount of each catalyst precursor is 26.5 mass%. The obtained catalyst precursor was subjected to X-ray diffraction (XRD) measurement, and the results are shown in FIG. As shown in FIG. 6, at the firing temperatures of 600, 700, and 800 ° C., the peak of LaNiO 3 is confirmed, and the strength increases as the firing temperature increases. On the other hand, no LaNiO 3 peak was observed at firing temperatures of 400 and 500 ° C.

続いて、前記触媒前駆体8−1〜8−5を、前記製造例4と同様にして還元処理し、触媒8−1〜8−5を得た。得られた触媒を用いて、前記製造例4と同様にしてアンモニア分解反応を行い、分解率を測定した。結果を図7に示した。   Subsequently, the catalyst precursors 8-1 to 8-5 were reduced in the same manner as in Production Example 4 to obtain catalysts 8-1 to 8-5. Using the obtained catalyst, an ammonia decomposition reaction was performed in the same manner as in Production Example 4, and the decomposition rate was measured. The results are shown in FIG.

また、製造例7における焼成温度600℃の触媒前駆体8−3、この触媒前駆体8−3を600℃で2時間還元処理した触媒8−3、並びに、アンモニア分解反応に使用した後の触媒8−3について、X線回折(XRD)測定を行い、結果を図8に示した。図8より、還元処理を施すことにより、触媒前駆体で見られたLaNiO3のピークが消滅し、Ni、La23及びLa(OH)3のピークが現れている。また、アンモニア分解反応後には、La(OH)3のピークが消滅し、NiとLa23のピークのみとなっている。 Further, the catalyst precursor 8-3 having a calcination temperature of 600 ° C. in Production Example 7, the catalyst 8-3 obtained by reducing the catalyst precursor 8-3 at 600 ° C. for 2 hours, and the catalyst after being used for the ammonia decomposition reaction 8-3 was subjected to X-ray diffraction (XRD) measurement, and the results are shown in FIG. From FIG. 8, by performing the reduction treatment, the LaNiO 3 peak observed in the catalyst precursor disappears, and the peaks of Ni, La 2 O 3 and La (OH) 3 appear. Further, after the ammonia decomposition reaction, the peak of La (OH) 3 disappears and only the peaks of Ni and La 2 O 3 are present.

製造例8
硝酸ニッケル六水和物(和光純薬工業社製、純度99.9質量%以上)を純水に溶解させた水溶液に、酸化ランタン(信越化学工業社製、純度99.99質量%以上)を加え、80℃に設定したスチームバス上で、蒸発、乾固した。なお、触媒前駆体のNi担持量は、26.5質量%となるように調整した。乾固物を、空気雰囲気中、5時間焼成し、触媒前駆体9−1〜9−5を得た。各触媒前駆体の焼成温度は、触媒前駆体9−1〜9−5の順に、それぞれ500、600、700、800、1000℃とした。得られた触媒前駆体についてX線回折(XRD)測定を行い、結果を図9に示した。図9に示すように、焼成温度600、700、800℃では、LaNiO3のピークが確認され、且つ焼成温度が高くなるほど、強度が増大している。一方、焼成温度500℃では、LaNiO3のピークが確認されなかった。また、焼成温度1000℃では、ペロブスカイト構造とは異なる構造(La4Ni310)となっていた。
Production Example 8
To an aqueous solution in which nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass or more) is dissolved in pure water, lanthanum oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99% by mass or more) is added. In addition, it was evaporated and dried on a steam bath set at 80 ° C. The amount of Ni supported on the catalyst precursor was adjusted to 26.5% by mass. The dried product was calcined in an air atmosphere for 5 hours to obtain catalyst precursors 9-1 to 9-5. The firing temperature of each catalyst precursor was set to 500, 600, 700, 800, and 1000 ° C. in the order of catalyst precursors 9-1 to 9-5. The obtained catalyst precursor was subjected to X-ray diffraction (XRD) measurement, and the results are shown in FIG. As shown in FIG. 9, at the firing temperatures of 600, 700, and 800 ° C., the peak of LaNiO 3 is confirmed, and the strength increases as the firing temperature increases. On the other hand, no LaNiO 3 peak was observed at a firing temperature of 500 ° C. Further, at a firing temperature of 1000 ° C., the structure was different from the perovskite structure (La 4 Ni 3 O 10 ).

続いて、前記触媒前駆体9−1〜9−5を、電気炉を用いて、体積比50/50の水素/ヘリウム混合ガスを流通させながら(100ml/min)、600℃で2時間熱処理(還元処理)し、触媒9−1〜9−5を得た。得られた触媒についてX線回折(XRD)測定を行い、結果を図10に示した。また、XRD測定結果よりNi結晶子径を求め、表6に示した。図10より、還元処理を施すことにより、触媒9−2〜9−5では、触媒前駆体で見られたLaNiO3のピークが消滅し、Ni、La23及びLa(OH)3のピークが現れていることがわかる。つまり、還元処理により、LaNiO3が、Ni及びLa23に分解されていることがわかる。なお、La(OH)3のピークが現れているが、これはLa23が空気中の水分と反応して生成したものと考えられる。また、焼成温度500、600、700℃の触媒9−1、9−2、9−3では、Niの結晶子径が17〜18nmであり、ほとんど差は見られなかった。これに対して、焼成温度800、1000℃の触媒9−4、9−5では、Niの結晶子径が22.1nm、27.8nmとなっており、焼成温度700℃以上では、焼成温度の上昇に伴い、結晶子径が増大することがわかる。 Subsequently, the catalyst precursors 9-1 to 9-5 were heat-treated at 600 ° C. for 2 hours while circulating a hydrogen / helium mixed gas having a volume ratio of 50/50 (100 ml / min) using an electric furnace. Reduction treatment) to obtain catalysts 9-1 to 9-5. The obtained catalyst was subjected to X-ray diffraction (XRD) measurement, and the result is shown in FIG. Further, Ni crystallite diameters were determined from the XRD measurement results and are shown in Table 6. From FIG. 10, by performing the reduction treatment, in the catalysts 9-2 to 9-5, the peak of LaNiO 3 seen in the catalyst precursor disappears, and the peaks of Ni, La 2 O 3 and La (OH) 3 are lost. Can be seen. That is, it can be seen that LaNiO 3 is decomposed into Ni and La 2 O 3 by the reduction treatment. In addition, although the peak of La (OH) 3 appears, it is considered that this is generated by reacting La 2 O 3 with moisture in the air. Further, in the catalysts 9-1, 9-2, and 9-3 having the firing temperatures of 500, 600, and 700 ° C., the Ni crystallite diameter was 17 to 18 nm, and almost no difference was observed. On the other hand, in the catalysts 9-4 and 9-5 having a firing temperature of 800 and 1000 ° C., the crystallite diameter of Ni is 22.1 nm and 27.8 nm. It can be seen that the crystallite diameter increases with the increase.

得られた触媒を用いて、純度100体積%のアンモニアガスについてアンモニア分解反応を行った。なお、アンモニアガスの流通量は、30ml/min、SV=6,000lkg-1-1、反応温度は550℃とした。結果を図12に示した。 Using the obtained catalyst, an ammonia decomposition reaction was performed on ammonia gas having a purity of 100% by volume. The circulation amount of ammonia gas was 30 ml / min, SV = 6,000 lkg −1 h −1 , and the reaction temperature was 550 ° C. The results are shown in FIG.

製造例9
硝酸ニッケル六水和物(和光純薬工業社製、純度99.9質量%以上)を純水に溶解させた水溶液に、酸化ランタン(信越化学工業社製、純度99.99質量%以上)を加え、80℃に設定したスチームバス上で、蒸発、乾固した。なお、触媒前駆体のNi担持量は、40質量%となるように調整した。乾固物を、空気雰囲気中、5時間焼成し、触媒前駆体10−1〜10−5を得た。各触媒前駆体の焼成温度は、触媒前駆体10−1〜10−5の順に、それぞれ400、500、600、700、800℃とした。
Production Example 9
To an aqueous solution in which nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass or more) is dissolved in pure water, lanthanum oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.99% by mass or more) is added. In addition, it was evaporated and dried on a steam bath set at 80 ° C. The amount of Ni supported on the catalyst precursor was adjusted to 40% by mass. The dried product was calcined in an air atmosphere for 5 hours to obtain catalyst precursors 10-1 to 10-5. The firing temperature of each catalyst precursor was 400, 500, 600, 700, and 800 ° C. in the order of catalyst precursors 10-1 to 10-5.

続いて、前記触媒前駆体10−1〜10−5を、電気炉を用いて、体積比50/50の水素/ヘリウム混合ガスを流通させながら(100ml/min)、600℃で2時間熱処理(還元処理)し、触媒10−1〜10−5を得た。得られた触媒についてX線回折(XRD)測定を行い、結果を図11に示した。また、XRD測定結果よりNi結晶子径を求め、表6に示した。また得られた触媒を用いて、純度100体積%のアンモニアガスについてアンモニア分解反応を行った。なお、アンモニアガスの流通量は、30ml/min、SV=6,000lkg-1-1、反応温度は550℃とした。結果を図12に示した。 Subsequently, the catalyst precursors 10-1 to 10-5 were heat-treated at 600 ° C. for 2 hours while circulating a hydrogen / helium mixed gas having a volume ratio of 50/50 (100 ml / min) using an electric furnace. Reduction treatment) and catalysts 10-1 to 10-5 were obtained. The obtained catalyst was measured by X-ray diffraction (XRD), and the result is shown in FIG. Further, Ni crystallite diameters were determined from the XRD measurement results and are shown in Table 6. Moreover, ammonia decomposition reaction was performed on ammonia gas having a purity of 100% by volume using the obtained catalyst. The circulation amount of ammonia gas was 30 ml / min, SV = 6,000 lkg −1 h −1 , and the reaction temperature was 550 ° C. The results are shown in FIG.

本発明の自己分散型アンモニア触媒を使用すれば、アンモニアから水素を効率よく得ることができる。本発明は、水素製造技術に関して広く応用することができるものである。   If the self-dispersing ammonia catalyst of the present invention is used, hydrogen can be efficiently obtained from ammonia. The present invention can be widely applied to hydrogen production technology.

Claims (4)

希土類、アルカリ金属及びアルカリ土類金属よりなる群から選ばれる少なくとも一種の元素(A成分)の酸化物と、Co、Ni及びFeよりなる群から選ばれる少なくとも一種の元素(B成分)の金属微粒子とを含有する触媒であって、前記A成分と前記B成分とで形成されるペロブスカイト構造を有する酸化物を、還元処理して得られたアンモニア分解用触媒を用いてアンモニアを分解する分解工程;
アンモニア分解反応後のアンモニア分解用触媒を酸化処理する酸化工程;及び、
アンモニア分解用触媒の酸化処理物を、還元処理する還元工程とを含むことを特徴とするアンモニアの分解方法。
An oxide of at least one element (component A) selected from the group consisting of rare earths, alkali metals and alkaline earth metals, and metal fine particles of at least one element (component B) selected from the group consisting of Co, Ni and Fe A decomposition step of decomposing ammonia using an ammonia decomposition catalyst obtained by reducing an oxide having a perovskite structure formed by the A component and the B component;
An oxidation step of oxidizing the ammonia decomposition catalyst after the ammonia decomposition reaction; and
A method for decomposing ammonia, comprising: a reduction step of reducing an oxidation-treated product of an ammonia decomposition catalyst.
請求項1に記載のアンモニアの分解方法において、
前記酸化処理は、酸化性雰囲気中における550℃以上の温度での熱処理であり、
前記還元処理は、還元性雰囲気中における300℃以上の温度での熱処理である
アンモニアの分解方法。
The method for decomposing ammonia according to claim 1,
The oxidation treatment is a heat treatment at a temperature of 550 ° C. or higher in an oxidizing atmosphere.
The method for decomposing ammonia, wherein the reduction treatment is a heat treatment at a temperature of 300 ° C. or higher in a reducing atmosphere.
希土類、アルカリ金属及びアルカリ土類金属よりなる群から選ばれる少なくとも一種の元素(A成分)の酸化物と、Co、Ni及びFeよりなる群から選ばれる少なくとも一種の元素(B成分)の金属微粒子とを含有する触媒であって、前記A成分と前記B成分とで形成されるペロブスカイト構造を有する酸化物を、還元処理して得られたアンモニア分解用触媒の再生方法であって、
アンモニアの分解反応に用いた使用済み触媒を、酸化処理した後、さらに還元処理することを特徴とするアンモニア分解用触媒の再生方法。
An oxide of at least one element (component A) selected from the group consisting of rare earths, alkali metals and alkaline earth metals, and metal fine particles of at least one element (component B) selected from the group consisting of Co, Ni and Fe A method for regenerating an ammonia decomposition catalyst obtained by reduction treatment of an oxide having a perovskite structure formed by the A component and the B component,
A method for regenerating a catalyst for decomposing ammonia, wherein the used catalyst used in the decomposition reaction of ammonia is subjected to oxidation treatment and further subjected to reduction treatment.
請求項に記載のアンモニア分解用触媒の再生方法において、
前記酸化処理は、酸化性雰囲気中における550℃以上の温度での熱処理であり、
前記還元処理は、還元性雰囲気中における300℃以上の温度での熱処理である
アンモニア分解用触媒の再生方法。
The method for regenerating an ammonia decomposition catalyst according to claim 3 ,
The oxidation treatment is a heat treatment at a temperature of 550 ° C. or higher in an oxidizing atmosphere.
The reduction treatment is a heat treatment at a temperature of 300 ° C. or higher in a reducing atmosphere. A method for regenerating an ammonia decomposition catalyst.
JP2011129582A 2011-06-09 2011-06-09 Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition Active JP5761710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129582A JP5761710B2 (en) 2011-06-09 2011-06-09 Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129582A JP5761710B2 (en) 2011-06-09 2011-06-09 Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition

Publications (2)

Publication Number Publication Date
JP2012254419A JP2012254419A (en) 2012-12-27
JP5761710B2 true JP5761710B2 (en) 2015-08-12

Family

ID=47526515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129582A Active JP5761710B2 (en) 2011-06-09 2011-06-09 Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition

Country Status (1)

Country Link
JP (1) JP5761710B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478784B2 (en) 2020-02-04 2022-10-25 Saudi Arabian Oil Company Catalyst compositions for ammonia decomposition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395150B2 (en) * 2014-09-16 2018-09-26 国立大学法人京都大学 Method for producing hydrogen and catalyst for producing hydrogen
JP6381131B2 (en) * 2015-02-27 2018-08-29 国立研究開発法人産業技術総合研究所 Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP6482022B2 (en) * 2015-04-16 2019-03-13 国立大学法人京都大学 Method for producing hydrogen and catalyst for producing hydrogen
JP6883289B2 (en) * 2017-06-29 2021-06-09 国立大学法人京都大学 Hydrogen production method and catalyst for hydrogen production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841411B2 (en) * 1989-01-27 1998-12-24 日本鋼管株式会社 How to get hydrogen from ammonia
JP3302402B2 (en) * 1992-05-27 2002-07-15 関西熱化学株式会社 Ammonia decomposition catalyst
JPH05330802A (en) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd Production of ammonia-cracked gas and production of hydrogen
JP5547936B2 (en) * 2008-09-17 2014-07-16 株式会社日本触媒 Ammonia decomposition catalyst, production method thereof, and ammonia treatment method
JP5763890B2 (en) * 2009-03-17 2015-08-12 株式会社日本触媒 Hydrogen production catalyst and hydrogen production method using the same
JP5624343B2 (en) * 2009-03-17 2014-11-12 株式会社日本触媒 Hydrogen production method
JP5483705B2 (en) * 2009-03-17 2014-05-07 株式会社日本触媒 Hydrogen production catalyst and hydrogen production method using the same
KR101689356B1 (en) * 2009-03-17 2016-12-23 가부시기가이샤 닛뽕쇼꾸바이 Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
JP5690158B2 (en) * 2011-02-03 2015-03-25 Agcセイミケミカル株式会社 Ammonia decomposition catalyst and ammonia decomposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478784B2 (en) 2020-02-04 2022-10-25 Saudi Arabian Oil Company Catalyst compositions for ammonia decomposition
US11806700B2 (en) 2020-02-04 2023-11-07 Saudi Arabian Oil Company Catalyst compositions for ammonia decomposition

Also Published As

Publication number Publication date
JP2012254419A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP4041106B2 (en) Composition based on cerium oxide and zirconium oxide and having high specific surface area and high oxygen storage capacity, and method for producing the same
JP5972678B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP7352487B2 (en) Ammonia decomposition catalyst
JP5483705B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP5761710B2 (en) Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition
JP6830543B2 (en) Manganese-doped nickel-methaneation catalyst
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
AU2015293227B2 (en) Methanation reaction catalyst, method for producing methanation reaction catalyst and method for producing methane
JPWO2021192871A5 (en)
WO2006134787A1 (en) Exhaust gas purifying catalyst
JP2019011212A (en) Method for producing hydrogen and hydrogen production catalyst
JP2010110697A (en) Ammonia decomposition catalyst
JPWO2014057839A1 (en) Method for producing composite oxide and composite oxide catalyst
JP4768475B2 (en) Composite oxide and filter for PM combustion catalyst
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
WO2021192872A1 (en) Reducing agent, and gas production method
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP2013203609A (en) Oxygen storable ceramic material, method for producing the same, and catalyst
JP7279203B2 (en) Heat-resistant ruthenium composites and their use as NOx storage and reduction catalysts
JP2020032331A (en) Methanation catalyst, manufacturing method therefor, and manufacturing method of methane
JP6322218B2 (en) Oxygen storage material and method for producing the same
JP5760981B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5800719B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP7545362B2 (en) Hydrogen Generation Catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R150 Certificate of patent or registration of utility model

Ref document number: 5761710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250