Nothing Special   »   [go: up one dir, main page]

JP5579891B2 - Wheel bearing device, manufacturing method thereof, and separation method - Google Patents

Wheel bearing device, manufacturing method thereof, and separation method Download PDF

Info

Publication number
JP5579891B2
JP5579891B2 JP2013049728A JP2013049728A JP5579891B2 JP 5579891 B2 JP5579891 B2 JP 5579891B2 JP 2013049728 A JP2013049728 A JP 2013049728A JP 2013049728 A JP2013049728 A JP 2013049728A JP 5579891 B2 JP5579891 B2 JP 5579891B2
Authority
JP
Japan
Prior art keywords
hole
hub wheel
shaft
fitting
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013049728A
Other languages
Japanese (ja)
Other versions
JP2013151286A (en
Inventor
祐一 淺野
亮 中川
仁博 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2013049728A priority Critical patent/JP5579891B2/en
Publication of JP2013151286A publication Critical patent/JP2013151286A/en
Application granted granted Critical
Publication of JP5579891B2 publication Critical patent/JP5579891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

本発明は、自動車等の車両において車輪を車体に対して回転自在に支持するための車輪用軸受装置、その製造方法、および分離方法に関する。 The present invention relates to a wheel bearing device for rotatably supporting a wheel with respect to a vehicle body in a vehicle such as an automobile , a manufacturing method thereof, and a separation method .

車輪用軸受装置には、第1世代と称される複列の転がり軸受を単独に使用する構造から、外方部材に車体取付フランジを一体に有する第2世代に進化し、さらに、車輪取付フランジを一体に有するハブ輪の外周に複列の転がり軸受の一方の内側軌道面が一体に形成された第3世代、さらには、ハブ輪に等速自在継手が一体化され、この等速自在継手を構成する外側継手部材の外周に複列の転がり軸受の他方の内側軌道面が一体に形成された第4世代のものまで開発されている。   The wheel bearing device has evolved from a structure in which a double row rolling bearing called a first generation is used alone to a second generation in which a vehicle body mounting flange is integrated with an outer member. The third generation in which one inner raceway surface of the double row rolling bearing is integrally formed on the outer periphery of the hub ring integrally having a ring, and further, the constant velocity universal joint is integrated with the hub ring. 4th generation has been developed in which the other inner raceway surface of the double-row rolling bearing is integrally formed on the outer periphery of the outer joint member that constitutes.

例えば、特許文献1には、第3世代と呼ばれるものが記載されている。第3世代と呼ばれる車輪用軸受装置は、図15に示すように、外径方向に延びるフランジ151を有するハブ輪152と、このハブ輪152に外側継手部材153が固定される等速自在継手154と、ハブ輪152の外周側に配設される外方部材155とを備える。   For example, Patent Document 1 describes what is called a third generation. As shown in FIG. 15, the wheel bearing device called the third generation includes a hub wheel 152 having a flange 151 extending in the outer diameter direction, and a constant velocity universal joint 154 to which an outer joint member 153 is fixed. And an outer member 155 disposed on the outer peripheral side of the hub wheel 152.

等速自在継手154は、前記外側継手部材153と、この外側継手部材153の椀形部157内に配設される内側継手部材158と、この内側継手部材158と外側継手部材153との間に配設されるボール159と、このボール159を保持する保持器160とを備える。また、内側継手部材158の中心孔の内周面にはスプライン部161が形成され、この中心孔に図示省略のシャフトの端部スプライン部が挿入されて、内側継手部材158側のスプライン部161とシャフト側のスプライン部とが係合される。   The constant velocity universal joint 154 includes an outer joint member 153, an inner joint member 158 disposed in the bowl-shaped portion 157 of the outer joint member 153, and the inner joint member 158 and the outer joint member 153. A ball 159 to be disposed and a holder 160 for holding the ball 159 are provided. Further, a spline portion 161 is formed on the inner peripheral surface of the center hole of the inner joint member 158, and an end spline portion of a shaft (not shown) is inserted into the center hole, and the spline portion 161 on the inner joint member 158 side The spline portion on the shaft side is engaged.

また、ハブ輪152は、筒状の軸部163と前記フランジ151とを有し、フランジ151の外端面164(反継手側の端面)には、図示省略のホイールおよびブレーキロータが装着される短筒状のパイロット部165が突設されている。なお、パイロット部165は、大径の第1部165aと小径の第2部165bとからなり、第1部165aにブレーキロータが外嵌され、第2部165bにホイールが外嵌される。   The hub wheel 152 includes a cylindrical shaft portion 163 and the flange 151, and a short wheel and a brake rotor (not shown) are attached to the outer end surface 164 (end surface on the anti-joint side) of the flange 151. A cylindrical pilot portion 165 is provided so as to protrude. The pilot portion 165 includes a large-diameter first portion 165a and a small-diameter second portion 165b. A brake rotor is externally fitted to the first portion 165a, and a wheel is externally fitted to the second portion 165b.

そして、軸部163の椀形部157側端部の外周面に切欠部166が設けられ、この切欠部166に内輪167が嵌合されている。ハブ輪152の軸部163の外周面のフランジ近傍には第1内側軌道面168が設けられ、内輪167の外周面に第2内側軌道面169が設けられている。また、ハブ輪152のフランジ151にはボルト装着孔162が設けられて、ホイールおよびブレーキロータをこのフランジ151に固定するためのハブボルトがこのボルト装着孔162に装着される。   A notch 166 is provided on the outer peripheral surface of the end portion of the shaft portion 163 on the hook-shaped portion 157 side, and the inner ring 167 is fitted into the notch 166. A first inner raceway surface 168 is provided near the flange on the outer peripheral surface of the shaft portion 163 of the hub wheel 152, and a second inner raceway surface 169 is provided on the outer peripheral surface of the inner ring 167. A bolt mounting hole 162 is provided in the flange 151 of the hub wheel 152, and a hub bolt for fixing the wheel and the brake rotor to the flange 151 is mounted in the bolt mounting hole 162.

外方部材155は、その内周に2列の外側軌道面170、171が設けられると共に、その外周にフランジ(車体取付フランジ)151が設けられている。そして、外方部材155の第1外側軌道面170とハブ輪152の第1内側軌道面168とが対向し、外方部材155の第2外側軌道面171と、内輪167の軌道面169とが対向し、これらの間に転動体172が介装される。   The outer member 155 is provided with two rows of outer raceways 170 and 171 on its inner periphery, and a flange (vehicle body mounting flange) 151 on its outer periphery. Then, the first outer raceway surface 170 of the outer member 155 and the first inner raceway surface 168 of the hub ring 152 face each other, and the second outer raceway surface 171 of the outer member 155 and the raceway surface 169 of the inner ring 167 are opposed to each other. Opposed and a rolling element 172 is interposed between them.

ハブ輪152の軸部163に外側継手部材153の軸部173が挿入される。軸部173は、その反椀形部の端部にねじ部174が形成され、このねじ部174と椀形部157との間にスプライン部175が形成されている。また、ハブ輪152の軸部163の内周面(内径面)にスプライン部176が形成され、この軸部173がハブ輪152の軸部163に挿入された際には、軸部173側のスプライン部175とハブ輪152側のスプライン部176とが係合する。   The shaft portion 173 of the outer joint member 153 is inserted into the shaft portion 163 of the hub wheel 152. The shaft portion 173 has a threaded portion 174 formed at the end of the ridged portion, and a spline portion 175 is formed between the threaded portion 174 and the hooked portion 157. A spline portion 176 is formed on the inner peripheral surface (inner diameter surface) of the shaft portion 163 of the hub wheel 152, and when the shaft portion 173 is inserted into the shaft portion 163 of the hub wheel 152, The spline portion 175 engages with the spline portion 176 on the hub wheel 152 side.

そして、軸部163から突出した軸部173のねじ部174にナット部材177が螺着され、ハブ輪152と外側継手部材153とが連結される。この際、ナット部材177の内端面(裏面)178と軸部163の外端面179とが当接するとともに、椀形部157の軸部側の端面180と内輪167の外端面181とが当接する。すなわち、ナット部材177を締付けることによって、ハブ輪152が内輪167を介してナット部材177と椀形部157とで挟持される。
特開2004−340311号公報
Then, the nut member 177 is screwed to the screw portion 174 of the shaft portion 173 protruding from the shaft portion 163, and the hub wheel 152 and the outer joint member 153 are connected. At this time, the inner end surface (back surface) 178 of the nut member 177 contacts the outer end surface 179 of the shaft portion 163, and the end surface 180 on the shaft portion side of the hook-shaped portion 157 contacts the outer end surface 181 of the inner ring 167. That is, by tightening the nut member 177, the hub wheel 152 is sandwiched between the nut member 177 and the hook-shaped portion 157 via the inner ring 167.
JP 2004340403 A

従来では、前記したように、軸部173側のスプライン部175とハブ輪152側のスプライン部176とが係合するものである。このため、軸部173側及びハブ輪152側の両者にスプライン加工を施す必要があって、コスト高となるとともに、圧入時には、軸部173側のスプライン部175とハブ輪152側のスプライン部176との凹凸を合わせる必要があり、この際、歯面を合わせることによって、圧入すれば、この凹凸歯が損傷する(むしれる)おそれがある。また、歯面を合わせることなく、凹凸歯の大径合わせにて圧入すれば、円周方向のガタが生じやすい。このように、円周方向のガタがあると、回転トルクの伝達性に劣るとともに、異音が発生するおそれもあった。このため、従来のように、スプライン嵌合による場合、凹凸歯の損傷及び円周方向のガタの両者を成立させることは困難であった。   Conventionally, as described above, the spline portion 175 on the shaft portion 173 side and the spline portion 176 on the hub wheel 152 side are engaged. For this reason, it is necessary to perform spline processing on both the shaft portion 173 side and the hub wheel 152 side, which increases the cost, and at the time of press-fitting, the spline portion 175 on the shaft portion 173 side and the spline portion 176 on the hub wheel 152 side. It is necessary to match the unevenness of the teeth. At this time, if the teeth are pressed by matching the tooth surfaces, the uneven teeth may be damaged (peeled). Moreover, if it press-fits by matching the large diameter of an uneven | corrugated tooth | gear, without matching a tooth surface, it will be easy to produce the play of the circumferential direction. As described above, when there is a backlash in the circumferential direction, the transmission performance of the rotational torque is inferior and abnormal noise may occur. For this reason, it has been difficult to establish both the damage to the concavo-convex teeth and the play in the circumferential direction when using spline fitting as in the prior art.

ところで、スプライン嵌合において、雄スプラインと雌スプラインとの密着性の向上を図って、円周方向のガタが生じないようにしたとしても、駆動トルクが作用すれば、雄スプラインと雌スプラインとに相対変位が発生するおそれがある。このような相対変位が発生すれば、フレッティング摩耗が発生し、その摩耗粉により、スプラインがアブレーション摩耗を起すおそれがある。これによって、スプライン嵌合部位においてガタつきが生じたり、安定したトルク伝達ができなくなるおそれがある。   By the way, in spline fitting, even if the adhesiveness between the male spline and the female spline is improved so that the play in the circumferential direction does not occur, if the driving torque is applied, the male spline and the female spline are separated. Relative displacement may occur. If such relative displacement occurs, fretting wear occurs, and the abrasion powder may cause ablation wear. As a result, there is a possibility that rattling occurs at the spline fitting site or that stable torque transmission cannot be performed.

本発明は、上記課題に鑑みて、円周方向のガタの抑制を図ることができ、しかも、ハブ輪と等速自在継手の外側継手部材との連結作業性に優れるとともに、ハブ輪と等速自在継手の外側継手部材との分離が可能とされてメンテナンス性に優れ、かつ長期にわたって安定したトルク伝達ができる車輪用軸受装置を提供する。併せてこの車輪用軸受装置の製造方法、および分離方法を提供する。 In view of the above problems, the present invention can suppress circumferential backlash, and is excellent in connection workability between the hub wheel and the outer joint member of the constant velocity universal joint, and at the same time with the hub wheel and the constant velocity. Provided is a wheel bearing device that can be separated from an outer joint member of a universal joint, has excellent maintainability, and can transmit torque stably over a long period of time. In addition, a manufacturing method and a separation method of the wheel bearing device are provided.

本発明の車輪用軸受装置は、ホイールに取り付けるためのフランジを有するハブ輪と、このハブ輪の外周側に配設される外側軌道面、この外側軌道面に対向する内側軌道面、および対向する外側軌道面と内側軌道面との間に配置された転動体を有する複列の転がり軸受と、外側継手部材を有する等速自在継手とがユニット化され、ハブ輪の孔部に嵌挿される等速自在継手の外側継手部材の軸部がハブ輪と分離可能に結合された車輪用軸受装置であって、外側継手部材の軸部の外径面に設けられた、軸方向に延びる複数の凸部を有するセレーションを、ハブ輪の孔部の内径面に所定ピッチで設けられた小凹部に各凸部を対応させて、ハブ輪の孔部内径面に軸方向に沿って圧入し、ハブ輪の孔部内径面に、圧入した凸部による切削で凹部を形成して、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成し、ハブ輪と一体または別体にボルト挿通孔を設けると共に、軸部の軸心上にボルト部材が螺合されるねじ孔を設け、ボルト部材を、ボルト挿通孔を介してねじ孔に螺合することでハブ輪と外側継手部材の軸部とが固定される共に、ボルト部材をねじ孔から取り外すことでハブ輪と外側継手部材の軸部との分離が許容され、ハブ輪の孔部内径面のうち、凸部の圧入開始側となる端部に、各凸部に対して径方向隙間および周方向隙間の何れか一方または双方を介して嵌合可能な雌セレーション状の軸部圧入ガイド部を設け、凸部を軸部圧入ガイド部に嵌合させた状態で、ボルト挿通孔に挿入したボルト部材を、ねじ孔に螺合可能にしたことを特徴とするものである。 A wheel bearing device according to the present invention includes a hub wheel having a flange for mounting on a wheel, an outer raceway surface disposed on the outer peripheral side of the hub wheel, an inner raceway surface facing the outer raceway surface, and the opposite. A double row rolling bearing having rolling elements arranged between the outer raceway surface and the inner raceway surface and a constant velocity universal joint having an outer joint member are unitized and inserted into the hole of the hub wheel, etc. A wheel bearing device in which a shaft portion of an outer joint member of a speed universal joint is detachably coupled to a hub wheel, and a plurality of protrusions extending in an axial direction provided on an outer diameter surface of the shaft portion of the outer joint member The hub ring is press-fitted along the axial direction into the hole inner diameter surface of the hub wheel, with the corresponding protrusions corresponding to the small recesses provided at a predetermined pitch on the inner diameter surface of the hole of the hub wheel. On the inner diameter surface of the hole, a recess is formed by cutting with the press-fitted protrusion. Constructs a concave-convex fitting structure in which the entire fitting contact area between the convex part and the concave part is in close contact, and a bolt insertion hole is provided integrally with or separate from the hub wheel, and the bolt member is screwed onto the shaft center of the shaft part The screw hole is provided, and the hub ring and the shaft portion of the outer joint member are fixed by screwing the bolt member into the screw hole through the bolt insertion hole, and the bolt member is removed from the screw hole. Separation of the hub wheel from the shaft portion of the outer joint member is allowed, and a radial clearance and a circumferential direction are provided to each convex portion at an end portion of the hub wheel hole inner diameter surface on the press-fitting start side of the convex portion. A bolt member inserted into the bolt insertion hole with a female serration-shaped shaft press-fit guide portion that can be fitted through either one or both of the gaps, with the convex portion fitted to the shaft press-fit guide portion. Can be screwed into the screw hole .

かかる構成では、凸部を軸部圧入ガイド部に嵌合させた状態で、ボルト挿通孔に挿入したボルト部材を、ねじ孔に螺合可能としているので、ボルト部材を、ボルト挿通孔でガイドしながらねじ孔に対して螺進させることで、凸部を凹部に圧入して、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成することができる。 In such a configuration, a convex portion in a state of fitted into the shaft section press-fitting guide portion, the bolt member inserted into the bolt insertion hole, since the possible screwed into the screw hole, a bolt member, a bolt insertion hole By screwing into the screw hole while guiding, it is possible to form a concavo-convex fitting structure in which the convex portion is press-fitted into the concave portion and the entire fitting contact portion between the convex portion and the concave portion is in close contact.

本発明の車輪用軸受装置によれば、凹凸嵌合構造は、凸部と凹部との嵌合接触部位の全体が密着しているので、この嵌合構造において、径方向及び円周方向においてガタが生じる隙間が形成されない。   According to the wheel bearing device of the present invention, the concave / convex fitting structure has the entire fitting contact portion between the convex portion and the concave portion in close contact with each other. No gap is formed.

しかも、外側継手部材の軸部に軸方向の引き抜き力を付与すれば、ハブ輪の孔部から外側継手部材を取外すことができる。また、外側継手部材の軸部をハブ輪の孔部から引き抜いた後において、再度、外側手部材の軸部をハブ輪の孔部に圧入すれば、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成することができる。さらに、ハブ輪と外側継手部材の軸部とがボルト結合手段を介して固定されるので、ハブ輪からの外側継手部材の軸部の軸方向の抜けが規制される。 In addition, if an axial pulling force is applied to the shaft portion of the outer joint member, the outer joint member can be removed from the hole of the hub wheel. In addition, after the shaft portion of the outer joint member is pulled out from the hole portion of the hub wheel, if the shaft portion of the outer hand member is press-fitted again into the hole portion of the hub wheel, the entire fitting contact region between the convex portion and the concave portion can be obtained. It is possible to reconfigure the concave-convex fitting structure that closely contacts. Further, since the hub wheel and the shaft portion of the outer joint member are fixed via the bolt coupling means, the axial displacement of the shaft portion of the outer joint member from the hub wheel is restricted .

この場合、ボルト部材にねじ部と非ねじ部とを設け、ボルト挿通孔とボルト挿通孔に挿通したボルト部材の非ねじ部との間に直径隙間を設け、この直径隙間を、凹凸嵌合構造における外側継手部材の軸部の最大直径寸法と、凹凸嵌合構造におけるハブ輪の孔部の最小直径寸法との差よりも小さくするのが望ましい。これにより、ボルト挿通孔が外側継手部材の軸部の圧入時のガイドとなる。In this case, the bolt member is provided with a threaded portion and a non-threaded portion, and a diameter gap is provided between the bolt insertion hole and the non-threaded portion of the bolt member inserted into the bolt insertion hole. It is desirable to make it smaller than the difference between the maximum diameter dimension of the shaft portion of the outer joint member and the minimum diameter dimension of the hole portion of the hub wheel in the concave-convex fitting structure. Thereby, a bolt insertion hole becomes a guide at the time of the press injection of the axial part of an outer joint member.

ハブ輪の孔部にこの内部を仕切る内壁を設けるとともに、この内壁にボルト挿通孔を設けるのが好ましい。この内壁によって、ボルト挿通孔周辺の剛性が向上する。 It is preferable to provide an inner wall for partitioning the inside of the hole of the hub wheel and to provide a bolt insertion hole in the inner wall. This inner wall improves the rigidity around the bolt insertion hole .

また、前記凸部を山部および谷部からなるスプラインで形成し、該スプラインのモジュールを0.5以下にするのが好ましいFurther, it is preferable that the convex portion is formed by a spline including a peak portion and a valley portion, and the module of the spline is 0.5 or less .

以上の車輪用軸受装置において、ボルト部材をねじ孔から取り外してハブ輪と外側継手部材の軸部とを分離し、その後、軸部のセレーションを軸部圧入ガイド部に嵌合し、ボルト挿入孔を介してねじ孔にボルト部材を螺合し、ボルト部材をボルト挿通孔でガイドしながらねじ孔に対して螺進させることで、外側継手部材の軸部をハブ輪の孔部に嵌入させ、かつ凸部を凹部に圧入して、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成することができる。 In the wheel bearing device described above , the bolt member is removed from the screw hole to separate the hub wheel and the shaft portion of the outer joint member, and then the shaft portion serration is fitted to the shaft portion press-fitting guide portion, and the bolt insertion hole The screw member is screwed into the screw hole via the screw hole, and the bolt member is screwed into the screw hole while being guided by the bolt insertion hole, so that the shaft portion of the outer joint member is fitted into the hole portion of the hub wheel, And a convex-concave fitting structure which press-fits a convex part in a recessed part and the fitting contact site | part whole area | region of a convex part and a recessed part closely_contact | adheres can be comprised.

また、以上に述べた車輪用軸受装置においては、ねじ孔にねじ軸を螺合させ、第2ねじ孔を有する基盤をハブ輪に装着し、基盤の第2ねじ孔に螺合したボルト部材の螺進によって、ねじ軸に軸心方向の押圧力を付与して、ハブ輪と外側継手部材の軸部とを分離することができる Further, in the wheel bearing device described above, the screw member is screwed into the screw hole, the base having the second screw hole is attached to the hub wheel, and the bolt member screwed into the second screw hole of the base is installed. By screwing, a pressing force in the axial direction can be applied to the screw shaft, and the hub wheel and the shaft portion of the outer joint member can be separated .

本発明の車輪用軸受装置では、ハブ輪とハブ輪の孔部に嵌挿される等速自在継手の外側継手部材の軸部とを一体化する凹凸嵌合構造を備えているため、凹凸嵌合構造部の円周方向のガタを無くすことができる。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、ガタによる異音の発生も生じさせない。凹部を、ハブ輪の内径面に形成された小凹部に凸部を圧入することで形成すれば、凸部の圧入時に形成されるはみ出し部の容量を減じて圧入抵抗の低減を図ることができる。 The wheel bearing device according to the present invention has a concave-convex fitting structure that integrates the hub ring and the shaft portion of the outer joint member of the constant velocity universal joint that is inserted into the hole of the hub ring. The play in the circumferential direction of the structure portion can be eliminated. For this reason, all of the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no noise is generated due to looseness. If the concave portion is formed by press-fitting the convex portion into the small concave portion formed on the inner diameter surface of the hub wheel, it is possible to reduce the press-fitting resistance by reducing the capacity of the protruding portion formed when the convex portion is press-fitted. .

また、外側継手部材の軸部に軸方向の引き抜き力を付与することによって、ハブ輪の孔部から外側継手部材を取外すことができるので、各部品の修理・点検の作業性(メンテナンス性)の向上を図ることができる。しかも、各部品の修理・点検後に再度外側継手部材の軸部をハブ輪の孔部に圧入することによって、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成することができる。 In addition, by applying an axial pulling force to the shaft portion of the outer joint member, the outer joint member can be removed from the hole of the hub wheel, so that the workability (maintenability) of repair and inspection of each part is improved. Improvements can be made. In addition, after the repair / inspection of each part, the shaft portion of the outer joint member is press-fitted into the hole of the hub wheel again, thereby forming a concave-convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact. Can do.

ハブ輪と等速自在継手とがねじ孔に螺合したボルト部材を介して固定されるので、ハブ輪からの外側継手部材の軸部の軸方向の抜けが規制され、安定した連結状態を維持することができる。 Since the hub wheel and the constant velocity universal joint are fixed via a bolt member screwed into the screw hole, the axial disconnection of the shaft portion of the outer joint member from the hub wheel is restricted, and a stable connection state is maintained. Can

以下本発明の実施の形態を図1〜図14に基づいて説明する。図1に第1実施形態の車輪用軸受装置を示し、この車輪用軸受装置は、ハブ輪1と、複列の転がり軸受2と、等速自在継手3とが一体化されるとともに、ハブ輪1と、ハブ輪1の孔部22に嵌挿される等速自在継手3の外側継手部材の軸部12とが凹凸嵌合構造Mを介して分離可能に結合されてなる。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows a wheel bearing device according to a first embodiment. This wheel bearing device is a hub wheel 1, a double row rolling bearing 2 and a constant velocity universal joint 3 integrated with each other. 1 and the shaft portion 12 of the outer joint member of the constant velocity universal joint 3 that is inserted into the hole portion 22 of the hub wheel 1 are detachably coupled via the concave-convex fitting structure M.

等速自在継手3は、外側継手部材としての外輪5と、外輪5の内側に配された内側継手部材としての内輪6と、外輪5と内輪6との間に介在してトルクを伝達する複数のボール7と、外輪5と内輪6との間に介在してボール7を保持するケージ8とを主要な部材として構成される。内輪6はその軸孔内径に、図8等に示すように、シャフト10の端部10aを圧入することによりスプライン嵌合してシャフト10とトルク伝達可能に結合されている。なお、シャフト10の端部10aには、シャフト抜け止め用の止め輪9が嵌合されている。   The constant velocity universal joint 3 includes a plurality of outer rings 5 serving as outer joint members, an inner ring 6 serving as an inner joint member disposed on the inner side of the outer ring 5, and a plurality of torque transmissions interposed between the outer ring 5 and the inner ring 6. The ball 7 and the cage 8 that is interposed between the outer ring 5 and the inner ring 6 and holds the ball 7 are configured as main members. As shown in FIG. 8 and the like, the inner ring 6 is spline-fitted by press-fitting an end 10a of the shaft 10 into the inner diameter of the shaft hole and is coupled to the shaft 10 so that torque can be transmitted. Note that a retaining ring 9 for retaining the shaft is fitted to the end portion 10a of the shaft 10.

外輪5はマウス部11とステム部(軸部)12とからなり、マウス部11は一端にて開口した椀状で、その内球面13に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。内輪6は、その外球面15に、軸方向に延びた複数のトラック溝16が円周方向等間隔に形成されている。   The outer ring 5 is composed of a mouse part 11 and a stem part (shaft part) 12. The mouse part 11 has a bowl shape opened at one end, and a plurality of track grooves 14 extending in the axial direction are circumferentially formed on the inner spherical surface 13 thereof. It is formed at equal intervals in the direction. In the inner ring 6, a plurality of track grooves 16 extending in the axial direction are formed on the outer spherical surface 15 at equal intervals in the circumferential direction.

外輪5のトラック溝14と内輪6のトラック溝16とは対をなし、各対のトラック溝14,16で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール7が転動可能に組み込んである。ボール7は外輪5のトラック溝14と内輪6のトラック溝16との間に介在してトルクを伝達する。ケージ8は外輪5と内輪6との間に摺動可能に介在し、外球面にて外輪5の内球面13と接し、内球面にて内輪6の外球面15と接する。なお、この場合の等速自在継手は、ツェパー型を示しているが、各トラック溝14、16の溝底に直線状のストレート部を有するアンダーカットフリー型等の他の等速自在継手であってもよい。   The track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 make a pair, and one ball 7 as a torque transmitting element can roll on each ball track constituted by the pair of track grooves 14 and 16. It is incorporated. The ball 7 is interposed between the track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 to transmit torque. The cage 8 is slidably interposed between the outer ring 5 and the inner ring 6, contacts the inner spherical surface 13 of the outer ring 5 at the outer spherical surface, and contacts the outer spherical surface 15 of the inner ring 6 at the inner spherical surface. The constant velocity universal joint in this case is a Zepper type, but is another constant velocity universal joint such as an undercut free type having a straight straight portion at the bottom of each track groove 14, 16. May be.

また、マウス部11の開口部はブーツ18にて塞がれている。ブーツ18は、大径部18aと、小径部18bと、大径部18aと小径部18bとを連結する蛇腹部18cとからなる。大径部18aがマウス部11の開口部に外嵌され、この状態でブーツバンド19aにて締結され、小径部18bがシャフト10のブーツ装着部10bに外嵌され、この状態でブーツバンド19bにて締結されている。   Further, the opening of the mouse part 11 is closed by a boot 18. The boot 18 includes a large diameter portion 18a, a small diameter portion 18b, and a bellows portion 18c that connects the large diameter portion 18a and the small diameter portion 18b. The large-diameter portion 18a is externally fitted to the opening of the mouse portion 11, and is fastened by the boot band 19a in this state, and the small-diameter portion 18b is externally fitted to the boot mounting portion 10b of the shaft 10, and in this state, the boot band 19b It is concluded.

ハブ輪1は、図1と図6に示すように、筒部20と、筒部20の反継手側の端部に設けられるフランジ21とを有する。筒部20の孔部22は、軸部嵌合孔22aと、反継手側のテーパ孔22bとを有し、軸部嵌合孔22aとテーパ孔22bとの間に、内径方向へ突出する内壁22cが設けられている。すなわち、軸部嵌合孔22aにおいて、後述する凹凸嵌合構造Mを介して等速自在継手3の外輪5の軸部12とハブ輪1とが結合される。なお、この内壁22cの反軸部嵌合孔側の端面には凹窪部51が設けられている。   As shown in FIGS. 1 and 6, the hub wheel 1 includes a cylindrical portion 20 and a flange 21 provided at an end portion of the cylindrical portion 20 on the opposite joint side. The hole portion 22 of the cylindrical portion 20 has a shaft portion fitting hole 22a and a tapered hole 22b on the anti-joint side, and an inner wall protruding in the inner diameter direction between the shaft portion fitting hole 22a and the tapered hole 22b. 22c is provided. That is, the shaft portion 12 of the outer ring 5 of the constant velocity universal joint 3 and the hub wheel 1 are coupled to each other through the concave-convex fitting structure M described later in the shaft portion fitting hole 22a. A concave recess 51 is provided on the end surface of the inner wall 22c on the side opposite to the shaft fitting hole.

孔部22は、軸部嵌合孔22aよりも反内壁側の開口側に大径部46と、軸部嵌合孔22aよりも内壁側に小径部48とを有する。大径部46と軸部嵌合孔22aとの間には、テーパ部(テーパ孔)49aが設けられている。このテーパ部49aは、ハブ輪1と外輪5の軸部12を結合する際の圧入方向に沿って縮径している。   The hole 22 has a large-diameter portion 46 on the opening side opposite the inner wall side from the shaft portion fitting hole 22a, and a small-diameter portion 48 on the inner wall side from the shaft portion fitting hole 22a. A tapered portion (tapered hole) 49a is provided between the large diameter portion 46 and the shaft portion fitting hole 22a. The tapered portion 49a is reduced in diameter along the press-fitting direction when the hub wheel 1 and the shaft portion 12 of the outer ring 5 are coupled.

転がり軸受2は、ハブ輪1の筒部20の継手側に設けられた段差部23に嵌合する内輪24と、ハブ輪1の筒部20乃至内輪24に跨って外嵌される外方部材25とを備える。外方部材25は、その内周に2列の外側軌道面(アウターレース)26、27が設けられ、第1外側軌道面26とハブ輪1の軸部外周に設けられる第1内側軌道面(インナーレース)28とが対向し、第2外側軌道面27と、内輪24の外周面に設けられる第2内側軌道面(インナーレース)29とが対向し、これらの間に転動体30としてのボールが介装される。このため、この車輪用軸受装置では、ハブ輪1と内輪24とで転がり軸受2の内方部材39を構成する。なお、外方部材25の両開口部にはシール部材S1,S2が装着されている。   The rolling bearing 2 includes an inner ring 24 that fits in a stepped portion 23 provided on the joint side of the tubular portion 20 of the hub wheel 1, and an outer member that is fitted over the tubular portion 20 through the inner ring 24 of the hub wheel 1. 25. The outer member 25 is provided with two rows of outer raceways (outer races) 26 and 27 on its inner circumference, and a first inner raceway (provided on the outer circumference of the first outer raceway 26 and the shaft portion of the hub wheel 1). The inner race) 28 is opposed to the second outer raceway surface 27 and the second inner raceway surface (inner race) 29 provided on the outer peripheral surface of the inner ring 24 is opposed to the ball as the rolling element 30 therebetween. Is inserted. For this reason, in this wheel bearing device, the hub ring 1 and the inner ring 24 constitute an inner member 39 of the rolling bearing 2. Seal members S1 and S2 are attached to both openings of the outer member 25.

また、外方部材25である外輪には、図示省略の車体の懸架装置から延びるナックル34が取り付けられている。すなわち、外方部材25の外面全体を円筒面とし、この円筒面25aをナックル34が圧入される圧入面とする。これによって、外方部材25をナックルの円筒状内径面34aに圧入することができる。この場合、ナックル圧入面25aとナックル内径面34aとの締代によって、ナックル34と外方部材25との相対的な軸方向及び周方向のずれを規制するように設定するのが好ましい。例えば、外方部材25とナックル34との間の嵌合い面圧×嵌合い面積を嵌合い荷重としたときに、この嵌合い荷重をこの転がり軸受の等価ラジアル荷重で割った値をクリープ発生限界係数とし、このクリープ発生限界係数を予め考慮して、外方部材25の設計仕様、すなわち外方部材25とナックル34の嵌合締代が設定される。   A knuckle 34 extending from a vehicle suspension device (not shown) is attached to the outer ring, which is the outer member 25. That is, the entire outer surface of the outer member 25 is a cylindrical surface, and the cylindrical surface 25a is a press-fitting surface into which the knuckle 34 is press-fitted. Thus, the outer member 25 can be press-fitted into the cylindrical inner surface 34a of the knuckle. In this case, it is preferable that the relative axial and circumferential displacement between the knuckle 34 and the outer member 25 is regulated by the tightening allowance between the knuckle press-fitting surface 25a and the knuckle inner diameter surface 34a. For example, when the fitting surface pressure between the outer member 25 and the knuckle 34 × the fitting area is defined as a fitting load, a value obtained by dividing the fitting load by the equivalent radial load of the rolling bearing is a creep generation limit. The design specification of the outer member 25, that is, the fitting fastening allowance between the outer member 25 and the knuckle 34 is set in consideration of the creep generation limit factor in advance.

このため、外方部材25のナックル圧入面25aとナックル34のナックル内径面34aとの締代によって、外方部材25の軸方向の抜け及び周方向のクリープを防止できる。ここで、クリープとは、嵌合締代の不足や嵌合面の加工精度不良等により軸受が周方向に微動して嵌合面が鏡面化し、場合によってはかじりを伴い焼き付きや溶着することをいう。なお、外方部材25のナックル圧入面25aと、ナックル34の内径面34aとにそれぞれ周方向溝を設け、これらの周方向溝の間に抜け止め用の止め輪59を装着するのが好ましい。   For this reason, it is possible to prevent the outer member 25 from slipping off in the axial direction and creeping in the circumferential direction by tightening the knuckle press-fitting surface 25a of the outer member 25 and the knuckle inner diameter surface 34a of the knuckle 34. Here, creep means that the bearing surface slightly moves in the circumferential direction due to insufficient fitting tightening allowance or poor processing accuracy of the mating surface, and the mating surface becomes mirrored, and in some cases, seizure or welding occurs with galling. Say. In addition, it is preferable that circumferential grooves are provided in the knuckle press-fitting surface 25a of the outer member 25 and the inner diameter surface 34a of the knuckle 34, and a retaining ring 59 is provided between these circumferential grooves.

この場合、ハブ輪1の継手側の端部を加締めて、その加締部31にて内輪24をアウトボード側へ押圧することによって、この軸受2に予圧を付与するものである。これによって、内輪24をハブ輪1に締結することができる。またハブ輪1のフランジ21にはボルト装着孔32が設けられて、ホイールおよびブレーキロータをこのフランジ21に固定するためのハブボルト33がこのボルト装着孔32に装着される。   In this case, the end of the hub wheel 1 on the joint side is swaged, and the inner ring 24 is pressed toward the outboard side by the swaged portion 31 to apply preload to the bearing 2. As a result, the inner ring 24 can be fastened to the hub wheel 1. The flange 21 of the hub wheel 1 is provided with a bolt mounting hole 32, and a hub bolt 33 for fixing the wheel and the brake rotor to the flange 21 is mounted in the bolt mounting hole 32.

外輪5の軸部12には、その軸心部に反継手側(反マウス側)の端面に開口するねじ孔50が設けられている。このねじ孔50は、その開口部が開口側に向かって拡開するテーパ部50aとされている。また、軸部12の反継手側(反マウス側)の端部には小径部12bが設けられている。すなわち、軸部12は大径の本体部12aと小径部12bとを備える。   The shaft portion 12 of the outer ring 5 is provided with a screw hole 50 that opens at the end surface on the anti-joint side (anti-mouse side) in the shaft center portion. The screw hole 50 is a tapered portion 50a whose opening is expanded toward the opening. A small-diameter portion 12b is provided at the end of the shaft portion 12 on the anti-joint side (anti-mouse side). That is, the shaft portion 12 includes a main body portion 12a having a large diameter and a small diameter portion 12b.

凹凸嵌合構造Mは、図2と図3に示すように、例えば、軸部12に設けられて軸方向に延びる凸部35と、ハブ輪1の孔部22の内径面(この場合、軸部嵌合孔22aの内径面37)に形成される凹部36とからなり、凸部35とその凸部35に嵌合するハブ輪1の凹部36との嵌合接触部位38全域が密着している。すなわち、軸部12の反マウス部側の外周面に、複数の凸部35が周方向に沿って所定ピッチで配設され、ハブ輪1の孔部22の軸部嵌合孔22aの内径面37に凸部35が嵌合する複数の凹部36が周方向に沿って形成されている。つまり、周方向全周にわたって、凸部35とこれに嵌合する凹部36とがタイトフィットしている。   As shown in FIGS. 2 and 3, the concave-convex fitting structure M includes, for example, a convex portion 35 provided in the shaft portion 12 and extending in the axial direction, and an inner diameter surface of the hole portion 22 of the hub wheel 1 (in this case, the shaft The inner surface 37) of the part fitting hole 22a is formed with a concave part 36, and the entire fitting contact part 38 of the convex part 35 and the concave part 36 of the hub wheel 1 fitted to the convex part 35 is in close contact. Yes. That is, a plurality of convex portions 35 are arranged at a predetermined pitch along the circumferential direction on the outer peripheral surface of the shaft portion 12 on the side opposite to the mouse portion, and the inner diameter surface of the shaft portion fitting hole 22a of the hole portion 22 of the hub wheel 1 A plurality of concave portions 36 into which the convex portions 35 are fitted to 37 are formed along the circumferential direction. That is, the convex part 35 and the concave part 36 fitted to this are tight-fitted over the entire circumference in the circumferential direction.

この場合、各凸部35は、その断面が凸アール状の頂点を有する三角形状(山形状)であり、各凸部35の嵌合接触部位(凹部嵌合部位)38とは、図3(b)に示す範囲Aであり、断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、ハブ輪1の内径面37よりも内径側に隙間40が形成されている。   In this case, each convex portion 35 has a triangular shape (mountain shape) having a convex rounded apex in cross section, and the fitting contact portion (recessed fitting portion) 38 of each convex portion 35 is shown in FIG. It is the range A shown in b), which is the range from the mid-section of the mountain in the cross section to the summit. Further, a gap 40 is formed on the inner diameter side with respect to the inner diameter surface 37 of the hub wheel 1 between the adjacent convex portions 35 in the circumferential direction.

このように、ハブ輪1と等速自在継手3の外輪5の軸部12とを凹凸嵌合構造Mを介して連結できる。この際、前記したように、ハブ輪1の継手側の端部を加締めて、その加締部31にて転がり軸受2に予圧を付与するものであるので、外輪5のマウス部11にて内輪24に予圧を付与する必要がない。   In this way, the hub wheel 1 and the shaft portion 12 of the outer ring 5 of the constant velocity universal joint 3 can be connected via the concave-convex fitting structure M. At this time, as described above, the end of the hub wheel 1 on the joint side is swaged, and the swaged portion 31 applies preload to the rolling bearing 2. There is no need to apply a preload to the inner ring 24.

この場合、外輪5のマウス部11の底部裏面11aを加締部31の端面31aに当接させているが、外輪5のマウス部11の底部裏面11aと加締部31の端面31aとが非接触であってもよい。すなわち、外輪5のマウス部11の底部裏面11aと加締部31の端面31aとが当接している場合、当接面同士が擦れ合うことが原因で異音が発生するおそれがある。このため、非接触とすることによって、異音の発生を無くすようにできる。しかしながら、当接した状態であっても、その当接力、当接面の材質、当接面の仕上がり状態等によっては異音が発生しないように設定できる。このため、本発明では、当接(接触)させている。   In this case, the bottom back surface 11a of the mouse part 11 of the outer ring 5 is brought into contact with the end surface 31a of the crimping part 31, but the bottom back surface 11a of the mouse part 11 of the outer ring 5 and the end surface 31a of the crimping part 31 are not in contact with each other. It may be a contact. That is, when the bottom rear surface 11a of the mouth portion 11 of the outer ring 5 and the end surface 31a of the crimping portion 31 are in contact with each other, there is a possibility that abnormal noise may be generated due to friction between the contact surfaces. For this reason, generation | occurrence | production of abnormal noise can be eliminated by making it non-contact. However, even in the abutted state, the noise can be set so as not to be generated depending on the abutting force, the material of the abutting surface, the finished state of the abutting surface, and the like. For this reason, in this invention, it is made to contact | abut (contact).

接触させた場合、ハブ輪1の加締部31とマウス部11の底部裏面(バック面)11aとの接触面圧が100MPaを越えると、異音を発生するおそれがある。すなわち、大トルク負荷時に、等速自在継手3の外輪5とハブ輪1との捩れ量に差が生じ、この差により、等速自在継手3の外輪5とハブ輪1との接触部に急激なスリップが生じて異音が発生する。これに対して、接触面圧が100MPa以下であれば、急激なスリップが生じることを防止できて、異音の発生を抑えることができる。これによって、静粛な車輪用軸受装置を構成することができる。なお、接触面圧が100MPa以下であっても、シール構造を構成することができる面圧以上である必要がある。   In the case of contact, if the contact surface pressure between the caulking portion 31 of the hub wheel 1 and the bottom rear surface (back surface) 11a of the mouse portion 11 exceeds 100 MPa, there is a possibility of generating abnormal noise. That is, when a large torque load is applied, a difference occurs in the amount of twist between the outer ring 5 of the constant velocity universal joint 3 and the hub wheel 1, and this difference causes a sudden contact between the outer ring 5 of the constant velocity universal joint 3 and the hub wheel 1. Slip occurs and abnormal noise occurs. On the other hand, if the contact surface pressure is 100 MPa or less, it is possible to prevent a sudden slip, and to suppress the generation of abnormal noise. Thereby, a quiet wheel bearing device can be configured. Even if the contact surface pressure is 100 MPa or less, it is necessary that the contact surface pressure is not less than the surface pressure that can constitute the seal structure.

ハブ輪1の加締部31の外端面31aとマウス部11のバック面11aとの接触部の面圧は、ボルト部材54の締付けトルクの大きさに左右されるが、締付けトルクにより発生する軸力は、凹凸嵌合部の軸方向摩擦力や凹凸嵌合部をさらに成形する力(凹凸嵌合部成形時の圧入荷重)で消費されるため、それ以上の軸力をかけた場合にしか接触面圧は高くならない。従って容易に接触面圧を100MPa以下に抑えることができ、スティックスリップ音は発生しない。   The surface pressure of the contact portion between the outer end surface 31a of the caulking portion 31 of the hub wheel 1 and the back surface 11a of the mouth portion 11 depends on the tightening torque of the bolt member 54, but the shaft generated by the tightening torque. The force is consumed by the axial frictional force of the concave / convex fitting part and the force for further forming the concave / convex fitting part (press-fit load when forming the concave / convex fitting part), so only when more axial force is applied Contact surface pressure does not increase. Therefore, the contact surface pressure can be easily suppressed to 100 MPa or less, and no stick-slip sound is generated.

また、反継手側から軸部12のねじ孔50にボルト部材54を螺着している。ボルト部材54は、図1と図6に示すように、フランジ付き頭部54aと、ねじ軸部54bとからなる。ねじ軸部54bは、基端側の非ねじ部55aと、先端側のねじ部55bとを有する。この場合、内壁22cにボルト挿通孔56が設けられ、このボルト挿通孔56にボルト部材54の軸部54bが挿通されて、ねじ部55cが軸部12のねじ孔50に螺着される。図8に示すように、ボルト挿通孔56の孔径D2は、軸部54bの非ねじ部55aの外径D1よりも僅かに大きく設定される。具体的には、0.05mm<D1D2<0.5mm程度とされる。なお、ねじ部55cの最大外径は、大径の基部55aの外径と同じか基部55aの外径よりも僅かに小さい程度とする。 A bolt member 54 is screwed into the screw hole 50 of the shaft portion 12 from the anti-joint side. As shown in FIGS. 1 and 6, the bolt member 54 includes a flanged head portion 54a and a screw shaft portion 54b. The screw shaft portion 54b has a non-threaded portion 55a on the proximal end side and a threaded portion 55b on the distal end side. In this case, a bolt insertion hole 56 is provided in the inner wall 22 c, the shaft portion 54 b of the bolt member 54 is inserted into the bolt insertion hole 56, and the screw portion 55 c is screwed into the screw hole 50 of the shaft portion 12. As shown in FIG. 8, the hole diameter D2 of the bolt insertion hole 56 is set slightly larger than the outer diameter D1 of the non-threaded portion 55a of the shaft portion 54b. Specifically, 0.05 mm < D1D2 <0.5 mm. The maximum outer diameter of the threaded portion 55c is set to be the same as or slightly smaller than the outer diameter of the large base portion 55a.

本車輪用軸受装置では、図2に示すように、圧入時に軸部12の圧入のガイドを行う軸部圧入ガイド部M1を凸部圧入開始側に設けている。この場合、孔部22のテーパ部49aに設けられる雌スプライン44からなる。すなわち、図4(a)に示すように、テーパ部49aの軸部嵌合孔22a側に周方向に沿って所定ピッチ(この場合、凸部35の配置ピッチと同一ピッチ)にガイド用凹部44aを設ける。   In this wheel bearing device, as shown in FIG. 2, a shaft portion press-fitting guide portion M1 that guides the press-fitting of the shaft portion 12 during press-fitting is provided on the convex portion press-fitting start side. In this case, it consists of a female spline 44 provided in the tapered portion 49 a of the hole portion 22. That is, as shown in FIG. 4 (a), the guide recess 44a has a predetermined pitch (in this case, the same pitch as the arrangement pitch of the protrusions 35) along the circumferential direction on the shaft fitting hole 22a side of the taper 49a. Is provided.

この場合、図6に示すように、ガイド用凹部44aの底部径寸法D6を凸部35の最大外径、つまりスプライン41の山部41aである前記凸部35の頂点を結ぶ円の直径寸法(外接円直径)D3よりも大きくして、凸部35の頂部とガイド用凹部44aの底部との間に、図4(a)に示すように、径方向隙間C1を形成している。 In this case, as shown in FIG. 6, the maximum outer diameter of the projections 35 of the bottom diameter D6 of the guiding recesses 44a, i.e. of a circle connecting vertexes of the projections 35 a crest 41a of the spline 41 diameter ( to be larger than the circumscribed circle diameter) D3, between the bottom of the top and the guide recesses 44a of the projections 35, as shown in FIG. 4 (a), to form a radial clearance C1.

次に、凹凸嵌合構造Mの嵌合方法を説明する。この場合、図6に示すように、軸部12の外径部には熱硬化処理を施し、この硬化層Hに軸方向に沿う山部41aと谷部41bとからなるスプライン41を形成する。このため、スプライン41の山部41aが硬化処理されて、この山部41aが凹凸嵌合構造Mの凸部35となる。このスプライン41は、軸部12の本体部12aの小径部側に設けられている。なお、この実施形態での硬化層Hの範囲は、クロスハッチング部で示すように、スプライン41の外端縁から外輪5のマウス部11の底壁の一部までである。この熱硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れ行う方法である。軸部12のスプライン41のモジュールを0.5以下の小さい歯とする。ここで、モジュールとは、ピッチ円直径を歯数で割ったものである。 Next, the fitting method of the uneven fitting structure M will be described. In this case, as shown in FIG. 6, the outer diameter portion of the shaft portion 12 is subjected to thermosetting treatment, and a spline 41 including a peak portion 41 a and a valley portion 41 b along the axial direction is formed on the cured layer H. For this reason, the peak portion 41a of the spline 41 is hardened, and the peak portion 41a becomes the convex portion 35 of the concave-convex fitting structure M. The spline 41 is provided on the small diameter side of the main body 12 a of the shaft 12. The range of the hardened layer H in this embodiment is from the outer end edge of the spline 41 to a part of the bottom wall of the mouth portion 11 of the outer ring 5 as shown by the cross hatched portion. As this thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. Here, induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there. The carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of the low carbon material and then quenched. The module of the spline 41 of the shaft portion 12 is a small tooth of 0.5 or less. Here, the module is a pitch circle diameter divided by the number of teeth.

ハブ輪1の孔部22の内径面37(つまり、軸部嵌合孔22aの内径面)側においては熱硬化処理を行わない未硬化部(未焼き状態)とする。外輪5の軸部12の硬化層Hとハブ輪1の未硬化部との硬度差は、HRCで20ポイント以上とする。さらに、具体的には、硬化層Hの硬度を50HRCから65HRC程度とし、未硬化部の硬度を10HRCから30HRC程度とする。   On the inner diameter surface 37 side of the hole portion 22 of the hub wheel 1 (that is, the inner diameter surface of the shaft portion fitting hole 22a), an uncured portion (unburned state) that is not subjected to the thermosetting treatment. The hardness difference between the hardened layer H of the shaft portion 12 of the outer ring 5 and the uncured portion of the hub wheel 1 is 20 points or more in HRC. More specifically, the hardness of the hardened layer H is about 50 HRC to 65 HRC, and the hardness of the uncured portion is about 10 HRC to 30 HRC.

この際、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(この場合、孔部22の軸部嵌合孔22aの内径面37)の位置に対応する。すなわち、図6に示すように、軸部嵌合孔22aの内径面37の内径寸法(ハブ輪内径)D4を、凹凸嵌合構造Mにおける軸部12の最大直径寸法、つまりスプライン41の山部41aである前記凸部35の頂点を結ぶ円の直径寸法(外接円直径)D3よりも小さく、軸部12の凸部間に形成された谷部の最小直径寸法、つまりスプライン41の谷部41bの底を結ぶ円の直径寸法D5よりも大きく設定される。すなわち、D5<D4<D3とされる。また、孔部22の大径部46の孔径寸法D7よりもD3を小さく設定する。 At this time, the projecting direction intermediate portion of the convex portion 35 corresponds to the position of the concave portion forming surface (in this case, the inner diameter surface 37 of the shaft portion fitting hole 22a) before the concave portion is formed. That is, as shown in FIG. 6, the inner diameter dimension (hub ring inner diameter) D4 of the inner diameter surface 37 of the shaft portion fitting hole 22a is set to the maximum diameter size of the shaft portion 12 in the uneven fitting structure M , that is, the peak portion of the spline 41. 41a, which is smaller than the diameter dimension (circumferential circle diameter) D3 of the circle connecting the vertices of the convex part 35, and is the minimum diameter dimension of the valley part formed between the convex parts of the shaft part 12 , that is, the valley part 41b of the spline 41. It is set larger than the diameter dimension D5 of the circle connecting the bottoms of the two. That is, D5 <D4 <D3. Further, D3 is set smaller than the hole diameter dimension D7 of the large-diameter portion 46 of the hole 22.

スプライン41は、従来からの公知公用の手段である転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としては、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。なお、スプライン41を形成することによって構成された凸部35の圧入開始端面35aは、軸部12の軸線方向に対して直交する平坦面とされる。   The spline 41 can be formed by various processing methods such as rolling processing, cutting processing, press processing, and drawing processing, which are known publicly known means. Moreover, various heat processing, such as induction hardening and carburizing hardening, can be employ | adopted as a thermosetting process. Note that the press-fitting start end surface 35 a of the convex portion 35 formed by forming the spline 41 is a flat surface orthogonal to the axial direction of the shaft portion 12.

そして、図6に示すように、ハブ輪1の軸心と等速自在継手3の外輪5の軸心とを合わせた状態とする。この状態で、ハブ輪1に対して、外輪5の軸部12を挿入(圧入)していく。すなわち、軸部圧入ガイド部M1の各ガイド用凹部44aに、軸部12の各凸35を嵌合させる。これによって、ハブ輪1の軸心と外輪5の軸心とが一致した状態となる。この際、各ガイド用凹部44aの凹凸嵌合構造側の端部が、圧入方向に対して直交する平坦面77a(図2参照)であるので、凸部35の圧入開始端面35aを受けることができ、この状態から圧入していくことができる。この際、前記したように、軸部嵌合孔22aの内径面37の径寸法D4と、スプライン41の最大直径寸法D3と、スプライン41の最小直径寸法D5とが前記のような関係であり、しかも、凸部35の硬度が内径面37の硬度よりも30ポイント以上大きいので、軸部12をハブ輪1の孔部22に圧入していけば、この凸部35が内径面37に食い込んでいき、凸部35が、この凸部35が嵌合する凹部36を、軸方向に沿って形成していくことになる。 Then, as shown in FIG. 6, the shaft center of the hub wheel 1 and the shaft center of the outer ring 5 of the constant velocity universal joint 3 are in a combined state. In this state, the shaft portion 12 of the outer ring 5 is inserted (press-fitted) into the hub wheel 1. That is, the projections 35 of the shaft portion 12 are fitted into the guide recesses 44a of the shaft portion press-fitting guide portion M1. Thereby, the axial center of the hub wheel 1 and the axial center of the outer ring 5 are brought into a coincident state. At this time, since the end portion of each guide recess 44a on the uneven fitting structure side is a flat surface 77a (see FIG. 2) orthogonal to the press-fitting direction, the press-fitting start end surface 35a of the convex portion 35 is received. It is possible to press fit from this state. At this time, as described above, the diameter dimension D4 of the inner diameter surface 37 of the shaft portion fitting hole 22a, the maximum diameter dimension D3 of the spline 41, and the minimum diameter dimension D5 of the spline 41 are as described above. Moreover, since the hardness of the convex portion 35 is 30 points or more larger than the hardness of the inner diameter surface 37, if the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the convex portion 35 bites into the inner diameter surface 37. Then, the convex part 35 will form the recessed part 36 with which this convex part 35 fits along an axial direction.

この圧入は、マウス部11の底部裏面11aがハブ輪1の加締部31の端面31aに当接するまで行われる。この際、図5に示すように、軸部12の小径部12bの端面52が内壁22cの端面53に当接しない状態に維持される。このように圧入されれば、図3(a)(b)に示すように、軸部12の端部の凸部35と、これに嵌合する凹部36との嵌合接触部位38の全体が密着している。すなわち、相手側の凹部形成面(この場合、孔部22の軸部嵌合孔22aの内径面37)に凸部35の形状の転写を行うことになる。この際、凸部35が孔部22の内径面37に食い込んでいくことによって、孔部22が僅かに拡径した状態となって、凸部35の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部22が元の径に戻ろうとして縮径することになる。言い換えれば、凸部35の圧入時にハブ輪1が径方向に弾性変形し、この弾性変形分の予圧が凸部35の歯面(凹部嵌合部位の表面)に付与される。このため、凸部35の凹部嵌合部位の全体がその対応する凹部36に対して密着する凹凸嵌合構造Mを確実に形成することができる。すなわち、軸部12側のスプライン(雄スプライン)41によって、ハブ輪1の孔部22の内径面に、雄スプライン41に密着する雌スプライン42が形成される。   This press-fitting is performed until the bottom rear surface 11a of the mouse portion 11 comes into contact with the end surface 31a of the crimping portion 31 of the hub wheel 1. At this time, as shown in FIG. 5, the end surface 52 of the small diameter portion 12b of the shaft portion 12 is maintained in a state where it does not contact the end surface 53 of the inner wall 22c. If it press-fits in this way, as shown to Fig.3 (a) (b), the whole fitting contact site | part 38 of the convex part 35 of the edge part of the axial part 12 and the recessed part 36 fitted to this will be carried out. It is in close contact. In other words, the shape of the convex portion 35 is transferred to the other-side concave portion forming surface (in this case, the inner diameter surface 37 of the shaft portion fitting hole 22a of the hole portion 22). At this time, the convex portion 35 bites into the inner diameter surface 37 of the hole portion 22, so that the hole portion 22 is slightly expanded in diameter, and the convex portion 35 is allowed to move in the axial direction. When the movement stops, the hole 22 is reduced in diameter to return to the original diameter. In other words, the hub wheel 1 is elastically deformed in the radial direction when the convex portion 35 is press-fitted, and a preload corresponding to this elastic deformation is applied to the tooth surface of the convex portion 35 (surface of the concave portion fitting portion). For this reason, the concave / convex fitting structure M in which the entire concave portion fitting portion of the convex portion 35 is in close contact with the corresponding concave portion 36 can be reliably formed. That is, a female spline 42 that closely contacts the male spline 41 is formed on the inner diameter surface of the hole 22 of the hub wheel 1 by the spline (male spline) 41 on the shaft portion 12 side.

このように、凹凸嵌合構造Mが構成されるが、この場合の凹凸嵌合構造Mは転がり軸受2の軌道面26、27、28、29の避直下位置に配置される。ここで、避直下位置とは、軌道面26、27、28、29のボール接触部位置に対して径方向に対応しない位置である。   In this way, the concave-convex fitting structure M is configured. In this case, the concave-convex fitting structure M is disposed at a position directly below the raceway surfaces 26, 27, 28, 29 of the rolling bearing 2. Here, the direct under-position is a position that does not correspond to the radial direction with respect to the ball contact portion position of the raceway surfaces 26, 27, 28, and 29.

圧入後には、反継手側から軸部12のねじ孔50にボルト部材54を螺着する。このように、ボルト部材54を軸部12のねじ孔50に螺着することによって、ボルト部材54の頭部54aのフランジ部60が内壁22cの凹窪部51に嵌合する。これによって、ボルト部材54の頭部54aと凹凸嵌合構造Mとで、またはボルト部材54の頭部54aとマウス部11の底部底面(バック面)11aとでハブ輪1を挟持する状態となって、ハブ輪1と等速自在継手3とが一体化される。このように、ボルト部材54と、このボルト部材54が螺合するねじ孔50等をもって、ハブ輪1と外輪5の軸部12とが連結される装置軸心上のボルト結合手段M5が構成される。   After the press-fitting, the bolt member 54 is screwed into the screw hole 50 of the shaft portion 12 from the opposite joint side. Thus, by screwing the bolt member 54 into the screw hole 50 of the shaft portion 12, the flange portion 60 of the head portion 54a of the bolt member 54 is fitted into the recessed portion 51 of the inner wall 22c. As a result, the hub wheel 1 is sandwiched between the head 54 a of the bolt member 54 and the concave-convex fitting structure M, or between the head 54 a of the bolt member 54 and the bottom bottom surface (back surface) 11 a of the mouse portion 11. Thus, the hub wheel 1 and the constant velocity universal joint 3 are integrated. In this manner, the bolt coupling means M5 on the device shaft center where the hub wheel 1 and the shaft portion 12 of the outer ring 5 are coupled is constituted by the bolt member 54 and the screw hole 50 etc. into which the bolt member 54 is screwed. The

この場合、ボルト挿通孔56の孔径D2とボルト部材54の非ねじ部55aの軸径D1との径差(直径隙間)をΔdとし、凹凸嵌合構造Mにおける軸部12の最大直径寸法D3と凹凸嵌合構造Mにおけるハブ輪の孔部22の最小直径寸法D4(雌スプライン42の山部の頂点を結んだ円の直径寸法:図8参照)との径差をΔd2としたときに、0<Δd<Δd2とする。 In this case, the diameter difference (diameter gap) between the hole diameter D2 of the bolt insertion hole 56 and the shaft diameter D1 of the non-threaded portion 55a of the bolt member 54 is Δd, and the maximum diameter dimension D3 of the shaft portion 12 in the uneven fitting structure M is When the diameter difference from the minimum diameter dimension D4 of the hole 22 of the hub wheel in the concave-convex fitting structure M (diameter dimension of the circle connecting the peaks of the female spline 42: see FIG. 8) is Δd2, 0 It is assumed that <Δd <Δd2.

この場合、ボルト部材54の座面60aと内壁22cとの間をシール材(図示省略)を介在させてもよい。例えば、ボルト部材54の座面60aに、塗布後に硬化して座面60aと内壁22cの凹窪部51の底面との間において密封性を発揮できる種々の樹脂からなるシール材(シール剤)を塗布すればよい。なお、このシール材としては、この車輪用軸受装置が使用される雰囲気中において劣化しないものが選択される。また、シール材を、内壁22c側に塗布するようにしても、座面60a側および内壁22c側に塗布するようにしてもよい。   In this case, a sealing material (not shown) may be interposed between the seat surface 60a of the bolt member 54 and the inner wall 22c. For example, sealing materials (sealing agents) made of various resins that can be cured after application to the seating surface 60a of the bolt member 54 and exhibit sealing properties between the seating surface 60a and the bottom surface of the recessed portion 51 of the inner wall 22c. What is necessary is just to apply. In addition, as this sealing material, the thing which does not deteriorate in the atmosphere where this wheel bearing apparatus is used is selected. Further, the sealing material may be applied to the inner wall 22c side, or may be applied to the seating surface 60a side and the inner wall 22c side.

加締部31と、外輪5のマウス部11の底部底面11aとを接触させることによって、軸部方向の曲げ剛性が向上して、曲げに強くなって、耐久性に優れた高品質な製品となる。しかも、この接触によって、圧入時の位置決めを構成できる。これによって、この車輪用軸受装置の寸法精度が安定するとともに、軸方向に沿って配設される凹凸嵌合構造Mの軸方向長さを安定した長さに確保することができ、トルク伝達性の向上を図ることができる。さらに、この接触によってシール構造を構成でき、この加締部31側から凹凸嵌合構造Mへの異物の浸入を防止でき、凹凸嵌合構造Mは長期にわたって安定した嵌合状態を維持できる。   By bringing the caulking portion 31 and the bottom bottom surface 11a of the mouth portion 11 of the outer ring 5 into contact with each other, the bending rigidity in the axial direction is improved, the bending strength is enhanced, and a high-quality product with excellent durability is obtained. Become. In addition, positioning at the time of press-fitting can be configured by this contact. As a result, the dimensional accuracy of the wheel bearing device can be stabilized, and the axial length of the concave-convex fitting structure M disposed along the axial direction can be ensured to be stable. Can be improved. Furthermore, a seal structure can be formed by this contact, foreign matter can be prevented from entering the concave-convex fitting structure M from the crimping portion 31 side, and the concave-convex fitting structure M can maintain a stable fitting state for a long period of time.

また、加締部31の端面31aと、マウス部11の底部裏面11aとが接触しているが、この加締部31の端面31aとマウス部11の底部裏面11aとの間に、前記シール材(シール剤)を介在させてもよい。この場合、端面31a側にシール材を塗布しても、底部裏面11a側にシール材を塗布しても、端面31a側及び底部裏面11a側にシール材を塗布してもよい。   Further, the end surface 31a of the caulking portion 31 and the bottom back surface 11a of the mouse portion 11 are in contact with each other, and the sealing material is interposed between the end surface 31a of the caulking portion 31 and the bottom back surface 11a of the mouse portion 11. (Sealant) may be interposed. In this case, the sealing material may be applied to the end surface 31a side, the sealing material may be applied to the bottom back surface 11a side, or the sealing material may be applied to the end surface 31a side and the bottom back surface 11a side.

このように、本発明では、軸部12の凸部35とハブ輪1の凹部36との嵌合接触部位38全域が密着する凹凸嵌合構造Mを確実に形成することができる。しかも、凹部36が形成される部材には、スプライン部等を形成しておく必要がなく、生産性に優れ、しかもスプライン同士の位相合わせを必要とせず、組立性の向上を図るとともに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。   As described above, in the present invention, the concave-convex fitting structure M in which the entire fitting contact portion 38 between the convex portion 35 of the shaft portion 12 and the concave portion 36 of the hub wheel 1 is in close contact can be reliably formed. Moreover, it is not necessary to form a spline portion or the like on the member in which the concave portion 36 is formed, which is excellent in productivity, and does not require the phase alignment between the splines. The tooth surface can be prevented from being damaged, and a stable fitting state can be maintained.

凹凸嵌合構造Mは、凸部35と凹部36との嵌合接触部位38の全体が密着しているので、この嵌合構造Mにおいて、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生も生じさせない。   In the concave / convex fitting structure M, the entire fitting contact portion 38 between the convex portion 35 and the concave portion 36 is in close contact with each other. Therefore, in the fitting structure M, there is no gap in which play occurs in the radial direction and the circumferential direction. . For this reason, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated.

軸部圧入ガイド部M1を設けたので、軸部12をハブ輪1の孔部22に圧入する際には、軸部圧入ガイド部M1に沿って圧入させていくことができる。   Since the shaft portion press-fitting guide portion M1 is provided, when the shaft portion 12 is press-fitted into the hole 22 of the hub wheel 1, it can be press-fitted along the shaft portion press-fitting guide portion M1.

ところで、軸部12をハブ輪1の孔部22に圧入していけば、形成されるはみ出し部45は、図2と図5に示すように、カールしつつ軸部12の小径部12bの外径側に設けられる空間からなる空間の収納部57に収納されて行く。ここで、はみ出し部45は、凸部35が嵌入(嵌合)する凹部36の容量の材料分であって、形成される凹部36から押し出されたもの、凹部36を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。このため、孔部22の内径面から削り取られたり、押し出されたりした材料の一部であるはみ出し部45が収納部57内に入り込んでいく。   By the way, if the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the formed protruding portion 45 is curled while being curled, as shown in FIGS. It is accommodated in a space accommodating portion 57 composed of a space provided on the diameter side. Here, the protruding portion 45 is the material of the capacity of the concave portion 36 into which the convex portion 35 is inserted (fitted), and is extruded from the concave portion 36 to be formed, and is cut to form the concave portion 36. It is comprised from what was extruded, what was extruded, and what was cut. For this reason, the protruding portion 45 which is a part of the material scraped off or pushed out from the inner diameter surface of the hole portion 22 enters the storage portion 57.

このように、前記圧入による凹部形成によって生じるはみ出し部45を収納する収納部57を設けることによって、はみ出し部45をこの収納部57内に保持(維持)することができ、はみ出し部45が装置外の車両内等へ入り込んだりすることがない。すなわち、はみ出し部45を収納部57に収納したままにしておくことができ、はみ出し部45の除去処理を行う必要がなく、組立作業工数の減少を図ることができて、組立作業性の向上及びコスト低減を図ることができる。   Thus, by providing the storage portion 57 for storing the protruding portion 45 generated by forming the concave portion by the press-fitting, the protruding portion 45 can be held (maintained) in the storage portion 57, and the protruding portion 45 is outside the apparatus. Never get into any other vehicle. That is, the protruding portion 45 can be kept stored in the storage portion 57, and it is not necessary to perform the removal processing of the protruding portion 45, so that the number of assembling operations can be reduced, and the assembly workability can be improved. Cost reduction can be achieved.

ボルト結合手段M5によって、ハブ輪1からの軸部12の軸方向の抜けが規制され、長期にわたって安定したトルク伝達が可能となる。   The bolt coupling means M5 restricts the axial direction of the shaft portion 12 from the hub wheel 1 and enables stable torque transmission over a long period of time.

ハブ輪1の端部が加締られて転がり軸受2に対して予圧が付与されるので、外輪5のマウス部11によって予圧を付与する必要がなくなる。このため、転がり軸受2への予圧を考慮することなく、外輪5の軸部12を圧入することができ、ハブ輪1と外輪5との連結性(組み付け性)の向上を図ることができる。   Since the end of the hub wheel 1 is crimped and preload is applied to the rolling bearing 2, it is not necessary to apply preload by the mouth portion 11 of the outer ring 5. For this reason, it is possible to press-fit the shaft portion 12 of the outer ring 5 without considering the preload to the rolling bearing 2 and to improve the connectivity (assembly property) between the hub wheel 1 and the outer ring 5.

ハブ輪1と外輪5の軸部12とのボルト固定を行うボルト部材54の座面60aと、内壁22cとの間にシール材を介在させたり、加締部31の端面31aとマウス部11の底部裏面11aとの間にシール材を介在させたりすることによって、このボルト部材54からの凹凸嵌合構造Mへ雨水や異物の侵入が防止され、品質向上を図ることができる。   A sealing material is interposed between the seat surface 60a of the bolt member 54 for fixing the bolt between the hub wheel 1 and the shaft portion 12 of the outer ring 5 and the inner wall 22c, or the end surface 31a of the crimping portion 31 and the mouth portion 11 are By interposing a sealing material between the bottom portion back surface 11a and the like, it is possible to prevent rainwater and foreign matter from entering the concave-convex fitting structure M from the bolt member 54, thereby improving the quality.

また、凸部35の突出方向中間部位が、凹部形成前の凹部形成面上に配置されるようにすることによって、凸部35が圧入時に凹部形成面に食い込んでいき、凹部36を確実に形成することができる。すなわち、凸部35の相手側に対する圧入代を十分にとることができる。これによって、凹凸嵌合構造Mの成形性が安定し、圧入荷重のばらつきも無く、安定した捩り強度が得られる。   In addition, by arranging the intermediate portion in the protruding direction of the convex portion 35 on the concave portion forming surface before the concave portion is formed, the convex portion 35 bites into the concave portion forming surface during press-fitting, and the concave portion 36 is reliably formed. can do. That is, the press-fitting allowance with respect to the other side of the convex part 35 can be taken sufficiently. As a result, the formability of the concave-convex fitting structure M is stabilized, there is no variation in press-fit load, and a stable torsional strength is obtained.

図1等に示す実施形態では、外輪5の軸部12に凹凸嵌合構造Mの凸部35を設けるとともに、この凸部35の軸方向端部の硬度をハブ輪1の孔部内径部よりも高くして、軸部12をハブ輪1の孔部22に圧入するものであれば、軸部側の硬度を高くでき、軸部の剛性を向上させることができる。   In the embodiment shown in FIG. 1 and the like, the convex portion 35 of the concave-convex fitting structure M is provided on the shaft portion 12 of the outer ring 5, and the hardness of the axial end portion of the convex portion 35 is set from the inner diameter portion of the hole of the hub wheel 1. If the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the hardness on the shaft portion side can be increased and the rigidity of the shaft portion can be improved.

凹凸嵌合構造Mを転がり軸受2の軌道面の避直下位置に配置することによって、軸受軌道面におけるフープ応力の発生を抑える。これにより、転がり疲労寿命の低下、クラック発生、及び応力腐食割れ等の軸受の不具合発生を防止することができ、高品質な軸受2を提供することができる。   By arranging the concave-convex fitting structure M at a position directly below the raceway surface of the rolling bearing 2, occurrence of hoop stress on the bearing raceway surface is suppressed. As a result, it is possible to prevent a bearing failure such as a decrease in rolling fatigue life, occurrence of cracks, and stress corrosion cracking, and a high-quality bearing 2 can be provided.

前記実施形態のように、軸部12に形成するスプライン41は、モジュールが0.5以下の小さい歯を用いたので、このスプライン41の成形性の向上を図ることができるとともに、圧入荷重の低減を図ることができる。なお、凸部35を、この種のシャフトに通常形成されるスプラインをもって構成することができるので、低コストにて簡単にこの凸部35を形成することができる。   As in the above-described embodiment, the spline 41 formed on the shaft portion 12 uses small teeth with a module of 0.5 or less, so that the formability of the spline 41 can be improved and the press-fit load is reduced. Can be achieved. In addition, since the convex part 35 can be comprised with the spline normally formed in this kind of shaft, this convex part 35 can be easily formed at low cost.

ところで、図1に示す状態から、ボルト部材54を螺退させることによって、ボルト部材54を取外せば、ハブ輪1から外輪5を引き抜くことができる。すなわち、凹凸嵌合構造Mの嵌合力は、外輪5に対して所定力以上の引き抜き力を付与することにより引き抜くことができるものである。   By the way, the outer ring 5 can be pulled out from the hub wheel 1 by removing the bolt member 54 by screwing the bolt member 54 out of the state shown in FIG. That is, the fitting force of the concave-convex fitting structure M can be pulled out by applying a pulling force of a predetermined force or more to the outer ring 5.

例えば、図7に示すような治具70にてハブ輪1と等速自在継手3とを分離することができる。治具70は、基盤71と、この基盤71の第2ねじ孔72に螺進退可能に螺合する押圧用ボルト部材73と、軸部12のねじ孔50に螺合されるねじ軸76とを備える。基盤71には貫孔74が設けられ、この貫孔74にハブ輪1のボルト33が挿通され、ナット部材75がこのボルト33に螺合される。この際、基盤71とハブ輪1のフランジ21とが重ね合わされて、基盤71がハブ輪1に取り付けられる。 For example, the hub wheel 1 and the constant velocity universal joint 3 can be separated by a jig 70 as shown in FIG. The jig 70 includes a base 71, a pressing bolt member 73 that is screwably engaged with the second screw hole 72 of the base 71, and a screw shaft 76 that is screwed into the screw hole 50 of the shaft portion 12. Prepare. A through hole 74 is provided in the base 71, and the bolt 33 of the hub wheel 1 is inserted into the through hole 74, and the nut member 75 is screwed into the bolt 33. At this time, the base 71 and the flange 21 of the hub wheel 1 are overlapped, and the base 71 is attached to the hub wheel 1.

このように基盤71をハブ輪1に取り付けた後、又は基盤71を取り付ける前に、基部76aが内壁22cから反継手側へ突出するように、軸部12のねじ孔50にねじ軸76を螺合させる。この基部76aの突出量は、凹凸嵌合構造Mの軸方向長さよりも長く設定される。ねじ軸76と、押圧用ボルト部材73とは、同一軸心上(この車輪用軸受装置の軸心上)に配設される。   Thus, after attaching the base 71 to the hub wheel 1 or before attaching the base 71, the screw shaft 76 is screwed into the screw hole 50 of the shaft portion 12 so that the base portion 76a protrudes from the inner wall 22c to the anti-joint side. Combine. The protruding amount of the base portion 76a is set longer than the axial length of the uneven fitting structure M. The screw shaft 76 and the pressing bolt member 73 are disposed on the same axis (on the axis of this wheel bearing device).

その後は、押圧用ボルト部材73を反継手側から基盤71の第2ねじ孔72に螺着し、この状態で、矢印のようにねじ軸76側へ螺進させる。この際、ねじ軸76と、押圧用ボルト部材73とは、同一軸心上(この車輪用軸受装置の軸心上)に配設されているので、この螺進によって、押圧用ボルト部材73がねじ軸76を矢印方向へ押圧する。これによって、外輪5がハブ輪1に対して矢印方向へ移動して、ハブ輪1から外輪5が外れる。 Thereafter, the pressing bolt member 73 is screwed into the second screw hole 72 of the base 71 from the opposite joint side, and in this state, is screwed toward the screw shaft 76 side as indicated by an arrow. At this time, since the screw shaft 76 and the pressing bolt member 73 are arranged on the same axis (on the axis of the wheel bearing device), the screw bolt 73 is caused by this screwing. The screw shaft 76 is pressed in the direction of the arrow. As a result, the outer ring 5 moves in the direction of the arrow with respect to the hub ring 1, and the outer ring 5 is detached from the hub ring 1.

また、ハブ輪1から外輪5が外れた状態からは、例えば、ボルト部材54を使用して再度、ハブ輪1と外輪5とを連結することができる。すなわち、ハブ輪1から基盤71を取外すとともに、軸部12からねじ軸76を取外した状態として、図10(a)に示すように、軸部12の凸部35をガイド用凹部44aに嵌合させる。これによって、軸部12側の雄スプライン41と、前回の圧入によって形成されたハブ輪1の雌スプライン42との位相が合う。この際、図4(a)に示すように、凸部35の頂部とガイド用凹部44aの底部との間に径方向隙間C1が形成される。   Further, from the state in which the outer ring 5 is detached from the hub wheel 1, the hub wheel 1 and the outer ring 5 can be connected again using, for example, the bolt member 54. That is, with the base 71 removed from the hub wheel 1 and the screw shaft 76 removed from the shaft 12, the projection 35 of the shaft 12 is fitted into the guide recess 44a as shown in FIG. Let Thereby, the phase of the male spline 41 on the shaft portion 12 side and the female spline 42 of the hub wheel 1 formed by the previous press-fitting match. At this time, as shown in FIG. 4A, a radial gap C1 is formed between the top of the projection 35 and the bottom of the guide recess 44a.

この状態で、図9に示すように、ボルト部材54をボルト挿通孔56を介して軸部12のねじ孔50に螺合させ、ボルト部材54をねじ孔50に対して螺進させる。これによって、図10(b)に示すように、軸部12がハブ輪1内へ嵌入していく。この際、孔部22が僅かに拡径した状態となって、軸部12の軸方向の進入を許容し、マウス部11の底部裏面11aが加締部31の端面31aに当接するまで侵入する。この場合、同時に図10(c)に示すように、凸部35の端面35aが凹部36の端面36aに当接する。軸方向の移動が停止した状態となれば、孔部22が元の径に戻ろうとして縮径することになる。これによって、前回の圧入と同様、凸部35の凹部嵌合部位の全体がその対応する凹部36に対して密着する凹凸嵌合構造Mを確実に構成することができる。 In this state, as shown in FIG. 9, the bolt member 54 is screwed into the screw hole 50 of the shaft portion 12 through the bolt insertion hole 56, and the bolt member 54 is screwed into the screw hole 50. Thereby, as shown in FIG. 10B, the shaft portion 12 is fitted into the hub wheel 1. At this time, the hole portion 22 is slightly expanded in diameter, allowing the shaft portion 12 to enter in the axial direction, and intrudes until the bottom back surface 11a of the mouse portion 11 contacts the end surface 31a of the crimping portion 31. . In this case, at the same time, as shown in FIG. 10C, the end surface 35 a of the convex portion 35 comes into contact with the end surface 36 a of the concave portion 36. If the movement in the axial direction is stopped, the hole 22 is reduced in diameter to return to the original diameter. As a result, similar to the previous press-fitting, the concave-convex fitting structure M in which the entire concave portion fitting portion of the convex portion 35 is in close contact with the corresponding concave portion 36 can be reliably reconfigured .

なお、軸部12のねじ孔50の開口部が開口側に向かって拡開するテーパ部50aとさているので、ねじ軸76やボルト部材54をねじ孔50に螺合させ易い利点がある。 Since the opening of the screw hole 50 of the shaft portion 12 is a tapered portion 50a which widens toward the opening side, there is apt advantage is screwed the screw shaft 76 and the bolt member 54 to the screw hole 50.

ところで、1回目(孔部22の内径面37に凹部36を成形する圧入)では、圧入荷重が比較的大きいので、圧入のために、プレス機等を使用する必要がある。これに対して、このような再度の圧入では、圧入荷重を1回目の圧入荷重よりも小さいため、プレス機等を使用することなく、安定して正確に軸部12をハブ輪1の孔部22に圧入することができる。このため、現場での外輪5とハブ輪1との分離・連結が可能となる。   By the way, in the first time (press-fitting for forming the recess 36 in the inner diameter surface 37 of the hole 22), the press-fitting load is relatively large, so it is necessary to use a press machine or the like for press-fitting. On the other hand, in such re-pressing, since the press-fitting load is smaller than the first press-fitting load, the shaft portion 12 can be stably and accurately inserted into the hole of the hub wheel 1 without using a press machine or the like. 22 can be press-fitted. For this reason, the outer ring 5 and the hub wheel 1 can be separated and connected in the field.

しかも、ボルト挿通孔56の孔径D2とボルト部材54の非ねじ部55aの軸径D1との径差(直径隙間)をΔdとし、凹凸嵌合構造Mにおける軸部12の最大直径寸法D3と凹凸嵌合構造Mにおけるハブ輪の孔部22の最小直径寸法D4との差をΔd2としたときに、0<Δd<Δd2としている。従って、ボルト挿通孔56の孔径D2とボルト部材54の非ねじ部55aの軸径D1との径差軸部12前記最大直径寸法D3とハブ輪の前記最小直径寸法D4との径差よりも小さくなる。これにより、ボルト挿通孔56が外輪5の軸部12の再圧入時に軸部の圧入方向をガイドする軸部圧入ガイド構造部M3となるので、再圧入時には軸部圧入ガイド構造部M3によって、芯ずれすることなく、軸部圧入が案内される。このため、安定した再圧入が可能であり、前回形成した凹部36に凸部35がずれることなく嵌入していくことになって、再組立性の向上を図ることができる。 Moreover, the difference in diameter (diameter gap) between the hole diameter D2 of the bolt insertion hole 56 and the shaft diameter D1 of the non-threaded portion 55a of the bolt member 54 is Δd, and the maximum diameter dimension D3 of the shaft portion 12 in the uneven fitting structure M and the unevenness. When the difference from the minimum diameter dimension D4 of the hole 22 of the hub wheel in the fitting structure M is Δd2, 0 <Δd <Δd2. Therefore, the difference in diameter between the hole diameter D2 of the bolt insertion hole 56 and the shaft diameter D1 of the non-threaded portion 55a of the bolt member 54 is the difference between the maximum diameter dimension D3 of the shaft portion 12 and the minimum diameter dimension D4 of the hub wheel. Smaller than . Thus, since the bolt hole 56 is a shaft press-fitting guide structure unit M3 for guiding the press-fitting direction of the shaft portion when reinject the shaft portion 12 of the outer ring 5, at the time of re-press-fitting the shaft section press-fitting guide structure section M3, The press-fitting of the shaft portion is guided without misalignment. For this reason, stable re-press fitting is possible, and the convex portion 35 is fitted into the concave portion 36 formed previously without being displaced, so that the reassembly can be improved.

このように、外輪5の軸部12に軸方向の引き抜き力を付与することによって、ハブ輪1の孔部22から外輪5を取外すことができるので、各部品の修理・点検の作業性(メンテナンス性)の向上を図ることができる。しかも、各部品の修理・点検後に再度外輪5の軸部12をハブ輪1の孔部22に圧入することによって、凸部35と凹部36との嵌合接触部位38全域が密着する凹凸嵌合構造Mを構成することができる。このため、安定したトルク伝達が可能な車輪用軸受装置を再度構成することができる。   In this way, by applying an axial pulling force to the shaft portion 12 of the outer ring 5, the outer ring 5 can be removed from the hole 22 of the hub wheel 1, so that the workability (maintenance for repair / inspection of each part) is maintained. Property) can be improved. Moreover, by fitting the shaft portion 12 of the outer ring 5 into the hole portion 22 of the hub wheel 1 again after repair and inspection of each part, the fitting contact portion 38 between the convex portion 35 and the concave portion 36 is closely contacted. Structure M can be constructed. For this reason, the wheel bearing device capable of stable torque transmission can be configured again.

軸部圧入ガイド部M1では、凸部35の位相と、他方の凹部36の位相とを一致させるガイド用凹部44aを有しているので、再度、外側手部材の軸部12をハブ輪1の孔部22に圧入する際に、前回の圧入によって形成された凹部36に嵌入して行き、凹部36を損傷させることがない。このため、再度、径方向及び円周方向においてガタが生じる隙間が生じない凹凸嵌合構造Mを高精度に構成することができる。   Since the shaft press-fitting guide portion M1 has the guide recess 44a that matches the phase of the projection 35 with the phase of the other recess 36, the shaft portion 12 of the outer hand member is again attached to the hub wheel 1. When press-fitting into the hole 22, it is inserted into the recess 36 formed by the previous press-fitting, and the recess 36 is not damaged. For this reason, the uneven | corrugated fitting structure M which does not produce the clearance gap which produces backlash in a radial direction and the circumferential direction again can be comprised with high precision.

凸部35の頂部とガイド用凹部44aの底部との間等に隙間を形成することによって、圧入前工程での凸部35のガイド用凹部44aへの嵌入を容易にでき、しかも、ガイド用凹部44aが凸部35の圧入の妨げにならない。このため、組立性の向上を図ることができる。   By forming a gap between the top of the projection 35 and the bottom of the guide recess 44a, etc., the projection 35 can be easily fitted into the guide recess 44a in the pre-press-in process, and the guide recess 44a does not hinder the press-fitting of the convex portion 35. For this reason, the assemblability can be improved.

なお、ボルト挿通孔56の軸方向長さとしても、短すぎると、安定したガイドを発揮できず、逆に長すぎると、内壁22cの厚さ寸法が大となって、凹凸嵌合構造Mの軸方向長さを確保できないとともに、ハブ輪1の重量が大となる。このため、これらを考慮して種々変更することができる。 If the axial length of the bolt insertion hole 56 is too short, a stable guide cannot be exhibited. On the contrary, if the length is too long, the thickness dimension of the inner wall 22c becomes large, and the uneven fitting structure M The axial length cannot be secured, and the weight of the hub wheel 1 is increased. Therefore, various changes can be made in consideration of these.

前記実施形態では、図4(a)に示すように、凸部35の頂部とガイド用凹部44aの底部との間に径方向隙間C1が形成されているが、図4(b)に示すように、凸部35の側部とガイド用凹部44aの側部との間に周方向隙間C2、C2を形成するようにしてもよい。また、図4(c)に示すように、凸部35の頂部とガイド用凹部44aの底部との間に径方向隙間C1、および凸部35の側部とガイド用凹部44aの側部との間に周方向隙間C2を形成するようにしてもよい。このような隙間を形成することによって、圧入前工程での凸部35のガイド用凹部44aへの嵌入を容易にでき、しかも、ガイド用凹部44aが凸部35の圧入の妨げにならない。   In the embodiment, as shown in FIG. 4A, the radial gap C1 is formed between the top of the projection 35 and the bottom of the guide recess 44a, but as shown in FIG. 4B. In addition, circumferential gaps C2 and C2 may be formed between the side portion of the convex portion 35 and the side portion of the guide concave portion 44a. Further, as shown in FIG. 4C, the radial gap C1 between the top of the convex portion 35 and the bottom of the guide concave portion 44a, and the side portion of the convex portion 35 and the side portion of the guide concave portion 44a. A circumferential clearance C2 may be formed between them. By forming such a gap, the protrusion 35 can be easily fitted into the guide recess 44a in the pre-press-in process, and the guide recess 44a does not prevent the protrusion 35 from being press-fitted.

前記図2に示すスプライン41では、山部41aのピッチと谷部41bのピッチとが同一設定される。このため、前記実施形態では、図2(b)に示すように、凸部35の突出方向中間部位の周方向厚さLと、周方向に隣り合う凸部35間における前記中間部位に対応する位置での周方向寸法L0とがほぼ同一となっている。 In the spline 41 illustrated in FIG. 2, the pitch of the pitch and valleys 41b at the crest 41a is the same set. For this reason, in the said embodiment, as shown in FIG.2 (b), it respond | corresponds to the circumferential direction thickness L of the protrusion direction intermediate part of the convex part 35, and the said intermediate part between the convex parts 35 adjacent to the circumferential direction. The circumferential dimension L0 at the position is substantially the same.

これに対して、図11(a)に示すように、凸部35の突出方向中間部位の周方向厚さL2を、周方向に隣り合う凸部35間における前記中間部位に対応する位置での周方向寸法L1よりも小さいものであってもよい。すなわち、軸部12に形成されるスプライン41において、凸部35の突出方向中間部位の周方向厚さ(歯厚)L2を、凸部35間に嵌合するハブ輪1側の山部43の突出方向中間部位の周方向厚さ(歯厚)L1よりも小さくしている。 On the other hand, as shown in FIG. 11A, the circumferential thickness L2 of the projecting direction intermediate portion of the convex portion 35 is set at a position corresponding to the intermediate portion between the convex portions 35 adjacent in the circumferential direction. It may be smaller than the circumferential dimension L1. That is, in the spline 41 formed on the shaft portion 12, the circumferential thickness (tooth thickness) L <b> 2 of the intermediate portion in the protruding direction of the convex portion 35 is set to the peak portion 43 on the hub wheel 1 side fitted between the convex portions 35. It is made smaller than the circumferential thickness (tooth thickness) L1 of the intermediate portion in the protruding direction.

このため、軸部12側の全周における凸部35の歯厚の総和Σ(B1+B2+B3+・・・)を、ハブ輪1側の山部43(凸歯)の歯厚の総和Σ(A1+A2+A3+・・・)よりも小さく設定している。これによって、ハブ輪1側の山部43のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、凸部35の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。凸部35の周方向厚さの総和を、相手側の山部43における周方向厚さの総和よりも小さくする場合、全凸部35の周方向厚さL2を、周方向に隣り合う凸部35間における周方向の寸法L1よりも小さくする必要がない。すなわち、複数の凸部35のうち、任意の凸部35の周方向厚さが周方向に隣り合う凸部間における周方向の寸法と同一であっても、この周方向の寸法よりも大きくても、総和で小さければよい。 Therefore, the total tooth thickness Σ (B1 + B2 + B3 +...) Of the convex portion 35 on the entire circumference on the shaft 12 side is replaced by the total tooth thickness Σ (A1 + A2 + A3 +...) Of the peak portion 43 (convex tooth) on the hub wheel 1 side.・ It is set smaller than. Thereby, the shear area of the peak portion 43 on the hub wheel 1 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 35 is small, a press-fit load can be made small and a press-fit property can be aimed at. When making the sum total of the circumferential thickness of the convex part 35 smaller than the sum total of the circumferential thickness in the peak part 43 of the other party, let the circumferential direction thickness L2 of all the convex parts 35 be the convex parts adjacent to the circumferential direction. It is not necessary to make it smaller than the circumferential dimension L1 between 35. That is, among the plurality of convex portions 35, even if the circumferential thickness of the arbitrary convex portion 35 is the same as the circumferential dimension between the convex portions adjacent in the circumferential direction, it is larger than the circumferential dimension. However, it is sufficient if the sum is small.

なお、図11(a)における凸部35は断面台形(富士山形状)としているが、凸部35の形状としては、図11(b)に示すように、インボリュート歯形状であってもよい。   In addition, although the convex part 35 in Fig.11 (a) is made into the trapezoid cross section (Mt. Fuji shape), as a shape of the convex part 35, as shown in FIG.11 (b), an involute tooth shape may be sufficient.

軸部圧入ガイド部M1としては、図12に示すものであってもよい。図12(a)では、ガイド用凹部44aの凹凸嵌合構造M側の端部が、圧入方向(圧入進行方向)に沿って縮径する傾斜する傾斜面77bとしている。すなわち、傾斜面77bの傾斜角度θとしては、例えば45°程度としている。   The shaft press-fitting guide portion M1 may be as shown in FIG. In FIG. 12 (a), the end of the guide recess 44a on the concave-convex fitting structure M side is an inclined surface 77b that is inclined to reduce the diameter along the press-fit direction (press-fit progress direction). That is, the inclination angle θ of the inclined surface 77b is, for example, about 45 °.

図12(b)(c)は、ガイド用凹部44aの径方向深さ寸法が圧入方向に沿って縮径するものである。また、図12(b)では、凹凸嵌合構造M側の端部を圧入方向に直交する平坦面77aとし、図12(c)では、凹凸嵌合構造M側の端部を圧入方向(圧入進行方向)に沿って縮径する傾斜する傾斜面77bとしている。   12 (b) and 12 (c), the radial depth dimension of the guide recess 44a is reduced along the press-fitting direction. In FIG. 12B, the end portion on the concave-convex fitting structure M side is a flat surface 77a orthogonal to the press-fitting direction, and in FIG. 12C, the end portion on the concave-convex fitting structure M side is the press-fitting direction (press-fit). The inclined surface 77b is inclined along the traveling direction.

ガイド用凹部44aの凹凸嵌合構造側の端部が、圧入方向に直交する平坦面77aであれば、軸部12を孔部22に圧入する際において、この平坦面77aで軸部12を受けることができる。また、傾斜面77bであれば、凸部35をガイド用凹部44aから相手側の凹部36へ安定して嵌入させることができる。ガイド用凹部44aの径方向深さが圧入方向に沿って縮径するものであっても、凸部35をガイド用凹部44aから相手側の凹部36へ安定して嵌入させることができる。   If the end of the guide recess 44a on the uneven fitting structure side is a flat surface 77a orthogonal to the press-fitting direction, the shaft 12 is received by the flat surface 77a when the shaft 12 is press-fitted into the hole 22. be able to. Moreover, if it is the inclined surface 77b, the convex part 35 can be stably inserted from the recessed part 44a for a guide to the recessed part 36 of the other party. Even if the radial depth of the guide concave portion 44a is reduced along the press-fitting direction, the convex portion 35 can be stably fitted from the guide concave portion 44a to the counterpart concave portion 36.

次に、図13は第2実施形態を示し、この場合、ハブ輪1に内壁22cを設けず、この内壁22cの代わりに、リング体80をハブ輪1の孔部22に装着している。すなわち、ハブ輪1の孔部22にリング嵌合用切欠部81を設け、このリング嵌合用切欠部81にリング体80を嵌合させている。この際、リング嵌合用切欠部81の切欠端面81aにリング体80が係合する。リング体80は、その外径とリング嵌合用切欠部81の内径とのクリアランスを極力詰めるかリング体80をリング嵌合用切欠部81に圧入するのが好ましい。   Next, FIG. 13 shows a second embodiment. In this case, the hub ring 1 is not provided with the inner wall 22c, and the ring body 80 is mounted in the hole 22 of the hub ring 1 instead of the inner wall 22c. That is, a ring fitting notch 81 is provided in the hole 22 of the hub wheel 1, and the ring body 80 is fitted to the ring fitting notch 81. At this time, the ring body 80 is engaged with the notch end surface 81 a of the ring fitting notch 81. It is preferable that the ring body 80 has a clearance between its outer diameter and the inner diameter of the ring fitting notch 81 as much as possible, or the ring body 80 is press-fitted into the ring fitting notch 81.

また、リング体80には、ボルト部材54が挿通されるボルト挿通孔82が形成される。このボルト挿通孔82は、前記第1実施形態のボルト挿通孔56と同様、孔径D2とボルト部材54の非ねじ部55aの軸径D1との径差Δdとし、凹凸嵌合構造Mにおける外輪5の軸部外径D3と凹凸嵌合構造Mにおけるハブ輪内径D4との径差をΔd2としたときに、0<Δd<Δd2としている。   Further, the ring body 80 is formed with a bolt insertion hole 82 through which the bolt member 54 is inserted. The bolt insertion hole 82 has a diameter difference Δd between the hole diameter D2 and the shaft diameter D1 of the non-threaded portion 55a of the bolt member 54 in the same manner as the bolt insertion hole 56 of the first embodiment. When the diameter difference between the shaft outer diameter D3 and the hub wheel inner diameter D4 in the concave-convex fitting structure M is Δd2, 0 <Δd <Δd2.

図13に示す車輪用軸受装置の他の構成は、図1に示す車輪用軸受装置と同様であるので、図1と同一部材を図1と同一の符号を附してそれらの説明を省略する。   The other configuration of the wheel bearing device shown in FIG. 13 is the same as that of the wheel bearing device shown in FIG. 1, and therefore, the same members as those in FIG. .

このため、図13に示す車輪用軸受装置であっても、図1に示す車輪用軸受装置と同様の作用効果を奏する。しかも、ボルト挿通孔82をハブ輪1とは別部材のリング体80に形成するものであるので、ボルト挿通孔82を高精度に安定して形成することができる。また、リング体80が損傷等した場合にも、交換することができ、ハブ輪1全体を交換する必要がなく、コスト低減を図ることができる。   For this reason, even if it is a wheel bearing apparatus shown in FIG. 13, there exists an effect similar to the wheel bearing apparatus shown in FIG. Moreover, since the bolt insertion hole 82 is formed in the ring body 80 which is a separate member from the hub wheel 1, the bolt insertion hole 82 can be stably formed with high accuracy. Further, even when the ring body 80 is damaged or the like, it can be replaced, and it is not necessary to replace the entire hub wheel 1, so that the cost can be reduced.

ところで、前記各実施形態では、軸部12側に凸部35を構成するスプライン41を形成するとともに、この軸部12のスプライン41に対して硬化処理を施し、ハブ輪1の内径面を未硬化(生材)としている。これに対して、図14に参考例として示すように、ハブ輪1の孔部22の内径面に硬化処理を施されたスプライン61(山部61a及び谷部61bとからなる)を形成するとともに、軸部12には硬化処理を施さないものであってもよい。なお、このスプライン61も公知公用の手段であるブローチ加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。 By the way, in each said embodiment, while forming the spline 41 which comprises the convex part 35 in the axial part 12 side, the hardening process is performed with respect to the spline 41 of this axial part 12, and the internal diameter surface of the hub ring 1 is unhardened. (Raw material). On the other hand, as shown in FIG. 14 as a reference example, a spline 61 (consisting of a crest 61a and a trough 61b) is formed on the inner diameter surface of the hole 22 of the hub wheel 1 and cured. The shaft portion 12 may not be subjected to a curing process. The spline 61 can also be formed by various processing methods such as broaching, cutting, pressing, and drawing, which are publicly known means. Further, various heat treatments such as induction hardening and carburizing and quenching can be employed as the thermosetting treatment.

この場合、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(軸部12の外径面)の位置に対応する。すなわち、スプライン61の山部61aである凸部35の頂点を結ぶ円の直径寸法(凸部35の最小直径寸法)D8を、軸部12の外径寸法D6よりも小さく、スプライン61の谷部61bの底を結ぶ円の直径寸法(凸部間の最大直径寸法)D9を軸部12の外径寸法D10よりも大きく設定する。すなわち、D8<D10<D9とされる。 In this case, the intermediate portion in the protruding direction of the convex portion 35 corresponds to the position of the concave portion forming surface (the outer diameter surface of the shaft portion 12) before the concave portion is formed. That is, the diameter dimension (minimum diameter dimension of the convex portion 35) D8 of the circle connecting the vertices of the convex portion 35 which is the peak portion 61a of the spline 61 is smaller than the outer diameter size D6 of the shaft portion 12, and the valley portion of the spline 61 The diameter dimension ( maximum diameter dimension between convex parts) D9 of the circle connecting the bottoms of 61b is set to be larger than the outer diameter dimension D10 of the shaft part 12. That is, D8 <D10 <D9.

軸部12をハブ輪1の孔部22に圧入すれば、ハブ輪1側の凸部35によって、軸部12の外周面にこの凸部35が嵌合する凹部36を形成することができる。これによって、凸部35とこれに嵌合する凹部との嵌合接触部位38の全体が密着している。   If the shaft portion 12 is press-fitted into the hole portion 22 of the hub wheel 1, the concave portion 36 into which the convex portion 35 is fitted can be formed on the outer peripheral surface of the shaft portion 12 by the convex portion 35 on the hub wheel 1 side. Thereby, the whole fitting contact part 38 of the convex part 35 and the recessed part fitted to this is closely_contact | adhered.

ここで、嵌合接触部位38とは、図14(b)に示す範囲Bであり、凸部35の断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、軸部12の外周面よりも外径側に隙間62が形成される。   Here, the fitting contact portion 38 is a range B shown in FIG. 14B, and is a range from the middle of the mountain shape to the top of the mountain in the cross section of the convex portion 35. Further, a gap 62 is formed on the outer diameter side of the outer peripheral surface of the shaft portion 12 between the adjacent convex portions 35 in the circumferential direction.

この図14に示すものでも、軸部圧入ガイド部M1を設けるのが好ましい。この場合、軸部12側にガイド用凹部44bを設ければよい。また、凸部35の頂部とガイド用凹部44aの底部との間に径方向隙間C1を形成したり、凸部35の側部とガイド用凹部44aの側部との間に周方向隙間C2、C2を形成したり、さらには、径方向隙間C1及び周方向隙間C2、C2を形成したりすることができる。   Even in the case shown in FIG. 14, it is preferable to provide the shaft press-fitting guide portion M1. In this case, a guide recess 44b may be provided on the shaft portion 12 side. Further, a radial gap C1 is formed between the top of the convex portion 35 and the bottom of the guide concave portion 44a, or a circumferential gap C2 between the side portion of the convex portion 35 and the side portion of the guide concave portion 44a, C2 can be formed, and further, the radial gap C1 and the circumferential gaps C2 and C2 can be formed.

図14に示す場合であっても、圧入によってはみ出し部45が形成されるので、このはみ出し部45を収納する収納部57を設けるのが好ましい。はみ出し部45は軸部12のマウス側に形成されることになるので、収納部をハブ輪1側に設けることになる。   Even in the case shown in FIG. 14, since the protruding portion 45 is formed by press-fitting, it is preferable to provide a storage portion 57 for storing the protruding portion 45. Since the protruding portion 45 is formed on the mouse side of the shaft portion 12, the storage portion is provided on the hub wheel 1 side.

このように、ハブ輪1の孔部22の内径面37に凹凸嵌合構造Mの凸部35を設けるとともに、この凸部35の軸方向端部の硬度を外輪5の軸部12の外径部よりも高くして、圧入するものでは、軸部側の硬度処理(熱処理)を行う必要がないので、等速自在継手の外側継手部材(外輪5)の生産性に優れる。   As described above, the convex portion 35 of the concave-convex fitting structure M is provided on the inner diameter surface 37 of the hole portion 22 of the hub wheel 1, and the hardness of the axial end portion of the convex portion 35 is set to the outer diameter of the shaft portion 12 of the outer ring 5. In the case of press-fitting higher than the portion, it is not necessary to perform the hardness treatment (heat treatment) on the shaft portion side, so that the productivity of the outer joint member (outer ring 5) of the constant velocity universal joint is excellent.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造Mの凸部35の形状として、前記図2に示す実施形態では断面三角形状であり、図11(a)に示す実施形態では断面台形(富士山形状)であるが、これら以外の半円形状、半楕円形状、矩形形状等の種々の形状のものを採用でき、凸部35の面積、数、周方向配設ピッチ等も任意に変更できる。すなわち、スプライン41を形成し、このスプライン41の山部(凸歯)41aをもって凹凸嵌合構造Mの凸部35とする必要はなく、キーのようなものであってもよく、曲線状の波型の合わせ面を形成するものであってもよい。要は、軸方向に沿って配設される凸部35を相手側に圧入し、この凸部35にて凸部35に密着嵌合する凹部36を相手側に形成することができて、凸部35とこれに嵌合する凹部との嵌合接触部位38の全体が密着し、しかも、ハブ輪1と等速自在継手3との間で回転トルクの伝達ができればよい。 As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, as the shape of the convex portion 35 of the concave-convex fitting structure M, FIG. In the embodiment shown in FIG. 2, the cross section is triangular, and in the embodiment shown in FIG. 11A, the cross section is trapezoidal (mountain shape), but other shapes such as a semicircular shape, a semielliptical shape, and a rectangular shape are available. The area of the convex part 35, the number, the circumferential arrangement pitch, and the like can be arbitrarily changed. That is, it is not necessary to form the spline 41 and use the crest portion (convex tooth) 41a of the spline 41 as the convex portion 35 of the concave-convex fitting structure M, and it may be a key or a curved wave. It may form a mating surface of the mold. In short, the convex portion 35 disposed along the axial direction can be press-fitted into the mating side, and the concave portion 36 can be formed on the mating side with the convex portion 35 so as to closely fit the convex portion 35. It is only necessary that the entire fitting contact portion 38 between the portion 35 and the concave portion fitted thereto is in close contact, and that rotational torque can be transmitted between the hub wheel 1 and the constant velocity universal joint 3.

ハブ輪1の孔部22としては円孔以外の多角形孔等の異形孔であってよく、この孔部22に嵌挿する軸部12の端部の断面形状も円形断面以外の多角形等の異形断面であってもよい。さらに、ハブ輪1に軸部12を圧入する際に凸部35の圧入始端部のみが、凹部36が形成される部位より硬度が高ければよいので、凸部35の全体の硬度を高くする必要がない。図3等では隙間40が形成されるが、凸部35間の谷部まで、ハブ輪1の内径面37食い込むようなものであってもよい。なお、凸部35側と、凸部35にて形成される凹部形成面側との硬度差としては、HRCで20ポイント以上とするのが好ましいが、凸部35が圧入可能であれば20ポイント未満であってもよい。 The hole portion 22 of the hub wheel 1 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end of the shaft portion 12 fitted into the hole 22 is also a polygon other than a circular cross section. It may be an irregular cross section. Furthermore, since only the press-fitting start end portion of the convex portion 35 needs to be harder than the portion where the concave portion 36 is formed when the shaft portion 12 is press-fitted into the hub wheel 1, it is necessary to increase the overall hardness of the convex portion 35. There is no. In FIG. 3 and the like, the gap 40 is formed, but the inner diameter surface 37 of the hub wheel 1 may bite into the valley between the convex portions 35. Note that the hardness difference between the convex portion 35 side and the concave portion forming surface side formed by the convex portion 35 is preferably 20 points or more in HRC, but 20 points if the convex portion 35 can be press-fitted. It may be less.

凸部35の端面(圧入始端)は前記実施形態では軸方向に対して直交する面であったが、軸方向に対して、所定角度で傾斜するものであってもよい。この場合、内径側から外径側に向かって反凸部側に傾斜しても凸部側に傾斜してもよい。   Although the end surface (press-fit start end) of the convex portion 35 is a surface orthogonal to the axial direction in the embodiment, it may be inclined at a predetermined angle with respect to the axial direction. In this case, it may be inclined from the inner diameter side toward the outer diameter side toward the anti-convex portion side or inclined toward the convex portion side.

さらに、ハブ輪1の孔部22の内径面37に、周方向に沿って所定ピッチで配設される小凹部を設けてもよい。小凹部としては、凹部36の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部35の圧入性の向上を図ることができる。すなわち、小凹部を設けることによって、凸部35の圧入時に形成されるはみ出し部45の容量を減少させることができて、圧入抵抗の低減を図ることができる。また、はみ出し部45を少なくできるので、収納部57の容積を小さくでき、収納部57の加工性及び軸部12の強度の向上を図ることができる。なお、小凹部の形状は、半楕円状、矩形等の種々のものを採用でき、数も任意に設定できる。   Furthermore, you may provide the small recessed part arrange | positioned by the predetermined pitch along the circumferential direction in the internal diameter surface 37 of the hole 22 of the hub wheel 1. FIG. The small recess needs to be smaller than the volume of the recess 36. By providing such a small recess, the press-fit property of the protrusion 35 can be improved. That is, by providing the small concave portion, the capacity of the protruding portion 45 formed when the convex portion 35 is press-fitted can be reduced, and the press-fit resistance can be reduced. Moreover, since the protrusion part 45 can be decreased, the volume of the storage part 57 can be reduced, and the workability of the storage part 57 and the strength of the shaft part 12 can be improved. Various shapes such as a semi-elliptical shape and a rectangular shape can be adopted as the shape of the small concave portion, and the number can be arbitrarily set.

軸受2の転動体30として、ローラを使用したものであってもよい。また、前記実施形態では、第3世代の車輪用軸受装置を示したが、第1世代や第2世代さらには第4世代であってもよい。なお、凸部35を圧入する場合、凹部36が形成される側を固定して、凸部35を形成している側を移動させても、逆に、凸部35を形成している側を固定して、凹部36が形成される側を移動させても、両者を移動させてもよい。なお、等速自在継手3において、内輪6とシャフト10とを前記各実施形態に記載した凹凸嵌合構造Mを介して一体化してもよい。   A roller may be used as the rolling element 30 of the bearing 2. In the above-described embodiment, the third generation wheel bearing device is shown. However, the first generation, the second generation, or the fourth generation may be used. In addition, when press-fitting the convex portion 35, even if the side where the concave portion 36 is formed is fixed and the side where the convex portion 35 is formed is moved, the side where the convex portion 35 is formed is reversed. It may be fixed and the side where the recess 36 is formed may be moved or both may be moved. In the constant velocity universal joint 3, the inner ring 6 and the shaft 10 may be integrated via the concave / convex fitting structure M described in the above embodiments.

ハブ輪1と軸部12とのボルト固定を行うボルト部材54の座面60aと、内壁22cとの間に介在されるシール材は、前記実施形態ではボルト部材54の座面60a側に樹脂を塗布して構成していたが、逆に、内壁22c側に樹脂を塗布するようにしてもよい。また、座面60a側および内壁22c側に樹脂を塗布するようにしてもよい。なお、ボルト部材54を螺着した際において、ボルト部材54の座面60aと、内壁22cの凹窪部51の底面とが密着性に優れるものであれば、このようなシール材を省略することも可能である。すわなち、凹窪部51の底面を研削することによって、ボルト部材54の座面60aとの密着性を向上させたりすることができる。もちろん、凹窪部51の底面を研削することなく、いわゆる旋削仕上げ状態であっても、密着性を発揮できれば、シール材を省略することができる。   The sealing material interposed between the seat surface 60a of the bolt member 54 that fixes the hub wheel 1 and the shaft portion 12 with the bolt and the inner wall 22c is made of resin on the seat surface 60a side of the bolt member 54 in the embodiment. However, conversely, a resin may be applied to the inner wall 22c side. Moreover, you may make it apply | coat resin to the seat surface 60a side and the inner wall 22c side. When the bolt member 54 is screwed, such a sealing material is omitted if the seat surface 60a of the bolt member 54 and the bottom surface of the recessed portion 51 of the inner wall 22c are excellent in adhesion. Is also possible. That is, it is possible to improve the adhesiveness of the bolt member 54 with the seating surface 60a by grinding the bottom surface of the recessed portion 51. Of course, the sealing material can be omitted if the adhesiveness can be exhibited even in a so-called turning finished state without grinding the bottom surface of the recessed portion 51.

ガイド用凹部44aとしては、図4(a)(b)(c)に示すように、凸部35との間に隙間C1、C2が形成されることになるが、これらの隙間寸法としては、圧入時に芯ずれや芯傾きが生ぜず、しかも、凸部35がガイド用凹部44aの内面に圧接して圧入荷重の増大を招かないものであればよい。また、ガイド用凹部44aの軸方向長さとしても任意に設定でき、長ければ、芯合わせ上好ましいが、ハブ輪1の孔部22の軸方向長さからその上限は限られる。逆にハブ輪1の孔部22の軸方向長さが短ければ、ガイドとして機能せずに、芯ずれや芯傾きが生じるおそれがある。このため、ガイド用凹部44aの軸方向長さをこれらを考慮して決定する必要がある。   As shown in FIGS. 4A, 4B, and 4C, the guide recesses 44a are formed with gaps C1 and C2 between the protrusions 35. It is only necessary that the misalignment or the tilt of the core does not occur at the time of press-fitting, and the convex part 35 presses against the inner surface of the guide concave part 44a so as not to increase the press-fitting load. Further, the axial length of the guide recess 44a can be arbitrarily set, and if it is long, it is preferable for alignment, but the upper limit is limited by the axial length of the hole 22 of the hub wheel 1. On the contrary, if the axial length of the hole 22 of the hub wheel 1 is short, the hub wheel 1 may not function as a guide and may cause misalignment or tilt. For this reason, it is necessary to determine the axial length of the guide recess 44a in consideration of these.

また、ガイド用凹部44aの断面形状としては、凸部35が嵌合可能なものであればよく、図4に示すものに限るものではない。凸部35の断面形状等に応じて種々変更できる。ガイド用凹部44aの数としても、凸部35の数に合わせることなく、凸部35の数よりも少なくても、多くてもよい。要は、いくつかの凸部35がいくつかのガイド用凹部44aに嵌合して、凸部35の位相と、前回の圧入で形成された凹部36の位相とが一致すればよい。   Moreover, the cross-sectional shape of the guide recess 44a is not limited to that shown in FIG. Various changes can be made according to the cross-sectional shape and the like of the convex portion 35. The number of guide recesses 44a may be smaller or larger than the number of projections 35 without matching the number of projections 35. In short, it is only necessary that some convex portions 35 are fitted in some guide concave portions 44a so that the phase of the convex portions 35 coincides with the phase of the concave portion 36 formed by the previous press-fitting.

ガイド用凹部44aの端部の傾斜面77bの傾斜角度θやガイド用凹部44aの底部の傾斜角度θ1も任意に変更できる。傾斜面77bの傾斜角度θが90°に近ければ、圧入方向に直交する平坦面77aと機能的に同じとなり、傾斜角度θが小さければ、ガイド用凹部44aが長くなって、凹凸嵌合構造Mの軸方向長さが短くなる。また、底部の傾斜角度θ1が大きくなれば、ガイド用凹部44aの構成が困難となり、逆に小さければ、傾斜させる場合の機能を発揮できない。このため、各傾斜角度θ、θ1をこれらを考慮して設定する必要がある。   The inclination angle θ of the inclined surface 77b at the end of the guide recess 44a and the inclination angle θ1 of the bottom of the guide recess 44a can be arbitrarily changed. If the inclination angle θ of the inclined surface 77b is close to 90 °, it is functionally the same as the flat surface 77a orthogonal to the press-fitting direction. If the inclination angle θ is small, the guide recess 44a becomes longer, and the concave-convex fitting structure M The axial length of is shortened. Moreover, if the inclination | tilt angle (theta) 1 of a bottom part becomes large, the structure of the recessed part 44a for guides will become difficult, and if it is small conversely, the function in the case of making it incline cannot be exhibited. For this reason, it is necessary to set the inclination angles θ and θ1 in consideration of these.

前記実施形態における転がり軸受2の外方部材25では車体取付用フランジを有さないものであったが、外方部材25として車体取付用フランジを備えたものであってもよい。   Although the outer member 25 of the rolling bearing 2 in the above embodiment does not have a vehicle body mounting flange, the outer member 25 may have a vehicle body mounting flange.

本発明の第1実施形態を示す車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the wheel bearing apparatus which shows 1st Embodiment of this invention. 前記凹凸嵌合構造の拡大縦断面図である。It is an expanded longitudinal cross-sectional view of the said uneven | corrugated fitting structure. 前記車輪用軸受装置の凹凸嵌合構造を示し、(a)は図2のZ−Z線断面図であり、(b)は(a)のX部拡大図である。The uneven | corrugated fitting structure of the said wheel bearing apparatus is shown, (a) is the ZZ sectional view taken on the line of FIG. 2, (b) is the X section enlarged view of (a). 前記車輪用軸受装置の軸部圧入ガイドを示し、(a)は図2のW−W線断面であり、(b)は軸部圧入ガイドの第1変形例を示す拡大断面図であり、(c)は軸部圧入ガイドの第2変形例を示す拡大断面図である。The shaft part press-fit guide part of the said wheel bearing apparatus is shown, (a) is the WW sectional view of FIG. 2, (b) is an expanded sectional view which shows the 1st modification of a shaft part press-fit guide part . (C) is an expanded sectional view which shows the 2nd modification of a shaft part press-fit guide part . 前記車輪用軸受装置の要部拡大図である。It is a principal part enlarged view of the said wheel bearing apparatus. 前記車輪用軸受装置の分解状態を示す断面図である。It is sectional drawing which shows the decomposition | disassembly state of the said wheel bearing apparatus. 凹凸嵌合構造の分離方法を示す断面図である。It is sectional drawing which shows the isolation | separation method of an uneven | corrugated fitting structure. 再圧入方法を示す断面図である。It is sectional drawing which shows the repressing method. 再圧入方法を示す断面図である。It is sectional drawing which shows the repressing method. 再圧入方法を示し、(a)は圧入直前状態を示す断面図であり、(b)は圧入途中を示す断面図であり、(c)は圧入完了状態を示す断面図である。The re-pressing method is shown, (a) is a cross-sectional view showing a state immediately before press-fitting, (b) is a cross-sectional view showing the press-fitting process, and (c) is a cross-sectional view showing a press-fitting completion state. 凹凸嵌合構造の変形例を示す断面図である。It is sectional drawing which shows the modification of an uneven | corrugated fitting structure. 軸部圧入ガイド構造を示し、(a)は第1変形例の断面図であり、(b)は第2変形例の断面図であり、(c)は第3変形例の断面図である。The shaft part press fit guide structure is shown, (a) is a sectional view of the first modification, (b) is a sectional view of the second modification, and (c) is a sectional view of the third modification. 本発明の第2実施形態を示す車輪用軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the wheel bearing apparatus which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す車輪用軸受装置を示し、(a)は横断面図である。(b)は(a)のY部拡大図である。The wheel bearing apparatus which shows 3rd Embodiment of this invention is shown, (a) is a cross-sectional view. (B) is the Y section enlarged view of (a). 従来の車輪用軸受装置の断面図である。It is sectional drawing of the conventional wheel bearing apparatus.

1 ハブ輪
2 軸受
3 等速自在継手
11 マウス部
22 孔部
22c 内壁
24 内輪
31 加締部
35 凸部
36 凹部
38 嵌合接触部位
54 ボルト部材
55a 非ねじ部
56 ボルト挿通孔
60a 座面
71 基盤
72 第2ねじ孔
M 凹凸嵌合構造
M3 軸部圧入ガイド構造
M5 ボルト結合手段
DESCRIPTION OF SYMBOLS 1 Hub wheel 2 Bearing 3 Constant velocity universal joint 11 Mouse | mouth part 22 Hole part 22c Inner wall 24 Inner ring 31 Clamping part 35 Convex part 36 Concave part 38 Contact part 54 Bolt member 55a Non-thread part 56 Bolt insertion hole 60a Seat surface
71 base
72 second screw hole M recess-projection fitting structure M3 shaft section press-fitting guide structure section M5 bolt coupling means

Claims (6)

ホイールに取り付けるためのフランジを有するハブ輪と、このハブ輪の外周側に配設される外側軌道面、この外側軌道面に対向する内側軌道面、および対向する外側軌道面と内側軌道面との間に配置された転動体を有する複列の転がり軸受と、外側継手部材を有する等速自在継手とがユニット化され、ハブ輪の孔部に嵌挿される等速自在継手の外側継手部材の軸部がハブ輪と分離可能に結合された車輪用軸受装置であって、
外側継手部材の軸部の外径面に設けられた、軸方向に延びる複数の凸部を有するセレーションを、ハブ輪の孔部の内径面に所定ピッチで設けられた小凹部に各凸部を対応させて、ハブ輪の孔部内径面に軸方向に沿って圧入し、ハブ輪の孔部内径面に、圧入した凸部による切削で凹部を形成して、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成し、
ハブ輪と一体または別体にボルト挿通孔を設けると共に、軸部の軸心上にボルト部材が螺合されるねじ孔を設け、ボルト部材を、ボルト挿通孔を介してねじ孔に螺合することでハブ輪と外側継手部材の軸部とが固定される共に、ボルト部材をねじ孔から取り外すことでハブ輪と外側継手部材の軸部との分離が許容され、
ハブ輪の孔部内径面のうち、凸部の圧入開始側となる端部に、各凸部に対して径方向隙間および周方向隙間の何れか一方または双方を介して嵌合可能な雌セレーション状の軸部圧入ガイド部を設け、
凸部を軸部圧入ガイド部に嵌合させた状態で、ボルト挿通孔に挿入したボルト部材を、ねじ孔に螺合可能にしたことを特徴とする車輪用軸受装置。
A hub wheel having a flange for mounting on the wheel; an outer raceway surface disposed on an outer peripheral side of the hub wheel; an inner raceway surface facing the outer raceway surface; and an outer raceway surface and an inner raceway surface facing each other. The shaft of the outer joint member of the constant velocity universal joint that is united with the double row rolling bearing having the rolling elements disposed between and the constant velocity universal joint having the outer joint member and is fitted into the hole of the hub wheel A wheel bearing device in which the part is detachably coupled to the hub wheel,
Serrations having a plurality of convex portions extending in the axial direction provided on the outer diameter surface of the shaft portion of the outer joint member are arranged on the small concave portions provided on the inner diameter surface of the hole portion of the hub wheel at a predetermined pitch. Correspondingly, it press-fits along the axial direction into the hole inner diameter surface of the hub wheel, and forms a recess in the hole inner diameter surface of the hub wheel by cutting with the press-fitted protrusion, and the protrusion and the recess fit together. Consists of a concave-convex fitting structure where the entire contact area adheres,
A bolt insertion hole is provided integrally with or separately from the hub wheel, a screw hole into which the bolt member is screwed is provided on the shaft center of the shaft portion, and the bolt member is screwed into the screw hole via the bolt insertion hole. In this way, the hub wheel and the shaft portion of the outer joint member are fixed, and by removing the bolt member from the screw hole, separation of the hub wheel and the shaft portion of the outer joint member is allowed,
A female serration that can be fitted to each convex portion through one or both of a radial clearance and a circumferential clearance on the end of the hub ring hole inner diameter surface that is the press-fitting start side of the convex portion. A shaft-shaped press-fit guide part is provided,
A wheel bearing device , wherein a bolt member inserted into a bolt insertion hole can be screwed into a screw hole in a state in which a convex portion is fitted to a shaft portion press-fitting guide portion .
ボルト部材がねじ部と非ねじ部とを有しており、ボルト挿通孔とボルト挿通孔に挿通したボルト部材の非ねじ部との間に直径隙間があり、この直径隙間を、凹凸嵌合構造における外側継手部材の軸部の最大直径寸法と、凹凸嵌合構造におけるハブ輪の孔部の最小直径寸法との差よりも小さくした請求項1に記載の車輪用軸受装置。 The bolt member has a threaded portion and a non-threaded portion, and there is a diameter gap between the bolt insertion hole and the non-threaded portion of the bolt member inserted through the bolt insertion hole. The wheel bearing device according to claim 1, wherein a difference between a maximum diameter dimension of a shaft portion of the outer joint member and a minimum diameter dimension of a hole portion of the hub wheel in the uneven fitting structure is smaller. ハブ輪の孔部にその内部を仕切る内壁を設けるとともに、この内壁に前記ボルト挿通孔を設けた請求項1または2に記載の車輪用軸受装置。 The wheel bearing device according to claim 1 or 2, wherein an inner wall for partitioning the inside of the hub wheel is provided in the hole portion, and the bolt insertion hole is provided in the inner wall. 軸部のスプラインのモジュールを0.5以下にした請求項1〜3の何れか1項に記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 3, wherein a spline module of the shaft portion is 0.5 or less. 請求項1〜の何れか1項に記載された車輪用軸受装置のボルト部材をねじ孔から取り外してハブ輪と外側継手部材の軸部とを分離し、その後、軸部のセレーションを軸部圧入ガイド部に嵌合し、ボルト挿入孔を介してねじ孔にボルト部材を螺合し、ボルト部材をボルト挿通孔でガイドしながらねじ孔に対して螺進させることで、外側継手部材の軸部をハブ輪の孔部に嵌入させ、かつ凸部を凹部に圧入して、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成することを特徴とする車輪用軸受装置の再組立方法。 The bolt member of the wheel bearing device according to any one of claims 1 to 4 is removed from the screw hole to separate the hub wheel and the shaft portion of the outer joint member, and then the serration of the shaft portion is removed from the shaft portion. The shaft of the outer joint member is fitted into the press-fitting guide, screwed into the screw hole through the bolt insertion hole, and screwed into the screw hole while guiding the bolt member with the bolt insertion hole. A bearing for a wheel, characterized in that a concave-convex fitting structure is formed in which a portion is fitted into a hole of a hub wheel and a convex portion is press-fitted into a concave portion so that the entire fitting contact portion of the convex portion and the concave portion is in close contact with each other. Device reassembly method. 請求項1〜の何れか1項に記載された車輪用軸受装置を分離するための方法であって、
軸部のねじ孔にねじ軸を螺合させ、第2ねじ孔を有する基盤をハブ輪に装着し、基盤の第2ねじ孔に螺合したボルト部材の螺進によって、ねじ軸に軸心方向の押圧力を付与して、ハブ輪と外側継手部材の軸部とを分離することを特徴とする車輪用軸受装置の分離方法。
A method for separating the wheel bearing device according to any one of claims 1 to 4 ,
The screw shaft is screwed into the screw hole of the shaft portion, the base having the second screw hole is attached to the hub wheel, and the bolt member screwed into the second screw hole of the base is screwed to the screw shaft in the axial direction. A separation method for a wheel bearing device, wherein the hub wheel and the shaft portion of the outer joint member are separated by applying a pressing force.
JP2013049728A 2013-03-12 2013-03-12 Wheel bearing device, manufacturing method thereof, and separation method Expired - Fee Related JP5579891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049728A JP5579891B2 (en) 2013-03-12 2013-03-12 Wheel bearing device, manufacturing method thereof, and separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013049728A JP5579891B2 (en) 2013-03-12 2013-03-12 Wheel bearing device, manufacturing method thereof, and separation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008106766A Division JP5398999B2 (en) 2008-04-10 2008-04-16 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2013151286A JP2013151286A (en) 2013-08-08
JP5579891B2 true JP5579891B2 (en) 2014-08-27

Family

ID=49048039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049728A Expired - Fee Related JP5579891B2 (en) 2013-03-12 2013-03-12 Wheel bearing device, manufacturing method thereof, and separation method

Country Status (1)

Country Link
JP (1) JP5579891B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62251522A (en) * 1986-04-21 1987-11-02 Toyota Motor Corp Method of connecting rotating shaft
DE4335779C1 (en) * 1993-10-20 1995-04-06 Daimler Benz Ag Press fit
JP2004090839A (en) * 2002-09-03 2004-03-25 Ntn Corp Bearing device for driving wheel
JP4315819B2 (en) * 2004-01-06 2009-08-19 Ntn株式会社 Drive wheel bearing device
JP4986116B2 (en) * 2006-06-13 2012-07-25 Ntn株式会社 Wheel bearing device

Also Published As

Publication number Publication date
JP2013151286A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5323337B2 (en) Wheel bearing device
JP4302758B2 (en) Wheel bearing device
US8998731B2 (en) Wheel bearing device
WO2011077903A1 (en) Wheel bearing device
WO2009125657A1 (en) Bearing device for wheel
JP5683773B2 (en) Wheel bearing device
JP5236348B2 (en) Wheel bearing device
JP5398999B2 (en) Wheel bearing device
JP2010047058A (en) Wheel bearing device and axle module
JP2010047059A (en) Wheel bearing device and axle module
JP5323339B2 (en) Wheel bearing device
JP2009270629A (en) Wheel bearing apparatus and axle module
JP2011225153A (en) Bearing device for wheel
JP5349912B2 (en) Wheel bearing device and separation method thereof
JP5683772B2 (en) Wheel bearing device
JP5323338B2 (en) Wheel bearing device
JP5823437B2 (en) Manufacturing method of wheel bearing device
JP5826781B2 (en) Manufacturing method of wheel bearing device
JP5579891B2 (en) Wheel bearing device, manufacturing method thereof, and separation method
JP2010116144A (en) Wheel bearing device
JP5410265B2 (en) Wheel bearing device
JP5301128B2 (en) Wheel bearing device
JP5410267B2 (en) Wheel bearing device
WO2010044344A1 (en) Wheel bearing apparatus
WO2010021225A1 (en) Bearing device for wheel, and axle module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R150 Certificate of patent or registration of utility model

Ref document number: 5579891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees