JP5635065B2 - 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 - Google Patents
二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 Download PDFInfo
- Publication number
- JP5635065B2 JP5635065B2 JP2012279596A JP2012279596A JP5635065B2 JP 5635065 B2 JP5635065 B2 JP 5635065B2 JP 2012279596 A JP2012279596 A JP 2012279596A JP 2012279596 A JP2012279596 A JP 2012279596A JP 5635065 B2 JP5635065 B2 JP 5635065B2
- Authority
- JP
- Japan
- Prior art keywords
- carbonate
- aqueous electrolyte
- group
- halogen atom
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明の非水系電解液は、常用の非水系電解液と同じく、電解質及びこれを溶解する非水系溶媒を含有する。
本発明の非水系電解液に用いる電解質に制限はなく、目的とする非水系電解液二次電池に電解質として用いられる公知のものを任意に採用して混合することができる。本発明の非水系電解液を非水系電解液二次電池に用いる場合には、電解質はリチウム塩が好ましい。
電解質の具体例としては、LiPF 6 、LiBF 4 等の無機リチウム塩;
LiN(CF3SO2)2、
LiN(C2F5SO2)2、
LiN(CF3SO2)(C4F9SO2)、
LiC(CF3SO2)3、
LiPF4(CF3)2、
LiPF4(C2F5)2、
LiPF4(CF3SO2)2、
LiPF4(C2F5SO2)2、
LiBF3(CF3)、
LiBF3(C2F5)、
LiBF2(CF3)2、
LiBF2(C2F5)2、
LiBF2(CF3SO2)2、
LiBF2(C2F5SO2)2等の含フッ素有機リチウム塩;
LiN(CF3SO2)2、
LiN(C2F5SO2)2、
LiN(CF3SO2)(C4F9SO2)、
LiC(CF3SO2)3、
LiPF4(CF3)2、
LiPF4(C2F5)2、
LiPF4(CF3SO2)2、
LiPF4(C2F5SO2)2、
LiBF2(CF3)2、
LiBF2(C2F5)2、
LiBF2(CF3SO2)2、
LiBF2(C2F5SO2)2等の含フッ素有機リチウム塩;
リチウムトリス(オキサラト)フォスフェート、
リチウムジフルオロオキサラトボレート等の含ジカルボン酸錯体リチウム塩;
NaPF6、
NaBF4、
CF3SO3Na等のナトリウム塩又はカリウム塩;
等が挙げられる。
本発明における「ハロゲン原子を有するカーボネート」としては、ハロゲン原子を有するものであれば、その他に特に制限はなく、任意のカーボネートを用いることができる。「ハロゲン原子を有するカーボネート」の好ましいものとして、ハロゲン原子を有する環状カーボネート又はハロゲン原子を有する鎖状カーボネートが挙げられる。
本発明における「ハロゲン原子を有するカーボネート」である環状カーボネートについて、以下に説明する。環状カーボネートの、環を構成する原子の数は通常4以上、好ましくは5以上であり、上限は10以下が好ましく、特に好ましくは8以下である。これを逸脱した場合、化合物の化学的な安定性、あるいは工業的な入手性に問題が生じる場合がある。これら環状カーボネートの環を構成する原子の数が5から8である場合の具体的な例としては、エチレンカーボネート、1,3−プロパンジオールカーボネート、1,4−ブタンジオールカーボネート、1,5−ペンタンジオールカーボネートがそれぞれ挙げられる。また、環状カーボネートは環内に炭素−炭素不飽和結合を有していてもよい。具体的な例としては、ビニレンカーボネート、cis−2−ブテン−1,4−ジオールカーボネート等が挙げられる。
アルキル基の具体例としては、例えば、
メチル基、
エチル基、
1−プロピル基、
1−メチルエチル基、
1−ブチル基、
1−メチルプロピル基、
2−メチルプロピル基、
1,1−ジメチルエチル基等が挙げられる。
シクロペンチル基、
2−メチルシクロペンチル基、
3−メチルシクロペンチル基、
2,2−ジメチルシクロペンチル基、
2,3−ジメチルシクロペンチル基、
2,4−ジメチルシクロペンチル基、
2,5−ジメチルシクロペンチル基、
3,3−ジメチルシクロペンチル基、
3,4−ジメチルシクロペンチル基、
2−エチルシクロペンチル基、
3−エチルシクロペンチル基、
シクロヘキシル基、
2−メチルシクロヘキシル基、
3−メチルシクロヘキシル基、
4−メチルシクロヘキシル基、
2,2−ジメチルシクロヘキシル基、
2,3−ジメチルシクロヘキシル基、
2,4−ジメチルシクロヘキシル基、
2,5−ジメチルシクロヘキシル基、
2,6−ジメチルシクロヘキシル基、
3,4−ジメチルシクロヘキシル基、
3,5−ジメチルシクロヘキシル基、
2−エチルシクロヘキシル基、
3−エチルシクロヘキシル基、
4−エチルシクロヘキシル基、
ビシクロ[3,2,1]オクタ−1−イル基、
ビシクロ[3,2,1]オクタ−2−イル基等が挙げられる。
ビニル基、
1−プロペン−1−イル基、
1−プロペン−2−イル基、
アリル基、
クロチル基、
エチニル基、
プロパルギル基、
フェニル基、
2−メチルフェニル基、
3−メチルフェニル基、
4−メチルフェニル基、
2,3−ジメチルフェニル基、
キシリル基、
フェニルメチル基、
1−フェニルエチル基、
2−フェニルエチル基、
ジフェニルメチル基、
トリフェニルメチル基、
シンナミル基等が挙げられる。
モノフルオロメチル基、
ジフルオロメチル基、
トリフルオロメチル基、
1−フルオロエチル基、
2−フルオロエチル基、
1,1−ジフルオロエチル基、
1,2−ジフルオロエチル基、
2,2−ジフルオロエチル基、
2,2,2−トリフルオロエチル基、
パーフルオロエチル基、
モノクロロメチル基、
ジクロロメチル基、
トリクロロメチル基、
1−クロロエチル基、
2−クロロエチル基、
1,1−ジクロロエチル基、
1,2−ジクロロエチル基、
2,2−ジクロロエチル基、
2,2,2−トリクロロエチル基、
パークロロエチル基等が挙げられる。
1−フルオロシクロペンチル基、
2−フルオロシクロペンチル基、
3−フルオロシクロペンチル基、
ジフルオロシクロペンチル基、
トリフルオロシクロペンチル基、
1−フルオロシクロヘキシル基、
2−フルオロシクロヘキシル基、
3−フルオロシクロヘキシル基、
4−フルオロシクロヘキシル基、
ジフルオロシクロヘキシル基、
トリフルオロシクロヘキシル基、
1−クロロシクロペンチル基、
2−クロロシクロペンチル基、
3−クロロシクロペンチル基、
ジクロロシクロペンチル基、
トリクロロシクロペンチル基、
1−クロロシクロヘキシル基、
2−クロロシクロヘキシル基、
3−クロロシクロヘキシル基、
4−クロロシクロヘキシル基、
ジクロロシクロヘキシル基、
トリクロロシクロヘキシル基等が挙げられる。
1−フルオロビニル基、
2−フルオロビニル基、
1,2−ジフルオロビニル基、
パーフルオロビニル基、
1−フルオロアリル基、
2−フルオロアリル基、
3−フルオロアリル基、
2−フルオロフェニル基、
3−フルオロフェニル基、
4−フルオロフェニル基、
2,3−ジフルオロフェニル基、
2,4−ジフルオロフェニル基、
2,5−ジフルオロフェニル基、
2,6−ジフルオロフェニル基、
3,4−ジフルオロフェニル基、
3,5−ジフルオロフェニル基、
1−フルオロ−1−フェニルメチル基、
1,1−ジフルオロ−1−フェニルメチル基、
(2−フルオロフェニル)メチル基、
(3−フルオロフェニル)メチル基、
(4−フルオロフェニル)メチル基、
(2−フルオロフェニル)フルオロメチル基、
1−フルオロ−2−フェニルエチル基
1,1−ジフルオロ−2−フェニルエチル基
1,2−フルオロ−2−フェニルエチル基
2−(2−フルオロフェニル)エチル基
2−(3−フルオロフェニル)エチル基
2−(4−フルオロフェニル)エチル基
1−フルオロ−2−(2−フルオロフェニル)エチル基
1−フルオロ−2−(2−フルオロフェニル)エチル基
2−クロロビニル基、
1,2−ジクロロビニル基、
パークロロビニル基、
1−クロロアリル基、
2−クロロアリル基、
3−クロロアリル基、
2−クロロフェニル基、
3−クロロフェニル基、
4−クロロフェニル基、
2,3−ジクロロフェニル基、
2,4−ジクロロフェニル基、
2,5−ジクロロフェニル基、
2,6−ジクロロフェニル基、
3,4−ジクロロフェニル基、
1, 5−ジクロロフェニル基、
1−クロロ−1−フェニルメチル基、
1,1−ジクロロ−1−フェニルメチル基、
(2−クロロフェニル)メチル基、
(3−クロロフェニル)メチル基、
(4−クロロフェニル)メチル基、
(2−クロロフェニル)クロロメチル基、
1−クロロ−2−フェニルエチル基
1,1−ジクロロ−2−フェニルエチル基
1,2−クロロ−2−フェニルエチル基
2−(2−クロロフェニル)エチル基
2−(3−クロロフェニル)エチル基
2−(4−クロロフェニル)エチル基
1−クロロ−2−(2−クロロフェニル)エチル基
1−クロロ−2−(2−クロロフェニル)エチル基等が挙げられる。
フルオロエチレンカーボネート、
クロロエチレンカーボネート、
4,4−ジフルオロエチレンカーボネート、
4,5−ジフルオロエチレンカーボネート、
4,4−ジクロロエチレンカーボネート、
4,5−ジクロロエチレンカーボネート、
4−フルオロ−4−メチルエチレンカーボネート、
4−クロロ−4−メチルエチレンカーボネート、
4−フルオロ−5−メチルエチレンカーボネート、
4−クロロ−5−メチルエチレンカーボネート、
4,5−ジフルオロ−4−メチルエチレンカーボネート、
4,5−ジクロロ−4−メチルエチレンカーボネート、
4−フルオロ−5−メチルエチレンカーボネート、
4−クロロ−5−メチルエチレンカーボネート、
4,4−ジフルオロ−5−メチルエチレンカーボネート、
4,4−ジクロロ−5−メチルエチレンカーボネート、
4−(フルオロメチル)−エチレンカーボネート、
4−(クロロメチル)−エチレンカーボネート、
4−(ジフルオロメチル)−エチレンカーボネート、
4−(ジクロロメチル)−エチレンカーボネート、
4−(トリフルオロメチル)−エチレンカーボネート、
4−(トリクロロメチル)−エチレンカーボネート、
4−(フルオロメチル)−4−フルオロエチレンカーボネート、
4−(クロロメチル)−4−クロロエチレンカーボネート、
4−(フルオロメチル)−5−フルオロエチレンカーボネート、
4−(クロロメチル)−5−クロロエチレンカーボネート、
4−フルオロ−4,5−ジメチルエチレンカーボネート、
4−クロロ−4,5−ジメチルエチレンカーボネート、
4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、
4,5−ジクロロ−4,5−ジメチルエチレンカーボネート、
4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート、
4,4−ジクロロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
フルオロビニレンカーボネート、
4−フルオロ−5−メチルビニレンカーボネート、
4−フルオロ−5−フェニルビニレンカーボネート、
4−(トリフルオロメチル)ビニレンカーボネート、
クロロビニレンカーボネート、
4−クロロ−5−メチルビニレンカーボネート、
4−クロロ−5−フェニルビニレンカーボネート、
4−(トリクロロメチル)ビニレンカーボネート等が挙げられる。
4−フルオロ−4−ビニルエチレンカーボネート、
4−フルオロ−5−ビニルエチレンカーボネート、
4,4−ジフルオロ−5−ビニルエチレンカーボネート、
4,5−ジフルオロ−4−ビニルエチレンカーボネート、
4−クロロ−5−ビニルエチレンカーボネート、
4,4−ジクロロ−5−ビニルエチレンカーボネート、
4,5−ジクロロ−4−ビニルエチレンカーボネート、
4−フルオロ−4,5−ジビニルエチレンカーボネート、
4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、
4−クロロ−4,5−ジビニルエチレンカーボネート、
4,5−ジクロロ−4,5−ジビニルエチレンカーボネート、
4−フルオロ−4−フェニルエチレンカーボネート、
4−フルオロ−5−フェニルエチレンカーボネート、
4,4−ジフルオロ−5−フェニルエチレンカーボネート、
4,5−ジフルオロ−4−フェニルエチレンカーボネート、
4−クロロ−4−フェニルエチレンカーボネート、
4−クロロ−5−フェニルエチレンカーボネート、
4,4−ジクロロ−5−フェニルエチレンカーボネート、
4,5−ジクロロ−4−フェニルエチレンカーボネート、
4,5−ジフルオロ−4,5−ジフェニルエチレンカーボネート、
3,5−ジクロロ−4,5−ジフェニルエチレンカーボネート、
4−フルオロ−5−ビニルビニレンカーボネート、
4−クロロ−5−ビニルビニレンカーボネート等が挙げられる。
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有する鎖状カーボネート、
ハロゲン原子を有する環状カーボネートと環状カルボン酸エステル
ハロゲン原子を有する環状カーボネートと鎖状カルボン酸エステル
ハロゲン原子を有する環状カーボネートと環状エーテル、
ハロゲン原子を有する環状カーボネートと鎖状エーテル、
ハロゲン原子を有する環状カーボネートと含リン有機溶媒、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートとハロゲン原子を有する鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状カルボン酸エステル、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと鎖状カルボン酸エステル、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状エーテル、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと鎖状エーテル、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートとハロゲン原子を有さない鎖状カーボネートとハロゲン原子を有する鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状カルボン酸エステルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと鎖状カルボン酸エステルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状エーテルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと鎖状エーテルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと含リン有機溶媒とハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状カルボン酸エステルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状カルボン酸エステルと鎖状カルボン酸エステル、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状カルボン酸エステルと環状エーテル、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状カルボン酸エステルと含リン有機溶媒、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと環状エーテルとハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する環状カーボネートとハロゲン原子を有さない環状カーボネートと含リン有機溶媒とハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない鎖状カーボネート、
等が挙げられる。
本発明における「ハロゲン原子を有するカーボネート」である鎖状カーボネートについて、以下に説明する。鎖状カーボネートは通常、2個の炭化水素基を有しているがこれらは同一であってもよく、異なっていてもよい。これら炭化水素基の炭素数は、それぞれ1以上ならば好ましく、上限は、10以下が好ましく、6以下が特に好ましい。これを逸脱した場合、化合物の化学的な安定性、あるいは工業的な入手性に問題が生じる場合がある。
ジメチルカーボネート、
ジエチルカーボネート、
ジプロピルカーボネート、
ジブチルカーボネート、
ジビニルカーボネート、
ジアリルカーボネート、
ジフェニルカーボネート
エチルメチルカーボネート
メチルプロピルカーボネート
ブチルメチルカーボネート
メチルビニルカーボネート
アリルメチルカーボネート
メチルフェニルカーボネート、
エチルプロピルカーボネート
ブチルエチルカーボネート
エチルビニルカーボネート
アリルエチルカーボネート
エチルフェニルカーボネート等が挙げられる。
フルオロメチルメチルカーボネート、
ジフルオロメチルメチルカーボネート、
トリフルオロメチルメチルカーボネート、
ビス(フルオロメチル)カーボネート、
ビス(ジフルオロ)メチルカーボネート、
ビス(トリフルオロ)メチルカーボネート、
クロロメチルメチルカーボネート、
ジクロロメチルメチルカーボネート、
トリクロロメチルメチルカーボネート、
ビス(クロロメチル)カーボネート、
ビス(ジクロロ)メチルカーボネート、
ビス(トリクロロ)メチルカーボネート、
エチルフルオロメチルカーボネート、
2,2−ジフルオロエチルメチルカーボネート、
2−フルオロエチルフルオロメチルカーボネート、
エチルジフルオロメチルカーボネート、
2,2,2−トリフルオロエチルメチルカーボネート、
2,2−ジフルオロエチルフルオロメチルカーボネート、
2−フルオロエチルジフルオロメチルカーボネート、
エチルトリフルオロメチルカーボネート、
2−クロロエチルメチルカーボネート、
エチルクロロメチルカーボネート、
2,2−ジクロロエチルメチルカーボネート、
2−クロロエチルクロロメチルカーボネート、
エチルジクロロメチルカーボネート、
2,2,2−トリクロロエチルメチルカーボネート、
2,2−ジクロロエチルクロロメチルカーボネート、
2−クロロエチルジクロロメチルカーボネート、
エチルトリクロロメチルカーボネート、
エチル−(2,2−ジフルオロエチル)カーボネート、
ビス(2−フルオロエチル)カーボネート、
エチル−(2,2,2−トリフルオロエチル)カーボネート、
2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、
ビス(2,2−ジフルオロエチル)カーボネート、
2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、
2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、
ビス(2,2,2−トリフルオロエチル)カーボネート、
エチル−(2−クロロエチル)カーボネート、
エチル−(2,2−ジクロロエチル)カーボネート、
ビス(2−クロロエチル)カーボネート、
エチル−(2,2,2−トリクロロエチル)カーボネート、
2,2−ジクロロエチル−2’−クロロエチルカーボネート、
ビス(2,2−ジクロロエチル)カーボネート、
2,2,2−トリクロロエチル−2’−クロロエチルカーボネート、
2,2,2−トリクロロエチル−2’,2’−ジクロロエチルカーボネート、
ビス(2,2,2−トリクロロエチル)カーボネート、
2−フルオロエチルビニルカーボネート、
2,2−ジフルオロエチルビニルカーボネート、
2,2,2−トリフルオロエチルビニルカーボネート、
クロロメチルビニルカーボネート、
2−クロロエチルビニルカーボネート、
2,2−ジクロロエチルビニルカーボネート、
2,2,2−トリクロロエチルビニルカーボネート、
2−フルオロエチルアリルカーボネート、
2,2−ジフルオロエチルアリルカーボネート、
2,2,2−トリフルオロエチルアリルカーボネート、
クロロメチルアリルカーボネート、
2−クロロエチルアリルカーボネート、
2,2−ジクロロエチルアリルカーボネート、
2,2,2−トリクロロエチルアリルカーボネート、
2−フルオロエチルフェニルカーボネート、
2,2−ジフルオロエチルフェニルカーボネート、
2,2,2−トリフルオロエチルフェニルカーボネート、
クロロメチルフェニルカーボネート、
2−クロロエチルフェニルカーボネート、
2,2−ジクロロエチルフェニルカーボネート、
2,2,2−トリクロロエチルフェニルカーボネート等が挙げられる。
,2,2−トリフルオロエチル)カーボネートが、工業的入手のし易さ、化学的な安定性の点から、より好適に用いられる。
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネート、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有する環状カーボネート、
ハロゲン原子を有する鎖状カーボネートと環状カルボン酸エステル、
ハロゲン原子を有する鎖状カーボネートと含リン有機溶媒
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートとハロゲン原子を有する環状カーボネート、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートと環状カルボン酸エステル、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートと含リン有機溶媒、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有する環状カーボネートと鎖状カーボネート、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有する環状カーボネートと環状カルボン酸エステル、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有する環状カーボネートと含リン有機溶媒、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートと鎖状カーボネートと環状カルボン酸エステル、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートと含リン有機溶媒と環状カルボン酸エステル、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートと環状カルボン酸エステルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートと環状エーテルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートと含リン有機溶媒とハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートとハロゲン原子を有する環状カーボネートと環状カルボン酸エステル、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートとハロゲン原子を有する環状カーボネートと環状カルボン酸エステルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートとハロゲン原子を有する環状カーボネートと環状エーテルとハロゲン原子を有さない鎖状カーボネート、
ハロゲン原子を有する鎖状カーボネートとハロゲン原子を有さない環状カーボネートとハロゲン原子を有する環状カーボネートと含リン有機溶媒とハロゲン原子を有さない鎖状カーボネート、
等が挙げられる。
本発明の非水系電解液が含有する「ハロゲン原子を有するカーボネート以外の非水系溶媒」は、電池とした時に電池特性に対して悪影響を及ぼさない溶媒であれば特に制限されないが、以下に掲げる「ハロゲン原子を有するカーボネート以外の非水系溶媒」の内の1種以上であることが好ましい。
鎖状若しくは環状カーボネート、
鎖状若しくは環状カルボン酸エステル、
鎖状若しくは環状エーテル、
含リン有機溶媒、
含イオウ有機溶媒等が挙げられる。
ジメチルカーボネート、
エチルメチルカーボネート、
ジエチルカーボネート、
メチル−n−プロピルカーボネート、
エチル−n−プロピルカーボネート、
ジ−n−プロピルカーボネート等が挙げられる。
エチレンカーボネート、
プロピレンカーボネート、
ブチレンカーボネート(2−エチルエチレンカーボネート、シス又はトランス2,3−ジメチルエチレンカーボネート)等が挙げられる。
酢酸メチル、
酢酸エチル、
酢酸−n−プロピル、
酢酸−iso−プロピル、
酢酸−n−ブチル、
酢酸−iso−ブチル、
酢酸−tert−ブチル、
プロピオン酸メチル、
プロピオン酸エチル、
プロピオン酸−n−プロピル、
プロピオン酸−iso−プロピル、
プロピオン酸−n−ブチル、
プロピオン酸−iso−ブチル、
プロピオン酸−tert−ブチル等が挙げられる。
ジメトキシメタン、
ジメトキシエタン、
ジエトキシメタン、
ジエトキシエタン、
エトキシメトキシメタン、
エトキシメトキシエタン等が挙げられる。
リン酸トリメチル、
リン酸トリエチル、
リン酸トリフェニル等のリン酸エステル類;
亜リン酸トリメチル、
亜リン酸トリエチル、
亜リン酸トリフェニル等の亜リン酸エステル類;
トリメチルホスフィンオキシド、
トリエチルホスフィンオキシド、
トリフェニルホスフィンオキシド等のホスフィンオキシド類;
等が挙げられる。
エチレンサルファイト、
1,3−プロパンスルトン、
1,4−ブタンスルトン、
メタンスルホン酸メチル、
ブスルファン、
スルホラン、
スルホレン、
ジメチルスルホン、
ジフェニルスルホン、
メチルフェニルスルホン、
ジブチルジスルフィド、
ジシクロヘキシルジスルフィド、
テトラメチルチウラムモノスルフイド、
N,N−ジメチルメタンスルホンアミド、
N,N−ジエチルメタンスルホンアミド等が挙げられる。
本発明の非水系電解液は、モノフルオロリン酸塩及び/又はジフルオロリン酸塩を必須成分として含有する。本発明において用いる「モノフルオロリン酸塩及び/又はジフルオロリン酸塩」は、1以上のモノフルオロリン酸イオン及び/又はジフルオロリン酸イオン、並びにカチオンから形成されるものであれば、その種類には特に制限はないが、最終的に製造される非水系電解液が、用いる非水系電解液二次電池の電解液として使用可能となる必要があることから、これに鑑みて選択される必要がある。
まず、本発明におけるモノフルオロリン酸塩、ジフルオロリン酸塩が、モノフルオロリン酸イオン、ジフルオロリン酸イオンと、特定金属イオンとの塩(以下、それぞれ「モノフルオロリン酸金属塩」、「ジフルオロリン酸金属塩」と略記する場合がある)である場合について説明する。
次いで、本発明におけるモノフルオロリン酸塩、ジフルオロリン酸塩が、モノフルオロリン酸イオン、ジフルオロリン酸イオンと、4級オニウムとの塩(以下、それぞれ「モノフルオロリン酸4級オニウム塩」、「ジフルオロリン酸4級オニウム塩」と略記する場合がある)である場合について説明する。
メチル基、
エチル基、
1−プロピル基、
1−メチルエチル基、
1−ブチル基、
1−メチルプロピル基、
2−メチルプロピル基、
1,1−ジメチルエチル基等が挙げられる。
中でも、メチル基、エチル基、1−プロピル基、1−ブチル基等が好ましい。
シクロペンチル基、
2−メチルシクロペンチル基、
3−メチルシクロペンチル基、
2,2−ジメチルシクロペンチル基、
2,3−ジメチルシクロペンチル基、
2,4−ジメチルシクロペンチル基、
2,5−ジメチルシクロペンチル基、
3,3−ジメチルシクロペンチル基、
3,4−ジメチルシクロペンチル基、
2−エチルシクロペンチル基、
3−エチルシクロペンチル基、
シクロヘキシル基、
2−メチルシクロヘキシル基、
3−メチルシクロヘキシル基、
4−メチルシクロヘキシル基、
2,2−ジメチルシクロヘキシル基、
2,3−ジメチルシクロヘキシル基、
2,4−ジメチルシクロヘキシル基、
2,5−ジメチルシクロヘキシル基、
2,6−ジメチルシクロヘキシル基、
3,4−ジメチルシクロヘキシル基、
3,5−ジメチルシクロヘキシル基、
2−エチルシクロヘキシル基、
3−エチルシクロヘキシル基、
4−エチルシクロヘキシル基、
ビシクロ[3,2,1]オクタ−1−イル基、
ビシクロ[3,2,1]オクタ−2−イル基等が挙げられる。
フェニル基、
2−メチルフェニル基、
3−メチルフェニル基、
4−メチルフェニル基、
2,3−ジメチルフェニル基等が挙げられる。
中でも、フェニル基が好ましい。
フェニルメチル基、
1−フェニルエチル基、
2−フェニルエチル基、
ジフェニルメチル基、
トリフェニルメチル基等が挙げられる。
中でも、フェニルメチル基、2−フェニルエチル基が好ましい。
テトラメチルアンモニウム、
エチルトリメチルアンモニウム、
ジエチルジメチルアンモニウム、
トリエチルメチルアンモニウム、
テトラエチルアンモニウム、
テトラ−n−ブチルアンモニウム等が挙げられる。
テトラメチルホスホニウム、
エチルトリメチルホスホニウム、
ジエチルジメチルホスホニウム、
トリエチルメチルホスホニウム、
テトラエチルホスホニウム、
テトラ−n−ブチルホスホニウム等が挙げられる。
N,N−ジメチルピロリジウム、
N−エチル−N−メチルピロリジウム、
N,N−ジエチルピロリジウム等が挙げられる。
N,N−ジメチルモルホリニウム、
N−エチル−N−メチルモルホリニウム、
N,N−ジエチルモルホリニウム等が挙げられる。
N,N’−ジメチルイミダゾリニウム、
N−エチル−N’−メチルイミダゾリニウム、
N,N’−ジエチルイミダゾリニウム、
1,2,3−トリメチルイミダゾリニウム等が挙げられる。
N,N’−ジメチルテトラヒドロピリミジニウム、
N−エチル−N’−メチルテトラヒドロピリミジニウム、
N,N’−ジエチルテトラヒドロピリミジニウム、
1,2,3−トリメチルテトラヒドロピリミジニウム等が挙げられる。
N,N,N’,N’−テトラメチルピペラジニウム、
N−エチル−N,N’,N’−トリメチルピペラジニウム、
N,N−ジエチル−N’,N’−ジメチルピペラジニウム、
N,N,N’−トリエチル−N’−メチルピペラジニウム、
N,N,N’,N’−テトラエチルピペラジニウム等が挙げられる。
N,N−ジメチルピペリジニウム、
N−エチル−N−メチルピペリジニウム、
N,N−ジエチルピペリジニウム等が挙げられる。
N−メチルピリジニウム、
N−エチルピリジニウム、
1,2−ジメチルピリミジニウム、
1,3−ジメチルピリミジニウム、
1,4−ジメチルピリミジニウム、
1−エチル−2−メチルピリミジニウム等が挙げられる。
N,N’−ジメチルイミダゾリウム、
N−エチル−N’−メチルイミダゾリウム、
N,N’−ジエチルイミダゾリウム、
1,2,3−トリメチルイミダゾリウム等が挙げられる。
本発明の非水系電解液においては、1種類のモノフルオロリン酸塩又はジフルオロリン酸塩のみを用いてもよく、2種類以上のモノフルオロリン酸塩及び/又はジフルオロリン酸塩を任意の組み合わせ及び比率で併用してもよいが、非水系電解液二次電池を効率的に動作させるという観点から、1種類のモノフルオロリン酸塩又はジフルオロリン酸塩を用いることが好ましい。
本発明の非水系電解液は、本発明の効果を著しく損なわない範囲において、各種の添加剤を含有していてもよい。添加剤を追加して調製処理を行う場合は、従来公知のものを任意に用いることができる。なお、添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定カーボネートは、不飽和結合を有するカーボネートである。特定カーボネートは、ハロゲン原子を有していてもよい。
以下、特定カーボネート以外の添加剤について説明する。特定カーボネート以外の添加剤としては、過充電防止剤、高温保存後の容量維持特性やサイクル特性を改善するための助剤等が挙げられる。
過充電防止剤の具体例としては、例えば、
トルエン、キシレン、等のトルエン誘導体;
ビフェニル、2−メチルビフェニル、3−メチルビフェニル4−メチルビフェニル等の無置換あるいはアルキル基で置換されたビフェニル誘導体;
o−ターフェニル、m−ターフェニル、p−ターフェニル等の無置換あるいはアルキル基で置換されたターフェニル誘導体;
無置換あるいはアルキル基で置換されたターフェニル誘導体の部分水素化物;
シクロペンチルベンゼン、シクロヘキシルベンゼン等のシクロアルキルベンゼン誘導体;
クメン、1,3−ジイソプロピルベンゼン、1,4−ジイソプロピルベンゼン等のベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体;
t−ブチルベンゼン、t−アミルベンゼン、t−ヘキシルベンゼン等のベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体;
ジフェニルエーテル、ジベンゾフラン等の酸素原子を有する芳香族化合物;
等の芳香族化合物が挙げられる。
フルオロベンゼン、フルオロトルエン、ベンゾトリフルオリド、2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;
2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、1,6−ジフルオロアニオール、等の含フッ素アニソール化合物;
等も挙げられる。
トルエン誘導体とビフェニル誘導体;
トルエン誘導体とターフェニル誘導体;
トルエン誘導体とターフェニル誘導体の部分水素化物;
トルエン誘導体とシクロアルキルベンゼン誘導体;
トルエン誘導体とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体;
トルエン誘導体とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体;
トルエン誘導体と酸素原子を有する芳香族化合物;
トルエン誘導体と芳香族化合物の部分フッ素化物;
トルエン誘導体と含フッ素アニソール化合物;
ビフェニル誘導体とターフェニル誘導体;
ビフェニル誘導体とターフェニル誘導体の部分水素化物;
ビフェニル誘導体とシクロアルキルベンゼン誘導体;
ビフェニル誘導体とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体;
ビフェニル誘導体とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体;
ビフェニル誘導体と酸素原子を有する芳香族化合物;
ビフェニル誘導体と芳香族化合物の部分フッ素化物;
ビフェニル誘導体と含フッ素アニソール化合物;
ターフェニル誘導体とターフェニル誘導体の部分水素化物;
ターフェニル誘導体とシクロアルキルベンゼン誘導体;
ターフェニル誘導体とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体;
ターフェニル誘導体とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体;
ターフェニル誘導体と酸素原子を有する芳香族化合物;
ターフェニル誘導体と芳香族化合物の部分フッ素化物;
ターフェニル誘導体と含フッ素アニソール化合物;
ターフェニル誘導体の部分水素化物とシクロアルキルベンゼン誘導体;
ターフェニル誘導体の部分水素化物とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体;
ターフェニル誘導体の部分水素化物とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体;
ターフェニル誘導体の部分水素化物と酸素原子を有する芳香族化合物;
ターフェニル誘導体の部分水素化物と芳香族化合物の部分フッ素化物;
ターフェニル誘導体の部分水素化物と含フッ素アニソール化合物;
シクロアルキルベンゼン誘導体とベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体;
シクロアルキルベンゼン誘導体とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体;
シクロアルキルベンゼン誘導体と酸素原子を有する芳香族化合物;
シクロアルキルベンゼン誘導体と芳香族化合物の部分フッ素化物;
シクロアルキルベンゼン誘導体と含フッ素アニソール化合物;
ベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体とベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体;
ベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体と酸素原子を有する芳香族化合物;
ベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体と芳香族化合物の部分フッ素化物;
ベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体と含フッ素アニソール化合物;
ベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体と酸素原子を有する芳香族化合物;
ベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体と芳香族化合物の部分フッ素化物;
ベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体と含フッ素アニソール化合物;
酸素原子を有する芳香族化合物と芳香族化合物の部分フッ素化物;
酸素原子を有する芳香族化合物と含フッ素アニソール化合物;
芳香族化合物の部分フッ素化物と含フッ素アニソール化合物;
が挙げられる。
ビフェニルとo−ターフェニルとの組合せ、
ビフェニルとm−ターフェニルとの組合せ、
ビフェニルとターフェニル誘導体の部分水素化物との組合せ、
ビフェニルとクメンとの組合せ、
ビフェニルとシクロペンチルベンゼンとの組合せ、
ビフェニルとシクロヘキシルベンゼンとの組合せ、
ビフェニルとt−ブチルベンゼンとの組合せ、
ビフェニルとt−アミルベンゼンとの組合せ、
ビフェニルとジフェニルエーテルとの組合せ、
ビフェニルとジベンゾフランとの組合せ、
ビフェニルとフルオロベンゼンとの組合せ、
ビフェニルとベンゾトリフルオリドとの組合せ、
ビフェニルと2−フルオロビフェニルとの組合せ、
ビフェニルとo−フルオロシクロヘキシルベンゼンとの組合せ、
ビフェニルとp−フルオロシクロヘキシルベンゼンとの組合せ、
ビフェニルと2,4−ジフルオロアニソールとの組合せ、
o−ターフェニルとクメンとの組合せ、
o−ターフェニルとシクロペンチルベンゼンとの組合せ、
o−ターフェニルとシクロヘキシルベンゼンとの組合せ、
o−ターフェニルとt−ブチルベンゼンとの組合せ、
o−ターフェニルとt−アミルベンゼンとの組合せ、
o−ターフェニルとジフェニルエーテルとの組合せ、
o−ターフェニルとジベンゾフランとの組合せ、
o−ターフェニルとフルオロベンゼンとの組合せ、
o−ターフェニルとベンゾトリフルオリドとの組合せ、
o−ターフェニルと2−フルオロビフェニルとの組合せ、
o−ターフェニルとo−フルオロシクロヘキシルベンゼンとの組合せ、
o−ターフェニルとp−フルオロシクロヘキシルベンゼンとの組合せ、
o−ターフェニルと2,4−ジフルオロアニソールとの組合せ、
m−ターフェニルとクメンとの組合せ、
m−ターフェニルとシクロペンチルベンゼンとの組合せ、
m−ターフェニルとシクロヘキシルベンゼンとの組合せ、
m−ターフェニルとt−ブチルベンゼンとの組合せ、
m−ターフェニルとt−アミルベンゼンとの組合せ、
m−ターフェニルとジフェニルエーテルとの組合せ、
m−ターフェニルとジベンゾフランとの組合せ、
m−ターフェニルとフルオロベンゼンとの組合せ、
m−ターフェニルとベンゾトリフルオリドとの組合せ、
m−ターフェニルと2−フルオロビフェニルとの組合せ、
m−ターフェニルとo−フルオロシクロヘキシルベンゼンとの組合せ、
m−ターフェニルとp−フルオロシクロヘキシルベンゼンとの組合せ、
m−ターフェニルと2,4−ジフルオロアニソールとの組合せ、
ターフェニル誘導体の部分水素化物とシクロペンチルベンゼンとの組合せ、
ターフェニル誘導体の部分水素化物とシクロヘキシルベンゼンとの組合せ、
ターフェニル誘導体の部分水素化物とt−ブチルベンゼンとの組合せ、
ターフェニル誘導体の部分水素化物とt−アミルベンゼンとの組合せ、
ターフェニル誘導体の部分水素化物とジフェニルエーテルとの組合せ、
ターフェニル誘導体の部分水素化物とジベンゾフランとの組合せ、
ターフェニル誘導体の部分水素化物とフルオロベンゼンとの組合せ、
ターフェニル誘導体の部分水素化物とベンゾトリフルオリドとの組合せ、
ターフェニル誘導体の部分水素化物と2−フルオロビフェニルとの組合せ、
ターフェニル誘導体の部分水素化物とo−フルオロシクロヘキシルベンゼンとの組合せ、
ターフェニル誘導体の部分水素化物とp−フルオロシクロヘキシルベンゼンとの組合せ、
ターフェニル誘導体の部分水素化物と2,4−ジフルオロアニソールとの組合せ、
クメンとシクロヘキシルベンゼンとの組合せ、
クメンとt−ブチルベンゼンとの組合せ、
クメンとt−アミルベンゼンとの組合せ、
クメンとジフェニルエーテルとの組合せ、
クメンとジベンゾフランとの組合せ、
クメンとフルオロベンゼンとの組合せ、
クメンとベンゾトリフルオリドとの組合せ、
クメンと2−フルオロビフェニルとの組合せ、
クメンとo−フルオロシクロヘキシルベンゼンとの組合せ、
クメンとp−フルオロシクロヘキシルベンゼンとの組合せ、
クメンと2,4−ジフルオロアニソールとの組合せ、
シクロヘキシルベンゼンとt−アミルベンゼンとの組合せ、
シクロヘキシルベンゼンとジフェニルエーテルとの組合せ、
シクロヘキシルベンゼンとジベンゾフランとの組合せ、
シクロヘキシルベンゼンとフルオロベンゼンとの組合せ、
シクロヘキシルベンゼンとベンゾトリフルオリドとの組合せ、
シクロヘキシルベンゼンと2−フルオロビフェニルとの組合せ、
シクロヘキシルベンゼンとo−フルオロシクロヘキシルベンゼンとの組合せ、
シクロヘキシルベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
シクロヘキシルベンゼンと2,4−ジフルオロアニソールとの組合せ、
t−ブチルベンゼンとジフェニルエーテルとの組合せ、
t−ブチルベンゼンとジベンゾフランとの組合せ、
t−ブチルベンゼンとフルオロベンゼンとの組合せ、
t−ブチルベンゼンとベンゾトリフルオリドとの組合せ、
t−ブチルベンゼンと2−フルオロビフェニルとの組合せ、
t−ブチルベンゼンとo−フルオロシクロヘキシルベンゼンとの組合せ、
t−ブチルベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
t−ブチルベンゼンと2,4−ジフルオロアニソールとの組合せ、
t−アミルベンゼンとジベンゾフランとの組合せ、
t−アミルベンゼンとフルオロベンゼンとの組合せ、
t−アミルベンゼンとベンゾトリフルオリドとの組合せ、
t−アミルベンゼンと2−フルオロビフェニルとの組合せ、
t−アミルベンゼンとo−フルオロシクロヘキシルベンゼンとの組合せ、
t−アミルベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
t−アミルベンゼンと2,4−ジフルオロアニソールとの組合せ、
ジフェニルエーテルとフルオロベンゼンとの組合せ、
ジフェニルエーテルとベンゾトリフルオリドとの組合せ、
ジフェニルエーテルと2−フルオロビフェニルとの組合せ、
ジフェニルエーテルとo−フルオロシクロヘキシルベンゼンとの組合せ、
ジフェニルエーテルとp−フルオロシクロヘキシルベンゼンとの組合せ、
ジフェニルエーテルと2,4−ジフルオロアニソールとの組合せ、
ジベンゾフランとベンゾトリフルオリドとの組合せ、
ジベンゾフランと2−フルオロビフェニルとの組合せ、
ジベンゾフランとo−フルオロシクロヘキシルベンゼンとの組合せ、
ジベンゾフランとp−フルオロシクロヘキシルベンゼンとの組合せ、
ジベンゾフランと2,4−ジフルオロアニソールとの組合せ、
フルオロベンゼンと2−フルオロビフェニルとの組合せ、
フルオロベンゼンとo−フルオロシクロヘキシルベンゼンとの組合せ、
フルオロベンゼンとp−フルオロシクロヘキシルベンゼンとの組合せ、
フルオロベンゼンと2,4−ジフルオロアニソールとの組合せ、
ベンゾトリフルオリドとo−フルオロシクロヘキシルベンゼンとの組合せ、
ベンゾトリフルオリドとp−フルオロシクロヘキシルベンゼンとの組合せ、
ベンゾトリフルオリドと2,4−ジフルオロアニソールとの組合せ、
2−フルオロビフェニルとp−フルオロシクロヘキシルベンゼンとの組合せ、
2−フルオロビフェニルと2,4−ジフルオロアニソールとの組合せ、
o−フルオロシクロヘキシルベンゼンと2,4−ジフルオロアニソールとの組合せ、
p−フルオロシクロヘキシルベンゼンと2,4−ジフルオロアニソールとの組合せ、
等が挙げられる。
高温保存後の容量維持特性やサイクル特性を改善するための助剤の具体例としては、例えば、
コハク酸、マレイン酸、フタル酸等のジカルボン酸の無水物;
エリスリタンカーボネート、スピロービスージメチレンカーボネート等の特定カーボネートに該当するもの以外のカーボネート化合物;
エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフイド、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド、等の含イオウ化合物;
1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン、N−メチルスクシイミド等の含窒素化合物;
ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。
本発明の非水系電解液二次電池は、前記の本発明非水系電解液とイオンの吸蔵及び放出が可能な正極及び負極とを備えて構成される。また、本発明の非水系電解液二次電池はその他の構成を備えていてもよい。
本発明の非水系電解液二次電池は、負極及び非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本発明の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
非水系電解液としては、上述の本発明の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、本発明の非水系電解液に対し、その他の非水系電解液を配合して用いることも可能である。
以下に負極に使用される負極活物質について述べる。
負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400から3200℃の範囲で一回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質から成り立ちかつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種類以上の異なる配向性を有する炭素質から成り立ちかつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが初期不可逆容量、高電流密度充放電特性のバランスが良く好ましい。また、(1)〜(4)の炭素質材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
炭素質材料についての性質や炭素質材料を含有する負極電極及び電極化手法、集電体、非水系電解液二次電池については、次に示す(1)〜(21)の何れか1項又は複数項を同時に満たしていることが望ましい。
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335〜0.340nmであり、特に0.335〜0.338nm、とりわけ0.335〜0.337nmであるものが好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、通常1.0nm以上、好ましくは1.5nm以上、特に好ましくは2nm以上である。
黒鉛の表面を非晶質の炭素で被覆したものとして好ましいのは、X線回折における格子面(002面)のd値が0.335〜0.338nmである黒鉛を核材とし、その表面に該核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料が付着しており、かつ核材と核材よりもX線回折における格子面(002面)のd値が大きい炭素質材料との割合が重量比で99/1〜80/20であるものである。これを用いると、高い容量で、かつ電解液と反応しにくい負極を製造することができる。
炭素質材料中に含まれる灰分は、炭素質材料の全質量に対して、1質量%以下、中でも0.5質量%以下、特に0.1質量%以下が好ましく、下限としては1ppm以上であることが好ましい。灰分の重量割合が上記の範囲を上回ると、充放電時の非水系電解液との反応による電池性能の劣化が無視できなくなる場合がある。また、上記範囲を下回ると、製造に多大な時間とエネルギーと汚染防止のための設備とを必要とし、コストが上昇する場合がある。
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下が更に好ましく、25μm以下が特に好ましい。体積基準平均粒径が上記範囲を下回ると、不可逆容量が増大して、初期の電池容量の損失を招くことになる場合がある。また、上記範囲を上回ると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製作工程上望ましくない場合がある。
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値が、通常0.01以上であり、0.03以上が好ましく、0.1以上が更に好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下が更に好ましく、0.5以下が特に好ましい。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.1m2・g−1以上であり、0.7m2・g−1以上が好ましく、1.0m2・g−1以上が更に好ましく、1.5m2・g−1以上が特に好ましく、また、通常100m2・g−1以下であり、25m2・g−1以下が好ましく、15m2・g−1以下が更に好ましく、10m2・g−1以下が特に好ましい。BET比表面積の値がこの範囲を下回ると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、この範囲を上回ると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい場合がある。
炭素質材料の細孔径分布は、水銀圧入量の測定することによって算出される。水銀ポロシメトリー(水銀圧入法)を用いることで、炭素質材料の粒子内の空隙、粒子表面のステップによる凹凸、及び粒子間の接触面等による細孔が、直径0.01μm以上1μm以下の細孔に相当すると測定される炭素質材料が、通常0.01cm3・g−1以上、好ましくは0.05cm3・g−1以上、より好ましくは0.1cm3・g−1以上、また、通常0.6cm3・g−1以下、好ましくは0.4cm3・g−1以下、より好ましくは0.3cm3・g−1以下の細孔径分布を有することが望ましい。細孔径分布が上記範囲を上回ると、極板化時にバインダーを多量に必要となる場合がある。また、上記範囲を下回ると、高電流密度充放電特性が低下し、かつ充放電時の電極の膨張収縮の緩和効果が得られない場合がある。
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
炭素質材料の真密度は、通常1.4g・cm−3以上であり、1.6g・cm−3以上が好ましく、1.8g・cm−3以上が更に好ましく、2.0g・cm−3以上が特に好ましく、また、通常2.26g・cm−3以下である。真密度が、上記範囲を下回ると炭素の結晶性が低すぎて初期不可逆容量が増大する場合がある。なお、上記範囲の上限は、黒鉛の真密度の理論上限値である。
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上が更に好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下が更に好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい場合がある。
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上が更に好ましく、また、通常0.67以下である。配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下が更に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
副材混合とは、負極電極中及び/又は負極活物質中に性質の異なる炭素質材料が2種以上含有していることである。ここでいう性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の群から選ばれる一つ以上の特性を示す。
電極の製造は、本発明の効果を著しく制限しない限り、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
JISB0601−1994に記載の方法で規定される集電体基板の負極活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.05μm以上であり、0.1μm以上が好ましく、0.15μm以上が更に好ましく、また、通常1.5μm以下であり、1.3μm以下が好ましく、1.0μm以下が更に好ましい。集電体基板の平均表面粗さ(Ra)が、上記の範囲内であると、良好な充放電サイクル特性が期待できるためである。また、負極活物質薄膜との界面の面積が大きくなり、負極活物質薄膜との密着性が向上する。なお、平均表面粗さ(Ra)の上限値は特に制限されるものではないが、平均表面粗さ(Ra)が1.5μmを超えるものは電池として実用的な厚みの箔としては一般に入手しにくいため、1.5μm以下のものが通常用いられる。
引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、JISZ2241(金属材料引張試験方法)に記載と同様な装置及び方法で測定される。
0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形していることを意味している。0.2%耐力は、引張り強度と同様な装置及び方法で測定される。
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。集電体の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。なお、集電体は、メッシュ状でもよい。
集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下が更に好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上が更に好ましく、1以上が特に好ましい。
負極活物質を電極化した際の電極構造は特には限定されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上が更に好ましく、1.3g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.9g・cm−3以下がより好ましく、1.8g・cm−3以下が更に好ましく、1.7g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
極板配向比は、通常0.001以上であり、0.005以上が好ましく、0.01以上が更に好ましく、また、通常0.67以下である。極板配向比が、上記範囲を下回ると、高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の極板配向比の理論上限値である。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度
・測定範囲、及び、ステップ角度/計測時間:
(110)面:76.5度≦2θ≦78.5度 0.01度/3秒
(004)面:53.5度≦2θ≦56.0度 0.01度/3秒
・試料調製 :硝子板に0.1mm厚さの両面テープで電極を固定
負極活物質として用いられる金属化合物系材料としては、リチウムを吸蔵・放出可能であれば、リチウム合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の化合物の何れであっても特に限定はされない。このような金属化合物としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物挙げられる。なかでもリチウム合金を形成する単体金属若しくは合金であることが好ましく、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料あることが好ましく、更にはケイ素(Si)、スズ(Sn)、鉛(Pb)(以下、これらを「特定金属元素」という場合がある)の単体金属若しくはこれら原子を含む合金・化合物であることが好ましい。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
・ケイ素及び/又はスズと酸素との元素比が、通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下のケイ素及び/又はスズの酸化物。
・ケイ素及び/又はスズと窒素との元素比が、通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下のケイ素及び/又はスズの窒化物。
・ケイ素及び/又はスズと炭素との元素比が、通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下のケイ素及び/又はスズの炭化物。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に限定はされないが、好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、更にリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する)が好ましい。すなわちスピネル構造を有するリチウムチタン複合酸化物を、非水系電解液二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
[一般式(2)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
負極活物質として用いられるリチウムチタン複合酸化物のBET比表面積は、BET法を用いて測定した比表面積の値が、0.5m2・g−1以上が好ましく、0.7m2・g−1以上がより好ましく、1.0m2・g−1以上が更に好ましく、1.5m2・g−1以上が特に好ましく、また、200m2・g−1以下が好ましく、100m2・g−1以下がより好ましく、50m2・g−1以下が更に好ましく、25m2・g−1以下が特に好ましい。BET比表面積が、上記範囲を下回ると、負極材料として用いた場合の非水系電解液と接する反応面積が減少し、出力抵抗が増加する場合がある。一方、上記範囲を上回ると、チタンを含有する金属酸化物の結晶の表面や端面の部分が増加し、また、これに起因して、結晶の歪も生じるため、不可逆容量が無視できなくなり、好ましい電池が得られにくい場合がある。
リチウムチタン複合酸化物の体積基準平均粒径(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義される。
一次粒子が凝集して二次粒子を形成している場合においては、リチウムチタン複合酸化物の平均一次粒子径が、通常0.01μm以上であり、0.05μm以上が好ましく、0.1μm以上が更に好ましく、0.2μm以上が特に好ましく、また、通常2μm以下であり、1.6μm以下が好ましく、1.3μm以下が更に好ましく、1μm以下が特に好ましい。体積基準平均一次粒子径が、上記範囲を上回ると、球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。また、上記範囲を下回ると、通常、結晶が未発達になるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合がある。
リチウムチタン複合酸化物の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。
リチウムチタン複合酸化物のタップ密度は、0.05g・cm−3以上が好ましく、0.1g・cm−3以上がより好ましく、0.2g・cm−3以上が更に好ましく、0.4g・cm−3以上が特に好ましく、また、2.8g・cm−3以下が好ましく、2.4g・cm−3以下が更に好ましく、2g・cm−3以下が特に好ましい。タップ密度が、上記範囲を下回ると、負極として用いた場合に充填密度が上がり難く、また粒子間の接触面積が減少するため、粒子間の抵抗が増加し、出力抵抗が増加する場合がある。また、上記範囲を上回ると、電極中の粒子間の空隙が少なくなり過ぎ、非水系電解液の流路が減少することで、出力抵抗が増加する場合がある。
リチウムチタン複合酸化物の球形の程度として、円形度を測定した場合、以下の範囲に収まることが好ましい。円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
リチウムチタン複合酸化物のアスペクト比は、通常1以上、また、通常5以下であり、4以下が好ましく、3以下が更に好ましく、2以下が特に好ましい。アスペクト比が、上記範囲を上回ると、極板化時にスジ引きや、均一な塗布面が得られず、短時間高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、リチウムチタン複合酸化物のアスペクト比の理論下限値である。
リチウムチタン複合酸化物の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
電極の製造は、公知の何れの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。
(10−1)平均表面粗さ(Ra)
JISB0601−1994に記載の方法で規定される集電体基板の活物質薄膜形成面の平均表面粗さ(Ra)は、特に制限されないが、通常0.01μm以上であり、0.03μm以上が好ましく、また、通常1.5μm以下であり、1.3μm以下が好ましく、1.0μm以下が更に好ましい。
引張強度とは、試験片が破断に至るまでに要した最大引張力を、試験片の断面積で割ったものである。本発明における引張強度は、JISZ2241(金属材料引張試験方法)に記載と同様な装置及び方法で測定される。
0.2%耐力とは、0.2%の塑性(永久)歪みを与えるに必要な負荷の大きさであり、この大きさの負荷を加えた後に除荷しても0.2%変形していることを意味している。0.2%耐力は、引張強度と同様な装置及び方法で測定される。
集電体の厚さは任意であるが、通常1μm以上であり、3μm以上が好ましく、5μm以上が更に好ましく、また、通常1mm以下であり、100μm以下が好ましく、50μm以下が更に好ましい。集電体の厚さが、1μmより薄くなると、強度が低下するため塗布が困難となる場合がある。また、100μmより厚くなると、捲回等の電極の形を変形させる場合がある。なお、集電体は、メッシュ状でもよい。
集電体と活物質層の厚さの比は特には限定されないが、「(非水系電解液注液直前の片面の活物質層の厚さ)/(集電体の厚さ)」の値が、通常150以下であり、20以下が好ましく、10以下が更に好ましく、また、通常0.1以上であり、0.4以上が好ましく、1以上が更に好ましい。集電体と負極活性物質層の厚さの比が、上記範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
負極活物質の電極化した際の電極構造は特には限定されないが、集電体上に存在している活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がより好ましく、1.3g・cm−3以上が更に好ましく、1.5g・cm−3以上が特に好ましく、また、3g・cm−3以下が好ましく、2.5g・cm−3以下がより好ましく、2.2g・cm−3以下が更に好ましく、2g・cm−3以下が特に好ましい。集電体上に存在している活物質の密度が、上記範囲を上回ると、集電体と負極活物質の結着が弱くなり、電極と活物質が乖離する場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大する場合がある。
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
以下に本発明の非水系電解液二次電池に使用される正極について説明する。
以下に正極に使用される正極活物質について説明する。
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以後、適宜「表面付着物質」と略記する)が付着したものを用いることもできる。表面付着物質の例としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が用いられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状又は楕円球状であるものが好ましい。
正極活物質のタップ密度は、通常1.3g・cm−3以上であり、1.5g・cm−3以上が好ましく、1.6g・cm−3以上が更に好ましく、1.7g・cm−3以上が特に好ましく、また、通常2.5g・cm−3以下であり、2.4g・cm−3以下が好ましい。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折/散乱式粒度分布測定装置を用いても測定することができる。
一次粒子が凝集して二次粒子を形成している場合、正極活物質の平均一次粒子径は、通常0.01μm以上であり、0.05μm以上が好ましく、0.08μm以上が更に好ましく、0.1μm以上が特に好ましく、また、通常3μm以下であり、2μm以下が好ましく、1μm以下更に好ましく、0.6μm以下が特に好ましい。上記範囲を上回ると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合があるためである。また、上記範囲を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等、二次電池の性能を低下させる場合があるためである。
正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、通常0.2m2・g−1以上であり、0.3m2・g−1以上が好ましく、0.4m2・g−1以上が更に好ましく、また、通常4.0m2・g−1以下であり、2.5m2・g−1以下が好ましく、1.5m2・g−1以下が更に好ましい。BET比表面積の値が、上記範囲を下回ると、電池性能が低下しやすくなる。また、上記範囲を上回ると、タップ密度が上がりにくくなり、正極活物質形成時の塗布性が低下する場合がある。
正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
以下に、本発明に使用される正極の構成及びその作製法について説明する。
正極は、正極活物質粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、公知の何れの方法で作製することができる。すなわち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
導電材としては、公知の導電材を任意に用いることができる。具体例としては、例えば、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層の製造に用いる結着剤は、非水系電解液や電極製造時用いる溶媒に対して安定な材料であれば、特に限定されない。
スラリーを形成するための液体媒体としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調整するために使用される。
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm−3以上が好ましく、1.5g・cm−3以上がより好ましく、2g・cm−3以上が特に好ましい。また上限は、4g・cm−3以下が好ましく、3.5g・cm−3以下がより好ましく、3g・cm−3以下が特に好ましい。正極活物質層の密度が、上記範囲を上回ると、集電体/活物質界面付近への非水系電解液の浸透性が低下し、特に高電流密度での充放電特性が低下する場合がある。また上記範囲を下回ると、活物質間の導電性が低下し、電池抵抗が増大する場合がある。
正極集電体の材質としては特に制限はなく、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
[電極群]
電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のものの何れでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は特に限定されるものではないが、本発明の非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
外装ケースの材質は用いられる非水電解質に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
前述の保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、高出力の観点から、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体に制限はなく、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
<非水系電解液二次電池の作製−1>
[正極の作製]
正極活物質としてLiCoO2(日本化学工業社製「C5」)85重量部を用い、カーボンブラック6重量部とポリフッ化ビニリデン(呉羽化学社製、商品名「KF−1000」)9重量部を混合し、N−メチル−2−ピロリドンを加えスラリー化し、これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、正極活物質層の密度が3.0g/cm3になるようにプレスして正極とした。
人造黒鉛粉末KS−44(ティムカル社製、商品名)98重量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100重量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)2重量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ12μmの銅箔の片面に均一に塗布して乾燥し、その後、負極活物質層の密度が1.5g/cm3になるようにプレスして負極とした。
乾燥アルゴン雰囲気下、表1に記載の割合で混合した非水系溶媒に、それぞれ十分に乾燥したLiPF6を1mol/Lを溶解させて非水電解液を調製し、更にモノフルオロリン酸塩及び/又はジフルオロリン酸塩を、それぞれ表1に記載の濃度になるように溶解させて、所望する非水系電解液とした。
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極負極の端子を突設させながら挿入した後、非水系電解液を袋内に0.5mL注入し、真空封止を行ない、シート状電池を作製した。
上記シート状の電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を3サイクル行って安定させ、4サイクル目を0.5Cに相当する電流で充電終止電圧4.4Vまで充電し、充電電流値が0.05Cに相当する電流値になるまで充電を行う4.4V−定電流定電圧充電(CCCV充電)(0.05Cカット)後、0.2Cに相当する定電流値で3V放電を行い高温保存前の放電容量を測定した。再度、4.4V−CCCV(0.05Cカット)充電を行った後、85℃、24時間の条件で高温保存を行った。
表1〜表5に記載した非水系溶媒、モノフルオロリン酸塩及び/又はジフルオロリン酸塩を、表1〜表5に記載した含有量で用いた以外は、実施例1と同様にして所望の水系電解液を調製し、非水系電解液二次電池の作成後、実施例1と同様に、高温保存特性の評価を行った。結果を表1〜表5に示す。
<非水系電解液二次電池の作製−2>
次に、上記実施例1で用いた負極を、以下に記載のケイ素合金負極に代え、非水系電解液を、表6〜表8の各実施例及び比較例の列における、非水系溶媒、「モノフルオロリン酸塩及び/又はジフルオロリン酸塩」の欄に記載の化合物を、同欄に記載の割合で混合し、更に、電解質塩として、LiPF6を1mol/Lの濃度となるように溶解して、所望の非水系電解液(実施例56〜実施例74及び比較例13〜比較例24の非水系電解液)を調製して用いた以外は。上記実施例1と同様にして非水系電解液二次電池を作成した。
負極活物質として、非炭素材料であるケイ素73.2重量部及び銅8.1重量部と、人造黒鉛粉末(ティムカル社製商品名「KS−6」)12.2重量部とを用い、これらにポリフッ化ビニリデン(poly vinylidene fluoride)(以下、「PVDF」と略記する)を12重量部含有するN−メチルピロリドン溶液54.2重量部、及び、N−メチルピロリドン50重量部を加え、ディスパーザーで混合してスラリー状とした。得られたスラリーを、負極集電体である厚さ18μmの銅箔上に均一に塗布し、一旦自然乾燥した後、最終的には85℃で一昼夜減圧乾燥した。その後、電極密度が1.5g/cm3程度となるようにプレスして負極とした。
上記シート状の電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.2Cに相当する定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を3サイクル行って安定させ、4サイクル目を0.5Cに相当する電流で充電終止電圧4.2Vまで充電し、充電電流値が0.05Cに相当する電流値になるまで充電を行う4.2V−定電流定電圧充電(CCCV充電)(0.05Cカット)後、0.2Cに相当する定電流値で3V放電を行い、高温保存前の放電容量を測定した。再度、4.2V−CCCV(0.05Cカット)充電を行った後、85℃、3日間の条件で高温保存を行った。
Claims (10)
- イオンを吸蔵及び放出し得る負極及び正極と非水系電解液とを備える非水系電解液二次電池に用いられる非水系電解液であって、
該非水系電解液が、電解質、非水系溶媒、並びに、モノフルオロリン酸塩及び/又はジフルオロリン酸塩を有し、
該非水系溶媒がハロゲン原子を有するカーボネートを含有し、該ハロゲン原子を有するカーボネートが非水系溶媒全体に対して0.001質量%以上10質量%以下のハロゲン原子を有する環状カーボネート、及び、0.001質量%以上100質量%未満のハロゲン原子を有する鎖状カーボネートのうち少なくとも一方であり、
該非水系溶媒が、ハロゲン原子を有するカーボネート以外の非水系溶媒として、環状カーボネート類と鎖状カーボネート類とを含有し、該環状カーボネート類と該鎖状カーボネート類との合計に対する該環状カーボネート類の容量は、5容量%以上30容量%以下であり、
該非水系電解液全体に対して、合計量で、0.01質量%以上5質量%以下のモノフルオロリン酸塩及び/又はジフルオロリン酸塩を含有し、
更に該非水系溶媒全体に対して0.01質量%以上40質量%以下の不飽和結合を有するカーボネートを含有することを特徴とする非水系電解液電池用非水系電解液。 - 上記ハロゲン原子を有するカーボネートが、ハロゲン原子を有する環状カーボネートであることを特徴とする請求項1に記載の非水系電解液二次電池用非水系電解液。
- 上記ハロゲン原子を有する環状カーボネートが、フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネートよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする請求項1又は請求項2に記載の非水系電解液二次電池用非水系電解液。
- 上記ハロゲン原子を有する環状カーボネートが、フルオロエチレンカーボネート及び4,5−ジフルオロエチレンカーボネートよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする請求項1ないし請求項3の何れかの請求項に記載の非水系電解液二次電池用非水系電解液。
- 上記ハロゲン原子を有するカーボネートが、ハロゲン原子を有する鎖状カーボネートであることを特徴とする請求項1に記載の非水系電解液二次電池用非水系電解液。
- 上記ハロゲン原子を有する鎖状カーボネートが、フルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ジフルオロメチルメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチルメチルカーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、ビス(2,2,2−トリフルオロエチル)カーボネートよりなる群から選ばれる少なくとも1種の化合物であることを特徴とする請求項1又は請求項5に記載の非水系電解液二次電池用非水系電解液。
- 上記ハロゲン原子を有する鎖状カーボネートが、非水系溶媒全体に対して0.001質量%〜10質量%の割合で含まれていることを特徴とする請求項5又は請求項6に記載の非水系電解液二次電池用非水系電解液。
- 炭素質材料を含む活物質からなる負極を有する非水系電解液二次電池に用いられること特徴とする請求項1ないし請求項7の何れかの請求項に記載の非水系電解液二次電池用非水系電解液。
- Si原子、Sn原子及びPb原子よりなる群から選ばれる少なくとも1種の原子を有する活物質からなる負極を有する非水系電解液二次電池に用いられることを特徴とする請求項1ないし請求項7の何れかの請求項に記載の非水系電解液二次電池用非水系電解液。
- リチウムイオンを吸蔵・放出可能な負極及び正極、並びに非水系電解液を含む非水系電解液二次電池であって、該非水系電解液が請求項1ないし請求項9の何れかの請求項に記載の非水系電解液二次電池用非水系電解液であることを特徴とする非水系電解液二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012279596A JP5635065B2 (ja) | 2012-12-21 | 2012-12-21 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012279596A JP5635065B2 (ja) | 2012-12-21 | 2012-12-21 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007116442A Division JP5628469B2 (ja) | 2007-04-05 | 2007-04-26 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013055074A JP2013055074A (ja) | 2013-03-21 |
JP5635065B2 true JP5635065B2 (ja) | 2014-12-03 |
Family
ID=48131845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012279596A Active JP5635065B2 (ja) | 2012-12-21 | 2012-12-21 | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5635065B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6098878B2 (ja) | 2013-04-17 | 2017-03-22 | トヨタ自動車株式会社 | 非水電解液二次電池 |
EP3483974B1 (en) * | 2016-07-22 | 2023-04-26 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, secondary battery, and module |
CN113764726A (zh) * | 2021-08-12 | 2021-12-07 | 浙江锋锂新能源科技有限公司 | 复合电解质膜、锂金属电池及复合电解质膜的制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3439085B2 (ja) * | 1997-08-21 | 2003-08-25 | 三洋電機株式会社 | 非水系電解液二次電池 |
JP4503209B2 (ja) * | 2002-01-17 | 2010-07-14 | 株式会社ジーエス・ユアサコーポレーション | 非水電解質電池 |
JP2004014134A (ja) * | 2002-06-03 | 2004-01-15 | Mitsubishi Chemicals Corp | 非水系電解液二次電池およびそれに用いる電解液 |
EP2485314A1 (en) * | 2005-06-10 | 2012-08-08 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolyte secondary cell |
WO2007043526A1 (ja) * | 2005-10-12 | 2007-04-19 | Mitsui Chemicals, Inc. | 非水電解液及びそれを用いたリチウム二次電池 |
JP5239119B2 (ja) * | 2005-12-26 | 2013-07-17 | セントラル硝子株式会社 | 非水電解液電池用電解液及び非水電解液電池 |
-
2012
- 2012-12-21 JP JP2012279596A patent/JP5635065B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013055074A (ja) | 2013-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5628469B2 (ja) | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5401765B2 (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5549438B2 (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5374828B2 (ja) | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5472041B2 (ja) | 非水系電解液およびそれを用いた非水系電解液二次電池 | |
EP2573855B1 (en) | Nonaqueous electrolytes and nonaqueous-electrolyte secondary battery employing the same | |
EP2940779B1 (en) | Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same | |
JP5217400B2 (ja) | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5418955B2 (ja) | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 | |
KR102061631B1 (ko) | 비수계 전해액 및 이를 이용한 비수계 전해액 2차 전지 | |
JP5471967B2 (ja) | ジフルオロリン酸塩組成物及びそれからなる非水系電解液用添加剤、並びにそれを用いた二次電池用非水系電解液及び非水系電解液二次電池 | |
JP2011049153A (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP2008277001A (ja) | 非水系電解液及び非水系電解液電池 | |
JP2016143536A (ja) | 非水系電解質、及びそれを用いた非水系電解質二次電池 | |
JP2008269979A (ja) | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5504616B2 (ja) | 二次電池用非水系電解液の製造方法 | |
JP5268016B2 (ja) | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5299164B2 (ja) | 非水系電解液及び非水系電解液電池 | |
JP5251416B2 (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP2007165299A (ja) | リチウム二次電池 | |
JP5374827B2 (ja) | 非水系電解液及び非水系電解液電池 | |
JP6079264B2 (ja) | 非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP5374854B2 (ja) | 非水系電解液およびそれを用いた非水系電解液二次電池 | |
JP5635065B2 (ja) | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 | |
JP2008277003A (ja) | 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130118 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130613 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130709 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131009 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20131216 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141015 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5635065 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |