Nothing Special   »   [go: up one dir, main page]

JP4525909B2 - Water gas shift reaction catalyst, method for producing the same, and method for producing water gas - Google Patents

Water gas shift reaction catalyst, method for producing the same, and method for producing water gas Download PDF

Info

Publication number
JP4525909B2
JP4525909B2 JP2004313320A JP2004313320A JP4525909B2 JP 4525909 B2 JP4525909 B2 JP 4525909B2 JP 2004313320 A JP2004313320 A JP 2004313320A JP 2004313320 A JP2004313320 A JP 2004313320A JP 4525909 B2 JP4525909 B2 JP 4525909B2
Authority
JP
Japan
Prior art keywords
catalyst
aluminum
water gas
calcium
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004313320A
Other languages
Japanese (ja)
Other versions
JP2006122793A (en
Inventor
学武 山本
斉也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2004313320A priority Critical patent/JP4525909B2/en
Publication of JP2006122793A publication Critical patent/JP2006122793A/en
Application granted granted Critical
Publication of JP4525909B2 publication Critical patent/JP4525909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、高い酸素貯蔵放出能を有する触媒であって、水性ガスシフト反応及び排ガス浄化に好適に用いることができる触媒に関するものである。   The present invention relates to a catalyst having a high oxygen storage / release capability and can be suitably used for water gas shift reaction and exhaust gas purification.

水性ガスシフト反応(CO+HO→CO+H)は、従来より、コークス、天然ガスなどの炭化水素及び水蒸気から得られる水性ガスに含まれるCOとHOの比率を変える、あるいはHの製造等のため、化学工業プロセスにおいて利用されている大変重要な反応である。 The water gas shift reaction (CO + H 2 O → CO 2 + H 2 ) has conventionally changed the ratio of CO and H 2 O contained in water gas obtained from hydrocarbons such as coke and natural gas and water vapor, or H 2 It is a very important reaction that is used in chemical industry processes for manufacturing and the like.

また、近年注目を浴びている燃料電池の燃料となる水素を、都市ガス等を改質して得る場合、副生したCOが燃料電池電極を被毒して発電効率が低下するため、この副生したCOを低減させる反応として注目を集めている。こうした水性ガスシフト反応の触媒は、一般に、低温においては銅−亜鉛系や白金/アルミナ系が、高温においては、鉄−クロム系が使用される。   In addition, when hydrogen, which is the fuel of fuel cells that has been attracting attention in recent years, is obtained by reforming city gas or the like, the by-produced CO poisons the fuel cell electrode, reducing power generation efficiency. It is attracting attention as a reaction to reduce the generated CO. As a catalyst for such a water gas shift reaction, a copper-zinc system or a platinum / alumina system is generally used at a low temperature, and an iron-chromium system is used at a high temperature.

しかし、銅−亜鉛系触媒は、耐熱性に乏しく、高温では使用できない上に短時間で失活してしまう問題点がある。白金/アルミナ系触媒は耐熱性は高いが高い活性を発現させるためには白金の担持量を多くする必要があるため触媒自体が高価になってしまう問題点がある。鉄−クロム系触媒は耐熱性は高いが活性が低いという問題点がある。   However, the copper-zinc catalyst has a problem that it has poor heat resistance and cannot be used at high temperatures and deactivates in a short time. A platinum / alumina-based catalyst has high heat resistance, but in order to develop high activity, it is necessary to increase the amount of platinum supported, so that the catalyst itself becomes expensive. The iron-chromium catalyst has a problem of high heat resistance but low activity.

また、環境意識の向上から排ガス浄化触媒においても更なる特性の改善が求められている。自動車用エンジン等の内燃機関からの排気ガスは、白金、ロジウム、パラジウム等の触媒成分が担持された三元触媒等によって浄化されている。   In addition, further improvement of characteristics is demanded in exhaust gas purification catalysts due to the improvement of environmental awareness. Exhaust gas from an internal combustion engine such as an automobile engine is purified by a three-way catalyst or the like on which a catalyst component such as platinum, rhodium or palladium is supported.

適度な酸素貯蔵放出能(Oxygen Strage Capacity:以下、「OSC」という。)を有する酸化物混合体が強く要求されている。   There is a strong demand for an oxide mixture having an appropriate oxygen storage capacity (Oxygen Storage Capacity: hereinafter referred to as “OSC”).

触媒としてさらに高活性のものが得られれば、一定条件下の化学工業プロセスのみならず、変動条件下における種々の利用が期待され、燃料電池に使用される燃料の改質、即ち、電極触媒の触媒毒となるCOを燃料電池に有用な燃料の水素に転化させる利用が期待される。   If a catalyst with higher activity can be obtained, it is expected to be used not only in chemical industrial processes under certain conditions but also under variable conditions. It is expected that CO, which is a catalyst poison, is converted to hydrogen, a fuel useful for fuel cells.

一方、排気ガス浄化用触媒は、活性は高いがコストが高いため、より安価で高い排気ガス浄化性能を有する触媒が要請されている。   On the other hand, since the exhaust gas purification catalyst has high activity but high cost, a catalyst that is cheaper and has high exhaust gas purification performance is required.

本発明の酸素貯蔵放出が可能な少なくともアルカリ土類金属及びアルミニウムからなる酸化物混合体は、アルカリ土類金属アルミネートを主成分として含んでおり、本発明の水性ガスシフト及び排ガス浄化用触媒としては、Ca12Al1433(以下、「C12A7」とする。)およびSr12Al1433主成分とするものが知られており、酸素ラジカルを持ち強い酸化力を有することが記載されている(特許文献1〜2、非特許文献1)。 The oxide mixture comprising at least an alkaline earth metal and aluminum capable of storing and releasing oxygen according to the present invention contains an alkaline earth metal aluminate as a main component, and the water gas shift and exhaust gas purification catalyst of the present invention , Ca 12 Al 14 O 33 (hereinafter referred to as “C12A7”) and Sr 12 Al 14 O 33 as main components are known and described as having oxygen radicals and strong oxidizing power. (Patent Literatures 1 and 2, Non-Patent Literature 1).

また、酸素ラジカルによって排ガス中に含まれる炭素微粒子が効率よく除去できることが記載されている(特許文献3)。   Further, it is described that carbon fine particles contained in exhaust gas can be efficiently removed by oxygen radicals (Patent Document 3).

特開2003−128415号公報JP 2003-128415 A 特開2003−238149号公報JP 2003-238149 A 特開2003−190787号公報JP 2003-190787 A 細野秀雄 外3名、「ナノポーラス結晶12CaO・7Al2O3を舞台とした活性酸素のエンジニアリングとその応用」、セラミックス、2002年、第37巻、第12号、p.968―971Hideo Hosono, 3 others, “Engineering of active oxygen and its application in nanoporous crystals 12CaO · 7Al2O3 and its application”, Ceramics, 2002, Vol. 37, No. 12, p. 968-971

前記特許文献1〜3及び非特許文献1記載の技術は、高温で焼成することによって触媒を得ているために比表面積が小さく、活性点が少ないことが推察される。   The techniques described in Patent Documents 1 to 3 and Non-Patent Document 1 are presumed to have a small specific surface area and few active points because the catalyst is obtained by firing at a high temperature.

そこで、本発明は、酸素貯蔵放出能が高い触媒を得ることを技術的課題とする。   Accordingly, the present invention has a technical problem to obtain a catalyst having a high oxygen storage / release capability.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

本発明者らは、鋭意検討を重ねたところ、特定の酸化物を使用することにより前記課題を解消できるとの知見を得て本発明を完成するに至った。   As a result of intensive studies, the present inventors have obtained the knowledge that the above problem can be solved by using a specific oxide, and have completed the present invention.

即ち、本発明は、カルシウム及びアルミニウムを主成分とし、前記アルミニウムに対して0.001〜10mol%の鉄を含有する複合酸化物からなる触媒であって、該触媒の500℃での酸素貯蔵放出能が20〜200μmol/gであり、BET比表面積値が20m/g以上であることを特徴とする触媒である(本発明1)。 That is, the present invention is a catalyst comprising a complex oxide containing calcium and aluminum as main components and 0.001 to 10 mol% of iron with respect to the aluminum, and the oxygen storage and release of the catalyst at 500 ° C. It is a catalyst characterized by having a performance of 20 to 200 μmol / g and a BET specific surface area value of 20 m 2 / g or more (Invention 1).

また、本発明は、カルシウム及びアルミニウムを主成分とする複合酸化物からなる触媒であり、該触媒にAu,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれた1種または2種以上の金属元素を前記触媒に対して重量比で0.001〜10wt%担持しており、該触媒の500℃での酸素貯蔵放出能が20〜200μmol/gであり、BET比表面積値が20m/g以上であることを特徴とする触媒である(本発明2)。 Further, the present invention is a catalyst composed of a composite oxide mainly composed of calcium and aluminum, and the catalyst is selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru. One or two or more selected metal elements are supported in a weight ratio of 0.001 to 10 wt% with respect to the catalyst, and the oxygen storage / release capacity at 500 ° C. of the catalyst is 20 to 200 μmol / g. And a BET specific surface area value of 20 m 2 / g or more (Invention 2).

また、本発明は、カルシウム及びアルミニウムを主成分とし、前記アルミニウムに対して0.001〜10mol%の鉄を含有する複合酸化物からなる触媒であって該触媒にAu,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれた1種または2種以上の金属元素を前記触媒に対して重量比で0.001〜10wt%担持しており、該触媒の500℃での酸素貯蔵放出能が20〜200μmol/gであり、BET比表面積値が20m/g以上であることを特徴とする触媒である(本発明3)。 Further, the present invention is a catalyst comprising a composite oxide containing calcium and aluminum as main components and containing 0.001 to 10 mol% of iron with respect to the aluminum, and the catalyst includes Au, Ag, Cu, Pt, One or two or more metal elements selected from Pd, Ni, Ir, Rh, Co, Os, and Ru are supported at a weight ratio of 0.001 to 10 wt% with respect to the catalyst, and the catalyst Is a catalyst characterized by having an oxygen storage / release capacity at 500 ° C. of 20 to 200 μmol / g and a BET specific surface area value of 20 m 2 / g or more (Invention 3).

また、本発明は、本発明1乃至3のいずれかの触媒を構成するカルシウムとアルミニウムとの割合がモル比で0.1〜0.9の範囲であることを特徴とする触媒である(本発明4)。   Further, the present invention is a catalyst characterized in that the ratio of calcium and aluminum constituting the catalyst of any one of the present inventions 1 to 3 is in the range of 0.1 to 0.9 in terms of molar ratio (this book Invention 4).

また、本発明は、アルカリ性水溶液と、カルシウム塩原料、アルミニウム塩原料及び鉄塩原料とを混合し、pH値が7.0〜14.0の範囲にて300℃以下の温度範囲で熟成して層状複水酸化物粒子を得て、濾別、水洗した後、400〜1000℃の温度範囲で焼成することを特徴とする本発明1又は4の触媒の製造法である(本発明5)。   In the present invention, an alkaline aqueous solution, a calcium salt raw material, an aluminum salt raw material, and an iron salt raw material are mixed and aged in a temperature range of 300 ° C. or lower within a pH value range of 7.0 to 14.0. After obtaining layered double hydroxide particles, filtering and washing with water, firing in a temperature range of 400 to 1000 ° C. is a method for producing a catalyst of the present invention 1 or 4 (present invention 5).

また、本発明は、アルカリ性水溶液と、カルシウム塩原料及びアルミニウム塩原料とを混合し、pH値が7.0〜14.0の範囲にて300℃以下の温度範囲で熟成して層状複水酸化物粒子を得て、濾別、水洗した後、400〜1000℃の温度範囲で焼成し、次いで、Au,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruから選ばれる少なくとも一種の元素を担持し、次いで、加熱することを特徴とする本発明2又は4の触媒の製造法である(本発明6)。   In the present invention, an alkaline aqueous solution is mixed with a calcium salt raw material and an aluminum salt raw material, and ripened in a temperature range of 300 ° C. or less within a pH value range of 7.0 to 14.0 to form a layered double hydroxide. After obtaining product particles, filtering, washing with water, firing in a temperature range of 400 to 1000 ° C., and then selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, Ru This is a method for producing a catalyst of the present invention 2 or 4, wherein at least one element is supported and then heated (present invention 6).

また、本発明は、アルカリ性水溶液と、カルシウム塩原料、アルミニウム塩原料及びAu,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruから選ばれる少なくとも一種の元素の原料塩とを混合し、pH値が7.0〜14.0の範囲にて300℃以下の温度範囲で熟成して層状複水酸化物粒子を得て、濾別、水洗した後、400〜1000℃の温度範囲で焼成し、次いで、加熱することを特徴とする本発明2又は4の触媒の製造法である(本発明7)。   The present invention also provides an alkaline aqueous solution, a calcium salt raw material, an aluminum salt raw material, and a raw material salt of at least one element selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru. The mixture was aged in a temperature range of 300 ° C. or lower within a pH value range of 7.0 to 14.0 to obtain layered double hydroxide particles, filtered and washed with water, and then 400 to 1000 ° C. It is a manufacturing method of the catalyst of the present invention 2 or 4 characterized by calcining in a temperature range and then heating (present invention 7).

また、本発明は、本発明1乃至4のいずれかの触媒からなる水性ガスシフト反応用触媒である(本発明8)。   Further, the present invention is a water gas shift reaction catalyst comprising the catalyst according to any one of the present inventions 1 to 4 (present invention 8).

また、本発明は、本発明8の水性ガスシフト反応用触媒、水及び一酸化炭素を、50〜800℃の温度範囲で反応させることによって、水素と二酸化炭素とを製造することを特徴とする水性ガスの製造方法である(本発明9)。   Moreover, this invention manufactures hydrogen and a carbon dioxide by making the catalyst for water gas shift reactions of this invention 8, water, and carbon monoxide react in the temperature range of 50-800 degreeC, It is characterized by the above-mentioned. This is a gas production method (Invention 9).

また、本発明は、本発明1乃至4のいずれかの触媒からなる排ガス浄化用触媒である(本発明10)。   Further, the present invention is an exhaust gas purifying catalyst comprising the catalyst according to any one of the present inventions 1 to 4 (present invention 10).

また、本発明は、本発明10の排ガス浄化用触媒と排ガスを、150℃〜1000℃の温度範囲で接触させ、排ガスを浄化する方法である(本発明11)。   The present invention is also a method for purifying exhaust gas by contacting the exhaust gas purifying catalyst of the present invention 10 and exhaust gas in a temperature range of 150 ° C. to 1000 ° C. (Invention 11).

本発明に係る触媒は、酸素貯蔵放出能が高いので、水性ガスシフト反応及び排ガス浄化をより効率よく行えるという優れた効果を奏する。   Since the catalyst according to the present invention has a high oxygen storage / release capacity, the water gas shift reaction and the exhaust gas purification can be performed more efficiently.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係る触媒の500℃の酸素貯蔵放出能(OSC)は20〜200μmol/gである。酸素貯蔵放出能が20μmol/g未満の場合には、酸素貯蔵放出能が低いため触媒として機能が十分ではない。好ましくは40〜200μmol/gである。   The oxygen storage / release capacity (OSC) at 500 ° C. of the catalyst according to the present invention is 20 to 200 μmol / g. When the oxygen storage / release capacity is less than 20 μmol / g, the oxygen storage / release capacity is low, so that the function as a catalyst is not sufficient. Preferably it is 40-200 micromol / g.

本発明に係る触媒のBET比表面積値は20m/g以上である。比表面積が増大すると活性点の数が増加し、より高い活性が得られる。好ましくは25m/g以上であり、より好ましくは30m/g以上である。上限は150m/g程度である。さらに貴金属を担持した場合には、比表面積が増大すると担持した金属が高分散しやすくなり、より高い触媒活性が得られる。 The catalyst according to the present invention has a BET specific surface area value of 20 m 2 / g or more. As the specific surface area increases, the number of active sites increases and higher activity is obtained. Preferably it is 25 m < 2 > / g or more, More preferably, it is 30 m < 2 > / g or more. The upper limit is about 150 m 2 / g. Furthermore, when a noble metal is supported, the supported metal becomes highly dispersed easily when the specific surface area is increased, and higher catalytic activity can be obtained.

本発明に係る触媒は、カルシウム及びアルミニウムからなる複合酸化物からなる。カルシウムとアルミニウムとのモル比(Ca/Al)は0.1〜0.9の範囲であることが好ましく、より好ましくは0.3〜0.9の範囲である。カルシウムとアルミニウムの比率が小さくなるほど焼成時に細孔を持ちやすいアルミニウムの比率が増加し、比表面積は高くなる傾向にあるが、カルシウムとアルミニウムの比率が前記範囲を超えると、カルシウムの効果が減少してしまう。   The catalyst according to the present invention is composed of a complex oxide composed of calcium and aluminum. The molar ratio of calcium to aluminum (Ca / Al) is preferably in the range of 0.1 to 0.9, and more preferably in the range of 0.3 to 0.9. As the ratio between calcium and aluminum decreases, the ratio of aluminum that tends to have pores increases during firing and the specific surface area tends to increase.However, if the ratio between calcium and aluminum exceeds the above range, the effect of calcium decreases. End up.

本発明に係る触媒の構成相は、カルシウムアルミネートを主成分とすることが好ましく、水性ガスシフト用触媒及び排ガス浄化用触媒として用いる場合は、C12A7を主成分とするものが好ましい。   The constituent phase of the catalyst according to the present invention is preferably composed mainly of calcium aluminate, and when used as a water gas shift catalyst and an exhaust gas purification catalyst, those composed mainly of C12A7 are preferred.

また、本発明に係る触媒は、構成元素のアルミニウムを鉄で置換してもよく、単に、鉄を担持した触媒よりも鉄が高分散しやすいため、より高い活性が得られる。鉄の置換量はアルミニウムに対して0.001〜10mol%が好ましく、より好ましくは0.1〜5mol%である。   In addition, the catalyst according to the present invention may be obtained by replacing the constituent element aluminum with iron. Since the iron is more easily dispersed than the catalyst supporting iron, higher activity is obtained. The substitution amount of iron is preferably 0.001 to 10 mol%, more preferably 0.1 to 5 mol% with respect to aluminum.

さらに、本発明に係る触媒は、Au,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれた1種または2種以上の金属元素を触媒に対する重量比で0.001〜10wt%担持することが好ましい。また、金属成分の存在形態は、特に限定されるものではない。   Furthermore, the catalyst according to the present invention is a weight ratio of one or more metal elements selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru to the catalyst. It is preferable to support 0.001 to 10 wt%. Moreover, the presence form of a metal component is not specifically limited.

次に、本発明に係る触媒の製造法について述べる。   Next, a method for producing the catalyst according to the present invention will be described.

本発明においては、アルカリ性水溶液と、カルシウム塩及びアルミニウム塩原料とを混合し、pH値が7.0〜14.0の範囲、300℃以下の温度範囲で熟成して層状複水酸化物粒子(ハイドロタルサイト粒子)を得て、濾別、水洗した後、400〜1000℃の温度範囲で焼成する。   In the present invention, an alkaline aqueous solution and calcium salt and aluminum salt raw materials are mixed and aged in the temperature range of pH 7.0 to 14.0 and 300 ° C. or lower to form layered double hydroxide particles ( Hydrotalcite particles) are obtained, filtered, washed with water, and then fired in a temperature range of 400 to 1000 ° C.

本発明におけるアルカリ性水溶液としては、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液及び水酸化カリウム水溶液等が好ましい。   As alkaline aqueous solution in this invention, sodium hydroxide aqueous solution, sodium carbonate aqueous solution, potassium hydroxide aqueous solution, etc. are preferable.

本発明におけるカルシウム塩としては、硫酸塩、塩化物、硝酸塩などの各種金属塩を用いることができる。   As the calcium salt in the present invention, various metal salts such as sulfate, chloride and nitrate can be used.

本発明におけるアルミニウム塩原料としては水酸化アルミニウム、硫酸アルミニウム塩原料、塩化アルミニウム塩原料及び硝酸アルミニウム塩原料などであり、前記アルミニウム塩原料を溶解した水溶液を使用することができる。   Examples of the aluminum salt raw material in the present invention include aluminum hydroxide, aluminum sulfate salt raw material, aluminum chloride salt raw material, and aluminum nitrate salt raw material, and an aqueous solution in which the aluminum salt raw material is dissolved can be used.

カルシウム塩とアルミニウム塩原料との混合割合は、カルシウムとアルミニウムとのモル比が0.1〜0.9の範囲になる割合であり、より好ましくは0.3〜0.9である。   The mixing ratio of the calcium salt and the aluminum salt raw material is such that the molar ratio of calcium to aluminum is in the range of 0.1 to 0.9, more preferably 0.3 to 0.9.

本発明における熟成反応中のpH値は7.0〜14であり、好ましくは10〜13である。pH値が7.0未満の場合、板面径が大きく、適度な厚みを有した層状複水酸化物粒子が得られない。   The pH value during the ripening reaction in the present invention is 7.0 to 14, preferably 10 to 13. When the pH value is less than 7.0, layered double hydroxide particles having a large plate surface diameter and an appropriate thickness cannot be obtained.

本発明における熟成反応中の温度は300℃以下であり、好ましくは20〜105℃である。300℃を越える場合は、超高圧に耐え得る装置が必要となるため好ましくない。   The temperature during the ripening reaction in the present invention is 300 ° C. or less, preferably 20 to 105 ° C. When the temperature exceeds 300 ° C., an apparatus capable of withstanding ultrahigh pressure is required, which is not preferable.

本発明における層状複水酸化物粒子の組成は、カルシウムとアルミニウムとのモル比が0.1〜0.9の範囲である。   The composition of the layered double hydroxide particles in the present invention is such that the molar ratio of calcium to aluminum is in the range of 0.1 to 0.9.

なお、本発明においては、所定のカルシウムとアルミニウムとのモル比を有する触媒を得るために、前記製造法において、過剰量のアルミニウムを用いることによって、所定の組成の層状複水酸化物粒子とアルミニウム化合物(アルミナ、ベーマイトなど)を混合させた後、加熱焼成する方法、又は、層状複水酸化物粒子を製造した後、アルミニウム化合物(アルミナ、ベーマイトなど)を添加、混合し、加熱処理する方法などを用いてもよい。   In the present invention, in order to obtain a catalyst having a predetermined molar ratio of calcium to aluminum, an excess amount of aluminum is used in the above production method, whereby layered double hydroxide particles having a predetermined composition and aluminum are used. A method in which a compound (alumina, boehmite, etc.) is mixed and then heated and fired, or a layered double hydroxide particle is produced, and then an aluminum compound (alumina, boehmite, etc.) is added, mixed, and heat treated. May be used.

また、得られた層状複水酸化物粒子を水洗することによって物質中のカルシウムを溶かし、カルシウムとアルミニウムの組成を変化させてもよく、より均一にカルシウムとアルミニウムが混合した状態になる。   Moreover, the calcium in a substance may be dissolved by washing the obtained layered double hydroxide particles with water, and the composition of calcium and aluminum may be changed, resulting in a more uniform mixture of calcium and aluminum.

本発明における焼成温度が400℃未満の場合には、高い酸素貯蔵放出能を有する触媒が合成できず、1000℃より高い温度では、比表面積が小さくなり、触媒性能が低下するので好ましくない。好ましくは600〜800℃の範囲である。   When the calcination temperature in the present invention is less than 400 ° C., a catalyst having a high oxygen storage / release capability cannot be synthesized, and a temperature higher than 1000 ° C. is not preferable because the specific surface area becomes small and the catalyst performance decreases. Preferably it is the range of 600-800 degreeC.

本発明における焼成のときの雰囲気は、大気中が好ましい。   The atmosphere during firing in the present invention is preferably in the air.

なお、本発明においては、前記焼成の後、50〜800℃の温度範囲で還元処理を行ってもよい。   In the present invention, after the firing, reduction treatment may be performed in a temperature range of 50 to 800 ° C.

本発明に係る鉄を含有する触媒は、前記製造法において、カルシウム塩及びアルミニウム塩原料とともに鉄塩原料を添加・混合すればよい。   The iron-containing catalyst according to the present invention may be prepared by adding and mixing an iron salt raw material together with a calcium salt and an aluminum salt raw material in the production method.

鉄塩原料としては、硫酸第一鉄、硫酸第二鉄塩原料化第一鉄塩原料化第二鉄などである。鉄塩原料の添加割合は、アルミニウムに対して0.001〜10mol%である。   Examples of the iron salt raw material include ferrous sulfate, ferric sulfate raw material ferrous salt raw material ferric iron and the like. The addition ratio of the iron salt raw material is 0.001 to 10 mol% with respect to aluminum.

本発明に係るAu,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruを担持した触媒は、前記製造法において加熱処理後の触媒に対して通常の方法で担持させればよく、例えば、硝酸ニッケル水溶液に該触媒を浸し、乾燥させてもよい。また、この後、加熱還元処理を行っても良い。   The catalyst supporting Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, Ru according to the present invention is supported on the catalyst after the heat treatment in the above production method by a usual method. For example, the catalyst may be immersed in an aqueous nickel nitrate solution and dried. Thereafter, a heat reduction treatment may be performed.

また、本発明においては、カルシウム塩及びアルミニウム塩原料、必要により鉄塩原料と、Au,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruから選ばれる少なくとも一種の元素の塩原料とを、アルカリ性水溶液と混合することによって、Au,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruから選ばれる少なくとも一種の元素を含有させてもよく、Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruから選ばれる少なくとも一種の元素をより高分散の状態で担持することができる。   Further, in the present invention, calcium salt and aluminum salt raw materials, and optionally iron salt raw materials, and at least one element selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, Ru The salt raw material may be mixed with an alkaline aqueous solution to contain at least one element selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru. At least one element selected from Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru can be supported in a highly dispersed state.

次に、本発明に係る触媒を用いた水性ガスの製造法について述べる。   Next, a method for producing water gas using the catalyst according to the present invention will be described.

本発明に係る触媒の存在下で、水及び一酸化炭素を50℃〜800℃の温度範囲で反応させることで、水素と二酸化炭素が得られる。触媒の存在割合は水と一酸化炭素を合わせたガス空間速度で100/h以上が好ましい。   Hydrogen and carbon dioxide are obtained by reacting water and carbon monoxide in the temperature range of 50 ° C. to 800 ° C. in the presence of the catalyst according to the present invention. The presence ratio of the catalyst is preferably 100 / h or more in terms of gas space velocity in which water and carbon monoxide are combined.

次に、本発明に係る触媒を用いた排ガスの浄化方法について述べる。   Next, the exhaust gas purification method using the catalyst according to the present invention will be described.

本発明に係る触媒を、150℃〜1000℃の温度範囲でHC、CO等を含む排ガスと接触させて排ガスを浄化することができる。触媒の存在割合は全ガス空間速度で100/h以上が好ましい。   The catalyst according to the present invention can be purified by bringing it into contact with exhaust gas containing HC, CO, etc. in the temperature range of 150 ° C. to 1000 ° C. The catalyst content is preferably 100 / h or more in terms of the total gas space velocity.

<作用>
本発明において、最も重要な点は、カルシウム及びアルミニウムの複合酸化物を主成分とする触媒は、高い酸素貯蔵放出能を有する点である。
<Action>
In the present invention, the most important point is that a catalyst mainly composed of a complex oxide of calcium and aluminum has a high oxygen storage / release capability.

本発明においては、あらかじめ、カルシウムとアルミニウムとからなる層状複水酸化物を製造した後、加熱焼成してカルシウム及びアルミニウムからなる複合酸化物を主成分とする触媒としているので、構成元素がより均一に分散しており、焼成温度を低くしても、高い酸素貯蔵放出能を有するカルシウム及びアルミニウムからなる複合酸化物を得ることができ、且つ、層状複水酸化物に由来して高い比表面積を有する触媒を得ることができ、結果、活性点をより多くすることができる。従って、より高い活性を持つ触媒が得られる。   In the present invention, a layered double hydroxide composed of calcium and aluminum is produced in advance and then heated and fired to form a catalyst mainly composed of a composite oxide composed of calcium and aluminum, so that the constituent elements are more uniform. Even if the calcination temperature is lowered, a composite oxide composed of calcium and aluminum having a high oxygen storage and release ability can be obtained, and a high specific surface area is derived from the layered double hydroxide. The resulting catalyst can be obtained, and as a result, more active sites can be obtained. Therefore, a catalyst having higher activity can be obtained.

また、本発明に係る鉄を含有する触媒は、鉄もまたカルシウムやアルミニウムと同じように高分散しているため、より高い活性が得られる。   Moreover, since the iron-containing catalyst according to the present invention is highly dispersed in the same manner as calcium and aluminum, higher activity can be obtained.

また、本発明に係るAu,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruを担持した触媒は、より高い活性を有するものである。これら元素を担持する場合、特に低温域での触媒活性を高めるのに有用である。本発明に係る触媒が高い酸素貯蔵放出能を有するとともに、高い比表面積を有するので、前記Au等の金属が高分散しやすく、十分な反応が進行するためと推定している。   Further, the catalyst supporting Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, Ru according to the present invention has higher activity. When these elements are supported, it is useful for enhancing catalytic activity particularly in a low temperature range. Since the catalyst according to the present invention has a high oxygen storage / release capacity and a high specific surface area, it is presumed that the metal such as Au tends to be highly dispersed and a sufficient reaction proceeds.

また、本発明に係る触媒は、前述した通り高い活性を有するので、HCやCO等の酸化反応や排ガス浄化に対しても高い活性を示す。   In addition, since the catalyst according to the present invention has high activity as described above, it also exhibits high activity for oxidation reactions such as HC and CO and exhaust gas purification.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

触媒の酸素貯蔵放出能は、パルス式反応装置により、500℃にてパルス一回当たり0.5ccの2%CO/Arガスを用いて、パルス法によって測定し、還元によって消失した酸素量を測定し、引き続き、500℃にて20%O/Nガスを用いて、パルス法によって測定し、酸化によって増加した酸素量を測定した。前記測定を連続して2回行い、消失した酸素量及び増加した酸素量の各酸素量について測定値を平均して、酸化還元時に移動した酸素量としてOSCを算出した。 The oxygen storage / release capacity of the catalyst is measured by the pulse method using a pulse reactor at 500 ° C. with 0.5 cc of 2% CO / Ar gas per pulse, and the amount of oxygen lost by reduction is measured. Subsequently, measurement was performed by a pulse method using 20% O 2 / N 2 gas at 500 ° C., and the amount of oxygen increased by oxidation was measured. The measurement was performed twice in succession, the measured values were averaged for each of the lost oxygen amount and the increased oxygen amount, and the OSC was calculated as the amount of oxygen transferred during oxidation-reduction.

触媒を構成するカルシウム、アルミニウム、鉄、Au,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruの含有量は、該触媒を酸で溶解し、「プラズマ発光分光分析装置 SPS4000(セイコー電子工業(株))」で測定して求めた。   The content of calcium, aluminum, iron, Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru constituting the catalyst is determined by dissolving the catalyst with an acid. SPS4000 (Seiko Electronics Co., Ltd.) "

BET比表面積値は、窒素によるBET法により測定した。   The BET specific surface area value was measured by the BET method using nitrogen.

相の同定は、X線回折測定で行った。X線回折装置は「X線回折装置RINT−2500(理学電機(株)製)」(管球:Cu、管電圧:40kV、管電流:300mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.020°、走査速度:2°/min、発散スリット:1°、散乱スリット:1°、受光スリット:0.50mm)を使用した。   The phase was identified by X-ray diffraction measurement. The X-ray diffractometer is “X-ray diffractometer RINT-2500 (manufactured by Rigaku Corporation)” (tube: Cu, tube voltage: 40 kV, tube current: 300 mA, goniometer: wide angle goniometer, sampling width: 0. 020 °, scanning speed: 2 ° / min, divergence slit: 1 °, scattering slit: 1 °, light receiving slit: 0.50 mm).

<実施例1>
苛性ソーダ水溶液(濃度18.55mol/l)500mlを40℃に加熱して撹拌しておき、塩化アルミニウム六水和物 65.01g及び塩化カルシウム二水和物33.92gを水500mlに溶解した水溶液を添加し、40℃に保持したまま4時間熟成した。得られた沈殿物を濾過、洗浄して、結晶構造を同定したところ、Ca−Al系のハイドロタルサイトであった。次いで、700℃で焼成した。
得られた粉末をジニトロジアンミン白金硝酸水溶液に浸漬して、Ptを担持し、600℃で2時間焼成した後、600℃で水素還元を行った。白金の担持量は触媒全体に対し0.5wt%であった。構成相はC12A7であった。
<Example 1>
A 500 ml aqueous solution of caustic soda (concentration 18.55 mol / l) was heated to 40 ° C. and stirred, and an aqueous solution prepared by dissolving 65.01 g of aluminum chloride hexahydrate and 33.92 g of calcium chloride dihydrate in 500 ml of water. The mixture was added and aged for 4 hours while maintaining at 40 ° C. When the obtained precipitate was filtered and washed to identify the crystal structure, it was Ca-Al hydrotalcite. Subsequently, it baked at 700 degreeC.
The obtained powder was immersed in a dinitrodiammine platinum nitric acid aqueous solution to carry Pt, calcined at 600 ° C. for 2 hours, and then subjected to hydrogen reduction at 600 ° C. The amount of platinum supported was 0.5 wt% with respect to the entire catalyst. The constituent phase was C12A7.

<実施例2>
カルシウムとアルミニウムの比率を0.49に変化させた以外は、実施例1と同様にして製造した。
<Example 2>
This was manufactured in the same manner as in Example 1 except that the ratio of calcium to aluminum was changed to 0.49.

<実施例3>
塩化カルシウム二水和物、塩化アルミニウム六水和物とともに第二塩化鉄を用いて実施例1と同様に合成した。鉄/(アルミニウム+鉄)比は0.02であり、白金の担持量は触媒全体に対し0.5wt%であった。構成相はC12A7であった。
<Example 3>
It was synthesized in the same manner as in Example 1 using ferric chloride together with calcium chloride dihydrate and aluminum chloride hexahydrate. The iron / (aluminum + iron) ratio was 0.02, and the amount of platinum supported was 0.5 wt% with respect to the total catalyst. The constituent phase was C12A7.

<実施例4>
塩化カルシウム二水和物、塩化アルミニウム六水和物とともに第二塩化鉄を用いて実施例1と同様に合成した。鉄/(アルミニウム+鉄)比は0.04であり、白金の担持量は触媒全体に対し0.5wt%であった。構成相はC12A7であった。
<Example 4>
It was synthesized in the same manner as in Example 1 using ferric chloride together with calcium chloride dihydrate and aluminum chloride hexahydrate. The iron / (aluminum + iron) ratio was 0.04, and the amount of platinum supported was 0.5 wt% with respect to the total catalyst. The constituent phase was C12A7.

<実施例5>
Ptの担持量を3wt%とした以外は、実施例1と同様にして製造した。
<Example 5>
It was manufactured in the same manner as in Example 1 except that the amount of Pt supported was 3 wt%.

<実施例6>
Ptの担持量を5wt%とした以外は、実施例1と同様にして製造した。
<Example 6>
It was manufactured in the same manner as in Example 1 except that the amount of Pt supported was 5 wt%.

<実施例7>
Ptの変わりにPdを用いた以外は、実施例1と同様にして製造した。
<Example 7>
Manufactured in the same manner as in Example 1 except that Pd was used instead of Pt.

<実施例8>
Ptの変わりにRuを用いた以外は、実施例1と同様にして製造した。
<Example 8>
Manufactured in the same manner as in Example 1 except that Ru was used instead of Pt.

<実施例9>
Ptの変わりにRhを用いた以外は、実施例1と同様にして製造した。
<Example 9>
It was manufactured in the same manner as in Example 1 except that Rh was used instead of Pt.

<実施例10>
Ptの変わりにCuを用いた以外は、実施例1と同様にして製造した。
<Example 10>
Manufactured in the same manner as in Example 1 except that Cu was used instead of Pt.

<実施例11>
Ptの変わりにAuを用いた以外は、実施例1と同様にして製造した。
<Example 11>
Manufactured in the same manner as in Example 1 except that Au was used instead of Pt.

<実施例12>
Ptの変わりにNiを用いた以外は、実施例1と同様にして製造した。
<Example 12>
Manufactured in the same manner as in Example 1 except that Ni was used instead of Pt.

<実施例13>
塩化カルシウム二水和物、塩化アルミニウム六水和物とともに第二塩化鉄を用いて実施例1と同様に合成した。鉄/(アルミニウム+鉄)比は0.02であり、白金の担持量は触媒全体に対し0wt%であった。構成相はC12A7であった。
<Example 13>
It was synthesized in the same manner as in Example 1 using ferric chloride together with calcium chloride dihydrate and aluminum chloride hexahydrate. The iron / (aluminum + iron) ratio was 0.02, and the supported amount of platinum was 0 wt% with respect to the total catalyst. The constituent phase was C12A7.

<実施例14>
鉄/(アルミニウム+鉄)比を0.04とした以外は、前記実施例13と同様にして製造した。
<Example 14>
It was manufactured in the same manner as in Example 13 except that the iron / (aluminum + iron) ratio was 0.04.

<比較例1>
水酸化アルミニウム 42.12g及び炭酸カルシウム48.00gに純水を50ml加えてボールミルで粉砕し、乾燥させ、1350℃で焼成した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法によりPtを担持し、600℃で2時間焼成した後、600℃で水素還元を行った。白金の担持量は0.5wt%とした。
<Comparative Example 1>
50 ml of pure water was added to 42.12 g of aluminum hydroxide and 48.00 g of calcium carbonate, pulverized with a ball mill, dried, and fired at 1350 ° C. A dinitrodiammine platinum nitric acid aqueous solution was used for this, Pt was supported by an impregnation method, calcined at 600 ° C. for 2 hours, and then subjected to hydrogen reduction at 600 ° C. The supported amount of platinum was 0.5 wt%.

<比較例2>
比較例1と同様に合成し、Ptの担持量を3wt%とした。
<Comparative example 2>
Synthesis was performed in the same manner as in Comparative Example 1, and the amount of Pt supported was 3 wt%.

<比較例3>
γ−Alにジニトロジアンミン白金硝酸水溶液を用いて、含浸法によりPtを担持し、600℃で焼成した後、600℃で水素還元を行った。白金の担持量は0.5wt%とした。
<Comparative Example 3>
Pt was supported by γ-Al 2 O 3 using a dinitrodiammine platinum nitrate aqueous solution by an impregnation method, calcined at 600 ° C., and then hydrogen reduced at 600 ° C. The supported amount of platinum was 0.5 wt%.

<比較例4>
実施例1と同様に合成し、カルシウムとアルミニウムの比率を0.05とした。
<Comparative example 4>
Synthesis was performed in the same manner as in Example 1, and the ratio of calcium to aluminum was set to 0.05.

<比較例5>
実施例1と同様に合成し、カルシウムとアルミニウムの比率を2.00とした。
<Comparative Example 5>
Synthesis was performed in the same manner as in Example 1, and the ratio of calcium to aluminum was 2.00.

<比較例6>
比較例1と同様に合成し、カルシウムとアルミニウムの比率を0.69とした。
<Comparative Example 6>
Synthesis was performed in the same manner as in Comparative Example 1, and the ratio of calcium to aluminum was 0.69.

<比較例7>
実施例1と同様に合成し、Ptの担持量を12wt%とした。
<Comparative Example 7>
Synthesis was performed in the same manner as in Example 1, and the supported amount of Pt was 12 wt%.

<比較例8>
実施例14と同様に合成し、カルシウムとアルミニウムの比率を1.07とし、鉄/(アルミニウム+鉄)比は0.2とした。
<Comparative Example 8>
In the same manner as in Example 14, the ratio of calcium and aluminum was 1.07, and the iron / (aluminum + iron) ratio was 0.2.

<比較例9>
γ−Alを700℃で焼成した後、600℃で水素還元を行った。
<Comparative Example 9>
After baking γ-Al 2 O 3 at 700 ° C., hydrogen reduction was performed at 600 ° C.

<比較例10>
実施例13と同様に合成し、カルシウムとアルミニウムの比率を0.91とした。700℃で焼成し、鉄を含浸法により鉄を担持し、600℃で水素還元を行った。鉄の担持量を、鉄/(アルミニウム+鉄)比で0.05とした。
<Comparative Example 10>
Synthesis was performed in the same manner as in Example 13, and the ratio of calcium to aluminum was set to 0.91. It baked at 700 degreeC, iron was carry | supported by the impregnation method, and hydrogen reduction was performed at 600 degreeC. The iron loading was 0.05 in terms of iron / (aluminum + iron) ratio.

<CO転化率の測定>
実施例1〜12、比較例1〜7
得られた各触媒を、0.5から1mmに整粒した。
触媒の成形体を電気炉で加熱し、500℃でCOが33体積%、水蒸気が67体積%のガスを空間速度(GHSV)が100000h−1で流通させた。このときの出口ガス組成をガスクロマトグラフで測定した。
各触媒の諸特性及びCO転化率を表1に示す。
<Measurement of CO conversion>
Examples 1-12, Comparative Examples 1-7
Each of the obtained catalysts was sized to 0.5 to 1 mm.
The catalyst compact was heated in an electric furnace, and a gas containing 33% by volume of CO and 67% by volume of water vapor was passed at 500 ° C. at a space velocity (GHSV) of 100,000 h −1 . The outlet gas composition at this time was measured with a gas chromatograph.
Table 1 shows the characteristics and CO conversion of each catalyst.

実施例13〜14、比較例8〜10
触媒の成形体を電気炉で加熱し、500℃でCOが33体積%、水蒸気が67体積%のガスを空間速度(GHSV)が20000h−1で流通させた。このときの出口ガス組成をガスクロマトグラフで測定した。
各触媒の諸特性及びCO転化率を表2に示す。
Examples 13-14, Comparative Examples 8-10
The catalyst compact was heated in an electric furnace, and a gas having a volume of CO of 33% by volume and water vapor of 67% by volume was circulated at a space velocity (GHSV) of 20000 h −1 at 500 ° C. The outlet gas composition at this time was measured with a gas chromatograph.
Table 2 shows the characteristics and CO conversion of each catalyst.

なお、CO転化率が100%にならないのは、反応平衡に依存するからである。   The reason why the CO conversion rate does not reach 100% is that it depends on the reaction equilibrium.

Figure 0004525909
Figure 0004525909

Figure 0004525909
Figure 0004525909

表1より、本発明に係る触媒は、高い比表面積を有するともに、酸素貯蔵放出能も高く、高い活性を示すものである。   From Table 1, the catalyst according to the present invention has high specific surface area, high oxygen storage / release capacity, and high activity.

また、本発明に係る触媒は、HCやCO等の酸化反応や排ガス浄化に対しても高い活性を示す。   In addition, the catalyst according to the present invention exhibits high activity for oxidation reactions such as HC and CO and exhaust gas purification.

本発明のカルシウム及びアルミニウム等からなる触媒は酸素貯蔵放出能が高いので、従来のものと比べ水性ガスシフト反応及び排ガス浄化をより効率よく行えるという優れた効果を奏する。
Since the catalyst made of calcium and aluminum according to the present invention has a high oxygen storage and release ability, it has an excellent effect that water gas shift reaction and exhaust gas purification can be performed more efficiently than conventional catalysts.

Claims (8)

カルシウム及びアルミニウムを主成分とし、前記アルミニウムに対して0.001〜10mol%の鉄を含有する複合酸化物からなる触媒であって、該触媒の500℃での酸素貯蔵放出能が20〜200μmol/gであり、BET比表面積値が20m/g以上であることを特徴とする水性ガスシフト反応用触媒。 A catalyst comprising a composite oxide mainly composed of calcium and aluminum and containing 0.001 to 10 mol% of iron with respect to the aluminum, wherein the catalyst has an oxygen storage / release capacity at 500 ° C of 20 to 200 µmol / A catalyst for water gas shift reaction, wherein the catalyst has a BET specific surface area value of 20 m 2 / g or more. カルシウム及びアルミニウムを主成分とする複合酸化物からなる触媒であり、該触媒にAu,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれた1種または2種以上の金属元素を前記触媒に対して重量比で0.001〜10wt%担持しており、該触媒の500℃での酸素貯蔵放出能が20〜200μmol/gであり、BET比表面積値が20m/g以上であることを特徴とする水性ガスシフト反応用触媒。 A catalyst composed of a composite oxide mainly composed of calcium and aluminum, wherein the catalyst includes one selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru; Two or more kinds of metal elements are supported by 0.001 to 10 wt% by weight with respect to the catalyst, the oxygen storage / release capacity at 500 ° C. of the catalyst is 20 to 200 μmol / g, and the BET specific surface area value Is 20 m 2 / g or more, a catalyst for water gas shift reaction . カルシウム及びアルミニウムを主成分とし、前記アルミニウムに対して0.001〜10mol%の鉄を含有する複合酸化物からなる触媒であって該触媒にAu,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれた1種または2種以上の金属元素を前記触媒に対して重量比で0.001〜10wt%担持しており、該触媒の500℃での酸素貯蔵放出能が20〜200μmol/gであり、BET比表面積値が20m/g以上であることを特徴とする水性ガスシフト反応用触媒。 A catalyst composed of a composite oxide mainly composed of calcium and aluminum and containing 0.001 to 10 mol% of iron with respect to the aluminum, the catalyst including Au, Ag, Cu, Pt, Pd, Ni, Ir, One or more metal elements selected from Rh, Co, Os, and Ru are supported by 0.001 to 10 wt% in a weight ratio with respect to the catalyst, and the oxygen at 500 ° C. of the catalyst is supported. A catalyst for water gas shift reaction having a storage / release capacity of 20 to 200 μmol / g and a BET specific surface area value of 20 m 2 / g or more. 請求項1乃至3のいずれかに記載の触媒を構成するカルシウムとアルミニウムとの割合がモル比で0.1〜0.9の範囲であることを特徴とする水性ガスシフト反応用触媒。 A catalyst for water gas shift reaction , wherein the ratio of calcium and aluminum constituting the catalyst according to any one of claims 1 to 3 is in a range of 0.1 to 0.9 in terms of molar ratio. アルカリ性水溶液と、カルシウム塩原料、アルミニウム塩原料及び鉄塩原料とを混合し、pH値が7.0〜14.0の範囲にて300℃以下の温度範囲で熟成して層状複水酸化物粒子を得て、濾別、水洗した後、400〜1000℃の温度範囲で焼成することを特徴とする請求項1又は4に記載の触媒の水性ガスシフト反応用製造法。 Layered double hydroxide particles obtained by mixing an alkaline aqueous solution with a calcium salt raw material, an aluminum salt raw material, and an iron salt raw material, and aging in a temperature range of 300 ° C. or lower within a pH value range of 7.0 to 14.0. The catalyst is produced by filtration and washing with water, and then calcined in a temperature range of 400 to 1000 ° C. The method for producing a catalyst for water gas shift reaction according to claim 1 or 4. アルカリ性水溶液と、カルシウム塩原料及びアルミニウム塩原料とを混合し、pH値が7.0〜14.0の範囲にて300℃以下の温度範囲で熟成して層状複水酸化物粒子を得て、濾別、水洗した後、400〜1000℃の温度範囲で焼成し、次いで、Au,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruから選ばれる少なくとも一種の元素を担持し、次いで、加熱することを特徴とする請求項2又は4記載の水性ガスシフト反応用触媒の製造法。 An alkaline aqueous solution, a calcium salt raw material, and an aluminum salt raw material are mixed and aged in a temperature range of 300 ° C. or lower within a pH value range of 7.0 to 14.0 to obtain layered double hydroxide particles, After filtration, washing with water, firing in a temperature range of 400 to 1000 ° C., and then supporting at least one element selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru The method for producing a catalyst for water gas shift reaction according to claim 2 or 4, wherein heating is then performed. アルカリ性水溶液と、カルシウム塩原料、アルミニウム塩原料及びAu,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruから選ばれる少なくとも一種の元素の原料塩とを混合し、pH値が7.0〜14.0の範囲にて300℃以下の温度範囲で熟成して層状複水酸化物粒子を得て、濾別、水洗した後、400〜1000℃の温度範囲で焼成し、次いで、加熱することを特徴とする請求項2又は4記載の水性ガスシフト反応用触媒の製造法。 An alkaline aqueous solution is mixed with a calcium salt raw material, an aluminum salt raw material, and a raw material salt of at least one element selected from Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os, and Ru, and has a pH value. Is aged in the temperature range of 7.0 to 14.0 in the temperature range of 300 ° C. or less to obtain layered double hydroxide particles, filtered, washed with water, and then fired in the temperature range of 400 to 1000 ° C., Next, the method for producing a catalyst for water gas shift reaction according to claim 2 or 4, wherein heating is performed. 請求項1乃至4のいずれかに記載の水性ガスシフト反応用触媒、水及び一酸化炭素を、50〜800℃の温度範囲で反応させることによって、水素と二酸化炭素とを製造することを特徴とする水性ガスの製造方法。

Hydrogen and carbon dioxide are produced by reacting the water gas shift reaction catalyst according to any one of claims 1 to 4 , water and carbon monoxide in a temperature range of 50 to 800 ° C. A method for producing water gas.

JP2004313320A 2004-10-28 2004-10-28 Water gas shift reaction catalyst, method for producing the same, and method for producing water gas Expired - Lifetime JP4525909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313320A JP4525909B2 (en) 2004-10-28 2004-10-28 Water gas shift reaction catalyst, method for producing the same, and method for producing water gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313320A JP4525909B2 (en) 2004-10-28 2004-10-28 Water gas shift reaction catalyst, method for producing the same, and method for producing water gas

Publications (2)

Publication Number Publication Date
JP2006122793A JP2006122793A (en) 2006-05-18
JP4525909B2 true JP4525909B2 (en) 2010-08-18

Family

ID=36718030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313320A Expired - Lifetime JP4525909B2 (en) 2004-10-28 2004-10-28 Water gas shift reaction catalyst, method for producing the same, and method for producing water gas

Country Status (1)

Country Link
JP (1) JP4525909B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071716A1 (en) 2013-11-14 2015-05-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas control catalyst

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992773B2 (en) 2007-03-20 2012-08-08 株式会社デンソー Catalyst material
JP2009028694A (en) * 2007-07-30 2009-02-12 Mitsubishi Heavy Ind Ltd Co shift catalyst, its manufacturing method, fuel reforming apparatus and fuel cell system
TW201026242A (en) * 2008-11-06 2010-07-16 Japan Tobacco Inc Smoking article and manufacturing method for the same, and method for manufacturing carbon monoxide reducer
WO2011118043A1 (en) * 2010-03-26 2011-09-29 日本たばこ産業株式会社 Fuel element of non-combustion smoking article and method for producing same
JP6941454B2 (en) * 2017-03-03 2021-09-29 太平洋マテリアル株式会社 Method for producing catalyst carrier
JP7269562B2 (en) * 2019-03-07 2023-05-09 太平洋マテリアル株式会社 Catalyst carrier and catalyst manufacturing method
JP7442935B2 (en) * 2020-03-31 2024-03-05 太平洋マテリアル株式会社 Catalyst manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282689A (en) * 2001-01-19 2002-10-02 Toyota Motor Corp Catalyst carrier and catalyst, and method for producing them
JP2003128415A (en) * 2001-10-18 2003-05-08 Japan Science & Technology Corp 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME
JP2003190787A (en) * 2001-12-28 2003-07-08 Japan Science & Technology Corp Catalyst for purifying engine exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282689A (en) * 2001-01-19 2002-10-02 Toyota Motor Corp Catalyst carrier and catalyst, and method for producing them
JP2003128415A (en) * 2001-10-18 2003-05-08 Japan Science & Technology Corp 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME
JP2003190787A (en) * 2001-12-28 2003-07-08 Japan Science & Technology Corp Catalyst for purifying engine exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071716A1 (en) 2013-11-14 2015-05-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas control catalyst
US9937487B2 (en) 2013-11-14 2018-04-10 Toyota Jidosha Kabushiki Kaisha Exhaust gas control catalyst

Also Published As

Publication number Publication date
JP2006122793A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP5666777B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same
JP3623517B2 (en) Composition based on cerium oxide and zirconium oxide and having high specific surface area and high oxygen storage capacity, and method for producing the same
WO2010107065A1 (en) Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
JP2008540318A (en) Perovskite catalysts and catalyst supports based on alumina
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
JP5483705B2 (en) Hydrogen production catalyst and hydrogen production method using the same
WO2018098064A1 (en) Catalyst for high temperature steam reforming
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP6830543B2 (en) Manganese-doped nickel-methaneation catalyst
JP4864688B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP4768475B2 (en) Composite oxide and filter for PM combustion catalyst
JP2009241036A (en) Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JP2020032331A (en) Methanation catalyst, manufacturing method therefor, and manufacturing method of methane
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
WO2017130937A1 (en) Heterogeneous-system catalyst structure and manufacturing method therefor
JP2008230937A (en) Compound oxide and compound oxide carrier, and method for producing catalyst for exhaust gas clarification using them
KR20170027674A (en) High Efficiency Ni-based Catalyst for Steam Methane Reforming and use thereof
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP2003245554A (en) Hydrogen generating catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4525909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350