本発明の液晶配向剤は、テトラカルボン酸二無水物とジアミンとの反応生成物であるポリアミック酸またはその誘導体を含有する。前記ポリアミック酸の誘導体とは、溶剤を含有する後述する液晶配向剤としたときに溶剤に溶解する成分であり、その液晶配向剤を後述する液晶配向膜としたときに、ポリイミドを主成分とする液晶配向膜を形成することができる成分である。このようなポリアミック酸の誘導体としては、例えば可溶性ポリイミド、ポリアミック酸エステル、およびポリアミック酸アミド等が挙げられ、より具体的には1)ポリアミック酸の全てのアミノとカルボキシルとが脱水閉環反応したポリイミド、2)部分的に脱水閉環反応した部分ポリイミド、3)ポリアミック酸のカルボキシルがエステルに変換されたポリアミック酸エステル、4)テトラカルボン酸二無水物化合物に含まれる酸二無水物の一部を有機ジカルボン酸に置き換えて反応させて得られたポリアミック酸−ポリアミド共重合体、さらに5)該ポリアミック酸−ポリアミド共重合体の一部もしくは全部を脱水閉環反応させたポリアミドイミドが挙げられる。前記ポリアミック酸またはその誘導体は、液晶配向剤中に単独で用いてもよく、複数の化合物を併用してもよい。
本発明に用いるテトラカルボン酸二無水物は前記式(G)で表されるテトラカルボン酸二無水物を含む。
また、式(G)で表されるテトラカルボン酸二無水物は、これとジアミンと反応させて得たポリアミック酸またはその誘導体を液晶配向膜に用いると、液晶表示素子の電圧保持率を高くし、そしてその長期熱信頼性を実現させるという観点から、本発明の液晶配向剤におけるポリアミック酸を構成する酸二無水物中モル比で10〜100%含まれることが好ましく、20〜100%含まれることがより好ましい。
式(G)で表されるテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を含んでもよい。芳香族テトラカルボン酸二無水物とは、2つの−CO−O−CO−の少なくとも1つが芳香族化合物に結合する化合物である。芳香族テトラカルボン酸二無水物は下記の式(1)〜(13)で表される化合物が例示される。
式(G)で表されるテトラカルボン酸二無水物と共に用いられる芳香族テトラカルボン酸二無水物は、式(1)、(2)、(5)〜(7)、および(12)で表される化合物が好ましく、式(1)および(12)で表される化合物がより好ましい。芳香族テトラカルボン酸二無水物を併用すると液晶表示素子の耐光性を高める効果並びに残留DCを低減する効果がある。本発明の液晶配向剤におけるポリアミック酸を構成する全テトラカルボン酸二無水物中、芳香族テトラカルボン酸二無水物をモル比で1〜90%含むことが好ましく、2〜60%含むことがより好ましい。
本発明の液晶配向剤は、式(G)で表されるテトラカルボン酸二無水物に加えて、2つの−CO−O−CO−の少なくとも1つが脂環式化合物に結合する化合物である脂環式テトラカルボン酸二無水物、および2つの−CO−O−CO−の少なくとも1つが脂肪族化合物に結合する化合物である脂肪族テトラカルボン酸二無水物のどちらか一方または両方を、ジアミンと反応させて得たポリアミック酸またはその誘導体を用いることが好ましい。脂環式テトラカルボン酸二無水物は下記の式(19)〜(44)、(49)〜(58)、および(62)〜(64)で表される化合物が例示される。
脂肪族テトラカルボン酸二無水物は下記の式(23)、(45)〜(48)、(66)、(67)、および(69)で表される化合物が例示される。
脂環式テトラカルボン酸二無水物および脂肪族テトラカルボン酸二無水物は、式(19)、(23)、(26)、(35)〜(39)、(44)、(49)、および(69)で表される化合物が好ましく、式(19)および(23)で表される化合物がより好ましい。脂環式テトラカルボン酸二無水物および/または脂肪族テトラカルボン酸二無水物を併用すると、液晶表示素子の耐熱性を高める効果並びに透明性を改善する効果がある。本発明の液晶配向剤におけるポリアミック酸を構成するテトラカルボン酸二無水物中、脂環式テトラカルボン酸二無水物および/または脂肪族テトラカルボン酸二無水物をモル比で1〜90%含むことが好ましく、10〜80%含むことがより好ましい。
本発明に用いるテトラカルボン酸二無水物は、シルセスキオキサン二無水物を含むことが好ましい。シルセスキオキサンは高度な架橋体であり加水分解されることはないため、含有させることにより液晶配向剤としての保存安定性が優れる。また、製膜後も加水分解されないため、熱信頼性の高い液晶配向膜の形成が可能となる。
本発明に用いるシルセスキオキサン二無水物は、例えば国際公開第03/024870号パンフレットに記載されている下記の式(S)で表される化合物を用いることができる。
式(S)中、Rはそれぞれ独立して、水素、炭素数1〜45のアルキル、置換または非置換のアリールおよび置換または非置換のアリールアルキルから選択され、Yは下記(a)または(b)で表される。
式(a)および式(b)中のXは、それぞれ独立して、水素、ハロゲン、水酸基または酸無水物の構造(−CO−O−CO−)を有する1価の有機基であり、Xの少なくとも2つは酸無水物の構造(−CO−O−CO−)を有する1価の有機基であり、Zは−O−、−CH
2−または単結合である。但し、炭素数1〜45のアルキルにおいて、任意の水素はフッ素で置き換えられてもよく、任意のCH
2−は−O−、−CH=CH−、シクロアルキレンまたはシクロアルケニレンで置き換えられてもよい。置換または非置換のアリールアルキル中のアルキレンにおいて、任意の水素はフッ素に置き換えられてもよく、任意の−CH
2−は−O−、−CH=CH−、またはシクロアルキレンで置き換えられてもよい。
式(S)で表されるシルセスキオキサン二無水物のうち、特に好ましいのは下記の式(S−1)で表される化合物である。
シルセスキオキサン二無水物誘導体を併用すると、液晶表示素子の電圧保持率を高くし、耐光性および耐熱性を高くし、そしてイオン密度を低減する効果がある。本発明の液晶配向剤におけるポリアミック酸を構成する酸二無水物中、シルセスキオキサン二無水物をモル比で1〜60%含まれることが好ましく、10〜40%含まれることがより好ましい。
式(G)で表されるテトラカルボン酸二無水物と併用するテトラカルボン酸二無水物は、本発明の効果が達成される範囲で、その種類や配合量について適宜用いることができる。本発明においては、式(G)で表されるテトラカルボン酸二無水物と共に他のテトラカルボン酸二無水物を少なくとも1つ用いてジアミンと反応させた共重合体を用いることが、配向剤の保存安定性が向上するので好ましい。
前記の式(G)で表されるテトラカルボン酸二無水物と併用するテトラカルボン酸二無水物は、その一部をカルボン酸無水物に置き換えてもよい。このような置き換えによって、ポリアミック酸を生成する際の重合反応のターミネーションを起こすことができ、重合反応の進行を抑えることができる。このため、得られる重合体(ポリアミック酸またはその誘導体)の分子量を容易に制御することができ、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。テトラカルボン酸二無水物に対するカルボン酸無水物の比率は、本発明の効果を損なわない範囲にすればよいが、目安として全テトラカルボン酸二無水物量の10モル%以下にすることが好ましい。カルボン酸無水物は、本発明の効果が損なわれなければ、1つでもよく、2つ以上用いてもよい。カルボン酸無水物は無水マレイン酸、無水フタル酸、無水イタコン酸、n−デシル無水コハク酸、n−ドデシル無水コハク酸、n−テトラデシル無水コハク酸、n−ヘキサデシル無水コハク酸、およびシクロヘキサンジカルボン酸無水物が例示される。
前記の式(G)で表されるテトラカルボン酸二無水物と併用するテトラカルボン酸二無水物は、テトラカルボン酸二無水物に対するジカルボン酸の比率が10モル%以下の範囲で、一部がジカルボン酸に置き換えられてもよい。ジカルボン酸は、本発明の効果が損なわれなければ、1つでもよく、2つ以上用いてもよい。
本発明においてテトラカルボン酸二無水物と反応させることができるジアミンは、下記式(I)で表される。
H2N−X1−X1−X1−X1−X1−X1−X1−NH2 (I)
式(I)において、
X1は独立して単結合、炭素数1〜30のアルキレン、あるいは骨格を構成する炭素、窒素および酸素それぞれの原子の数の和が3〜30である環を有する2価の基を表し、
アルキレン中の−CH2−は−O−、−NH−、−CO−、−CHY1−、−C(Y1)2−、−NY1−、−S−、−SO−、−SO2−、または−Si(Y1)2−で置き換えられてもよく、
アルキレン中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキレンの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
骨格を構成する炭素、窒素および酸素それぞれの原子の数の和が3〜30である環の−Hは、−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2、または−Y1で置き換えられてもよく、
Y1は独立して−H、−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、または下記式(XXI)を表し、
〜A1−A1−A1−A1−A1−A1−A2 (XXI)
式(XXI)において、
A1は独立して単結合、炭素数1〜12のアルキレン、あるいは骨格を構成する炭素、窒素および酸素それぞれの原子の数の和が3〜30である環であり、
アルキレン中の−CH2−は−O−、−NH−、−CO−、−CHY2−、−C(Y2)2−、または−NY2−で置き換えられてもよく、
アルキレン中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキレンの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
環の−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、−N(Y2)2、または下記式(XXII)で置き換えられてもよく、
〜A3−A3−A3−A2 (XXII)
式(XXII)において、
A3は独立して単結合、炭素数1〜12のアルキレン、あるいは骨格を構成する炭素、窒素および酸素それぞれの原子の数の和が3〜30である環であり、
アルキレン中の−CH2−は−O−、−NH−、−CO−、−CHY2−、−C(Y2)2−、または−NY2−で置き換えられてもよく、
アルキレン中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキレンの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
環の−Hは−F、−Cl、−Br、−C≡N、−CH3、−OCH3、−OCH2F、−OCHF2、−OCF3、−OH、−COOH、−SO3H、−PO3H2、または−N(Y2)2で置き換えられてもよく、
式(XXI)または式(XXII)において、
A2は独立して−H、−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、または炭素数1〜40のアルキルであり、
アルキル中の−CH2−は−O−、−NH−、または−CO−で置き換えられてもよく、
アルキル中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキルの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
Y2は独立して−H、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルであり、
式(I)において、
Y1が複数存在するときは、互いに結合して環を形成してもよく、
但し、X1の少なくとも1つは炭素数1〜30のアルキレン、あるいは骨格を構成する炭素、窒素および酸素それぞれの原子の数の和が3〜30である環である。
式(I)で表されるジアミンは、具体的には下記式(II)、(III)、(IV)、(V)、(VI)、(VII)、(VIII)、または(IX)で表される化合物である。
式(II)、(III)、(IV)、(V)、(VI)、(VII)、(VIII)、および(IX)中、
X2は独立して炭素数1〜12のアルキレンであり、
アルキレン中の−CH2−は−O−、−NH−、または−CO−で置き換えられてもよく、
アルキレン中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキレンの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、または炭素数1〜10のアルキルで置き換えられてもよく、
X3は独立して単結合、−O−、−S−、−S−S−、−SO2−、−CO−、−CONH−、−COO−、−NH−、−N(CH3)−(CH2)m−N(CH3)−、−C(CH3)2−、−C(CF3)2−、−(CH2)m−、−O−(CH2)m−O−、−S−(CH2)m−S−(mは1〜6の整数である)、−COCH=CH−、−N=N−、または−C≡C−を含む基であり、
X4は独立して炭素数1〜6のアルキレン、フェニレンを表し、フェニレンの−Hは炭素数1〜30のアルキルで置き換えられてもよく、
lは1〜10の整数であり、
Y1は独立して−H、−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、または下記式(XXI)であり、
〜A1−A1−A1−A1−A1−A1−A2 (XXI)
式(XXI)において、
A1は独立して単結合、炭素数1〜12のアルキレン、あるいは骨格を構成する炭素、窒素および酸素それぞれの原子の数の和が3〜30である環であり、
アルキレン中の−CH2−は−O−、−NH−、−CO−、−CHY2−、−C(Y2)2−、または−NY2−で置き換えられてもよく、
アルキレン中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキレンの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
環の−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、−N(Y2)2、または下記式(XXII)で置き換えられてもよく、
〜A3−A3−A3−A2 (XXII)
式(XXII)において、
A3は独立して単結合、炭素数1〜12のアルキレン、あるいは骨格を構成する炭素、窒素および酸素それぞれの原子の数の和が3〜30である環であり、
アルキレン中の−CH2−は−O−、−NH−、−CO−、−CHY2−、−C(Y2)2−、または−NY2−で置き換えられてもよく、
アルキレン中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキレンの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
環の−Hは−F、−Cl、−Br、−C≡N、−CH3、−OCH3、−OCH2F、−OCHF2、−OCF3、−OH、−COOH、−SO3H、−PO3H2、または−N(Y2)2で置き換えられてもよく、
式(XXI)または式(XXII)において、
A2は独立して−H、−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、または炭素数1〜40のアルキルであり、
アルキル中の−CH2−は−O−、−NH−、または−CO−で置き換えられてもよく、
アルキル中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキルの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
Y2は独立して−H、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルであり、
式(I)において、
Y1が複数存在するときは、互いに結合して環を形成してもよく、
式(II)、(III)、(IV)、(V)、(VI)、(VII)、および(VIII)中、
aはY1が結合する原子または環の構造に応じて0〜4の整数であり、
式(V)、(VI)、(VII)、および(VIII)中、
ベンゼン環はピペリジン環、ピペラジン環、ピロリジン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、トリアゾール環、ナフタレン環、アントラセン環、インドール環、ステロイド環、またはヘキサヒドロ−フロ[3.2−b]フラン環で置き換えられてもよい。
本発明に用いることができるジアミンは、要求される特性に応じて適宜使用できる。
例えば、VAまたはTN液晶表示素子等には、配向性側鎖構造を有するジアミンの使用が好ましい。配向性側鎖構造を有するジアミンとは、例えば2つのアミノ基を結ぶ置換基を主鎖としたときに、主鎖から分岐する置換基(側鎖)を有し、かつ液晶に対して垂直配向性またはプレチルト角を発現させる性質を有するジアミンである。側鎖は、要求される配向性に応じて適宜選択すればよい。
一方、IPS液晶表示素子等には、配向性側鎖構造を有さないジアミンの使用が好ましい。
これらのジアミンでは、2つのアミノ基が同じ六員環の炭素に結合している場合は、互いにメタまたはパラに結合していることが好ましい。
本発明に用いることができるジアミンは、要求される特性に応じて適宜選択すればよいが、式(II−1)、(III−1)、(IV−1)、(V−1)、(V−2)、(V−11)、(VI−1)、(VI−2)、(VI−3)、(VI−11)、(VI−12)、(VII−1)、(VII−2)、(VII−3)、(VII−11)、(VII−12)、(VIII−1)、(VIII−2)、(VIII−3)、(VIII−4)、(VIII−11)、または(IX−1)で表される化合物が挙げられる。
式(II−1)、(III−1)、(IV−1)、(V−1)、(V−2)、(V−11)、(VI−1)、(VI−2)、(VI−3)、(VI−11)、(VI−12)、(VII−1)、(VII−2)、(VII−3)、(VII−11)、(VII−12)、(VIII−1)、(VIII−2)、(VIII−3)、(VIII−4)、(VIII−11)、および(IX−1)において、
X11は独立して炭素数1〜12のアルキレンであり、アルキレンの−Hは炭素数1〜10のアルキルで置き換えられてもよく、
X5は独立して−COCH=CH−、−N=N−、または−C≡C−であり、
X6は独立して単結合、−O−、−S−、−S−S−、−SO2−、−CO−、−CONH−、−COO−、−NH−、−N(CH3)−(CH2)m−N(CH3)−、−C(CH3)2−、−C(CF3)2−、−(CH2)m−、−O−(CH2)m−O−、−S−(CH2)m−S−(mは1〜6の整数である)、−COCH=CH−、−N=N−、または−C≡C−であり、
X7は独立してメチレン、フェニレンを表し、フェニレンの−Hは炭素数1〜30のアルキルで置き換えられてもよく、
X8は独立しては単結合または炭素数1〜3のアルキレンであり、
X9は独立して単結合、1,4−フェニレンまたは1,4−シクロヘキシレンであり、
X10は単結合、−O−、−COO−、−CO−、−CONH−、−(CH2)m−(mは1〜6の整数である)、−CHY2−、−C(Y2)2−、または−NY2−であり、
aは結合先の構造に応じて0〜4の整数であり、
lは1〜10の整数を表し、
Y2は独立して−H、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルであり、
Y3は独立して−H、−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2、または炭素数1〜2のアルキルであり、
Y3が複数存在するときは、互いに結合して環を形成してもよく、
Y4は独立してベンジル、−H、−F、−Cl、−OH、−COOH、−SO3H、−PO3H2、−NHY5、または−N(Y5)2であり、
Y5は独立して炭素数1〜20のアルキル、または炭素数2〜20のアルケニルであり、
Y6は独立して炭素数1〜3のアルキルまたはフェニルであり、
Y7は独立して炭素数1〜30のアルキル、シクロヘキシル、またはビシクロヘキシルであり、シクロヘキシルまたはビシクロヘキシルの−Hは炭素数1〜30のアルキルで置き換えられてもよく、
Y8は−Hまたは炭素数1〜30のアルキルであり、
アルキル中の−CH2−は−O−、−NH−、または−CO−で置き換えられてもよく、
アルキル中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキルの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
Y9は炭素数6〜30のアルキルであり、
Y10は炭素数1〜30のアルキルであり、
Y17は−H、−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、または炭素数1〜20のアルキルであり、
アルキル中の−CH2−は−O−、−NH−、または−CO−で置き換えられてもよく、
アルキル中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキルの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
Y
11はステロイド骨格、スクシンイミド骨格、またはフタルイミド骨格を有する基、あるいは下記式(XXIII)で表される基を有し、
式(XXIII)中、
環の−Hは−F、−Cl、−OH、−COOH、−SO3H、−PO3H2、炭素数1〜30のアルキル、またはフェニルで置き換えられてもよく、
アルキル中の−CH2−は−O−、−NH−、または−CO−で置き換えられてもよく、
アルキル中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキルの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
フェニルの−Hは独立して、−F、−Cl、−Br、−C≡N、−CH3、−OCH3、−OCH2F、−OCHF2、−OCF3、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
A4は独立して、単結合、または炭素数1〜12のアルキレンであり、
アルキレン中の−CH2−は−O−、−NH−、または−CO−で置き換えられてもよく、
アルキレン中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキレンの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよく、
Y12は独立して、−FまたはCH3であり、
環Sは独立してシクロヘキサン、1,3−ジオキサン、ピペリジン、ピペラジン、ピロリジン、フェニレン、ピリジン、ピラジン、ピリダジン、ピリミジン、トリアジン、ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、トリアゾール、ナフタレン、アントラセン、インドール、ステロイド、またはヘキサヒドロ−フロ[3.2−b]フランであり、
bは独立して0〜1の整数であり、c、d、およびeは独立して0〜3の整数であり、fは独立して0〜4の整数であり、c+d+e≧1でかつ6≧b+c+d+eであり、
Y13は−H、−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、−PO3H2、または炭素数1〜30のアルキルであり、
アルキル中の−CH2−は−O−、−NH−、または−CO−で置き換えられてもよく、
アルキル中の−CH2CH2−は−CH=CH−、−C≡C−、または−N=N−で置き換えられてもよく、
アルキルの−Hは−F、−Cl、−Br、−C≡N、−OH、−COOH、−SO3H、または−PO3H2で置き換えられてもよい。
式(I)で表されるジアミンは、更に具体的には下記式で表される化合物である。
式(II−1)で表されるジアミンは下記式(II−1−1)〜(II−1−4)で表される化合物が例示される。
式(III−1)で表されるジアミンは下記式(III−1−1)および(III−1−2)で表される化合物が例示される。
式(IV−1)で表されるジアミンは下記式(IV−1−1)〜(IV−1−3)で表される化合物が例示される。
式(V−1)で表されるジアミンは下記式(V−1−1)〜(V−1−19)で表されるジアミンが例示される。
式(V−2)で表されるジアミンは下記式(V−2−1)〜(V−2−54)で表される化合物が例示される。
式(V−2−1)〜(V−2−54)において、
Y2は独立して−H、−F、炭素数1〜30のアルキル、炭素数1〜30のフッ素置換アルキル、炭素数1〜30のアルコキシ、炭素数2〜30のアルケニル、−C≡N、−OCH2F、−OCHF2、または−OCF3であり、
好ましくは独立して−H、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルであり、
Y5は独立して炭素数1〜30のアルキル、または炭素数2〜30のアルケニルであり、
Y16は独立して−H、炭素数1〜30のアルキル、炭素数1〜29のアルコキシ、または炭素数2〜30のアルケニルであり、
Y18は独立して−F、−CF3、または−OCF3である。
一般式(V−11)で表されるジアミンは下記の式(V−11−1)〜(V−11−19)で表される化合物が例示される。
式(VI−1)で表されるジアミンは下記式(VI−1−1)〜(VI−1−39)で表される化合物が例示される。
式(VI−2)で表されるジアミンは下記式(VI−2−1)〜(VI−2−8)で表される化合物が例示される。
式(VI−2−1)〜(VI−2−8)中、
Y15は独立して炭素数3〜30のアルキル、炭素数3〜29のアルコキシ、または炭素数3〜30のアルケニルである。
Y16は独立して−H、炭素数1〜30のアルキル、炭素数1〜29のアルコキシ、または炭素数2〜30のアルケニルである。
式(VI−3)で表されるジアミンは下記式(VI−3−1)および(VI−3−2)で表される化合物が例示される。
式(VI−3−1)〜(VI−3−2)中、
Y15は独立して炭素数3〜30のアルキル、炭素数3〜29のアルコキシ、または炭素数3〜30のアルケニルである。
Y16は独立して−H、炭素数1〜30のアルキル、炭素数1〜29のアルコキシ、または炭素数2〜30のアルケニルである。
式(VI−11)で表されるジアミンは下記式(VI−11−1)〜(VI−11−16)で表される化合物が例示される。
一般式(VI−12)で表されるジアミンは下記の式(VI−12−1)で表される化合物が例示される。
式(VII−1)で表されるジアミンは下記式(VII−1−1)〜(VII−1−6)で表される化合物が例示される。
式(VII−2)で表されるジアミンは下記式(VII−2−1)〜(VII−2−15)で表される化合物が例示される。
式(VII−3)で表されるジアミンは下記式(VII−3−1)〜(VII−3−4)で表される化合物が例示される。
式(VII−11)で表されるジアミンは下記式(VII−11−1)〜(VII−11−6)で表されるジアミンが例示される。
一般式(VII−12)で表されるジアミンは下記の式(VII−12−1)で表される化合物が例示される。
式(VIII−1)で表されるジアミンは下記式(VIII−1−1)〜(VIII−1−16)で表される化合物が例示される。
式(VIII−2)で表されるジアミンは下記式(VIII−2−1)〜(VIII−2−8)で表される化合物が例示される。
式(VIII−2−1)〜(VIII−2−8)中、
Y16は独立して−H、炭素数1〜30のアルキル、炭素数1〜29のアルコキシ、または炭素数2〜30のアルケニルである。
式(VIII−3)で表されるジアミンは下記式(VIII−3−1)〜(VIII−3−3)で表される化合物が例示される。
式(VIII−3−1)〜(VIII−3−3)中、
Y16は独立して−H、炭素数1〜30のアルキル、炭素数1〜29のアルコキシ、または炭素数2〜30のアルケニルであり、
Y9は炭素数6〜30のアルキルである。
式(VIII−4)で表されるジアミンは下記式(VIII−4−1)〜(VIII−4−8)で表される化合物が例示される。
式(VIII−11)で表されるジアミンは下記の式(VIII−11−1)で表される化合物が例示される。
式(IX−1)で表されるジアミンは下記の式(IX−1−1)で表される化合物が挙げられる。
これまで例示した化合物以外のジアミンとしては、ナフタレン構造を有するナフタレン系ジアミン、およびフルオレン構造を有するフルオレン系ジアミン等が挙げられる。
本発明のポリアミック酸またはその誘導体は、そのモノマーにモノイソシアネート化合物をさらに含んでいてもよい。モノイソシアネート化合物をモノマーに含むことによって、得られるポリアミック酸またはその誘導体の末端が修飾され、分子量が調節される。この末端修飾型のポリアミック酸またはその誘導体を用いることにより、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノマー中のモノイソシアネート化合物の含有量は、モノマー中のジアミンおよびテトラカルボン酸二無水物の総量に対して1〜10モル%であることが好ましい。モノイソシアネート化合物としては、例えばフェニルイソシアネート、およびナフチルイソシアネートが挙げられる。
本発明のポリアミック酸またはその誘導体の分子量は、ポリスチレン換算の重量平均分子量(Mw)で、10,000〜500,000であることが好ましく、20,000〜200,000であることがより好ましい。前記ポリアミック酸またはその誘導体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法による測定から求めることができる。
本発明のポリアミック酸またはその誘導体は、多量の貧溶剤で沈殿させて得られる固形分をIR、NMRで分析することによりその存在を確認することができる。また本発明のポリアミック酸またはその誘導体をKOHやNaOH等の強アルカリの水溶液によって分解した後、その分解物から有機溶剤によって抽出した成分をGC、HPLCもしくはGC−MSで分析することにより、使用されているモノマーを確認することができる。
本発明の液晶配向剤は、前記のポリアミック酸またはその誘導体以外の他の成分をさらに含有していてもよい。他の成分は、1つであっても2つ以上であってもよい。
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる観点から、アルケニル置換ナジイミド化合物をさらに含有していてもよい。アルケニル置換ナジイミド化合物は1つの化合物を単独で用いてもよく、2つ以上の化合物を併用してもよい。アルケニル置換ナジイミド化合物の含有量は、液晶配向剤中のポリアミック酸またはその誘導体の総量に対する重量比で0.01〜1.00であることが好ましく、0.01〜0.70であることがより好ましく、0.01〜0.50であることがさらに好ましい。
アルケニル置換ナジイミド化合物は、本発明で用いられるポリアミック酸またはその誘導体を溶解する溶剤に溶解させることができる化合物であることが好ましい。このようなアルケニル置換ナジイミド化合物の例は、下記式(Ina)で表される化合物が挙げられる。
式(Ina)中、L1およびL2は、それぞれ独立して水素、炭素数1〜12のアルキル、炭素数3〜6のアルケニル、炭素数5〜8のシクロアルキル、アリールまたはベンジルであり、nは1または2である。
n=1のとき、
Wは炭素数1〜12のアルキル、炭素数2〜6のアルケニル、炭素数5〜8のシクロアルキル、炭素数6〜12のアリール、ベンジル、−Z1−(O)q−(Z2O)r−Z3−Hで表される基、−(Z4)s−B−Z5−Hで表される基、−B−T−B−Hで表される基、またはこれらの基の1〜3個の水素が水酸基で置換された基である。
ここで、Z1、Z2およびZ3は独立して炭素数2〜6のアルキレンであり、qは0または1であり、そしてrは1〜30の整数であり、
Z4およびZ5は独立して炭素数1〜4のアルキレンまたは炭素数5〜8のシクロアルキレンであり、Bはフェニレンであり、そしてsは0または1であり、
Bはフェニレンであり、そしてTは−CH2−、−C(CH3)2−、−O−、−CO−、−S−または−SO2−である。
このとき、好ましいWは、炭素数1〜8のアルキル、炭素数3〜4のアルケニル、シクロヘキシル、フェニル、ベンジル、炭素数4〜10のポリ(エチレンオキシ)エチル、フェニルオキシフェニル、フェニルメチルフェニル、フェニルイソプロピリデンフェニル、およびこれらの基の1個または2個の水素が水酸基で置き換えられた基である。
n=2のとき、
Wは炭素数2〜20のアルキレン、炭素数5〜8のシクロアルキレン、炭素数6〜12のアリーレン、−Z1−O−(Z2O)r−Z3−で表される基、−Z4−B−Z5−で表される基、−B−(O−B)s−T−(B−O)s−B−で表される基、またはこれらの基の1〜3個の水素が水酸基で置き換えられた基である。
ここで、Z1〜Z3、r、Z4、Z5、およびBの意味は前記の通りであり、
Bはフェニレンであり、Tは炭素数1〜3のアルキレン、−O−またはSO2−であり、sは0または1である。
このとき、好ましいWは炭素数2〜12のアルキレン、シクロヘキシレン、フェニレン、トリレン、キシリレン、−C3H6−O−(Z2−O)r−O−C3H6−(Z2は炭素数2〜6のアルキレンであり、rは1または2である。)で表される基、−B−T−B−(Bはフェニレンであり、そしてTは−CH2−、−O−または−SO2−である。)で表される基、−B−O−B−C3H6−B−O−B−(Bはフェニレンである。)で表される基、およびこれらの基の1個または2個の水素が水酸基で置き換えられた基である。
このようなアルケニル置換ナジイミド化合物は、例えば特許第2729565号公報に記載されているように、アルケニル置換ナジック酸無水物誘導体とジアミンとを80〜220℃の温度で0.5〜20時間保持することにより合成して得られる化合物や市販されている化合物を用いることができる。アルケニル置換ナジイミド化合物の具体例は、以下に示す化合物である。
N−メチル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルヘキシル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(2−エチルヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−フェニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−フェニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシ−1−プロペニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシシクロヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(4−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(p−ヒドロキシベンジル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−{2−(2−ヒドロキシエトキシ)エチル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、およびこれらのオリゴマー、
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
1,2−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、ビス〔2’−{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、ビス〔2’−{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、1,4−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、1,4−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、1,6−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3−ヒドロキシ−ヘキサン、1,12−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3,6−ジヒドロキシ−ドデカン、1,3−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−シクロヘキサン、1,5−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}−3−ヒドロキシ−ペンタン、1,4−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−ベンゼン、
1,4−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2,5−ジヒドロキシ−ベンゼン、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルメチルシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2,3−ジヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェノキシ}フェニル〕プロパン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェニル}メタン、ビス{3−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−4−ヒドロキシ−フェニル}エーテル、ビス{3−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−フェニル}スルホン、1,1,1−トリ{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)}フェノキシメチルプロパン、N,N’,N”−トリ(エチレンメタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)イソシアヌレート、およびこれらのオリゴマー等。
さらに、本発明に用いられるアルケニル置換ナジイミド化合物は、非対称なアルキレン・フェニレン基を含む下記構造式で表される化合物でもよい。
アルケニル置換ナジイミド化合物のうち、好ましく用いられるのは以下の化合物である。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン。
更に好ましく用いられるアルケニル置換ナジイミド化合物は以下の通りである。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン。
そして、特に好ましいアルケニル置換ナジイミド化合物は、下記の式(Ina−1)で表されるビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、式(Ina−2)で表されるN,N’−m−キシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、および式(Ina−3)で表されるN,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)である。
また例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる観点から、ラジカル重合性不飽和二重結合を有する化合物をさらに含有していてもよい。ラジカル重合性不飽和二重結合を有する化合物は1つの化合物を単独で用いてもよく、2つ以上の化合物を併用してもよい。なお、このラジカル重合性不飽和二重結合を有する化合物には前記のアルケニル置換ナジイミド化合物は含まれない。ラジカル重合性不飽和二重結合を有する化合物の含有量は、ポリアミック酸またはその誘導体の総量に対する重量比で0.01〜1.00であることが好ましく、0.01〜0.70であることがより好ましく、0.01〜0.50であることがさらに好ましい。
なお、アルケニル置換ナジイミド化合物に対するラジカル重合性不飽和二重結合を有する化合物の比率は、液晶表示素子のイオン密度を低減し、イオン密度の経時的な増加を抑制し、さらに残像を抑制する観点から、重量比で0.1〜10であること好ましく、0.5〜5であることがより好ましい。
ラジカル重合性不飽和二重結合を有する化合物は、(メタ)アクリル酸エステル、(メタ)アクリル酸アミド等の(メタ)アクリル酸誘導体、およびビスマレイミドが例示される。ラジカル重合性不飽和二重結合を有する化合物は、ラジカル重合性不飽和二重結合を2つ以上有する(メタ)アクリル酸誘導体であることがより好ましい。
(メタ)アクリル酸エステルの具体例は、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−メチルシクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル。(メタ)アクリル酸2−ヒドロキシエチル、および(メタ)アクリル酸2−ヒドロキシプロピルである。
2官能(メタ)アクリル酸エステルの具体例は、エチレンビスアクリレート、東亜合成化学工業(株)の製品であるアロニックスM−210、アロニックスM−240およびアロニックスM−6200、日本化薬(株)の製品であるKAYARAD HDDA、KAYARAD HX−220、KAYARAD R−604およびKAYARAD R−684、大阪有機化学工業(株)の製品であるV260、V312およびV335HP、並びに共栄社油脂化学工業(株)の製品であるライトアクリレートBA−4EA、ライトアクリレートBP−4PA、およびライトアクリレートBP−2PAである。
3官能以上の多官能(メタ)アクリル酸エステルの具体例は、4,4’−メチレンビス(N,N―ジヒドロキシエチレンアクリレートアニリン)、東亜合成化学工業(株)の製品であるアロニックスM−400、アロニックスM−405、アロニックスM−450、アロニックスM−7100、アロニックスM−8030、アロニックスM−8060、日本化薬(株)の製品であるKAYARAD TMPTA、KAYARAD DPCA−20、KAYARAD DPCA−30、KAYARAD DPCA−60、KAYARAD DPCA−120、および大阪有機化学工業(株)の製品であるVGPTである。
(メタ)アクリル酸アミド誘導体の具体例は、N−イソプロピルアクリルアミド、N−イソプロピルメタクリルアミド、N−n−プロピルアクリルアミド、N−n−プロピルメタクリルアミド、N−シクロプロピルアクリルアミド、N−シクロプロピルメタクリルアミド、N−エトキシエチルアクリルアミド、N−エトキシエチルメタクリルアミド、N−テトラヒドロフルフリルアクリルアミド、N−テトラヒドロフルフリルメタクリルアミド、N−エチルアクリルアミド、N−エチル−N−メチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピペリジン、N−アクリロイルピロリディン、N,N’−メチレンビスアクリルアミド、N,N’−エチレンビスアクリルアミド、N,N’−ジヒドロキシエチレンビスアクリルアミド、N−(4−ヒドロキシフェニル)メタクリルアミド、N−フェニルメタクリルアミド、N−ブチルメタクリルアミド、N−(iso−ブトキシメチル)メタクリルアミド、N−[2−(N,N−ジメチルアミノ)エチル]メタクリルアミド、N,N−ジメチルメタクリルアミド、N−[3−(ジメチルアミノ)プロピル]メタクリルアミド、N−(メトキシメチル)メタクリルアミド、N−(ヒドロキシメチル)―2−メタクリルアミド、N−ベンジル−2−メタクリルアミド、およびN,N’−メチレンビスメタクリルアミドである。
上記の(メタ)アクリル酸誘導体のうち、N,N’−メチレンビスアクリルアミド、N,N’−ジヒドロキシエチレン−ビスアクリルアミド、エチレンビスアクリレート、および4,4’−メチレンビス(N,N―ジヒドロキシエチレンアクリレートアニリン)が特に好ましい。
ビスマレイミドの具体例は、例えばケイ・アイ化成(株)製のBMI−70およびBMI−80、並びに大和化成工業(株)製のBMI−1000、BMI−3000、BMI−4000、BMI−5000およびBMI−7000である。
また例えば、本発明の液晶配向剤は、液晶表示素子における電気特性の長期安定性の観点から、オキサジン化合物をさらに含有していてもよい。オキサジン化合物は1つの化合物を単独で用いてもよく、2つ以上の化合物を併用してもよい。オキサジン化合物の含有量は、上記の観点から、前記ポリアミック酸またはその誘導体の総量に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
オキサジン化合物は、ポリアミック酸またはその誘導体を溶解させる溶媒に可溶であり、加えて、開環重合性を有するオキサジン化合物が好ましい。
またオキサジン化合物におけるオキサジン構造の数は、特に限定されない。
オキサジンの構造には種々の構造が知られている。本発明で用いられるオキサジン化合物の構造は特に限定されないが、ベンゾオキサジンやナフトオキサジン等の、縮合多環芳香族基を含む芳香族基を有するオキサジンの構造が例示される。
オキサジン化合物の具体例は下記式(a)〜(f)に示す化合物がである。なお下記式において、環の中心に向けて表示されている結合は、環を構成しかつ置換基の結合が可能ないずれかの炭素に結合していることを示す。
式(a)〜(c)中、R1およびR2は炭素数1〜30の有機基である。
式(a)〜(f)中、R3からR6は水素または炭素数1〜6の炭化水素基である。式(c)、(d)および(f)中、Xは、単結合、−O−、−S−、−S−S−、−SO2−、−CO−、−CONH−、−NHCO−、−C(CH3)2−、−C(CF3)2−、−(CH2)m−、−O−(CH2)m−O−、−S−(CH2)m−S−である。ここでmは1〜6の整数である。
そして、式(e)および(f)中、Yは独立して、単結合、−O−、−S−、−CO−、−C(CH3)2−、−C(CF3)2−、または炭素数1〜3のアルキレンである。
また、前記オキサジン化合物には、オキサジン構造を側鎖に有するオリゴマーやポリマー、オキサジン構造を主鎖中に有するオリゴマーやポリマーも含まれる。
式(a)で表されるオキサジン化合物は以下の化合物が例示される。
式中、R
1は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(b)で表されるオキサジン化合物は以下の化合物が例示される。
式中、R
1は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(c)で表されるオキサジン化合物は、下記式(c’)で表される化合物が例示される。
式(c’)中、R
1およびR
2は炭素数1〜30の有機基であり、R
3〜R
6は水素または炭素数1〜6の炭化水素基であり、Xは単結合、−CH
2−、−C(CH
3)
2−、−CO−、−O−、−SO
2−または−C(CF
3)
2−である。式(c’)で表されるオキサジン化合物の具体例は以下の化合物である。
式中、R
1は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(d)で表されるオキサジン化合物の具体例は以下の化合物である。
式(e)で表されるオキサジン化合物の具体例は以下の化合物である。
式(f)で表されるオキサジン化合物の具体例は以下の化合物である。
これらのうち好ましいのは、式(b−1)、式(c−1)、式(c−3)、式(c−5)、式(c−7)、式(c−9)、式(d−1)〜式(d−6)、式(e−3)、式(e−4)、式(f−2)〜式(f−4)で表されるオキサジン化合物である。
前記オキサジン化合物は、国際公開第2004/009708号パンフレット、特開平11−12258号公報、特開2004−352670号公報に記載の方法と同様の方法で製造することができる。
例えば式(a)で表されるオキサジン化合物は、フェノール化合物と一級アミンとアルデヒドとを反応させることによって得られる(国際公開第2004/009708号パンフレットを参照)。
また式(b)で表されるオキサジン化合物は、一級アミンをホルムアルデヒドへ徐々に加える方法により反応させたのち、ナフトール系水酸基を有する化合物を加えて反応させることによって得られる(国際公開第2004/009708号パンフレットを参照)。
また式(c)で表されるオキサジン化合物は、有機溶媒中でフェノール化合物1モル、そのフェノール性水酸基1個に対し少なくとも2モル以上のアルデヒド、および1モルの一級アミンを、二級脂肪族アミン、三級脂肪族アミンまたは塩基性含窒素複素環化合物の存在下で反応させることによって得られる(国際公開第2004/009708号パンフレットおよび特開平11−12258号公報を参照)。
また式(d)〜(f)で表されるオキサジン化合物は、4,4’−ジアミノジフェニルメタン等の、複数のベンゼン環とそれらを結合する有機基とを有するジアミン、ホルマリン等のアルデヒド、およびフェノールを、n−ブチルアルコール中、90℃以上の温度で脱水縮合反応させることにより得られる(特開2004−352670号公報を参照)。
また例えば、本発明の液晶配向剤は、液晶表示素子における電気特性の長期安定性の観点から、オキサゾリン化合物をさらに含有していてもよい。オキサゾリン化合物とはオキサゾリン構造を有する化合物である。前記オキサゾリン化合物は1つの化合物を単独で用いてもよく、2つ以上の化合物を併用してもよい。オキサゾリン化合物の含有量は、前記ポリアミック酸またはその誘導体の総量に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることが好ましい。または、オキサゾリン化合物の含有量は、オキサゾリン化合物中のオキサゾリン構造をオキサゾリンに換算したときに、ポリアミック酸またはその誘導体に対して0.1〜40重量%であることが好ましい。
オキサゾリン化合物は1つの化合物中にオキサゾリン構造を1個有していればよいが、2個以上有することが好ましい。またオキサゾリン化合物は、オキサゾリン環構造を側鎖に有する単独重合体であってもよく、共重合体であってもよい。オキサゾリン構造を側鎖に有する重合体は、オキサゾリン構造を側鎖に有するモノマーの単独重合体であってもよく、オキサゾリン構造を側鎖に有するモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。オキサゾリン構造を側鎖に有する共重合体は、オキサゾリン構造を側鎖に有する二種以上のモノマーの共重合体であってもよく、オキサゾリン構造を側鎖に有する二種以上のモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。
オキサゾリン構造は、オキサゾリン構造中の酸素および窒素の一方または両方とポリアミック酸のカルボニル基とが反応し得るようにオキサゾリン化合物中に存在する構造であることが好ましい。
オキサゾリン化合物の具体例は、2,2’−ビス(2−オキサゾリン)、1,2,4−トリス−(2−オキサゾリニル−2)−ベンゼン、4−フラン−2−イルメチレン−2−フェニル−4H−オキサゾール−5−オン、1,4−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、2,3−ビス(4−イソプロペニル−2−オキサゾリン−2−イル)ブタン、2,2’−ビス−4−ベンジル−2−オキサゾリン、2,6−ビス(イソプロピル−2−オキサゾリン−2−イル)ピリジン、2,2’−イソプロピリデンビス(4−tert−ブチル−2−オキサゾリン)、2,2’−イソプロピリデンビス(4−フェニル−2−オキサゾリン)、2,2’−メチレンビス(4−tert−ブチル−2−オキサゾリン)、および2,2’−メチレンビス(4−フェニル−2−オキサゾリン)である。これらの他、エポクロス(商品名、(株)日本触媒製)のようなオキサゾリルを有するポリマーやオリゴマーも例示することができる。
また例えば、本発明の液晶配向剤は、液晶表示素子における電気特性の長期安定性の観点から、エポキシ化合物をさらに含有していてもよい。エポキシ化合物は1つの化合物を単独で用いてもよく、2つ以上の化合物を併用してもよい。エポキシ化合物の含有量は、ポリアミック酸またはその誘導体の総量に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
エポキシ化合物は、グリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が例示される。なお、エポキシ化合物とはエポキシ基を有する化合物を意味し、エポキシ樹脂はエポキシ基を有する樹脂を意味する。
グリシジルエーテルの具体例は、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノール型エポキシ化合物、水素化ビスフェノール−A型エポキシ化合物、水素化ビスフェノール−F型エポキシ化合物、水素化ビスフェノール−S型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、臭素化ビスフェノール−A型エポキシ化合物、臭素化ビスフェノール−F型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、臭素化フェノールノボラック型エポキシ化合物、臭素化クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ナフタレン骨格含有エポキシ化合物、芳香族ポリグリシジルエーテル化合物、ジシクロペンタジエンフェノール型エポキシ化合物、脂環式ジグリシジルエーテル化合物、脂肪族ポリグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物、およびビフェノール型エポキシ化合物である。
グリシジルエステルはジグリシジルエステル化合物およびグリシジルエステルエポキシ化合物が例示される。
グリシジルアミンはポリグリシジルアミン化合物が例示される。
エポキシ基含有アクリル系化合物はオキシラニルを有するモノマーの単独重合体および共重合体が例示される。
グリシジルアミドはグリシジルアミド型エポキシ化合物が例示される。
鎖状脂肪族型エポキシ化合物は、アルケン化合物の炭素−炭素二重結合を酸化して得られるエポキシ基を含有する化合物が例示される。
環状脂肪族型エポキシ化合物は、シクロアルケン化合物の炭素−炭素二重結合を酸化して得られるエポキシ基を含有する化合物が例示される。
ビスフェノールA型エポキシ化合物の具体例は、828、1001、1002、1003、1004、1007、1010(いずれもジャパンエポキシレジン(株)製(現在は三菱化学(株)のjERシリーズの製品として入手できる/以下同じ))、エポトートYD−128(東都化成(株)製)、DER−331、DER−332、DER−324(いずれもThe Dow Chemical Company製)、エピクロン840、エピクロン850、エピクロン1050(いずれもDIC(株)製)、エポミックR−140、エポミックR−301、およびエポミックR−304(いずれも三井化学(株)製)である。
ビスフェノールF型エポキシ化合物の具体例は、例えば806、807、4004P(いずれもジャパンエポキシレジン(株)製)、エポトートYDF−170、エポトートYDF−175S、エポトートYDF−2001(いずれも東都化成(株)製)、DER−354(The Dow Chemical Company製)、エピクロン830、およびエピクロン835(いずれもDIC(株)製)である。
ビスフェノール型エポキシ化合物の具体例は2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物である。
水素化ビスフェノール−A型エポキシ化合物の具体例はサントートST−3000(東都化成(株)製)、リカレジンHBE−100(新日本理化(株)製)、およびデナコールEX−252(ナガセケムテックス(株)製)である。
水素化ビスフェノール型エポキシ化合物の具体例は水素化2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物である。
臭素化ビスフェノール−A型エポキシ化合物の具体例は、5050、5051(いずれもジャパンエポキシレジン(株)製)、エポトートYDB−360、エポトートYDB−400(いずれも東都化成(株)製)、DER−530、DER−538(いずれもThe Dow Chemical Company製)、エピクロン152、およびエピクロン153(いずれもDIC(株)製)である。
フェノールノボラック型エポキシ化合物の具体例は、152、154(いずれもジャパンエポキシレジン(株)製)、YDPN−638(東都化成(株)製)、DEN431、DEN438(いずれもThe Dow Chemical Company製)、エピクロンN−770(DIC(株)製)、EPPN−201、およびEPPN−202(いずれも日本化薬(株)製)である。
クレゾールノボラック型エポキシ化合物の具体例は、180S75(ジャパンエポキシレジン(株)製)、YDCN−701、YDCN−702(いずれも東都化成(株)製)、エピクロンN−665、エピクロンN−695(いずれもDIC(株)製)、EOCN−102S、EOCN−103S、EOCN−104S、EOCN−1020、EOCN−1025、およびEOCN−1027(いずれも日本化薬(株)製)である。
ビスフェノールAノボラック型エポキシ化合物の具体例は157S70(ジャパンエポキシレジン(株)製)、およびエピクロンN−880(DIC(株)製)である。
ナフタレン骨格含有エポキシ化合物の具体例は、エピクロンHP−4032、エピクロンHP−4700、エピクロンHP−4770(いずれもDIC(株)製)、およびNC−7000(日本化薬(株)製)である。
芳香族ポリグリシジルエーテル化合物の具体例は、ハイドロキノンジグリシジルエーテル(下記式E101)、カテコールジグリシジルエーテル(下記式E102)レゾルシノールジグリシジルエーテル(下記式E103)、トリス(4−グリシジルオキシフェニル)メタン(下記式E105)、1031S、1032H60(いずれもジャパンエポキシレジン(株))、TACTIX−742(The Dow Chemical Company製)、デナコールEX−201(ナガセケムテックス(株)製)、DPPN−503、DPPN−502H、DPPN−501H、NC6000(いずれも日本化薬(株)製)、テクモアVG3101L(三井化学(株)製)、下記式E106で表される化合物、および下記構造式E107で表される化合物である。
ジシクロペンタジエンフェノール型エポキシ化合物の具体例は、TACTIX−556(The Dow Chemical Company製)、およびエピクロンHP−7200(DIC(株)製)である。
脂環式ジグリシジルエーテル化合物の具体例は、シクロヘキサンジメタノールジグリシジルエーテル化合物、およびリカレジンDME−100(新日本理化(株)製)である。
脂肪族ポリグリシジルエーテル化合物の具体例は、エチレングリコールジグリシジルエーテル(下記式E108)、ジエチレングリコールジグリシジルエーテル(下記式E109)、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル(下記式E110)、トリプロピレングリコールジグリシジルエーテル(下記式E111)、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル(下記式E112)、1,4−ブタンジオールジグリシジルエーテル(下記式E113)、1,6−ヘキサンジオールジグリシジルエーテル(下記式E114)、ジブロモネオペンチルグリコールジグリシジルエーテル(下記式E115)、デナコールEX−810、デナコールEX−851、デナコールEX−8301、デナコールEX−911、デナコールEX−920、デナコールEX−931、デナコールEX−211、デナコールEX−212、デナコールEX−313(いずれもナガセケムテックス(株)製)、DD−503((株)ADEKA製)、リカレジンW−100(新日本理化(株)製)、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール(下記式E116)、グリセリンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、デナコールEX−313、デナコールEX−611、デナコールEX−321、およびデナコールEX−411(いずれもナガセケムテックス(株)製)である。
ポリサルファイド型ジグリシジルエーテル化合物の具体例はFLDP−50、およびFLDP−60(いずれも東レチオコール(株)製)である。
ビフェノール型エポキシ化合物の具体例は、YX−4000、YL−6121H(いずれもジャパンエポキシレジン(株)製)、NC−3000P、およびNC−3000S(いずれも日本化薬(株)製)である。
ジグリシジルエステル化合物の具体例は、例えばジグリシジルテレフタレート(下記式117)、ジグリシジルフタレート(下記式E118)、ビス(2−メチルオキシラニルメチル)フタレート(下記式E119)、下記式E121で表される化合物、下記式E122で表される化合物、および下記式E123で表される化合物である。
グリシジルエステルエポキシ化合物の具体例は、871、872(いずれもジャパンエポキシレジン(株)製)、エピクロン200、エピクロン400(いずれもDIC(株)製)、デナコールEX−711、およびデナコールEX−721(いずれもナガセケムテックス(株)製)である。
ポリグリシジルアミン化合物の具体例は、N,N−ジグリシジルアニリン(下記式E124)、N,N−ジグリシジル−o−トルイジン(下記式E125)、N,N−ジグリシジル−m−トルイジン(下記式E126)、N,N−ジグリシジル−2,4,6−トリブロモアニリン(下記式E127)、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシラン(下記式E128)、N,N,O−トリグリシジル−p−アミノフェノール(下記式E129)、N,N,O−トリグリシジル−m−アミノフェノール(下記式E130)、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン(TETRAD−X(三菱ガス化学(株)製)、下記式E132)、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(TETRAD−C(三菱ガス化学(株)製)、下記式E133)、1,4−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(下記式E134)、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式E135)、1,4−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式E136)、1,3−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式E137)、1,4−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式E138)、2,6−ビス(N,N−ジグリシジルアミノメチル)ビシクロ[2.2.1]ヘプタン(下記式E139)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジシクロヘキシルメタン(下記式E140)、2,2’−ジメチル−(N,N,N’,N’−テトラグリシジル)−4,4’−ジアミノビフェニル(下記式E141)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルエーテル(下記式E142)、1,3,5−トリス(4−(N,N−ジグリシジル)アミノフェノキシ)ベンゼン(下記式E143)、2,4,4’−トリス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式E144)、トリス(4−(N,N−ジグリシジル)アミノフェニル)メタン(下記式E145)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ビフェニル(下記式E146)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式E147)、下記式E148で表される化合物、および下記式E149で表される化合物である。
オキシラニルを有するモノマーの単独重合体の具体例は、ポリグリシジルメタクリレートである。オキシラニルを有するモノマーの共重合体の具体例は、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体、およびスチレン−グリシジルメタクリレート共重合体である。
オキシラニルを有するモノマーの具体例は、グリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートである。
オキシラニルを有するモノマーの共重合体における前記オキシラニルを有するモノマー以外の他のモノマーは、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミド、およびN−フェニルマレイミドが例示される。
グリシジルイソシアヌレートの具体例は、1,3,5−トリグリシジル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式E150)、1,3−ジグリシジル−5−アリル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式E151)、およびグリシジルイソシアヌレート型エポキシ樹脂である。
鎖状脂肪族型エポキシ化合物の具体例はエポキシ化ポリブタジエンおよびエポリードPB3600(ダイセル化学工業(株)製)である。
環状脂肪族型エポキシ化合物の具体例は、2−メチル−3,4−エポキシシクロヘキシルメチル−2’−メチル−3’,4’−エポキシシクロヘキシルカルボキシレート(下記式E153)、2,3−エポキシシクロペンタン−2’,3’−エポキシシクロペンタンエーテル(下記式E154)、ε−カプロラクトン変性3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキレート、1,2:8,9−ジエポキシリモネン(セロキサイド3000(ダイセル化学工業(株)製)、下記式E155)、下記式E156で表される化合物、CY−175、CY−177、CY−179(いずれもThe Ciba-Geigy Chemical Corp.製(ハンツマン・ジャパン(株)から入手できる。))、EHPD−3150(ダイセル化学工業(株)製)、および環状脂肪族型エポキシ樹脂である。
また例えば、本発明の液晶配向剤は各種添加剤をさらに含有していてもよい。各種添加剤の例は、ポリアミック酸およびその誘導体以外の高分子化合物、および低分子化合物であり、それぞれの目的に応じて選択して使用することができる。
高分子化合物は有機溶媒に可溶性の高分子化合物が例示される。このような高分子化合物を本発明の液晶配向剤に添加することにより、液晶表示素子の電圧保持率を高くし、イオン密度を低減し、そして耐光性および耐熱性を高くして、信頼性の高い液晶表示素子を製造することができる。該高分子化合物の具体例は、ポリアミド、ポリウレタン、ポリウレア、ポリエステル、ポリエポキサイド、ポリエステルポリオール、シリコーン変性ポリウレタン、およびシリコーン変性ポリエステルである。
低分子化合物は、1)塗布性の向上を望むときには係る目的に沿った界面活性剤、2)帯電防止の向上を必要とするときは帯電防止剤、3)基板との密着性や耐ラビング性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤、または、4)低温でイミド化を進行させる場合はイミド化触媒を例示することができる。
シランカップリング剤の具体例は、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルトリメトキシシラン、パラアミノフェニルトリメトキシシラン、パラアミノフェニルトリエトキシシラン、メタアミノフェニルトリメトキシシラン、メタアミノフェニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロピルアミン、およびN,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミンである。
イミド化触媒の具体例は、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の脂肪族アミン類;N,N−ジメチルアニリン、N,N−ジエチルアニリン、メチル置換アニリン、ヒドロキシ置換アニリン等の芳香族アミン類;ピリジン、メチル置換ピリジン、ヒドロキシ置換ピリジン、キノリン、メチル置換キノリン、ヒドロキシ置換キノリン、イソキノリン、メチル置換イソキノリン、ヒドロキシ置換イソキノリン、イミダゾール、メチル置換イミダゾール、ヒドロキシ置換イミダゾール等の環式アミン類である。イミド化触媒は、N,N−ジメチルアニリン、o−、m−、p−ヒドロキシアニリン、o−、m−、p−ヒドロキシピリジン、およびイソキノリンから選ばれる1つまたは2つ以上であることが好ましい。
シランカップリング剤の添加量は、通常、ポリアミック酸またはその誘導体の総量の0.1〜50重量%であり、0.1〜20重量%であることが好ましい。
イミド化触媒の添加量は、通常、ポリアミック酸またはその誘導体のカルボニル基に対して0.01〜5等量であり、0.05〜3等量であることが好ましい。
その他の添加剤の添加量は、その用途に応じて異なるが、通常、ポリアミック酸またはその誘導体の総量の0〜30重量%であり、0.1〜10重量%であることが好ましい。
また例えば、本発明の液晶配向剤は、本発明の効果が損なわれない範囲(好ましくは前記ポリアミック酸またはその誘導体の総量の20重量%以内)で、アクリル酸ポリマー、アクリレートポリマー、および、テトラカルボン酸二無水物、ジカルボン酸またはその誘導体とジアミンとの反応生成物であるポリアミドイミド等の他のポリマー成分をさらに含有していてもよい。
また例えば、本発明の液晶配向剤は、液晶配向剤の塗布性や前記ポリアミック酸またはその誘導体の濃度の調整の観点から、溶剤をさらに含有していてもよい。溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別の制限なく適用可能である。溶剤は、ポリアミック酸、可溶性ポリイミド等の高分子成分の製造工程や用途面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。溶剤は一種類でもよく、二種類以上を混合溶剤として使用してもよい。
溶剤としては、ポリアミック酸またはその誘導体の親溶剤、および、塗布性改善を目的とした他の溶剤に大別される。
ポリアミック酸またはその誘導体の親溶剤に用いられるのは非プロトン性極性有機溶剤であり、その具体例はN−メチル−2−ピロリドン、ジメチルイミダゾリジノン、N−メチルカプロラクタム、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、ジエチルアセトアミド、γ−ブチロラクトン等のラクトンである。
塗布性改善等を目的とした他の溶剤は、乳酸アルキル、3−メチル−3−メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、エチレングリコールモノアルキルまたはフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、これらアセテート類等のエステル化合物が例示される。
これらの溶剤の中では、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、γ−ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、およびジプロピレングリコールモノメチルエーテルが特に好ましい。
本発明における液晶配向剤は、前記のポリアミック酸またはその誘導体を含む高分子成分を、通常溶媒で希釈して溶液の形態で実用に供される。その際の高分子成分の濃度は、特に限定されないが、0.1〜40重量%が好ましい。該液晶配向剤を基板に塗布するときには、膜厚調整のため含有されている高分子成分を予め溶剤により希釈する操作が必要とされることがある。このとき液晶配向剤に対して溶剤を容易に混合するのに適した粘度に液晶配向剤の粘度を調整する観点から、前記高分子成分の濃度は40重量%以下であることが好ましい。
液晶配向剤中における高分子成分の濃度は、液晶配向剤の塗布方法に応じて調整される場合もある。液晶配向剤の塗布方法がスピンナー法や印刷法のときには、膜厚を良好に保つために、高分子成分の濃度を通常10重量%以下とすることが多い。その他の塗布方法、例えばディッピング法やインクジェット法では更に濃度を低くすることもあり得る。一方、高分子成分の濃度が0.1重量%以上であると、得られる液晶配向膜の膜厚が最適となり易い。したがって前記高分子成分の濃度は、通常のスピンナー法や印刷法等では0.1重量%以上、好ましくは0.5〜10重量%である。しかしながら、液晶配向剤の塗布方法によっては、更に低い濃度で使用してもよい。
なお、液晶配向膜の作製に用いる場合において、本発明の液晶配向剤の粘度は、この液晶配向剤の膜を形成する手段や方法に応じて決めることができる。例えば、印刷機を用いて液晶配向剤の膜を形成する場合は、十分な膜厚を得る観点から5mPa・s以上であることが好ましく、また印刷ムラを抑制する観点から100mPa・s以下であることが好ましく、より好ましくは10〜80mPa・sである。スピンコートによって液晶配向剤を塗布して液晶配向剤の膜を形成する場合は、同様の観点から、5〜200mPa・sであることが好ましく、より好ましくは10〜100mPa・sである。液晶配向剤の粘度は、溶剤による希釈や攪拌を伴う養生によって低くすることができる。
本発明の液晶配向剤は、一種類のポリアミック酸またはその誘導体を含有している形態でもよいし、二種以上のポリアミック酸またはその誘導体が混合されている、いわゆるポリマーブレンドの形態であってもよい。ポリマーブレンドの形態の液晶配向剤をポリアミック酸またはその誘導体Aおよびポリアミック酸またはその誘導体Bを含有する組成物とするとき、どちらか一方または両方に(G)で表されるテトラカルボン酸二無水物に由来する構成単位を含み、かつ、AおよびBのどちらか一方に側鎖構造を有するジアミンに由来する構成単位を含む態様を例示することができる前記の式(V−2)で表されるジアミンに由来する構成単位は、ポリマーブレンドで混合されるポリアミック酸またはその誘導体AおよびBのどちらか一方に含まれていればよいが、AおよびBの両方に含まれていてもよい。ポリアミック酸またはその誘導体を3種類以上ブレンドする場合、混合されるすべてのポリアミック酸またはその誘導体に含まれていてもよい。
本発明の液晶配向膜は、前述した本発明の液晶配向剤の塗膜が加熱されることによって形成される膜である。本発明の液晶配向膜は、液晶配向剤から液晶配向膜を作製する通常の方法によって得ることができる。例えば本発明の液晶配向膜は、本発明の液晶配向剤の塗膜を形成する工程と、これを加熱して焼成する工程とによって得ることができる。本発明の液晶配向膜については、必要に応じて、前記焼成工程で得られる膜をラビング処理してもよい。
塗膜は、通常の液晶配向膜の作製と同様に、液晶表示素子における基板に本発明の液晶配向剤を塗布することによって形成することができる。基板には、ITO(Indium TinOxide)電極等の電極やカラーフィルタ等が設けられていてもよいガラス製の基板が挙げられる。
液晶配向剤を基板に塗布する方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法等が一般に知られている。これらの方法は本発明においても同様に適用可能である。
塗膜の焼成は、ポリアミック酸またはその誘導体が脱水・閉環反応を起こすのに必要な条件で行うことができる。塗膜の焼成は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。これらの方法も本発明において同様に適用可能である。一般に150〜300℃程度の温度で1分間〜3時間行うことが好ましい。
ラビング処理は、通常の液晶配向膜の配向処理のためのラビング処理と同様に行うことができ、本発明の液晶配向膜において十分なリタデーションが得られる条件であればよい。特に好ましい条件は、毛足押し込み量0.2〜0.8mm、ステージ移動速度5〜250mm/sec、ローラー回転速度500〜2,000rpmである。液晶配向膜の配向処理方法としては、ラビング法の他に、光配向法や転写法等が一般に知られている。本発明の効果が得られる範囲において、これらの他の配向処理方法を前記ラビング処理において併用してもよい。
本発明の液晶配向膜は、前述した工程以外の他の工程をさらに含む方法によって好適に得られる。このような他の工程としては、塗膜を乾燥させる工程や、ラビング処理前後の膜を洗浄液で洗浄する工程等が挙げられる。
乾燥工程は、焼成工程と同様に、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。これらの方法も乾燥工程に同様に適用可能である。乾燥工程は溶剤の蒸発が可能な範囲内の温度で実施することが好ましく、焼成工程における温度に対して比較的低い温度で実施することがより好ましい。
配向処理の前後における液晶配向膜の洗浄液による洗浄方法としては、ブラッシング、ジェットスプレー、蒸気洗浄または超音波洗浄等が挙げられる。これらの方法は単独で行ってもよいし、併用してもよい。洗浄液としては純水または、メチルアルコール、エチルアルコール、イソプロピルアルコール等の各種アルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン等のハロゲン系溶剤、アセトン、メチルエチルケトン等のケトン類を用いることができるが、これらに限定されるものではない。もちろん、これらの洗浄液は十分に精製された不純物の少ないものが用いられる。このような洗浄方法は、本発明の液晶配向膜の形成における洗浄工程にも適用することができる。
本発明の液晶配向膜の膜厚は、特に限定されないが、10〜300nmであることが好ましく、30〜150nmであることがより好ましい。本発明の液晶配向膜の膜厚は、段差計やエリプソメータ等の公知の膜厚測定装置によって測定することができる。
本発明の液晶表示素子は、一対の基板と、液晶分子を含有し、前記一対の基板の間に形成される液晶層と、液晶層に電圧を印加する電極と、前記液晶分子を所定の方向に配向させる液晶配向膜とを有する。前記液晶配向膜には前述の本発明の液晶配向膜が用いられる。
基板には、本発明の液晶配向膜で前述したガラス製の基板を用いることができ、電極には、本発明の液晶配向膜で前述したようにガラス製の基板に形成されるITO電極を用いることができる。
液晶層は、一対の基板の一方の基板における液晶配向膜が形成されている面が他方の基板に向かうように対向する一対の基板間の隙間に密封される液晶組成物によって形成される。
液晶組成物には、特に制限はなく、誘電率異方性が正または負の各種の液晶組成物を用いることができる。誘電率異方性が正の好ましい液晶組成物には、特許第3086228号公報、特許第2635435号公報、特表平5−501735号公報、特開平8−157826号公報、特開平8−231960号公報、特開平9−241644号公報(EP885272A1明細書)、特開平9−302346号公報(EP806466A1明細書)、特開平8−199168号公報(EP722998A1明細書)、特開平9−235552号公報、特開平9−255956号公報、特開平9−241643号公報(EP885271A1明細書)、特開平10−204016号公報(EP844229A1明細書)、特開平10−204436号公報、特開平10−231482号公報、特開2000−087040公報、特開2001−48822公報等に開示されている液晶組成物が挙げられる。
誘電率異方性が負の好ましい液晶組成物には、特開昭57−114532号公報、特開平2−4725号公報、特開平4−224885号公報、特開平8−40953号公報、特開平8−104869号公報、特開平10−168076号公報、特開平10−168453号公報、特開平10−236989号公報、特開平10−236990号公報、特開平10−236992号公報、特開平10−236993号公報、特開平10−236994号公報、特開平10−237000号公報、特開平10−237004号公報、特開平10−237024号公報、特開平10−237035号公報、特開平10−237075号公報、特開平10−237076号公報、特開平10−237448号公報(EP967261A1明細書)、特開平10−287874号公報、特開平10−287875号公報、特開平10−291945号公報、特開平11−029581号公報、特開平11−080049号公報、特開2000−256307公報、特開2001−019965公報、特開2001−072626公報、特開2001−192657公報等に開示されている液晶組成物が挙げられる。
誘電率異方性が正または負の液晶組成物に一種以上の光学活性化合物を添加して使用することも何ら差し支えない。
本発明の液晶表示素子は、一対の基板の少なくとも一方に本発明の液晶配向膜を形成し、得られた一対の基板を、液晶配向膜を内向きにスペーサーを介して対向させ、基板間に形成された隙間に液晶組成物を封入して液晶層を形成することによって得られる。本発明の液晶表示素子における製造には、必要に応じて基板に偏光フィルムを貼り付ける等のさらなる工程が含まれていてもよい。
本発明の液晶表示素子は、種々の電界方式用の液晶表示素子を形成することができる。このような電界方式用の液晶表示素子には、前記基板の表面に対して水平方向に前記電極が前記液晶層に電圧を印加する横電界方式用の液晶表示素子や、前記基板の表面に対して垂直方向に前記電極が前記液晶層に電圧を印加する縦電界方式用の液晶表示素子が挙げられる。
横電界方式用の液晶表示素子は、比較的大きなプレチルト角を発現しなくてもよいことから、側鎖構造を有するジアミンを含まないジアミンから得られるポリアミック酸またはその誘導体のような、側鎖構造を有さないポリアミック酸またはその誘導体を含有する本発明の液晶配向剤から形成される液晶配向膜が、横電界方式用の液晶表示素子には好適に用いられる。
縦電界方式用の液晶表示素子は、比較的大きなプレチルト角の発現を要することから、側鎖構造を有するジアミンを含むジアミンから得られるポリアミック酸またはその誘導体のような、側鎖構造を有するポリアミック酸またはその誘導体を含有する本発明の液晶配向剤から形成される液晶配向膜が、縦電界方式用の液晶表示素子には好適に用いられる。
このように、本発明の液晶配向剤を原料として作製される液晶配向膜は、その原料であるポリマーを適宜選択することにより、種々の表示駆動方式の液晶表示素子に適用させることができる。
本発明の液晶表示素子は、前述した構成要素以外の要素をさらに有していてもよい。このような他の構成要素として、本発明の液晶表示素子には、偏光板(偏光フィルム)、波長板、光散乱フィルム、駆動回路等の、液晶表示素子に通常使用される構成要素が実装されてもよい。
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。実施例において用いる化合物は次の通りである。
<テトラカルボン酸二無水物>
PMDA−HH:シクロヘキサンテトラカルボン酸二無水物(立体構造制御をおこなったもの:岩谷瓦斯株式会社製):構造式(G)
H−PMDA:シクロヘキサンテトラカルボン酸二無水物(構造制御していないもの)
CBDA:シクロブタンテトラカルボン酸二無水物:構造式(19)
PMDA:ピロメリット酸二無水物:構造式(1)
BTDA:ブタンテトラカルボン酸二無水物:構造式(23)
EDDA:4,4’−(エタン−1,2−ジイル)ビス(モルホリン−2,6−ジオン):構造式(69)
PSQ1:18,21−ビス(3−(2,5−ジオキソテトラヒドロフラン−3−イル)プロピル)−18,21−ジメチル−1,3,5,7,9,11,13,15−オクタフェニル−ペンタシクロ[10.5.1.25,13.17,11.19,15]デカシロキサン:構造式(S−1)
<ジアミン>
MBMA:4,4’−メチレンビス(3−メチルアニリン):構造式(VI−1−5)
5HHP1PDA:5−(4−(4’−ペンチルビシクロヘキサン−4−イル)フェニルメチル)ベンゼン−1,3−ジアミン:構造式(V−2−7)においてY2のアルキル鎖長が5のジアミン
DATA:3,5−ジアミノ−1,2,4−トリアゾール
DDM:4,4’−ジアミノジフェニルメタン:構造式(VI−1−1)
PRDA:4,4’―(ピペラジン−1,4−ジイル)ジアニリン:構造式(VII−2−1)
BAPDEA:N,N’−ビス(4−アミノフェニル)−N,N’−ジメチルエチレンジアミン:構造式(VI−1−36)
<添加剤>
BANI−M:ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン
HEA:N,N’−ジヒドロキシエチレンビスアクリルアミド
EHS:2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン
GPS:3−グリシドキシプロピルトリメトキシシラン
<溶剤>
NMP:N−メチル−2−ピロリドン
BC:ブチルセロソルブ(エチレングリコールモノブチルエーテル)
<ポリアミック酸の合成>
[合成例1]
温度計、攪拌機、原料投入仕込み口および窒素ガス導入口を備えた100mlの四つ口フラスコに5HHP1PDAを 0.3250g、MBMAを1.5301gおよび脱水NMP30.0gを入れ、乾燥窒素気流下攪拌溶解した。次いでPMDA−HHを1.3472gおよびBTDA0.2977gを加え、30時間攪拌した。この間反応により温度が上昇した場合は、温度を約70℃以下に抑えるようフラスコを冷却した。攪拌終了後、反応溶液にBC16.5gを加えて、ポリマー固形分濃度が7重量%のポリアミック酸溶液PA1を調製した。
ポリアミック酸の重量平均分子量は、得られたポリアミック酸をリン酸−DMF混合溶液(リン酸/DMF=0.6/100:重量比)でポリアミック酸濃度が約1重量%になるように希釈し、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いて、上記混合溶液を展開剤としてGPC法により測定し、ポリスチレン換算することにより求めた。なお、カラムはHSPgel RT MB−M(Waters製)を使用し、カラム温度40℃、流速0.35mL/minの条件で測定した。
[比較合成例1、2]
PMDA−HHに代えて、テトラカルボン酸二無水物を表1に示したように変更した以外は、合成例1に準じてポリアミック酸溶液CP1およびCP2を調製した。
[合成例2および3]
テトラカルボン酸二無水物およびジアミンを表1に示したように変更した以外は合成例1に準じて、PA1とブレンドして用いるポリアミック酸溶液PA2およびPA3を調製した。
[合成例4〜10]
テトラカルボン酸二無水物、あるいはテトラカルボン酸二無水物とジアミンを表1に示したように変更した以外は合成例1に準じて、ポリアミック酸溶液PA4〜PA10を調製した。
<液晶表示素子の作製>
[実施例1]
合成例1で合成した濃度7重量%のポリアミック酸溶液(PA1)を、NMP/BC=1/1(重量比)の混合溶媒を加えて濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、下記の通り液晶表示素子を作製した。
<VA型液晶表示素子の作製方法>
一対のITO透明電極付き基板に、得られた液晶配向剤をスピンコート法で塗布し、80℃で90秒間ホットプレート上で乾燥した。次いで、200℃に設定したオーブン中で60分間加熱焼成し、液晶配向膜が形成された基板を得た。配向膜が形成された面を内側にして、一方の基板には周辺を液晶の注入孔を残してエポキシ系接着剤でシールし、もう一方の基板には4.25μmのギャップ材を散布し貼りあわせた。得られたセルに下記に示す液晶組成物を真空注入し、注入孔を光封止剤で封止してUVを照射して注入孔を硬化した。最後に110℃で30分間加熱処理(アイソトロピック処理)し、VA型液晶表示素子を得た。
[実施例2および3]
合成例1で合成したポリマー固形分濃度7重量%のポリアミック酸溶液PA1と、合成例2で合成したポリマー固形分濃度7重量%のポリアミック酸溶液PA2を重量比80/20(前者/後者)で混合し、次いでNMP/BC=1/1(重量比)の混合溶媒を加えてポリマー固形分濃度4重量%に希釈して、液晶配向剤AL2を調製した。同様に、PA1と合成例3で合成したポリマー固形分濃度7重量%のポリアミック酸溶液PA3を重量比80/20(前者/後者)で混合し、次いでNMP/BC=1/1(重量比)の混合溶媒を加えてポリマー固形分濃度4重量%に希釈して、液晶配向剤AL3を調製した。これらの液晶配向剤を用いて、実施例1に準じて液晶表示素子を作製した。
[実施例4〜10および比較例1〜3]
合成例4〜10および比較合成例1〜3で合成した濃度7重量%のポリアミック酸溶液を、それぞれ同様にNMP/BC=1/1(重量比)の混合溶媒を加えて濃度4重量%に希釈して、液晶配向剤AL4〜AL10およびCA1〜CA3とした。これらの液晶配向剤を用いて、実施例1に準じて液晶表示素子を作製した。
上記の実施例で用いた液晶配向剤の組成を表2にまとめた。
[実施例11〜14]
前記の濃度7重量%のポリアミック酸溶液PA5およびPA6に、それぞれ表3に示したようにポリマー重量当たり20重量%の添加剤を加え、次いでNMP/BC=1/1(重量比)の混合溶媒を加えてポリマー固形分濃度4重量%に希釈した。希釈した液晶配向剤AL11〜AL14を用いて、実施例1に準じて液晶表示素子を作製した。
[実施例15〜18]
前記の濃度7重量%のポリアミック酸溶液PA1およびPA4に、それぞれ表3に示したようにポリマー重量当たり20重量%の添加剤を加え、次いでNMP/BC=1/1(重量比)の混合溶媒を加えてポリマー固形分濃度4重量%に希釈した。希釈した液晶配向剤AL15〜AL18を用いて、実施例1に準じて液晶表示素子を作製した。
<VHRの長時間熱信頼性の評価>
実施例1〜18および比較例1〜3で作製した液晶表示素子について、VHRの長時間熱信頼性の評価を以下の通り行った。
<VHRの測定>
VA型液晶表示素子を東陽テクニカ製液晶物性評価装置6254型を用いて電圧保持率の測定を行った。測定条件は、ゲ−ト幅60μsec、周波数30Hz、波高±1Vであり、測定温度は60℃である。
<VHRの長時間熱信頼性の算出>
実施例1、実施例4〜7、11〜14、および比較例1、2で作製した液晶表示素子について測定した。素子作製後24時間以内に測定したVHRの値をVHR(初期)とした。またVHR測定後の液晶表示素子を100℃に保持したオーブンにて300時間保存し、上記記載の条件で測定したVHRの値をVHR(300時間)とした。得られた2つのVHRから、VHR低下率を以下の式に従い計算した。この値が小さいほどVHRの長時間熱信頼性は良好であると言える。結果を表4に示す。
VHR低下率=[{VHR(初期)−VHR(300時間)}×100]/VHR(初期)
表4における実施例1、4に(1)が付記され、下記の表5における実施例1、4に(2)が付記されているのは、それぞれの試験に別の液晶表示素子が供されたことを表している。
表4に示されたように、本発明の立体構造を有する酸無水物を含むポリアミック酸を含有する液晶配向剤から得られる液晶配向膜を使用した液晶表示素子では、他の立体構造されていないH−PMDAや、広く使用されているCBDAに比して、VHRの初期特性およびVHR長期熱信頼性が極めて高いという効果を奏する。
<VHRの長時間光信頼性の評価>
実施例1〜4、8〜10、15〜18および比較例3で作製した液晶表示素子について、VHRの長時間光信頼性の評価を以下のようにして行った。
<VHRの長時間光信頼性の算出>
各々の液晶表示素子について、素子作製後24時間以内に測定したVHRの値をVHR(初期)とした。またVHR測定後の液晶表示素子を6000cd/m2のバックライト上に200時間保存し、上記記載の条件で測定したVHRの値をVHR(200時間)とした。得られた2つのVHRから、VHR低下率を以下の式に従い計算した。この値が小さいほどVHRの長時間光信頼性は良好であると言える。結果を表5に示す。
VHR低下率=[{VHR(初期)−VHR(200時間)}×100]/VHR(初期)
表5に示されたように、本発明の立体構造を有する酸無水物を含むポリアミック酸を含有する液晶配向剤はVHR長期光信頼性が良く、さらに芳香族酸無水物、PRDA,BAPDEA、DATAのような紫外線を吸収し易い構造を含むポリアミック酸またはモノマーをさらに少量使用することにより、VHR長期光信頼性をさらに高めることができる。