JP5603629B2 - Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding - Google Patents
Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding Download PDFInfo
- Publication number
- JP5603629B2 JP5603629B2 JP2010072320A JP2010072320A JP5603629B2 JP 5603629 B2 JP5603629 B2 JP 5603629B2 JP 2010072320 A JP2010072320 A JP 2010072320A JP 2010072320 A JP2010072320 A JP 2010072320A JP 5603629 B2 JP5603629 B2 JP 5603629B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- resin
- expanded particles
- expanded
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明は、ポリスチレン系樹脂発泡成形体などの熱可塑性樹脂発泡成形体の製造に用いる熱可塑性樹脂予備発泡粒子とその製造方法に関し、さらに詳細には、溶融した発泡剤含有熱可塑性樹脂をダイの小孔から水などの冷却媒体中に押出し、直後に切断して樹脂粒子を製造する、いわゆる溶融押出法による発泡性熱可塑性樹脂粒子の製造プロセスにおいて、切断した樹脂粒子を冷却媒体中で発泡させ、発泡成形体の製造に用いる熱可塑性樹脂予備発泡粒子を直接製造する技術に関する。 The present invention relates to thermoplastic resin pre-foamed particles used for the production of a thermoplastic resin foam molded article such as a polystyrene resin foam molded article and a method for producing the same, and more specifically, a molten foaming agent-containing thermoplastic resin is used as a die. In the manufacturing process of foamable thermoplastic resin particles by the so-called melt extrusion method, which is extruded through a small hole into a cooling medium such as water and then cut to produce resin particles, the cut resin particles are foamed in the cooling medium. The present invention relates to a technique for directly producing thermoplastic resin pre-expanded particles used for producing a foamed molded product.
発泡性ポリスチレン系樹脂粒子の製造方法の一つとして、押出機内で溶融されたポリスチレン系樹脂に発泡剤を圧入・混練し、発泡剤含有の溶融樹脂を押出機先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を高速回転刃で切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る、所謂、溶融押出法が知られている。
従来、溶融押出法により発泡性ポリスチレン系樹脂粒子を製造する方法に関して、例えば、特許文献1、2に開示された技術が提案されている。
As one of the methods for producing expandable polystyrene resin particles, a foaming agent is press-fitted and kneaded into polystyrene resin melted in an extruder, and a small hole in a die provided with a foaming agent-containing molten resin at the tip of the extruder A so-called melt extrusion method in which extrudates are extruded directly into a cooling liquid from the same time, and at the same time the extrudate is cut with a high-speed rotary blade and the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles Are known.
Conventionally, for example, techniques disclosed in
特許文献1には、押出機を用い熱可塑性樹脂を溶融し、発泡剤を混合し、続いて冷却して押出し、押出ダイのノズルの径より1.5〜10.5倍の径となるように発泡しつつ、または、発泡を完了させて得られた発泡完了前または発泡完了後の押出し発泡体を切断し予備発泡粒子とすることを特徴とする熱可塑性樹脂の予備発泡粒子の製造方法が開示されている。 In Patent Document 1, a thermoplastic resin is melted using an extruder, a foaming agent is mixed, subsequently cooled and extruded, so that the diameter is 1.5 to 10.5 times the nozzle diameter of the extrusion die. A method for producing pre-foamed particles of thermoplastic resin, characterized by cutting an extruded foam before or after foaming obtained by completing foaming into pre-foamed particles. It is disclosed.
特許文献2には、70〜90質量%のスチレン系樹脂と10〜30質量%のオレフィン系樹脂との混合樹脂100質量部と、0〜15質量部のスチレン系エラストマーとを含む樹脂組成物と、揮発性発泡剤との混合物を液体中に押出すと同時に切断して得られた発泡性粒子であって、発泡倍率が1.5倍以下であり、且つ揮発性発泡剤以外の揮発性有機化合物の含有量が500ppm以下であることを特徴とするスチレン系樹脂発泡性粒子が開示されている。また特許文献2には、70〜90質量%のスチレン系樹脂と10〜30質量%のオレフィン系樹脂との混合樹脂100質量部と、スチレン系エラストマー0〜15質量部とを押出機に供給し加熱溶融させて樹脂組成物とし、該押出機途中より揮発性発泡剤を樹脂組成物100質量部に対して3〜15質量部圧入した後、発泡剤含有溶融樹脂を多孔ダイから液体中に押出し、該樹脂の発泡を1.5倍以下に抑制しながら、押出しと同時に液体中で樹脂を切断し、揮発性発泡剤以外の揮発性有機化合物の含有量が500ppm以下である発泡性粒子を得ることを特徴とするスチレン系樹脂発泡性粒子の製造方法が開示されている。
しかしながら、前記従来技術には次のような問題点がある。
特許文献1の予備発泡粒子の製造方法は、押出ダイのノズルの径より1.5〜10.5倍の径となるように発泡した発泡体を切断して予備発泡粒子を得るものなので、柱状(ノズル形状が円形の場合は円柱状)の発泡体を切断することになり、得られる予備発泡粒子は球状にならず柱状となる。このような柱状の予備発泡粒子は、球状の粒子と比べて充填し難く、成形型のキャビティ内に充填する場合に十分に充填することが難しく、隙間が生じやすいために、型内発泡成形して得られる発泡成形体に凹みが生じて外観が悪くなったり、機械強度が悪くなる可能性がある。
However, the prior art has the following problems.
The method of producing the pre-expanded particles in Patent Document 1 is to obtain the pre-expanded particles by cutting the foamed foam so as to have a diameter of 1.5 to 10.5 times the diameter of the nozzle of the extrusion die. When the nozzle shape is circular, the foamed body is cut, and the pre-expanded particles obtained are not spherical but columnar. Such columnar pre-expanded particles are harder to fill than spherical particles, and are difficult to fill sufficiently when filled into the cavity of the mold, and gaps are likely to occur. There is a possibility that a dent will be formed in the foamed molded product thus obtained, resulting in a poor appearance or poor mechanical strength.
特許文献2の製造方法は、(1)溶融押出法によって発泡性樹脂粒子を得る工程、(2)次いで得られた発泡性樹脂粒子を加熱して予備発泡粒子を得る工程、(3)次いで、得られた予備発泡粒子を成形型のキャビティ内に充填、加熱し、型内発泡成形して発泡成形体を得る工程という各工程を経て発泡成形体を製造するために、発泡成形体の生産効率が悪く、また発泡性樹脂粒子や予備発泡粒子の保管スペースが必要となる、などの問題がある。
The production method of
本発明は、前記事情に鑑みてなされ、溶融押出法によって発泡成形体の製造に用いる予備発泡粒子を直接製造でき、しかも成形型のキャビティ内への充填性に優れ、強度に優れた発泡成形体を得ることが可能な熱可塑性樹脂予備発泡粒子の製造方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and is capable of directly producing pre-foamed particles used in the production of a foamed molded article by a melt extrusion method, and is excellent in filling ability into a cavity of a mold and excellent in strength. It is an object of the present invention to provide a method for producing pre-expanded thermoplastic resin particles capable of obtaining the above.
前記目的を達成するため、本発明は、熱可塑性樹脂と発泡剤とを樹脂供給装置内で溶融混練し、溶融した発泡剤含有熱可塑性樹脂をダイの小孔を通して冷却媒体中に押出して直後に切断し、該冷却媒体中で発泡させて嵩発泡倍数1.6倍以上の熱可塑性樹脂予備発泡粒子とし、次いで前記冷却媒体中から前記発泡粒子を分離して熱可塑性樹脂予備発泡粒子を得ることを特徴とする熱可塑性樹脂予備発泡粒子の製造方法を提供する。 In order to achieve the above-mentioned object, the present invention immediately melts and kneads a thermoplastic resin and a foaming agent in a resin supply device, and immediately extrudes the molten foaming agent-containing thermoplastic resin through a small hole of a die into a cooling medium. Cutting and foaming in the cooling medium to obtain thermoplastic resin pre-expanded particles having a bulk expansion ratio of 1.6 times or more, and then separating the expanded particles from the cooling medium to obtain thermoplastic resin pre-expanded particles A method for producing pre-expanded thermoplastic resin particles is provided.
本発明の熱可塑性樹脂予備発泡粒子の製造方法において、前記熱可塑性樹脂予備発泡粒子の嵩発泡倍数が1.6〜50倍の範囲内であることが好ましい。 In the method for producing pre-expanded thermoplastic resin particles of the present invention, the bulk expansion ratio of the pre-expanded thermoplastic resin particles is preferably in the range of 1.6 to 50 times.
本発明の熱可塑性樹脂予備発泡粒子の製造方法において、前記発泡剤含有熱可塑性樹脂は、熱可塑性樹脂100質量部に対し、発泡剤を1〜10質量部含有することが好ましい。 In the method for producing pre-expanded thermoplastic resin particles of the present invention, the foaming agent-containing thermoplastic resin preferably contains 1 to 10 parts by mass of a foaming agent with respect to 100 parts by mass of the thermoplastic resin.
本発明の熱可塑性樹脂予備発泡粒子の製造方法において、発泡剤が、イソペンタンとノルマルペンタンとの一方又は両方の混合物であることが好ましい。 In the method for producing pre-expanded thermoplastic resin particles of the present invention, the foaming agent is preferably a mixture of one or both of isopentane and normal pentane.
本発明の熱可塑性樹脂予備発泡粒子の製造方法において、前記熱可塑性樹脂がポリスチレン系樹脂であることが好ましい。 In the method for producing pre-expanded thermoplastic resin particles of the present invention, the thermoplastic resin is preferably a polystyrene resin.
また本発明は、前記熱可塑性樹脂予備発泡粒子の製造方法により得られた熱可塑性樹脂予備発泡粒子を提供する。 Moreover, this invention provides the thermoplastic resin pre-expanded particle obtained by the manufacturing method of the said thermoplastic resin pre-expanded particle.
また本発明は、前記熱可塑性樹脂予備発泡粒子の製造方法により得られた熱可塑性樹脂予備発泡粒子を成形型のキャビティ内に充填し、加熱して型内発泡成形することによって熱可塑性樹脂発泡成形体を得ることを特徴とする熱可塑性樹脂発泡成形体の製造方法を提供する。 The present invention also provides thermoplastic resin foam molding by filling the thermoplastic resin pre-foamed particles obtained by the method for producing thermoplastic resin pre-foamed particles in a cavity of a mold and heating and molding in-mold foam. A method for producing a thermoplastic resin foam-molded article is provided.
また本発明は、前記熱可塑性樹脂発泡成形体の製造方法により得られた熱可塑性樹脂発泡成形体を提供する。 Moreover, this invention provides the thermoplastic resin foam molded object obtained by the manufacturing method of the said thermoplastic resin foam molded object.
本発明の熱可塑性樹脂予備発泡粒子の製造方法は、熱可塑性樹脂と発泡剤とを樹脂供給装置内で溶融混練し、溶融した発泡剤含有熱可塑性樹脂をダイの小孔を通して冷却媒体中に押出して直後に切断し、該冷却媒体中で発泡させて嵩発泡倍数1.6倍以上の熱可塑性樹脂予備発泡粒子とすることで、発泡成形体の製造に用いる熱可塑性樹脂予備発泡粒子を溶融押出法によって直接製造することができるので、発泡性樹脂粒子を製造しそれを加熱して予備発泡粒子を得る従来法と比較して、より少ない工程で発泡成形体を製造でき、発泡成形体の生産効率が高くなり、また発泡性樹脂粒子の保管スペースを削減できる利点がある。 The thermoplastic resin pre-foamed particle manufacturing method of the present invention is obtained by melt-kneading a thermoplastic resin and a foaming agent in a resin supply apparatus, and extruding the molten foaming agent-containing thermoplastic resin into a cooling medium through a small hole in a die. The thermoplastic resin pre-expanded particles used for the production of the foam molded article are melt-extruded by cutting immediately after foaming in the cooling medium to obtain thermoplastic resin pre-expanded particles having a bulk expansion ratio of 1.6 times or more. Since it can be produced directly by the method, it is possible to produce foamed molded products with fewer steps compared to the conventional method of producing expandable resin particles and heating them to obtain pre-foamed particles. There is an advantage that the efficiency is increased and the storage space for the expandable resin particles can be reduced.
本発明方法により得られた熱可塑性樹脂予備発泡粒子は球状ないし略球状であり、柱状をなす予備発泡粒子と比べて成形型のキャビティ内への充填性が良好であり、キャビティ内に隙間無く充填可能であり、また型内発泡成形時に発泡粒子同士の融着が良好に行われ、強度に優れた発泡成形体を得ることができる。 The thermoplastic resin pre-expanded particles obtained by the method of the present invention are spherical or substantially spherical, and have better filling properties in the mold cavity than the column-shaped pre-expanded particles, and the cavity is filled without any gaps. In addition, the foamed particles are well fused at the time of in-mold foam molding, and a foam molded article having excellent strength can be obtained.
以下、図面を参照して本発明の実施形態を説明する。
本発明の熱可塑性樹脂予備発泡粒子(以下、予備発泡粒子と記す)の製造方法は、熱可塑性樹脂と発泡剤とを樹脂供給装置内で溶融混練し、溶融した発泡剤含有熱可塑性樹脂をダイの小孔を通して冷却媒体中に押出して直後に切断し、該冷却媒体中で発泡させて嵩発泡倍数1.6倍以上の予備発泡粒子とし、次いで前記冷却媒体中から予備発泡粒子を分離して、溶融押出法によって予備発泡粒子を直接製造することを特徴とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The method for producing pre-expanded thermoplastic resin particles (hereinafter referred to as pre-expanded particles) of the present invention is obtained by melt-kneading a thermoplastic resin and a foaming agent in a resin supply device, and then adding the molten foam-containing thermoplastic resin to a die. After extruding into the cooling medium through the small holes of, and cutting immediately after that, it is foamed in the cooling medium to obtain pre-expanded particles having a bulk expansion ratio of 1.6 times or more, and then the pre-expanded particles are separated from the cooling medium. The pre-expanded particles are directly produced by a melt extrusion method.
本発明において、熱可塑性樹脂の種類は限定されないが、例えばポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、ABS樹脂、AS樹脂等を単独もしくは2種類以上混合して使用することができる。さらに樹脂製品として一旦使用されてから回収して得られた熱可塑性樹脂の回収樹脂を使用することもできる。特に非晶性であるポリスチレン(GPPS)、ハイインパクトポリスチレン(HIPS)などのポリスチレン系樹脂が好適に用いられる。 In the present invention, the type of thermoplastic resin is not limited. For example, a polystyrene resin, a polyethylene resin, a polypropylene resin, a polyester resin, a vinyl chloride resin, an ABS resin, an AS resin, or the like can be used alone or in combination. Can be used. Furthermore, it is possible to use a recovered resin of a thermoplastic resin obtained after being used once as a resin product. In particular, polystyrene resins such as amorphous polystyrene (GPPS) and high impact polystyrene (HIPS) are preferably used.
ポリスチレン系樹脂としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよく、このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。 Examples of polystyrene resins include homopolymers of styrene monomers such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, or copolymers thereof. A polystyrene-based resin containing 50% by mass or more of styrene is preferable, and polystyrene is more preferable. Further, the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer. As, for example, alkyl (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl In addition to fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよく、添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン−ブタジエン共重合体、エチレン−プロピレン−非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体などが挙げられる。また、原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料を用いることができる。また、使用することができるリサイクル原料は、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたもの以外にも、家電製品(例えば、テレビ、冷蔵庫、洗濯機、エアコンなど)や事務用機器(例えば、複写機、ファクシミリ、プリンターなど)から分別回収された非発泡のポリスチレン系樹脂成形体を粉砕し、溶融混練してリペレットしたものを用いることができる。 If a polystyrene resin is the main component, other resins may be added. Examples of the resin to be added include polybutadiene, styrene-butadiene copolymer to improve the impact resistance of the foam molded article. Examples thereof include rubber-modified polystyrene resins to which a diene rubbery polymer such as a polymer, ethylene-propylene-nonconjugated diene three-dimensional copolymer is added, so-called high impact polystyrene. Alternatively, a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given. In addition, as a polystyrene resin as a raw material, a polystyrene resin (virgin polystyrene) that is not a recycled raw material, such as a commercially available ordinary polystyrene resin, a polystyrene resin newly produced by a method such as a suspension polymerization method, or the like is used. In addition to being usable, it is possible to use a recycled material obtained by regenerating a used polystyrene resin foam molded article. As this recycled material, used polystyrene-based resin foam moldings such as fish boxes, household appliance cushioning materials, food packaging trays, etc. are collected, and recycled materials that are regenerated by the limonene dissolution method or heating volume reduction method are used. Can do. Recyclable raw materials that can be used include home appliances (eg, TVs, refrigerators, washing machines, air conditioners) and office work, in addition to those obtained by reprocessing used polystyrene-based resin foam moldings. A non-foamed polystyrene resin molded product that has been separated and collected from an industrial machine (for example, a copying machine, a facsimile machine, a printer, etc.), pulverized, melt-kneaded, and repelletized can be used.
本発明の予備発泡粒子に用いられる発泡剤は、特に限定されないが、例えばプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン等の脂肪族炭化水素、ジメチルエーテル、ジエチルエーテル等のエーテル類、メタノール、エタノール等の各種アルコール類、炭酸ガス、窒素、水等が使用可能である。この内、脂肪族炭化水素が好適であり、更には、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン単独もしくはこれらの混合物がより好適である。また、炭素数5の炭化水素であるノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン単独もしくはこれらの混合物が特に好適である。その中でもイソペンタンとノルマルペンタンとの一方又は両方の混合物であることが好ましい。また、前記炭素数5の炭化水素を主体とし、沸点が20℃以上であり、炭素数5の炭化水素以外の発泡剤(例えばノルマルブタン、イソブタン、プロパン、炭酸ガス等)を含んでいてもよい。
この発泡剤の添加量は、熱可塑性樹脂100質量部に対し1〜15質量部の範囲が好ましく、1〜10質量部の範囲がより好ましく、2〜6質量部の範囲が特に好ましい。
The foaming agent used in the pre-expanded particles of the present invention is not particularly limited, but examples thereof include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, and cyclopentane, and ethers such as dimethyl ether and diethyl ether. Various alcohols such as methanol and ethanol, carbon dioxide gas, nitrogen, water and the like can be used. Of these, aliphatic hydrocarbons are preferred, and normal butane, isobutane, normal pentane, isopentane alone or a mixture thereof is more preferred. Further, normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene alone or a mixture thereof, which is a hydrocarbon having 5 carbon atoms, is particularly suitable. Of these, a mixture of one or both of isopentane and normal pentane is preferable. Further, it mainly comprises the hydrocarbon having 5 carbon atoms and has a boiling point of 20 ° C. or higher, and may contain a blowing agent other than the hydrocarbon having 5 carbon atoms (for example, normal butane, isobutane, propane, carbon dioxide gas, etc.). .
The amount of the foaming agent added is preferably in the range of 1 to 15 parts by mass, more preferably in the range of 1 to 10 parts by mass, and particularly preferably in the range of 2 to 6 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
本発明の予備発泡粒子の製造方法において、前記熱可塑性樹脂には、発泡核剤として、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の無機又は有機微粉末を添加することが望ましい。前記発泡核剤の添加量は、熱可塑性樹脂100質量部に対し1.5質量部以下が好ましく、0.1〜1.0質量部の範囲がより好ましい。 In the method for producing pre-expanded particles of the present invention, the thermoplastic resin includes, as a foam nucleating agent, talc, calcium silicate, synthetically or naturally produced silicon dioxide, ethylene bis-stearic acid amide, methacrylate ester copolymer. It is desirable to add inorganic or organic fine powder such as coalescence. The amount of the foam nucleating agent added is preferably 1.5 parts by mass or less, more preferably 0.1 to 1.0 part by mass with respect to 100 parts by mass of the thermoplastic resin.
本発明の予備発泡粒子の製造方法において、前記熱可塑性樹脂には、発泡剤及び発泡核剤の他に、得られる予備発泡粒子の物性を損なわない範囲内において、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤を添加してもよい。 In the method for producing the pre-foamed particles of the present invention, the thermoplastic resin includes, in addition to the foaming agent and the foam nucleating agent, a binding inhibitor, a cell conditioner, and the like within a range that does not impair the physical properties of the pre-foamed particles obtained. You may add additives, such as a crosslinking agent, a filler, a flame retardant, a flame retardant adjuvant, a lubricant, and a coloring agent.
図1は、本発明の予備発泡粒子の製造方法に用いられる製造装置の一例を示す構成図である。本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられ多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる予備発泡粒子を冷却水と分離すると共に脱水乾燥して予備発泡粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された予備発泡粒子を貯留する貯留容器11とを備えて構成されている。
FIG. 1 is a configuration diagram showing an example of a production apparatus used in the method for producing pre-expanded particles of the present invention. The manufacturing apparatus of this example includes an extruder 1 as a resin supply device, a
なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知のものを用いることができる。 As the extruder 1, either an extruder using a screw or an extruder not using a screw can be used. Examples of the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder. Examples of the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder. Moreover, any extruder can use a static mixer. Among these extruders, an extruder using a screw is preferable from the viewpoint of productivity. Moreover, the conventionally well-known thing used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.
図1に示す製造装置を用い、予備発泡粒子を製造するには、まず、原料のポリスチレン系樹脂などの熱可塑性樹脂、発泡核剤、必要に応じて添加される難燃剤などの所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料の熱可塑性樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。 In order to produce pre-foamed particles using the production apparatus shown in FIG. 1, first, a desired additive such as a thermoplastic resin such as a polystyrene-based resin as a raw material, a foam nucleating agent, a flame retardant added if necessary, etc. Are weighed and put into the extruder 1 from the raw material supply hopper 3. The raw material thermoplastic resin may be mixed in advance in the form of pellets or granules and then charged from one raw material supply hopper. For example, when a plurality of lots are used, the supply amount for each lot may be reduced. A plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.
押出機1内に熱可塑性樹脂樹脂、発泡助剤、その他の添加剤を供給後、樹脂を加熱溶融し、その溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入して溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。
After supplying thermoplastic resin resin, foaming aid and other additives into the extruder 1, the resin is heated and melted, and the molten resin is transferred to the
ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、冷却水と接触して急冷されるが、切断後樹脂が完全に固化するまでの間に発泡し、嵩発泡倍数1.6倍以上の熱可塑性樹脂予備発泡粒子となる。
The resin discharge surface in which the small hole of the
このようにして得られる予備発泡粒子の嵩発泡倍数は、1.6〜50倍の範囲内であることが好ましく、1.6〜40倍の範囲がより好ましい。
なお、本発明において予備発泡粒子の嵩発泡倍数は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して嵩密度を測定した後、以下の測定方法によって求められた値を言う。
<予備発泡粒子の嵩発泡倍数>
先ず、メスシリンダに予備発泡粒子を500cm3の目盛りまで充填する。但し、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填した予備発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とする。次式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm3)=W/500
次に、次式により予備発泡粒子の嵩発泡倍数を算出する。
嵩発泡倍数(倍)=1/嵩密度(g/cm3)
The bulk expansion ratio of the pre-expanded particles thus obtained is preferably in the range of 1.6 to 50 times, and more preferably in the range of 1.6 to 40 times.
In the present invention, the bulk expansion ratio of the pre-expanded particles refers to a value obtained by the following measurement method after measuring the bulk density in accordance with JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. .
<Bulk expansion ratio of pre-expanded particles>
First, pre-expanded particles are filled in a measuring cylinder to a scale of 500 cm 3 . However, the graduated cylinder is visually observed from the horizontal direction, and if at least one pre-expanded particle reaches the scale of 500 cm 3 , the filling is finished. Next, the mass of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as W (g). The bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
Next, the bulk expansion ratio of the pre-expanded particles is calculated by the following formula.
Bulk foam multiple (times) = 1 / bulk density (g / cm 3 )
予備発泡粒子の嵩発泡倍数は、冷却水の圧力および水温によって調整でき、低い嵩発泡倍数(高い嵩密度)の予備発泡粒子を製造する場合には、高い圧力と低い水温の条件下で発泡を抑制しながら製造する。一方、高い嵩発泡倍数(低い嵩密度)の予備発泡粒子を製造する場合には、低い圧力と高い水温の条件下である程度発泡させながら製造する。冷却水の圧力は、例えば、冷却水の循環流路のうち、高圧ポンプ9の吐出側からカッティング室7を通り、固液分離機能付き脱水乾燥機10の入口側に到る部分を加圧領域とし、高圧ポンプ9の吐出圧によって加圧し、その圧力を適宜調整することが望ましい。その圧力は特に限定されないが、通常は加圧無しの条件で行うか、加圧する場合には1.7MPa以下、好ましくは1.5MPa以下の加圧とする。また前記水温は、冷却水の循環流路のいずれかにヒーター(又はヒーターとクーラーの両方)を付設し、水温を調節することが望ましい。水温は特に限定されないが、通常は20〜80℃の範囲内とし、好ましくは30〜70℃の範囲内とすることが好ましい。
The bulk expansion ratio of the pre-expanded particles can be adjusted by the pressure and temperature of the cooling water. When producing pre-expanded particles with a low bulk expansion ratio (high bulk density), foaming should be performed under conditions of high pressure and low water temperature. Manufacture while suppressing. On the other hand, when producing pre-expanded particles having a high bulk expansion ratio (low bulk density), the pre-expanded particles are produced while being expanded to some extent under conditions of low pressure and high water temperature. The pressure of the cooling water is, for example, a part of the circulation path of the cooling water that passes through the cutting chamber 7 from the discharge side of the high-pressure pump 9 and reaches the inlet side of the dehydrating
形成された予備発泡粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで予備発泡粒子を冷却水と分離すると共に脱水乾燥する。乾燥された予備発泡粒子は、貯留容器11に貯留される。
The formed pre-expanded particles are transferred from the cutting chamber 7 to the flow of cooling water and carried to the dehydrating
得られた予備発泡粒子には、必要に応じてジンクステアレート等の粉末状金属石鹸類を表面に塗布してもよい。これにより予備発泡粒子同士のブロッキングを防止することができ、該予備発泡粒子の取り扱い、特に、成形型のキャビティ内への充填性を良好に保つことができる。 The obtained pre-expanded particles may be coated on the surface with powdered metal soaps such as zinc stearate as necessary. Thereby, blocking of the pre-expanded particles can be prevented, and the handling of the pre-expanded particles, in particular, the filling property into the cavity of the mold can be kept good.
得られた予備発泡粒子は、球状ないし略球状であり、柱状をなす予備発泡粒子と比べて成形型のキャビティ内への充填性が良好であり、キャビティ内に隙間無く充填可能であり、また型内発泡成形時に発泡粒子同士の融着が良好に行われ、強度に優れた発泡成形体を得ることができる。 The obtained pre-expanded particles are spherical or substantially spherical, have better filling properties into the cavity of the mold than the column-shaped pre-expanded particles, and can be filled without gaps in the cavity. The foamed particles are well fused at the time of inner foam molding, and a foam molded article having excellent strength can be obtained.
本発明の予備発泡粒子の製造方法は、熱可塑性樹脂と発泡剤とを樹脂供給装置内で溶融混練し、溶融した発泡剤含有熱可塑性樹脂をダイの小孔を通して冷却媒体中に押出して直後に切断し、該冷却媒体中で発泡させて嵩発泡倍数1.6倍以上の予備発泡粒子とすることで、発泡成形体の製造に用いる予備発泡粒子を溶融押出法によって直接製造することができるので、発泡性樹脂粒子を製造しそれを加熱して予備発泡粒子を得る従来法と比較して、より少ない工程で発泡成形体を製造でき、発泡成形体の生産効率が高くなり、また発泡性樹脂粒子の保管スペースを削減できる利点がある。 The method for producing the pre-foamed particles of the present invention is as follows: a thermoplastic resin and a foaming agent are melt-kneaded in a resin feeder, and the molten foaming agent-containing thermoplastic resin is extruded into a cooling medium through a small hole of a die. By cutting and foaming in the cooling medium to obtain pre-expanded particles having a bulk expansion ratio of 1.6 times or more, the pre-expanded particles used for the production of the foam molded article can be directly produced by the melt extrusion method. Compared with the conventional method of producing expandable resin particles and heating them to obtain pre-expanded particles, it is possible to manufacture foamed molded products with fewer steps, increasing the production efficiency of foamed molded products, and expanding the foamed resin There is an advantage that the storage space for particles can be reduced.
本発明の予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、熱可塑性樹脂発泡成形体(以下、発泡成形体と記す)を製造する。
本発明の発泡成形体の密度及び発泡倍数は、予備発泡粒子の嵩密度及び嵩発泡倍数と同じとされ、密度が0.625g/cm3以下(発泡倍数1.6倍以上)とされ、密度が0.020〜0.625g/cm3(発泡倍数1.6〜50倍)の範囲内とするのが好ましい。
The pre-expanded particles of the present invention are filled in a cavity of a mold using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, heated by steam heating or the like, and subjected to in-mold foam molding, and foamed thermoplastic resin. A molded body (hereinafter referred to as a foam molded body) is produced.
The density and expansion ratio of the foamed molded product of the present invention are the same as the bulk density and bulk expansion ratio of the pre-expanded particles, and the density is 0.625 g / cm 3 or less (expanding ratio is 1.6 times or more). Is preferably in the range of 0.020 to 0.625 g / cm 3 (foaming factor 1.6 to 50 times).
なお、本発明において発泡成形体の密度及び発泡倍数とは、JIS K7122:1999「発泡プラスチック及びゴム−見掛け密度の測定」記載の方法で測定した発泡成形体密度のことである。
<発泡成形体の密度>
50cm3以上(半硬質および軟質材料の場合は100cm3以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により算出した。
密度(g/cm3)=試験片質量(g)/試験片体積(cm3)
なお、前記測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
In the present invention, the density and expansion ratio of the foamed molded product are the density of the foamed molded product measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
<Density of foam molding>
A test piece of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) was cut so as not to change the original cell structure of the material, its mass was measured, and calculated by the following formula.
Density (g / cm 3 ) = Test piece mass (g) / Test piece volume (cm 3 )
The test specimen for measurement was cut out from a sample that had passed 72 hours or more after molding, and was subjected to atmospheric conditions of 23 ° C. ± 2 ° C. × 50% ± 5% or 27 ° C. ± 2 ° C. × 65% ± 5% for 16 hours or more. It is what was left.
<発泡成形体の発泡倍数>
また、発泡成形体の発泡倍数は次式により算出される数値である。
発泡倍数=1/密度(g/cm3)
<Folding multiple of foamed molded product>
Further, the expansion factor of the foamed molded product is a numerical value calculated by the following equation.
Foaming factor = 1 / density (g / cm 3 )
以下、実施例により本発明の効果を実証するが、以下の実施例は本発明の単なる例示に過ぎず、本発明が以下の実施例の記載により限定されるものではない。 Hereinafter, the effects of the present invention will be demonstrated by examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited by the description of the following examples.
[実施例1]
(予備発泡粒子の製造)
ポリスチレン樹脂(東洋スチレン社製、商品名「HRM10N」)100質量部に対し、微粉末タルク0.3質量部を加え、これらを口径90mmの単軸押出機に、時間当たり130kgで連続供給した。押出機内温度としては、最高温度210℃に設定し、樹脂を溶融させた後、発泡剤として樹脂100質量部に対して3質量部のペンタン(イソペンタン:ノルマルペンタン=20:80(質量比))を押出機の途中から圧入した。押出機内で樹脂と発泡剤を混練するとともに冷却し、押出機先端部での樹脂温度を170℃、ダイの樹脂導入部の圧力を15MPaに保持して、直径0.6mmでランド長さ3.0mmの小孔が200個配置されたダイより、このダイの吐出側に連結され40℃の水が循環し、水圧0.05MPaに設定されたカッティング室内に、発泡剤含有溶融樹脂を押し出すと同時に、円周方向に10枚の刃を有する回転カッター3000rpmにて押出物を切断した。切断した粒子を循環水で冷却しながら、粒子分離器に搬送し、粒子を循環水と分離した。さらに、捕集した粒子を脱水・乾燥して予備発泡粒子を得た。得られた予備発泡粒子は、変形、ヒゲ等の発生もなく、ほぼ球体であり、嵩密度は0.6g/cm3、嵩発泡倍数は1.7倍、平均粒径は約1.3mmであった。
得られた予備発泡粒子100質量部に対して、ポリエチレングリコール0.03質量部を粒子の表面全面に均一に被覆した。
[Example 1]
(Manufacture of pre-expanded particles)
0.3 parts by mass of fine powder talc was added to 100 parts by mass of polystyrene resin (trade name “HRM10N” manufactured by Toyo Styrene Co., Ltd.), and these were continuously supplied to a single screw extruder having a diameter of 90 mm at 130 kg per hour. As the temperature inside the extruder, the maximum temperature was set to 210 ° C., and after melting the resin, 3 parts by mass of pentane (isopentane: normal pentane = 20: 80 (mass ratio)) with respect to 100 parts by mass of the resin as a foaming agent. Was press-fitted from the middle of the extruder. In the extruder, the resin and the foaming agent are kneaded and cooled, the resin temperature at the extruder tip is maintained at 170 ° C., the pressure at the resin introduction part of the die is maintained at 15 MPa, the diameter is 0.6 mm, and the land length is 3. Simultaneously extruding the foaming agent-containing molten resin into a cutting chamber set at a water pressure of 0.05 MPa through 40 ° C. water circulating from a die having 200 small holes of 0 mm connected to the discharge side of this die. The extrudate was cut at 3000 rpm with a rotary cutter having 10 blades in the circumferential direction. While the cut particles were cooled with circulating water, they were conveyed to a particle separator, and the particles were separated from the circulating water. Further, the collected particles were dehydrated and dried to obtain pre-expanded particles. The obtained pre-expanded particles are almost spherical with no deformation or beard, and have a bulk density of 0.6 g / cm 3 , a bulk expansion ratio of 1.7 times, and an average particle diameter of about 1.3 mm. there were.
With respect to 100 parts by mass of the pre-expanded particles obtained, 0.03 parts by mass of polyethylene glycol was uniformly coated on the entire surface of the particles.
(発泡成形体の製造)
得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ25mmの長方形状のキャビティを有する成形型内にその予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまで冷却し、その後成形型を開き、長さ400mm×幅300mm×高さ25mmの長方形状の発泡成形体を取り出した。
得られた発泡成形体は、密度0.6g/cm3(発泡倍数1.7倍)であった。
(Manufacture of foam moldings)
After leaving the pre-expanded particles obtained at room temperature for 24 hours, the pre-expanded particles are filled into a mold having a rectangular cavity of length 400 mm × width 300 mm × height 25 mm, The mold cavity is heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds, then cooled until the pressure in the mold cavity reaches 0.01 MPa, and then the mold is opened, A rectangular foam molded body having a length of 400 mm, a width of 300 mm, and a height of 25 mm was taken out.
The obtained foamed molded product had a density of 0.6 g / cm 3 (foaming factor 1.7 times).
前記の通り製造した予備発泡粒子について、下記<金型充填性の評価>の通りの測定・評価を行い、金型充填性を評価した。
また、前記の通り製造した発泡成形体について、下記<発泡成形体の外観評価>及び<融着率の測定>の通りの測定・評価を行った。
さらに、<金型充填性の評価>、<発泡成形体の外観評価>及び<融着率の測定>の結果に基づいて、下記<総合判定>の判定基準に照らして総合判定した。結果を表1に記す。
The pre-expanded particles produced as described above were subjected to measurement / evaluation as described in <Evaluation of mold filling property> below, and the mold filling property was evaluated.
In addition, the foamed molded article produced as described above was measured and evaluated as described below in <Evaluation of appearance of foamed molded article> and <Measurement of fusion rate>.
Further, based on the results of <Evaluation of mold filling property>, <Appearance evaluation of foamed molded product>, and <Measurement of fusion rate>, comprehensive judgment was made in light of the judgment criteria of <Comprehensive judgment> below. The results are shown in Table 1.
<金型充填性の評価>
得られた予備発泡粒子の嵩密度及び発泡成形体の密度を求め、下記式により、充填性を算出し、下記の基準にて、充填性を評価した。
金型充填性=発泡成形体の密度/予備発泡粒子の嵩密度
この金型充填性の評価基準は、次の通りとした。
良好(○):金型充填性が0.95以上の場合
不良(×):金型充填性が0.95未満の場合
<Evaluation of mold filling property>
The bulk density of the obtained pre-expanded particles and the density of the foamed molded product were obtained, the fillability was calculated according to the following formula, and the fillability was evaluated according to the following criteria.
Mold filling property = density of foamed molded article / bulk density of pre-expanded particles The evaluation criteria for this mold filling property were as follows.
Good (O): When mold filling property is 0.95 or more Poor (X): When mold filling property is less than 0.95
<発泡成形体の外観評価>
予備発泡粒子を発泡成形機の金型に充填し、水蒸気を用いて型内発泡成形させることによって長さ400mm、幅300mm、厚み25mmの直方体状の発泡成形体を得た。得られた発泡成形体の外観を目視観察し、下記の基準に基づいて評価をした。
良好(○):発泡粒子同士の融着部分が平滑であった場合
不良(×):発泡粒子同士の融着部分に凹凸が発生していた場合
<Appearance evaluation of foam molding>
The pre-expanded particles were filled in a mold of a foam molding machine and subjected to in-mold foam molding using water vapor, thereby obtaining a rectangular solid foam molded body having a length of 400 mm, a width of 300 mm, and a thickness of 25 mm. The appearance of the obtained foamed molded product was visually observed and evaluated based on the following criteria.
Good (O): When the fused part between the expanded particles is smooth. Poor (X): When unevenness occurs at the fused part between the expanded particles.
<融着率の測定>
先ず、発泡成形体における任意の表面にカッターナイフを用いて深さ1mmの切込み線を形成し、この切込み線に沿って発泡成形体を手またはハンマーで二分割する。しかる後、発泡成形体の破断面に露出した任意の100〜150個の発泡粒子において、発泡粒子内において破断している粒子数(a)と、発泡粒子同士の熱融着界面において破断している粒子数(b)を数え、下記式に基づいて発泡成形体の融着率を算出した。
発泡成形体の融着率(%)=100×粒子数(a)/(粒子数(a)+粒子数(b))
この融着率の評価基準は次の通りとした
良好:融着率70%以上の場合
不良:融着率70%未満の場合
<Measurement of fusion rate>
First, a cutting line having a depth of 1 mm is formed on an arbitrary surface of the foamed molded body using a cutter knife, and the foamed molded body is divided into two by a hand or a hammer along the cutting line. Thereafter, in any 100 to 150 expanded particles exposed on the fracture surface of the expanded molded body, the number of particles (a) broken in the expanded particles and the thermal fusion interface between the expanded particles was broken. The number (b) of particles present was counted, and the fusion rate of the foamed molded product was calculated based on the following formula.
Fusion rate of foamed molded product (%) = 100 × number of particles (a) / (number of particles (a) + number of particles (b))
The evaluation criteria for this fusion rate were as follows: Good: When the fusion rate is 70% or more Poor: When the fusion rate is less than 70%
<総合判定>
前記<金型充填性の評価>、<発泡成形体の外観評価>、及び<融着率の測定>の3つの評価結果をもとに、次の判定基準に照らし、総合判定した。
良好(○):3つの評価結果に不良(×)が無い場合
不良(×):3つの評価結果に1つ以上不良(×)がある場合
<Comprehensive judgment>
Based on the three evaluation results of <Evaluation of mold filling property>, <Appearance evaluation of foamed molded article>, and <Measurement of fusion rate>, a comprehensive determination was made in light of the following criteria.
Good (O): When there is no defect (x) in the three evaluation results Defect (x): When there are one or more defects (x) in the three evaluation results
[実施例2]
ペンタンの添加量を5質量部としたこと、及び水温を50℃としたこと以外は、実施例1と同様に行った。得られた予備発泡粒子は、変形、ヒゲ等の発生もなく、ほぼ球体であり、嵩密度は0.2g/cm3、嵩発泡倍数は5.1倍、平均粒径は約1.9mmであった。結果を表1に記す。
[Example 2]
The same procedure as in Example 1 was performed except that the amount of pentane added was 5 parts by mass and the water temperature was 50 ° C. The obtained pre-expanded particles were almost spherical without deformation, beard, etc., with a bulk density of 0.2 g / cm 3 , a bulk expansion factor of 5.1 times, and an average particle size of about 1.9 mm. there were. The results are shown in Table 1.
[実施例3]
直径0.5mmでランド長さ2.5mmの小孔を有するダイを用いたこと、ペンタンの添加量を7質量部としたこと、及び水温を50℃としたこと以外は、実施例1と同様に行った。得られた予備発泡粒子は、変形、ヒゲ等の発生もなく、ほぼ球体であり、嵩密度は0.03g/cm3、嵩発泡倍数は33.7倍、平均粒径は約3.2mmであった。結果を表1に記す。
[Example 3]
Example 1 except that a die having a small hole with a diameter of 0.5 mm and a land length of 2.5 mm was used, the amount of pentane added was 7 parts by mass, and the water temperature was 50 ° C. Went to. The obtained pre-expanded particles are almost spherical without deformation, whiskers, etc., have a bulk density of 0.03 g / cm 3 , a bulk expansion ratio of 33.7 times, and an average particle diameter of about 3.2 mm. there were. The results are shown in Table 1.
[比較例1]
ペンタンの添加量を5質量部としたこと、水温を85℃としたこと、及び棒状の発泡体をカッティング室内に押し出し、発泡後に切断したこと以外は、実施例1と同様に行った。得られた予備発泡粒子は円柱状であり、嵩密度は0.04g/cm3、嵩発泡倍数は27.3倍、円柱の直径は約2.5mm、円柱の高さは約1.7mmであった。結果を表1に記す。
[Comparative Example 1]
The same procedure as in Example 1 was conducted except that the amount of pentane added was 5 parts by mass, the water temperature was 85 ° C., and the rod-shaped foam was extruded into the cutting chamber and cut after foaming. The obtained pre-expanded particles have a cylindrical shape, the bulk density is 0.04 g / cm 3 , the bulk foaming factor is 27.3 times, the diameter of the cylinder is about 2.5 mm, and the height of the cylinder is about 1.7 mm. there were. The results are shown in Table 1.
表1の結果から、本発明に係る実施例1〜3で得られた予備発泡粒子は、粒子形状が球状となって金型充填性が良好であった。また、実施例1〜3で得られた発泡成形体は、外観が良好となり、発泡粒の融着率も高く、高品質の発泡成形体が得られた。 From the results in Table 1, the pre-expanded particles obtained in Examples 1 to 3 according to the present invention had a spherical particle shape and good mold filling properties. Moreover, the external appearance of the foam molded body obtained in Examples 1 to 3 was good, the fusion rate of the foamed particles was high, and a high quality foam molded body was obtained.
一方、比較例1では、水中に押し出された溶融樹脂が発泡した状態となってから切断されたため、得られた予備発泡粒子の形状が円柱状となった。この比較例1の予備発泡粒子は金型充填性が悪くなり、得られた発泡成形体の外観及び融着率が悪くなった。 On the other hand, in Comparative Example 1, since the molten resin extruded into water was cut after being in a foamed state, the shape of the obtained pre-expanded particles became a columnar shape. The pre-expanded particles of Comparative Example 1 had poor mold filling properties, and the appearance and fusion rate of the obtained foamed molded product were poor.
本発明は、ポリスチレン系樹脂発泡成形体などの熱可塑性樹脂発泡成形体の製造に用いる熱可塑性樹脂予備発泡粒子とその製造方法に関し、さらに詳細には、溶融した発泡剤含有熱可塑性樹脂をダイの小孔から水などの冷却媒体中に押出し、直後に切断して樹脂粒子を製造する、いわゆる溶融押出法による発泡性熱可塑性樹脂粒子の製造プロセスにおいて、切断した樹脂粒子を冷却媒体中で発泡させ、発泡成形体の製造に用いる熱可塑性樹脂予備発泡粒子を直接製造する技術に関する。
本発明によれば、発泡成形体の製造に用いる熱可塑性樹脂予備発泡粒子を溶融押出法によって直接製造することができるので、発泡性樹脂粒子を製造しそれを加熱して予備発泡粒子を得る従来法と比較して、より少ない工程で発泡成形体を製造でき、発泡成形体の生産効率が高くなり、また発泡性樹脂粒子の保管スペースを削減できる利点がある。本発明方法により得られた熱可塑性樹脂予備発泡粒子は球状ないし略球状であり、柱状をなす予備発泡粒子と比べて成形型のキャビティ内への充填性が良好であり、キャビティ内に隙間無く充填可能であり、また型内発泡成形時に発泡粒子同士の融着が良好に行われ、強度に優れた発泡成形体を得ることができる。
The present invention relates to thermoplastic resin pre-foamed particles used for the production of a thermoplastic resin foam molded article such as a polystyrene resin foam molded article and a method for producing the same, and more specifically, a molten foaming agent-containing thermoplastic resin is used as a die. In the manufacturing process of foamable thermoplastic resin particles by the so-called melt extrusion method, which is extruded through a small hole into a cooling medium such as water and then cut to produce resin particles, the cut resin particles are foamed in the cooling medium. The present invention relates to a technique for directly producing thermoplastic resin pre-expanded particles used for producing a foamed molded product.
According to the present invention, since the thermoplastic resin pre-expanded particles used for the production of the foamed molded product can be directly produced by the melt extrusion method, the conventional method obtains the expandable resin particles and heats them to obtain the pre-expanded particles. Compared with the method, there are advantages that a foamed molded product can be produced with fewer steps, the production efficiency of the foamed molded product becomes higher, and the storage space for the expandable resin particles can be reduced. The thermoplastic resin pre-expanded particles obtained by the method of the present invention are spherical or substantially spherical, and have better filling properties in the mold cavity than the column-shaped pre-expanded particles, and the cavity is filled without any gaps. In addition, the foamed particles are well fused at the time of in-mold foam molding, and a foam molded article having excellent strength can be obtained.
1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器。 DESCRIPTION OF SYMBOLS 1 ... Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, 10: Dehydration dryer with solid-liquid separation function, 11: Storage container.
Claims (5)
前記冷却媒体は、40〜80℃であり、かつ1.7MPa以下に加圧され前記カッティング室に供給される熱可塑性樹脂予備発泡粒子の製造方法。 Using a manufacturing apparatus comprising a resin supply device, a die provided at the tip of the resin supply device, and a cutting chamber to which the cooling medium is supplied so that the cooling medium contacts the discharge surface of the die, a thermoplastic resin and a blowing agent were melted and kneaded in the resin supply device, extruded while cutting the molten foaming agent-containing thermoplastic resin in the cooling medium of the cutting chamber through the small holes of the die, during the cooling medium Of the thermoplastic resin pre-expanded particles to obtain a thermoplastic resin pre-expanded particle having a bulk expansion ratio of 1.6 to 50 times , and then separating the expanded particle from the cooling medium to obtain a thermoplastic resin pre-expanded particle. A manufacturing method comprising:
The said cooling medium is 40-80 degreeC, and is the manufacturing method of the thermoplastic resin pre-expanded particle pressurized to 1.7 Mpa or less and supplied to the said cutting chamber .
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072320A JP5603629B2 (en) | 2010-03-26 | 2010-03-26 | Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding |
PCT/JP2011/057176 WO2011118706A1 (en) | 2010-03-26 | 2011-03-24 | Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form |
CN201510310212.4A CN104910408B (en) | 2010-03-26 | 2011-03-24 | Foaming polystyrene series resin particle and its manufacturing method, polystyrene resin pre-expanded particles |
TW100110047A TWI529205B (en) | 2010-03-26 | 2011-03-24 | Expandable polystyrene type resin particle and production method thereof, polystyrene type resin pre-expanded particle, polystyrene type resin expanded form |
KR1020127024821A KR101477124B1 (en) | 2010-03-26 | 2011-03-24 | Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form |
CN201510310203.5A CN104890209B (en) | 2010-03-26 | 2011-03-24 | Thermoplastic resin pre-expanded particles and its manufacture method, foaming of thermoplastic resin formed body and its manufacture method |
CN201180026028.7A CN102906170B (en) | 2010-03-26 | 2011-03-24 | Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expand |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072320A JP5603629B2 (en) | 2010-03-26 | 2010-03-26 | Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011202077A JP2011202077A (en) | 2011-10-13 |
JP5603629B2 true JP5603629B2 (en) | 2014-10-08 |
Family
ID=44879061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010072320A Active JP5603629B2 (en) | 2010-03-26 | 2010-03-26 | Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5603629B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5597611B2 (en) | 2011-09-15 | 2014-10-01 | 京セラドキュメントソリューションズ株式会社 | Developing device and image forming apparatus having the same |
US10279516B2 (en) * | 2013-06-13 | 2019-05-07 | Basf Se | Method for producing expanded granulate |
CN105330883B (en) * | 2015-11-11 | 2018-01-12 | 烟台恒美塑业有限公司 | The production method and its combination cooling device of a kind of cross-linked polyolefin microporous foam sheet material |
EP4067032A4 (en) | 2019-11-27 | 2023-11-15 | Kaneka Corporation | Manufacturing device and manufacturing method for thermoplastic resin foam particles |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2641122B2 (en) * | 1993-06-22 | 1997-08-13 | 積水化成品工業株式会社 | Method for producing thermoplastic resin pre-expanded particles |
JP5086900B2 (en) * | 2008-06-04 | 2012-11-28 | 積水化成品工業株式会社 | Method for producing foamable thermoplastic resin particles, method for producing thermoplastic resin foamed particles, and method for producing thermoplastic resin foam molded article |
-
2010
- 2010-03-26 JP JP2010072320A patent/JP5603629B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011202077A (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5372783B2 (en) | Expandable polystyrene resin particles, method for producing the same, and foam molded article | |
WO2011118706A1 (en) | Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form | |
JP5882070B2 (en) | Expandable polystyrene resin particles, method for producing the same, and foam molded article | |
JP2010179627A (en) | Production method for foaming thermoplastic resin particle, foamed thermoplastic resin particle, and foamed thermoplastic resin molding | |
JP5603629B2 (en) | Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding | |
WO2012043439A1 (en) | Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium | |
JP5603628B2 (en) | Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article | |
JP6043562B2 (en) | Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article | |
JP5641846B2 (en) | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article | |
JP5756003B2 (en) | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article | |
JP5986410B2 (en) | Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding | |
JP5425654B2 (en) | Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article | |
JP2012207186A (en) | Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same | |
JP2013072003A (en) | Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding | |
JP5704831B2 (en) | Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article | |
JP2012207156A (en) | Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same | |
JP2013227537A (en) | Foamable polystyrene-based resin particle, manufacturing method thereof, preliminary foamed particle, and foamed molding | |
JP2012207157A (en) | Foaming agent containing thermoplastic resin particle for heat melting expansion molding and method of manufacturing the same, and thermoplastic resin expansion molding body and method of manufacturing the same | |
JP2012072231A (en) | Expandable polystyrene-based resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article | |
JP2012201688A (en) | Expandable polystyrene resin particle and method for producing the same, polystyrene-based resin pre-expanded particle, and polystyrene-based resin expansion-molded article | |
JP5734611B2 (en) | Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding | |
JP2004217718A (en) | Method for recycling styrene-based resin | |
JP2013071998A (en) | Foamable polystyrene-based resin particle, method for producing the same, polystyrene-based resin pre-foamed particle and polystyrene-based resin foamed compact | |
JP2012214750A (en) | Foamable polystyrene-based resin particle and production method therefor, polystyrene-based resin pre-foamed particle, and polystyrene-based resin foamed molding | |
JP2004026868A (en) | Production process to manufacture expandable particles from recovered styrene resins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140718 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140812 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5603629 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |