Nothing Special   »   [go: up one dir, main page]

JP5557175B2 - Pulsating flow generation control device and pulsating flow generation control method - Google Patents

Pulsating flow generation control device and pulsating flow generation control method Download PDF

Info

Publication number
JP5557175B2
JP5557175B2 JP2008059331A JP2008059331A JP5557175B2 JP 5557175 B2 JP5557175 B2 JP 5557175B2 JP 2008059331 A JP2008059331 A JP 2008059331A JP 2008059331 A JP2008059331 A JP 2008059331A JP 5557175 B2 JP5557175 B2 JP 5557175B2
Authority
JP
Japan
Prior art keywords
blood
waveform
circuit
electrocardiogram
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008059331A
Other languages
Japanese (ja)
Other versions
JP2008264512A (en
Inventor
修二 稲盛
親雄 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008059331A priority Critical patent/JP5557175B2/en
Priority to US12/079,282 priority patent/US20080249456A1/en
Publication of JP2008264512A publication Critical patent/JP2008264512A/en
Application granted granted Critical
Publication of JP5557175B2 publication Critical patent/JP5557175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

本発明は、心機能が低下した人体(患者に同じ。)に外部接続され脱血管路と送血管路からなる血液循環路と、該血液循環路を補助循環路として使用するため、又は人体と人工肺との間で血液を循環させるための遠心ポンプとを備えた血液循環システムに係り、詳しくは、心電波形および/または圧波形の計測に基づき、患者の自己拍動における収縮期及び拡張期に同期した拍動流を発生させることにより、心疾患治療(補助循環治療)を施行又は推進するようにした拍動流発生制御装置及び拍動流発生制御方法に関する。 The present invention relates to a blood circulation path that is externally connected to a human body (same as a patient) with reduced cardiac function and includes a devascularization path and a blood transmission path, and to use the blood circulation path as an auxiliary circulation path, or BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood circulation system including a centrifugal pump for circulating blood to and from an oxygenator, and more specifically, based on measurement of an electrocardiogram waveform and / or a pressure waveform, systole and dilation in a patient's self-beat The present invention relates to a pulsatile flow generation control device and a pulsatile flow generation control method that perform or promote heart disease treatment (assisted circulation treatment) by generating a pulsatile flow synchronized with a period.

ここで、血液循環システム(又は後述の拍動型補助循環システム)は、拍動流発生制御装置を包含する装置系を指称するものとする。 Here, the blood circulation system (or a pulsating auxiliary circulation system described later) refers to a device system including a pulsating flow generation control device.

現在、心機能低下に対する治療方法は、その疾患の重症度により様々である。軽症においては、患者の生活指導や、薬剤療法が行われ、重度になるにつれて大動脈内バルーンパンピング(IABP)や経皮的心肺補助(以下、PCPS)、補助人工心臓などの高度な治療機器が適用されている。手術時の人工心肺装置まで拡張して血液循環システムを概観するとき、種々の先行技術を参考抽出できる〔例えば、特許文献1、2、3、4、5、6、7、8及び9を参照〕。
特開平6−63124号公報 特開平10−76002号公報 特表2000−508950号公報 特表2001−508669号公報 特開2002−345949号公報 特開2004−97611号公報 特開2007−43436号公報 特開2006−325750号公報 特開2007−44302号公報
Currently, treatment methods for cardiac function decline vary depending on the severity of the disease. In mild cases, patient life guidance and drug therapy are performed, and advanced treatment devices such as intra-aortic balloon pumping (IABP), percutaneous cardiopulmonary assist (hereinafter referred to as PCPS), and assistive artificial heart are applied as they become severe. Has been. When expanding to a cardiopulmonary apparatus at the time of operation and overviewing the blood circulation system, various prior arts can be referred to and extracted (for example, see Patent Documents 1, 2, 3, 4, 5, 6, 7, 8, and 9). ].
JP-A-6-63124 Japanese Patent Laid-Open No. 10-76002 JP 2000-508950 A Special table 2001-508669 gazette JP 2002-345949 A JP 2004-97611 A JP 2007-43436 A JP 2006-325750 A JP 2007-44302 A

こうしたなかで、急性心筋梗塞に伴う心原性ショックや、重度の急性心筋炎などに起因する心機能低下に対して補助循環(PCPSに同じ)は第一選択として数多く使用されている。   Under these circumstances, the auxiliary circulation (same as PCPS) is often used as a first choice for cardiogenic shock associated with acute myocardial infarction, and cardiac function deterioration caused by severe acute myocarditis.

例えば、種々の原因により心機能低下に至った患者に対して生命維持と心機能回復を目的とした補助循環が施行される場合、その治療期間は患者の状態ならびに治療効果によって決定されるが、一般に心臓手術で使用される人工心肺装置による体外循環(数時間)に比べると長期間に亘る(数日から数週間)。それ故にローラーポンプ方式の人工心肺装置による送血は血球破壊を引き起こすため不向きである。これらの理由から現在の補助循環治療は送血に遠心ポンプを用いるのが一般的である。しかし、患者の心機能が著しく低下している場合には定常流を発生させる遠心ポンプ装置では、全身に拍動流を供給することができないという問題がある(後述)。この状態においては全身への血流は維持されているが、個々の臓器に対する保護作用は不十分な場合が多く、とりわけ心臓においては拡張期冠血流増大(diastlic augmentation)機能による効果は期待できないからである。   For example, when assisted circulation for the purpose of life support and recovery of cardiac function is performed for patients who have declined cardiac function due to various causes, the treatment period is determined by the patient's condition and therapeutic effect, Compared to extracorporeal circulation (several hours) by an artificial cardiopulmonary apparatus generally used in cardiac surgery, it takes a long time (several days to several weeks). Therefore, blood pumping using a roller pump type heart-lung machine is not suitable because it causes blood cell destruction. For these reasons, it is common for current assisted circulation treatment to use a centrifugal pump for blood transfer. However, there is a problem that a pulsatile flow cannot be supplied to the whole body with a centrifugal pump device that generates a steady flow when the cardiac function of the patient is significantly reduced (described later). In this state, blood flow to the whole body is maintained, but protection of individual organs is often insufficient, especially in the heart, the effect of the diastlic coronary blood flow enhancement function cannot be expected Because.

叙上のとおり、一般的には、遠心ポンプによる送血は無拍動流となる。これに対し、生体は生理的には自己心により拍動流を全身に供給している。その効果は、全身の循環維持のみならず各臓器の保護にとって大変重要な機能である。特に心臓においては、自己の拍動により冠状動脈の血流量を維持する拡張期冠血流増大機能を有しているため拍動流の維持は特に必要となる。   As described above, in general, blood feeding by a centrifugal pump is a non-pulsatile flow. In contrast, the living body physiologically supplies pulsatile flow to the whole body by its own mind. The effect is a very important function not only for maintaining the circulation of the whole body but also for protecting each organ. In particular, the heart has a diastolic coronary blood flow increasing function for maintaining coronary artery blood flow by its own pulsation, so that it is particularly necessary to maintain the pulsatile flow.

しかしながら、現状のPCPSシステムでは自己心の機能が低下した状態での適応である事と、遠心ポンプが拍動流を発生できない事により、定常流での使用を余儀なくされている場合が多い。   However, the current PCPS system is often used in a steady flow because it is adapted in a state where the function of the self-heartedness is reduced and the centrifugal pump cannot generate a pulsating flow.

さらに、定常流による持続灌流は回復過程にある心臓の後負荷を増大させる危険を伴い、その結果心機能回復を目的とした治療において逆効果となる。拍動流については従来、心臓手術の補助手段として用いられる人工心肺装置において、ローラーポンプの回転により発生させる物や、大動脈内バルーンパンピング(IABP)装置に見られる患者の血管内に留置した風船のガスを出し入れすることにより発生させるものがあるが、いずれも適応症状、侵襲、コスト面などに問題があり十分ではない。   Furthermore, continuous perfusion with steady flow carries the risk of increasing the afterload of the recovering heart, and as a result is counterproductive in treatment aimed at restoring cardiac function. With regard to pulsatile flow, in an artificial cardiopulmonary apparatus conventionally used as an assisting means for cardiac surgery, an object generated by the rotation of a roller pump or a balloon placed in a patient's blood vessel as seen in an intra-aortic balloon pumping (IABP) apparatus is used. Some are generated by putting gas in and out, but none of them are satisfactory due to problems with indications, invasion, and cost.

本発明が解決しようとする問題点は、心機能低下の状態に陥った患者に対して行われる補助循環治療において、人工心肺装置のように患者の心停止状態に適応されるものではなく、自己心が拍動している状態で使用するため患者の心臓のリズムに同期させた拍動流を供給しなければならないという点にある。   The problem to be solved by the present invention is that it is not adapted to the cardiac arrest state of the patient as in the cardiopulmonary apparatus in the assisted circulation treatment performed for the patient who has fallen into the cardiac function state. In order to be used while the heart is beating, a pulsatile flow synchronized with the rhythm of the patient's heart must be supplied.

ここでは、同期のタイミングについても従来の除細動装置のように患者の心電R波そのものに同期して駆動するものではなく、心電R波を検知し、所定の時間幅で心電T波の初期に駆動するタイミングを調節できる機能が要請される。   Here, the timing of synchronization is not driven in synchronization with the patient's electrocardiogram R wave itself as in the conventional defibrillator, but the electrocardiogram R wave is detected and the electrocardiogram T is detected within a predetermined time width. A function capable of adjusting the driving timing at the early stage of the wave is required.

本発明はこのような事情に鑑みなされたものであって、上記課題を解消し、心機能低下の状態に陥った患者に対して持続的に行われる補助循環治療において、生体に拍動流を提供することにより拡張期冠血流増大機能を維持し冠状動脈の血流を増大させ、かつまた、心臓に後負荷を与えることなく心機能の回復を目的とした治療効果を上昇させることが実現可能な拍動流発生制御装置及び拍動流発生制御方法を提供するものである。 The present invention has been made in view of such circumstances, and in the assisted circulation treatment that is continuously performed on a patient who has fallen into the state of reduced cardiac function, the pulsatile flow is applied to the living body. By providing this, it is possible to maintain the function of increasing diastolic coronary blood flow, increase blood flow in the coronary arteries, and increase the therapeutic effect aimed at restoring cardiac function without applying afterload to the heart A pulsatile flow generation control device and a pulsatile flow generation control method are provided.

課題を解決するために本発明は、心機能が低下した人体(患者に同じ)に外部接続され、脱血管路と送血管路からなる血液循環路と、該血液循環路を補助循環路として使用するため、又は人体と人工肺との間で血液を循環させるための遠心ポンプとを備えた血液循環システムにおいて、
心電波形および/または圧波形の計測に基づき、患者の自己拍動における収縮期及び拡張期に同期した拍動流を発生させることにより、心疾患治療を施行又は推進するようにした拍動型補助循環システムであって、
送血管路で人工肺の送出側の管路に対向して設けられ、該管路を圧閉又は開放操作して送血管路の開閉が可能な電磁弁と、
前記電磁弁の開閉動作に係る制御出力をおこなう制御装置と、
前記制御装置に接続され少なくとも心電波形および/または圧波形を含む生体信号を計測表示可能な生体信号監視装置を具備するとともに、
前記制御装置が、少なくとも遅延回路を介し、所定時間幅で前記電磁弁を閉動作維持することにより、送血を周期的に断続するための拍動流発生制御手段を有したものであることを特徴とするものである。
In order to solve the problems, the present invention externally connects to a human body ( same as a patient) with reduced cardiac function, and uses a blood circulation path composed of a devascularization path and a blood transmission path, and uses the blood circulation path as an auxiliary circulation path Or a blood circulation system with a centrifugal pump for circulating blood between a human body and an oxygenator,
Based on the measurement of the electrocardiogram and / or pressure waveform, the pulsatile type is designed to implement or promote the treatment of heart disease by generating a pulsatile flow synchronized with the systole and diastole in the patient's self-beat An auxiliary circulation system,
An electromagnetic valve that is provided opposite to the delivery line of the artificial lung in the delivery line, and capable of opening and closing the delivery line by performing a pressure closing or opening operation on the delivery line;
A control device for performing a control output related to the opening and closing operation of the solenoid valve;
A biological signal monitoring device connected to the control device and capable of measuring and displaying a biological signal including at least an electrocardiogram waveform and / or a pressure waveform;
The control device has a pulsating flow generation control means for periodically interrupting blood feeding by maintaining the closing operation of the solenoid valve at a predetermined time width through at least a delay circuit. It is a feature.

また、上記血液循環システム又は上記拍動型補助循環システムにおいて、
心電波形および/または圧波形の計測に基づき、送血管路の遮断と開放を周期的に操作して、患者の自己拍動における収縮期及び拡張期に同期した拍動流を発生させることにより、補助循環治療を施行又は推進するための拍動流発生制御装置であって、
送血管路で人工肺の送出側の管路中に設けられ、管路断面を部分的に拡径し、かつ、血液を一時貯留するピローと、
前記ピローに対向して設けられ、該ピローを圧閉又は開放操作して送血管路の開閉が可能な電磁弁と、
前記電磁弁の開閉動作に係る制御出力をおこなう制御手段と、
前記制御手段に接続され少なくとも心電波形および/または圧波形を含む生体信号を計測可能で画像表示出力可能な生体信号監視装置を具備し、
前記制御手段が、心電波形の増幅回路、波形整形回路、遅延回路、電磁弁電流開閉制御回路及び電磁弁開閉器を有し、患者から採取した心電波形を増幅し、波形整形処理により閾値に達した心電R波形(トリガ波形に同じ)のピーク検出に同期して前記電磁弁と前記遅延回路へそれぞれ信号送出し、前記電磁弁への通電開始に係る閉動作駆動入力信号と前記遅延回路への起点入力信号として用い、かつまた前記遅延回路からの出力信号を前記電磁弁に送出して通電解除に係る開動作駆動入力信号として用いて、前記心電波形の検出に対応する所定時間幅で前記電磁弁の通電維持に基づく閉動作維持と通電解除に基づく閉動作解除(開動作駆動に同じ)に係る制御出力を繰り返すものであり、
前記所定時間幅が前記遅延回路の設定遅延時間であって、前記閾値に達した心電R波形のピークを起点とし、心電T波形の発生初期を終点とする時間差をタイミング設定したものであり、
前記電磁弁により前記ピローを圧閉又は開放操作して拍動流と脈圧の発生を相乗するようにしたことを特徴とするものである。
In the above blood circulation system or the pulsatile auxiliary circulation system,
Based on the measurement of the electrocardiogram waveform and / or pressure waveform, by periodically operating the blockage and opening of the vascular line to generate pulsatile flow synchronized with the systole and diastole of the patient's self-beat A pulsatile flow generation control device for enforcing or promoting assisted circulation treatment,
A pillow that is provided in the delivery line of the artificial lung in the delivery line, partially expands the diameter of the pipeline section, and temporarily stores blood;
An electromagnetic valve provided opposite to the pillow and capable of opening and closing the blood-feeding passage by performing a pressure closing or opening operation of the pillow;
Control means for performing a control output related to the opening and closing operation of the solenoid valve;
A biological signal monitoring device connected to the control means, capable of measuring a biological signal including at least an electrocardiogram waveform and / or a pressure waveform and capable of outputting an image display ;
The control means includes an electrocardiographic waveform amplification circuit, a waveform shaping circuit, a delay circuit, an electromagnetic valve current switching control circuit, and an electromagnetic valve switch, amplifies the electrocardiographic waveform collected from the patient, and thresholds by waveform shaping processing In synchronization with detection of the peak of the electrocardiogram R waveform (same as the trigger waveform) that has reached 1, signals are sent to the solenoid valve and the delay circuit, respectively, and the closing operation drive input signal and the delay related to the start of energization of the solenoid valve A predetermined time corresponding to the detection of the electrocardiogram waveform, used as a starting point input signal to the circuit, and also used as an opening operation drive input signal related to deenergization by sending the output signal from the delay circuit to the solenoid valve The control output related to the closing operation release based on the energization maintenance of the solenoid valve and the closing operation release based on the energization release (same as the opening operation drive) is repeated in the width,
The predetermined time width is a set delay time of the delay circuit, and a timing is set for a time difference starting from the peak of the electrocardiogram R waveform that has reached the threshold and starting from the initial generation of the electrocardiogram T waveform. ,
The pillow is closed or opened by the electromagnetic valve to synergize the generation of pulsatile flow and pulse pressure.

また、上記血液循環システム又は上記拍動型補助循環システムにおいて、
送血管路で人工肺の送出側の管路中に設けられ、管路断面を部分的に拡径し、かつ、血液を一時貯留するピローと;前記ピローに対向して設けられ、該ピローを圧閉又は開放操作して送血管路の開閉が可能な電磁弁と;該電磁弁の開閉動作に係る制御出力をおこなうために心電波形の増幅回路、波形整形回路、遅延回路、電磁弁電流開閉制御回路及び電磁弁開閉器を有した制御手段と;該制御手段に接続され少なくとも心電波形および/または圧波形を含む生体信号を計測可能で画像表示出力可能な生体信号監視装置を具備して装置系を構成し、前記生体信号の計測に基づき、送血管路の遮断と開放を周期的に操作して、患者の自己拍動における収縮期及び拡張期に同期した拍動流を発生させることにより、心疾患治療を施行又は推進するようにした拍動流発生制御方法であって、
患者から採取した心電波形を増幅し、波形整形処理により閾値に達した心電R波形(トリガ波形に同じ)のピーク検出に同期して前記電磁弁への通電開始に係る閉動作駆動入力信号と前記遅延回路への起点入力信号としてそれぞれ信号送出し、
かつまた前記遅延回路からの出力信号を前記電磁弁への通電解除に係る閉動作解除信号として送出する制御出力をおこない、
前記電磁弁への通電開始に基づき閉動作駆動し、かつ、前記心電波形の検出に対応する所定時間幅(設定遅延時間に同じ)で通電維持に基づき閉動作維持し、前記電磁弁への通電解除に基づき閉動作解除(開動作駆動に同じ)する開閉動作を繰り返し、
前記電磁弁により前記ピローを圧閉又は開放操作して拍動流と脈圧の発生を相乗するようにしたことを特徴とするものである。
In the blood circulation system or the pulsation type auxiliary circulation system,
A pillow that is provided in a pipeline on the delivery side of the artificial lung in the blood-feeding channel, partially expands the cross-section of the pipeline, and temporarily stores blood; provided opposite to the pillow, An electromagnetic valve capable of opening and closing the blood-feeding vessel path by a pressure closing or opening operation; an electrocardiographic waveform amplification circuit, a waveform shaping circuit, a delay circuit, and an electromagnetic valve current for performing a control output related to the opening and closing operation of the electromagnetic valve A control means having an open / close control circuit and a solenoid valve switch; and a biological signal monitoring device connected to the control means and capable of measuring a biological signal including at least an electrocardiogram waveform and / or a pressure waveform and capable of displaying an image. The device system is configured, and based on the measurement of the biological signal, the vascular flow is blocked and opened periodically to generate pulsatile flow synchronized with the systole and diastole of the patient's self-pulsation. To implement or promote heart disease treatment A pulsatile flow generation control method in,
A closed operation drive input signal related to the start of energization of the solenoid valve in synchronism with the peak detection of the electrocardiogram R waveform (same as the trigger waveform) that has amplified the electrocardiogram waveform collected from the patient and reached the threshold by the waveform shaping process And sending signals as starting point input signals to the delay circuit,
And also performs a control output to send the output signal from the delay circuit as a closing operation release signal related to the release of energization to the solenoid valve,
A closing operation is driven based on the start of energization of the solenoid valve, and the closing operation is maintained based on the energization maintenance for a predetermined time width (same as the set delay time) corresponding to the detection of the electrocardiogram waveform. Based on the energization cancellation, repeat the opening / closing operation to release the closing operation (same as the opening operation drive)
The pillow is closed or opened by the electromagnetic valve to synergize the generation of pulsatile flow and pulse pressure.

本発明によれば、重篤な心機能低下に至った患者に対しても生理的な拍動流を提供することが可能となり補助循環効果を増大させることができる。   According to the present invention, it is possible to provide a physiological pulsatile flow even to a patient who has suffered severe cardiac function deterioration, and the auxiliary circulation effect can be increased.

具体的には、心機能低下の状態に陥った患者に対して行われる補助循環治療において生体に拍動流を提供することにより拡張期冠血流増大機能を維持し冠状動脈の血流を増大させる。しかも、心拡張期の選択的補助循環が可能となり、結果的に自己心の拡張気圧Pに対してP+ΔPの昇圧効果が期待できるので、その二次的作用によって冠状動脈の血流量増加ならびに心機能の回復を望むことができる。このため、持続的に行われる補助循環治療において、心臓に後負荷を与えることなく心機能の回復を目的とした治療効果を上昇させることができる。   Specifically, pulsatile flow is provided to the living body in the assisted circulation treatment performed for patients who have fallen into cardiac function, thereby maintaining the diastolic coronary blood flow increasing function and increasing coronary blood flow. Let In addition, selective assisted circulation in the diastole is possible, and as a result, a pressure-boosting effect of P + ΔP can be expected with respect to the diastolic pressure P of the self-heart, so that the secondary action increases coronary blood flow and cardiac function. You can hope for recovery. For this reason, in the auxiliary circulatory treatment performed continuously, the therapeutic effect aiming at recovery of cardiac function can be increased without giving an afterload to the heart.

本発明を実施するための最良形態は、上記構成の拍動流発生制御装置において、脈圧が20〜50mmHgである。 The best mode for carrying out the present invention is a pulsating flow generation control device having the above configuration, wherein the pulsating pressure is 20 to 50 mmHg.

また、上記構成の拍動流発生制御方法において、所定時間幅が遅延回路の設定遅延時間であって、閾値に達した心電R波形のピークを起点とし、心電T波形の発生初期を終点とする時間差をタイミング設定するものであり、脈圧が20〜50mmHgである。 In the pulsatile flow generation control method configured as described above, the predetermined time width is the set delay time of the delay circuit, the peak of the electrocardiogram R waveform reaching the threshold is set as the starting point, and the initial generation of the electrocardiogram T waveform is set as the end point The time difference is set as a timing, and the pulse pressure is 20 to 50 mmHg.

図1に本発明の拍動流発生制御装置を包含する拍動型補助循環システムの構成概要説明図を示し、その実施形態を具体的に説明する。 FIG. 1 shows a schematic diagram for explaining the configuration of a pulsating type auxiliary circulation system including a pulsatile flow generation control device of the present invention, and an embodiment thereof will be specifically described.

図示するように、拍動型補助循環システムXは、患者の心機能が著しく低下した場合に、その機能を代行し生命を維持するとともに心機能の回復を図るものである。   As shown in the figure, when the cardiac function of a patient is significantly reduced, the pulsation type auxiliary circulation system X substitutes the function to maintain life and to restore the cardiac function.

手順としては、患者の静脈に留置された脱血管に脱血チューブ2(静脈血送血管に同じ)を接続させて脱血管路を構成し、かつ、患者の動脈に留置された送血管に送血チューブ8(動脈血送血管に同じ)を接続させて送血管路を構成する。   As a procedure, a blood removal tube 2 (same as a venous blood feeding blood vessel) is connected to a blood removal vessel placed in the patient's vein to form a blood removal route, and the blood is sent to the blood feeding vessel placed in the patient's artery. A blood supply path is configured by connecting blood tubes 8 (same as arterial blood supply blood vessels).

遠心ポンプ3の回転により脱血チューブ2〔脱血管路〕に陰圧が生じ患者の静脈血を遠心ポンプ3まで誘導する。そこで陽圧となった静脈血は人工肺5に送られ酸素化され動脈血となり送血チューブ8〔送血管路〕を通り患者へ供給される。   By the rotation of the centrifugal pump 3, negative pressure is generated in the blood removal tube 2 [blood removal path], and the patient's venous blood is guided to the centrifugal pump 3. Therefore, the venous blood that has become positive pressure is sent to the artificial lung 5 and is oxygenated to become arterial blood, which is supplied to the patient through the blood feeding tube 8 (blood feeding channel).

この一連の過程において拍動流を発生させるために送血チューブ8〔送血管路〕に小型の電磁弁7を装着し、該送血チューブ8(弾性送血管6を含む)に対し圧閉と開放を繰り返すことにより拍動流を患者に提供する。   In order to generate a pulsating flow in this series of processes, a small electromagnetic valve 7 is attached to the blood supply tube 8 [blood supply line], and the blood supply tube 8 (including the elastic blood supply line 6) is closed. Provide pulsatile flow to the patient by repeated opening.

電磁弁7の駆動の選択は、固定回数仕様(主に緊急時に使用:患者の心電波形の取り込みができない場合)ならびに同期仕様がある。   Selection of the drive of the solenoid valve 7 includes a fixed number of times specification (mainly used in an emergency: when a patient's electrocardiogram waveform cannot be captured) and a synchronous specification.

至適には、同期仕様であって、拡張期冠血流増大機能が心臓の拡張期に働くことから心電波形上のT波の初期に電磁弁7による送血チューブ8〔送血管路〕の開放が行われるものである。   Optimally, it is a synchronous specification, and since the diastolic coronary blood flow increasing function works in the diastole of the heart, the blood feeding tube 8 [blood feeding channel] by the electromagnetic valve 7 at the beginning of the T wave on the electrocardiogram waveform. Is to be released.

そのために、心電計13より患者の心電波形を取り込みR波を検知し、デレイタイマー(遅延回路に同じ)を用いて電磁弁の駆動を自己拍動の収縮期及び拡張期に合わせる(同期させる)ように機能構成している。   For this purpose, the patient's electrocardiogram is acquired from the electrocardiograph 13 and the R wave is detected, and the delay valve (same as the delay circuit) is used to adjust the drive of the solenoid valve to the systolic and diastolic phases of self-pulsation (synchronized) Function).

ここで、図2に制御装置の操作系を示すとおり、拡張期冠血流増大機能の効果を発揮させるために、コントロールボックス〔制御装置11〕内には駆動開始スイッチ110 と、心電波形の増幅率を可変調整するための増幅率調節操作手段111 、患者の脈拍数(心拍数)に電磁弁7の駆動回数を合せることを目的としたR波感度調節操作手段112 と、心電波形上のT波の初期に電磁弁7を開動作させ送血チューブ8〔送血管路〕を開放状態にするためのT波遅延調節操作手段113 を設けている。   Here, as shown in the operation system of the control device in FIG. 2, in order to exert the effect of the function of increasing the diastolic coronary blood flow, a drive start switch 110 and an electrocardiogram waveform are provided in the control box [control device 11]. Amplification rate adjustment operation means 111 for variably adjusting the amplification rate, an R wave sensitivity adjustment operation means 112 for adjusting the number of times the electromagnetic valve 7 is driven to the patient's pulse rate (heart rate), T-wave delay adjusting operation means 113 is provided for opening the electromagnetic valve 7 at the initial stage of the T-wave to open the blood-feeding tube 8 [blood-feeding channel].

体外循環用の脱血チューブ2及び送血チューブ8(弾性送血管6を含む)は弾性管であって、閉塞や屈曲を防止する目的で比較的高い弾性を有する樹脂製素材、好適には塩化ビニールを用いている。電磁弁7により圧閉されてもスイッチが切れると、その弾性によりすぐに開放状態を復元することができるからである。   The extracorporeal blood removal tube 2 and blood supply tube 8 (including the elastic blood supply tube 6) are elastic tubes and are made of a resin material having a relatively high elasticity for the purpose of preventing obstruction and bending, preferably chloride. Vinyl is used. This is because even if the solenoid valve 7 is closed by pressure, if the switch is turned off, the open state can be restored immediately due to its elasticity.

すなわち、電磁弁7による圧閉とチューブの持つ弾性による開放が連続的に生じ、定常流下で行われている補助循環に対しても生理的な拍動流を提供することを可能とするからである。   That is, the pressure closing by the electromagnetic valve 7 and the opening by the elasticity of the tube are continuously generated, and it is possible to provide a physiological pulsating flow even for the auxiliary circulation performed under the steady flow. is there.

次に、ディレイタイマー(遅延回路に同じ)の設定について説明する。   Next, the setting of the delay timer (same as the delay circuit) will be described.

生理的な循環動態下において、心臓の栄養血管である冠状動脈の血流は、心臓の収縮期に押し流されるのではなく、主に拡張期の陰圧作用によって冠状動脈に引き込まれる形態をとる。   Under physiological circulatory dynamics, the blood flow of the coronary artery, which is the heart's nutritional blood vessel, is not pushed away during the systole of the heart, but rather is drawn into the coronary artery by negative pressure action during the diastole.

従って、心機能の低下した状態では十分な拍動が生ぜずこの拡張期冠血流増大機能が効果的に作用しない場合がある。言い換えれば、心臓の拡張期に選択的に補助循環による血流が提供できれば、拡張期の血圧は上昇しその結果として、冠動脈の血流量は増加し心機能の回復に有効な手段となる。   Therefore, in a state where the cardiac function is lowered, sufficient pulsation does not occur, and this diastolic coronary blood flow increasing function may not work effectively. In other words, if blood flow by the auxiliary circulation can be selectively provided during the diastole of the heart, the blood pressure in the diastole increases, and as a result, the blood flow in the coronary artery increases, which is an effective means for restoring cardiac function.

そこで、患者の拡張期に電磁弁7の開放ポイントを合わせるために、患者の心電波形からR波を検出し、T波遅延調節手段113 を用いて患者の拡張期を示すT波の初期に電磁弁7が開放するように設定する。   Therefore, in order to adjust the opening point of the solenoid valve 7 to the patient's diastole, the R wave is detected from the patient's electrocardiogram waveform, and the T wave delay adjusting means 113 is used at the beginning of the T wave indicating the patient's diastole. It sets so that the solenoid valve 7 may open | release.

作用を要約すると、補助循環施行時、磁力伝達方式により遠心ポンプ3が回転する。回転により脱血チューブ2〔脱血管路〕側には陰圧が生じ患者の静脈血を導く。静脈血は脱血チューブ2〔脱血管路〕を介して遠心ポンプ3まで引かれ、ここで陽圧に変化し人工肺5へ送られる。   In summary, when the auxiliary circulation is performed, the centrifugal pump 3 is rotated by the magnetic force transmission method. By rotation, negative pressure is generated on the blood removal tube 2 [blood removal path] side, and the venous blood of the patient is guided. The venous blood is drawn to the centrifugal pump 3 through the blood removal tube 2 (blood removal passage), where it changes to positive pressure and is sent to the oxygenator 5.

人工肺5により酸素化された血液は動脈血となり送血チューブ8〔送血管路〕を通り患者の動脈へ送られる。しかし、遠心ポンプ3は定常流を発生させる装置であって、生理的な生体の拍動流を提供することはできないものである。   The blood oxygenated by the artificial lung 5 becomes arterial blood and is sent to the patient's artery through the blood feeding tube 8 [blood feeding channel]. However, the centrifugal pump 3 is a device that generates a steady flow and cannot provide a physiological pulsatile flow.

そこで、送血側に簡易型電磁弁7を装着し、送血チューブ8〔送血管路〕に対し機械的な圧閉と開放を連続的に与えることにより生体に拍動流を与える。   Therefore, a simple electromagnetic valve 7 is attached to the blood supply side, and mechanical clotting and opening are continuously applied to the blood supply tube 8 [blood supply channel] to give a pulsatile flow to the living body.

電磁弁7はコントロールボックス11で制御され患者の脈拍数(心拍数に心拍数に同じ)に応じて開閉する。   The electromagnetic valve 7 is controlled by a control box 11 and opens and closes according to the patient's pulse rate (same as the heart rate).

至適には、補助循環治療を効果的にするために、患者の心電波形を計測可能であるならばモニターからR波を探知し、心臓の拡張期を示すT波の初期に電磁弁7が開放するように、電磁弁7の圧閉・開放時刻を調節するものとする。   Optimally, in order to make the auxiliary circulatory therapy effective, if the electrocardiogram waveform of the patient can be measured, the R wave is detected from the monitor, and the electromagnetic valve 7 is detected at the beginning of the T wave indicating the diastole of the heart. It is assumed that the pressure closing / opening time of the solenoid valve 7 is adjusted so that the valve opens.

本発明の一実施例である拍動流発生制御装置〔以下、実施例装置。〕について、図面を参照して以下説明する。 The pulsating flow generation control device [hereinafter referred to as Example device Y 1] which is an embodiment of the present invention. ] Will be described below with reference to the drawings.

図3は、実施例装置の構成概要説明図である。   FIG. 3 is a schematic diagram for explaining the configuration of the embodiment apparatus.

図4は、実施例装置の制御手段(手順)を示すフローシート(フローチャート)である   FIG. 4 is a flow sheet (flow chart) showing the control means (procedure) of the embodiment apparatus.

図5は、実施例装置における心電波形と電磁弁開閉動作の時間関係を示すタイムチャートである。   FIG. 5 is a time chart showing the time relationship between the electrocardiogram waveform and the solenoid valve opening / closing operation in the example device.

図示するように、実施例装置は、送血管路8で人工肺5の送出側の管路中に設けられ、管路断面を部分的に拡径し、かつ、血液を一時貯留するピロー(段落0069及び図8参照、以下同じ。)と、
ピローに対向して設けられ、該ピローを圧閉又は開放操作して送血管路の開閉が可能な電磁弁7と、
電磁弁7の開閉に係る制御出力をおこなう制御手段11と、
制御手段11に接続され、少なくとも心電波形及び圧波形を含む生体信号を計測表示可能な生体信号監視装置13(図示では心電波形計測装置)を具備し、
制御手段11が少なくとも遅延回路16を介し、所定時間幅24で電磁弁7を開閉動作駆動(閉動作維持と閉動作解除)することにより、ピローを圧閉又は開放操作して送血を周期的に断続するための制御出力をおこなうようにしている。
As shown in the drawing, the embodiment device Y is provided in a pipeline on the delivery side of the artificial lung 5 in the blood supply channel 8, partially expands the diameter of the pipeline cross section, and temporarily stores blood ( Paragraph 0069 and FIG. 8, the same shall apply hereinafter)
An electromagnetic valve 7 provided opposite to the pillow, and capable of opening and closing the blood-feeding passage by performing a pressure closing or opening operation of the pillow;
Control means 11 for performing a control output related to opening and closing of the electromagnetic valve 7;
A biological signal monitoring device 13 connected to the control means 11 and capable of measuring and displaying a biological signal including at least an electrocardiographic waveform and a pressure waveform (an electrocardiographic waveform measuring device in the figure);
The control means 11 drives the solenoid valve 7 to open / close at a predetermined time width 24 through at least the delay circuit 16 (maintenance of the closing operation and release of the closing operation) , and the pillow is closed or opened to periodically send blood. The control output for intermittent connection is performed.

ここで、制御手段11は、心電波形の増幅回路14、波形整形回路15〔R波検出回路及びトリガ発生回路を含む〕、遅延回路16、電磁弁電流開閉制御回路17及び電磁弁開閉器18を有し、患者から採取した心電波形を増幅し、波形整形処理により閾値に達した心電R波形21(トリガ波形に同じ)のピーク22検出に同期して電磁弁7と遅延回路16へそれぞれ信号送出し、電磁弁7への通電開始に係る閉動作駆動入力信号と遅延回路16への起点入力信号として用い、かつまた遅延回路16からの出力信号を電磁弁7に送出して通電解除に係る開動作駆動入力信号として用いて、心電波形20の検出に対応する所定時間幅24で電磁弁7の通電維持に基づく閉動作維持と通電解除に基づく閉動作解除(開動作駆動に同じ)に係る制御出力を繰り返すものである。 Here, the control means 11 includes an electrocardiographic waveform amplification circuit 14, a waveform shaping circuit 15 (including an R wave detection circuit and a trigger generation circuit), a delay circuit 16, a solenoid valve current switching control circuit 17, and a solenoid valve switch 18. The electrocardiogram waveform collected from the patient is amplified, and synchronized with the detection of the peak 22 of the electrocardiogram R waveform 21 (same as the trigger waveform) that has reached the threshold by the waveform shaping process, to the solenoid valve 7 and the delay circuit 16 Each signal is sent and used as a closing operation drive input signal for starting energization to the solenoid valve 7 and a starting point input signal to the delay circuit 16, and an output signal from the delay circuit 16 is sent to the solenoid valve 7 to release the energization. Used as an open operation drive input signal according to the above, the closed operation maintenance based on the energization maintenance of the electromagnetic valve 7 and the close operation release based on the energization release (same as the open operation drive) in a predetermined time width 24 corresponding to the detection of the electrocardiogram waveform 20 ) Is repeated.

所定時間幅24は、遅延回路16の設定遅延時間ΔTであって、閾値に達した心電R波形21のピーク22を起点とし、心電T波形の発生初期を終点とする時間差をタイミング設定したものであり、電磁弁7によりピローを圧閉又は開放操作して拍動流と脈圧の発生を相乗するようにしている。ここで、タイミング設定(ΔT)は、大動脈拡張時の特性波形である圧波形のダイクロティックノッチ〔図示省略〕を監視しながら調節可能としている。 The predetermined time width 24 is the set delay time ΔT of the delay circuit 16, and the timing is set to the time difference starting from the peak 22 of the electrocardiogram R waveform 21 that has reached the threshold and ending at the initial generation of the electrocardiogram T waveform. The pillow is closed or opened by the electromagnetic valve 7 to synergize the generation of the pulsating flow and the pulsating pressure. Here, the timing setting (ΔT) can be adjusted while monitoring a dichroic notch (not shown) of the pressure waveform, which is a characteristic waveform during aortic dilatation.

具体的構成を詳説すると、図3に示すとおり、患者Hの右大腿静脈から挿入された脱血管1の先端を大静脈洞又は右心房10に置き、血液を静脈送血管2を通して遠心ポンプ3に導く。遠心ポンプ3へ導かれた血液は、血液が接する回転体の回転により遠心力を受け、連結管4を通り、人工肺5に導かれる。人工肺5で酸素が付加された血液は弾性送血管6に送られ電磁弁7の弁開閉口を通り、動脈血送血管8を経て患者の左大腿動脈9に戻される。電磁弁7の開閉は拍動流発生制御手段11により制御される。心電波形測定電極12a,12b,12cで得られた心電波形(20)は心電波形計測装置13に送られた後、その信号はモニター画面に心電波形(20)を描画すると同時に拍動流発生制御手段11にも送られる。拍動流発生制御手段11では心電波形(20)から心室収縮期信号であるR波22(21)を検出し、その検出した時刻から心室収縮期間に相当する時間ΔTの間、電磁弁7を閉じることにより動脈血送血管8を通した送血を止める。ΔTの期間が過ぎると、電磁弁7は開き動脈血送血管8を通して再び送血を始める。この電磁弁7の開閉によって送血されている時間はちょうど心室の拡張期にあたり、拡張期冠血流増強効果が期待できる。   A specific configuration will be described in detail. As shown in FIG. 3, the distal end of the blood removal vessel 1 inserted from the right femoral vein of the patient H is placed in the vena cava or the right atrium 10, and blood is supplied to the centrifugal pump 3 through the venous blood supply tube 2. Lead. The blood guided to the centrifugal pump 3 receives a centrifugal force due to the rotation of the rotating body in contact with the blood, passes through the connecting tube 4 and is guided to the artificial lung 5. The blood to which oxygen is added by the artificial lung 5 is sent to the elastic blood feeding tube 6, passes through the valve opening / closing port of the electromagnetic valve 7, and returns to the patient's left femoral artery 9 through the arterial blood feeding blood vessel 8. Opening and closing of the electromagnetic valve 7 is controlled by the pulsating flow generation control means 11. After the electrocardiogram waveform (20) obtained by the electrocardiogram waveform measuring electrodes 12a, 12b, and 12c is sent to the electrocardiogram waveform measuring device 13, the signal is drawn simultaneously with the drawing of the electrocardiogram waveform (20) on the monitor screen. It is also sent to the dynamic flow generation control means 11. The pulsatile flow generation control means 11 detects an R wave 22 (21) which is a ventricular systole signal from the electrocardiographic waveform (20), and the electromagnetic valve 7 for a time ΔT corresponding to the ventricular contraction period from the detected time. Is closed to stop blood feeding through the arterial blood feeding blood vessel 8. When the period of ΔT has passed, the solenoid valve 7 opens and starts blood feeding again through the arterial blood feeding blood vessel 8. The time during which blood is sent by opening and closing the electromagnetic valve 7 is just in the diastole of the ventricle, and an effect of enhancing the diastole coronary blood flow can be expected.

図4及び図5に示すとおり、拡張期冠血流増強効果を発揮するためには、R波22に始まりT波の始まりの直前までの心室収縮期には拍動流発生制御手段11を介した血流を止め、収縮期の終了とともにこの血流を拍動流発生制御手段11を通して送る。そのため、心電波形20を適当な電圧に増幅する増幅器14に心電波形計測装置13からの信号を入力し増幅する。この増幅器14の出力信号(20)からR波22(21)を検出するため、波形整形回路15へ増幅された信号20を入力する。心電波形信号20にR波閾値21を適当に設定することによりR波22の開始時期を決定しその時刻を起点とするR波22の時間幅に相当するトリガ波形23を発生する。このトリガ波形23を開始時期として遅延回路16では時間幅可変のΔT24のパルス信号(25)を出力する。この遅延回路16からのパルス信号(25)の時間幅ΔT24は、電磁弁電流開閉制御回路17に入力される。電磁弁電流開閉制御回路17はこのΔT24の期間、電磁弁遮断器18に電流を通すことによって電磁弁7を閉じる。電磁弁7が閉じると、血液が流れる弾性送血管6が圧閉され血流はΔT24の期間遮断する。ΔT24の期間は心筋収縮期であり、この期間が終わると電磁弁7は開き、弾性送血管6を通して血液は再び流れる。この血流が送られる期間が心室拡張期となる。この動作を繰り返すことにより拡張期冠血流増強効果が発揮される。なお、図5中に示した符号24の「ΔT(電磁弁電流導通時間幅;設定遅延時間)」と符号25の「電磁弁への電流導通時間(パルス信号)」は、互換的に理解されたい。   As shown in FIGS. 4 and 5, in order to exert the effect of enhancing the diastolic coronary blood flow, the pulsatile flow generation control means 11 is used during the ventricular systole beginning with the R wave 22 and immediately before the start of the T wave. The blood flow is stopped, and this blood flow is sent through the pulsatile flow generation control means 11 at the end of the systole. Therefore, the signal from the electrocardiogram waveform measuring device 13 is input to the amplifier 14 that amplifies the electrocardiogram waveform 20 to an appropriate voltage and amplified. In order to detect the R wave 22 (21) from the output signal (20) of the amplifier 14, the amplified signal 20 is input to the waveform shaping circuit 15. By appropriately setting the R wave threshold value 21 in the electrocardiogram waveform signal 20, the start time of the R wave 22 is determined, and a trigger waveform 23 corresponding to the time width of the R wave 22 starting from that time is generated. With this trigger waveform 23 as the start time, the delay circuit 16 outputs a pulse signal (25) of ΔT24 having a variable time width. The time width ΔT24 of the pulse signal (25) from the delay circuit 16 is input to the solenoid valve current switching control circuit 17. The electromagnetic valve current switching control circuit 17 closes the electromagnetic valve 7 by passing a current through the electromagnetic valve circuit breaker 18 during the period of ΔT24. When the electromagnetic valve 7 is closed, the elastic blood-feeding tube 6 through which blood flows is closed and the blood flow is cut off for a period of ΔT24. The period of ΔT24 is the myocardial contraction period. When this period ends, the electromagnetic valve 7 opens and blood flows again through the elastic blood supply tube 6. The period during which this blood flow is sent is the ventricular diastole. By repeating this operation, a diastole coronary blood flow enhancement effect is exhibited. Note that “ΔT (electromagnetic valve current conduction time width; set delay time)” indicated by reference numeral 24 and “current conduction time to the solenoid valve (pulse signal)” indicated by reference numeral 25 shown in FIG. 5 are understood interchangeably. I want.

以下に、動作概略を述べる。   An outline of the operation will be described below.

患者Hの大腿静脈から脱血した血液は脱血管路(1,2)を通って遠心ポンプ3に送られる。遠心ポンプ3では血液に接する回転体の回転により、血液は遠心力を得、その力により人工肺5(酸素付加器)へ送られる。人工肺5で酸素化された血液は弾性送血管6を通じ、電磁弁7開閉口を通り、患者Hの大腿動脈9へ戻される。この際、電磁弁7の開閉、言い換えれば、送血管8の圧閉と開放を通じて送血の停止と導通が生じ、その結果拍動流が得られる。この拍動流を生じさせる時間関係は、心電波形20のR波22の立ち上がりを起点とし心室収縮期終了までの時間ΔT24(25)の間は血流を遮断し、他の期間は送血するような関係である。この拍動流発生を実現するための拍動流発生制御手段11は、心電波形20の増幅回路14、R波検出回路とそのR波22(21)を起点とするトリガ(パルス)発生回路を含む波形整形回路15、トリガ入力を受けてΔTの時間幅24を持つパルスを発生する遅延パルス発生回路16(遅延回路)、その遅延回路16からのパルスを受けて電磁弁7への電流を導通または遮断する電磁弁遮断器18、(及び電磁弁7)からなる。実際には、ΔT(24)のパルス発生期間中(25)には電磁弁7への電流を導通させることにより、電磁弁7を閉じ、よって送血管8を圧閉し血流を遮断する。心拍の1周期のうちΔT24の間だけ血流を遮断し、他の期間は血流を患者の大腿動脈9を通じて送る。この血液を送る期間は、心室の拡張期にあたり、拡張期冠血流増強効果を発揮することができ、患者心筋の回復に寄与する。   The blood removed from the femoral vein of the patient H is sent to the centrifugal pump 3 through the blood removal path (1, 2). In the centrifugal pump 3, the blood obtains a centrifugal force by the rotation of the rotating body in contact with the blood, and is sent to the artificial lung 5 (oxygenator) by the force. The blood oxygenated by the artificial lung 5 passes through the elastic blood supply tube 6, passes through the opening / closing port of the electromagnetic valve 7, and is returned to the femoral artery 9 of the patient H. At this time, the stoppage and conduction of the blood supply occur through the opening and closing of the electromagnetic valve 7, in other words, the pressure closing and opening of the blood supply tube 8, and as a result, a pulsatile flow is obtained. The time relationship for generating this pulsatile flow is that the blood flow is interrupted during the time ΔT24 (25) from the rise of the R wave 22 of the electrocardiogram 20 to the end of the ventricular systole, and blood is sent during the other periods. It is a relationship that The pulsatile flow generation control means 11 for realizing the pulsatile flow generation includes an amplifying circuit 14 for an electrocardiographic waveform 20, an R wave detecting circuit, and a trigger (pulse) generating circuit starting from the R wave 22 (21). A waveform shaping circuit 15 including a delay pulse generation circuit 16 (delay circuit) that receives a trigger input and generates a pulse having a time width 24 of ΔT, and receives a pulse from the delay circuit 16 to generate a current to the solenoid valve 7. It consists of a solenoid valve circuit breaker 18 (and solenoid valve 7) that conducts or shuts off. Actually, during the pulse generation period of ΔT (24) (25), the current to the solenoid valve 7 is turned on to close the solenoid valve 7, thereby closing the blood feed tube 8 and blocking the blood flow. The blood flow is interrupted only during ΔT24 in one cycle of the heartbeat, and the blood flow is sent through the patient's femoral artery 9 during other periods. This period during which blood is supplied corresponds to the diastole of the ventricle and can exert a diastole coronary blood flow enhancement effect, contributing to the recovery of the patient's myocardium.

なお、ここで述べた拍動流は、患者Hの自己心による拍動流に重畳して流れる血液を発生させるものであって、自己心の拡張期にあたる血圧の低下時に付加的に血圧を上げて、冠状動脈への血液流通を促し、もって拡張期冠血流増強効果を発揮させることを目的とし、患者心臓が心疾患のため十分な拡張期血圧が得られない場合に、その効果を発揮し、心臓の回復を促すものである。   The pulsatile flow described here generates blood that is superimposed on the pulsatile flow caused by the self-heart of the patient H, and additionally increases the blood pressure when the blood pressure falls during the diastole of the self-heart. The purpose is to promote blood flow to the coronary arteries, and thereby exert the effect of enhancing the diastolic coronary blood flow, and when the patient's heart cannot obtain sufficient diastolic blood pressure due to heart disease And promotes recovery of the heart.

また、ここで述べた電磁弁7は、電磁弁7を駆動するコイルに電流が流れている間だけ弁が閉じ、電流が流れていない期間は弁には圧力が発生せずしたがって弾性管(弾性送血管6)の復元力によって弁は開放される。弾性管を用いるのはこのような理由による。   Further, the electromagnetic valve 7 described here is closed only while a current flows through a coil that drives the electromagnetic valve 7, and no pressure is generated in the valve during a period when the current is not flowing. The valve is opened by the restoring force of the blood supply tube 6). This is the reason why the elastic tube is used.

図5中の増幅器14は心電波形を増幅する増幅器であって、増幅率は可変である(図2中の増幅率調節操作手段111)。この増幅器は演算増幅器を用いて容易に実現できる。心電波形電圧の大きさには個人差があり、これを調節し以後の処理を容易にするため、この増幅器14を用いて波形整形回路15への入力波形R波22(21)が十分大きくなるよう調節する。   The amplifier 14 in FIG. 5 is an amplifier that amplifies the electrocardiogram waveform, and the amplification factor is variable (amplification factor adjusting operation means 111 in FIG. 2). This amplifier can be easily realized by using an operational amplifier. There are individual differences in the magnitude of the electrocardiogram waveform voltage, and in order to adjust this and facilitate the subsequent processing, the input waveform R wave 22 (21) to the waveform shaping circuit 15 is sufficiently large using this amplifier 14. Adjust so that

波形整形回路15はR波22を検出し、遅延回路16への入力パルスを発生させる回路であって、比較器回路(R波検出回路に同じ)を用いて実現できる。R波22は患者Hによりピーク電圧値が異なるので、効率よくR波22を検出できるよう閾値21は自由に設定できる(図2中のR波感度調節操作手段112)。   The waveform shaping circuit 15 is a circuit that detects the R wave 22 and generates an input pulse to the delay circuit 16, and can be realized by using a comparator circuit (same as the R wave detection circuit). Since the peak voltage value of the R wave 22 varies depending on the patient H, the threshold value 21 can be freely set so that the R wave 22 can be detected efficiently (R wave sensitivity adjusting operation means 112 in FIG. 2).

波形整形回路15から出力された遅延回路16への入力パルスは、遅延回路16を用いて時間幅ΔT24(25)の遅延パルスに変換される(図2中のT波遅延調節操作手段113)。この心臓収縮期間をあらわす時間幅ΔT24(25)は患者Hの心拍周期Tに依存し、また個人差があるため時間幅25を人為的に変えられるようになっている。この遅延回路16を実現する方法は種々考えられるが、たとえばIC素子であるタイマー555を用いて実現できる。   The input pulse to the delay circuit 16 output from the waveform shaping circuit 15 is converted into a delay pulse having a time width ΔT24 (25) by using the delay circuit 16 (T-wave delay adjusting operation means 113 in FIG. 2). The time width ΔT24 (25) representing the cardiac contraction period depends on the heartbeat period T of the patient H, and since there are individual differences, the time width 25 can be artificially changed. Various methods for realizing the delay circuit 16 can be considered. For example, the delay circuit 16 can be realized by using a timer 555 which is an IC element.

電磁弁7の動作には、たとえば15W以上の電力が必要なため、24V直流電源から0.6A以上の電流を電磁弁7に供給しなければならない。このためこの電流の導通と遮断を制御するためリレー素子(電磁弁遮断器18)を利用する。リレー(18)はスイッチの一種であり、リレー(18)の開閉をΔT(24)のパルス(25)が行う。ΔTの時間幅(24)の間リレー(18)は閉じ、リレー(18)が閉じている間、電磁弁7には電流が供給されて、補助血流〔本装置Y(X)を用いて得られる拍動血流〕を供給するチューブ6が圧閉され補助血流を遮断する。   Since the operation of the solenoid valve 7 requires, for example, 15 W or more of electric power, a current of 0.6 A or more must be supplied to the solenoid valve 7 from a 24V DC power supply. For this reason, a relay element (electromagnetic valve circuit breaker 18) is used to control conduction and interruption of the current. The relay (18) is a kind of switch, and the pulse (25) of ΔT (24) opens and closes the relay (18). The relay (18) is closed during the time width (24) of ΔT, and while the relay (18) is closed, current is supplied to the solenoid valve 7 and the auxiliary blood flow [using this device Y (X)]. The tube 6 supplying the obtained pulsatile blood flow is closed to block the auxiliary blood flow.

ΔT(24)のパルス(25)の入力がなくなると、リレー(18)は遮断され電磁弁7への電流は供給をやめ、圧閉されていた動脈血送血管8は開き、補助血液は患者Hの大動脈9へ送り込まれる。この期間が心臓拡張期であり、拡張期冠血流増強効果が発揮される。   When the input of the pulse (25) of ΔT (24) disappears, the relay (18) is cut off, the current to the solenoid valve 7 is stopped, the arterial blood-feeding blood vessel 8 that has been closed is opened, and the auxiliary blood is supplied to the patient H To the aorta 9 This period is the diastole, and the effect of enhancing diastole coronary blood flow is exhibited.

拍動流発生制御手段11には、患者Hの心拍周期や心臓収縮期間さらに心電波形20の変化に応じて、拍動流発生制御手段11の応答が適正になるよう、心電波形20の増幅率、R波検出閾値21、心臓収縮期間ΔT24(25)が適切に設定できるようになっている〔先述のコントロールボックスの操作系111;112;113 に同じ〕。   The pulsatile flow generation control means 11 includes an electrocardiogram waveform 20 so that the response of the pulsatile flow generation control means 11 is appropriate in accordance with changes in the cardiac cycle of the patient H, the cardiac contraction period, and the electrocardiogram waveform 20. The amplification factor, the R wave detection threshold value 21, and the cardiac contraction period ΔT24 (25) can be set appropriately (the same as the operation system 111; 112; 113 of the control box described above).

叙上のとおり、本発明は、心臓治療における補助循環施行時に、機器的手段により生体に対し生理的拍動流を提供するものであり、治療効果の上昇が期待できる点で、斯界への貢献は大である。   As described above, the present invention provides a physiological pulsatile flow to the living body by instrumental means at the time of performing auxiliary circulation in cardiac therapy, and contributes to this field in that an increase in therapeutic effect can be expected. Is great.

また、本発明システム(拍動流発生制御装置を含む)の臨床効果を動物実験により検証した。   In addition, the clinical effect of the system of the present invention (including the pulsatile flow generation control device) was verified by animal experiments.

〔実験目的〕現在、急性期の心機能低下に対する治療方法として経皮的心肺補助法(PCPS)が第一選択として数多く使用されている。しかしながら、通常のPCPSシステムは様々な有意性から遠心ポンプを用いる。さらに、自己心の機能が低下した状態での適応であることから、十分な拍動流が得られず、定常流の状態で補助循環が維持されている場合がある。そこで、本発明構成では、簡易電磁弁を用いた心電図同期可能な拍動流を発生する装置(拍動流発生制御装置に同じ)を開発し、その機能性及び安全性について検証を行ったものである。   [Experimental purpose] At present, the percutaneous cardiopulmonary support (PCPS) is widely used as the first choice as a treatment method for cardiac function deterioration in the acute phase. However, normal PCPS systems use centrifugal pumps because of their various significance. Furthermore, since the adaptation is performed in a state where the function of the self-heart is lowered, there is a case where a sufficient pulsating flow cannot be obtained and the auxiliary circulation is maintained in a steady flow state. Therefore, in the configuration of the present invention, a device that generates a pulsatile flow that can be synchronized with an electrocardiogram using a simple solenoid valve (same as a pulsatile flow generation control device) has been developed, and its functionality and safety have been verified. It is.

〔実験方法〕被験体として白ウサギ(オス; 2.5-3.0kg,n [被験体の数] =3) を使用した。   [Experiment Method] White rabbits (male; 2.5-3.0 kg, n [number of subjects] = 3) were used as subjects.

図6に、この実験での本発明システム(拍動流発生制御装置を含む)の回路構成説明図を示す。図中の英文表記は、それぞれ以下のとおりである。
venous line from the right artrium: 右心房からの脱血(静脈)管路
arterial line to left carotid,A:左総頚動脈への送血(動脈)管路
centrifugal pump:遠心ポンプ
oxygenerator:人工肺
pulsatile generator :拍動流発生装置
control unit:制御装置
EKG monitor :心電計
FIG. 6 shows a circuit configuration explanatory diagram of the system of the present invention (including the pulsatile flow generation control device) in this experiment. The English text in the figure is as follows.
venous line from the right artrium: blood removal from the right atrium (venous)
arterial line to left carotid, A: Blood flow (arterial) to the left common carotid artery
centrifugal pump
oxygenerator: artificial lung
pulsatile generator : Pulsatile flow generator
control unit: Control unit
EKG monitor: electrocardiograph

そこで、各例(被験体)についてそれぞれ12時間の補助循環を行い、心電図の拡張期に同期させて流量制御をおこなった。実験中、CPK−MB分画(クレアチニンホスホキナーゼMB分画)を定期的に測定し心機能評価を行った。図7はCPK−MB値の変化(推移)を示すデータプロットである。   Therefore, for each case (subject), an auxiliary circulation was performed for 12 hours, and the flow rate was controlled in synchronization with the diastole of the electrocardiogram. During the experiment, CPK-MB fraction (creatinine phosphokinase MB fraction) was measured periodically to evaluate cardiac function. FIG. 7 is a data plot showing the change (transition) of the CPK-MB value.

〔実験結果及び考察〕実験終了後、3時間と6時間連続駆動させた部位において、拍動流発生装置の電磁弁による圧閉部位における電子顕微鏡写真を撮影し(添付を省略する)、駆動部位における回路(チューブ)内表面の損傷評価をおこなったところ、損傷はみられず、安全性について問題はないことが確認された。   [Experimental results and discussion] After the experiment was completed, at the part that was driven continuously for 3 hours and 6 hours, an electron micrograph was taken at the part of the pulsating flow generator that was closed by the electromagnetic valve (not shown). As a result of damage evaluation on the inner surface of the circuit (tube), no damage was found and it was confirmed that there was no problem with safety.

実験結果に関し、全例において心電図同期が可能であり拡張期圧の上昇を確認することができた。このことにより、心機能の改善にも有用であることが示唆される。
Regarding the experimental results, ECG synchronization was possible in all cases, and an increase in diastolic pressure could be confirmed. This suggests that it is also useful for improving cardiac function.

さらに、本発明システム(拍動流発生制御装置を含む)の適用範囲は上記実施例1、2に留まらず汎用性がある。例えば、通常の心臓手術に用いられる心筋保護注入法においても心筋保護液供給時に生理的な流体特性である拍動流状態を容易に発生させることができる。   Furthermore, the application range of the system of the present invention (including the pulsatile flow generation control device) is not limited to the first and second embodiments, and is versatile. For example, even in the myocardial protective injection method used in normal cardiac surgery, a pulsatile flow state that is a physiological fluid characteristic can be easily generated when the myocardial protective liquid is supplied.

〔実験目的〕そこで、拍動流発生制御装置を組み込んだ心筋保護実験回路を形成し、拍動流心筋保護の流体特性を検証した。   [Experimental Purpose] Therefore, a myocardial protection experimental circuit incorporating a pulsatile flow generation control device was formed, and the fluid characteristics of pulsatile flow myocardial protection were verified.

〔実験方法〕市販の心筋保護回路に容量2.0mlのピローを装着し、本発明の拍動流発生装置を駆動させ、ピローの前(A) 後(B) で最高圧/最低圧を測定した。流体には市販の心筋保護液(セント・トーマスII液)を使用した。   [Experiment Method] A 2.0 ml pillow is attached to a commercially available myocardial protection circuit, and the pulsatile flow generator of the present invention is driven to measure the maximum pressure / minimum pressure before (A) and after (B) the pillow. did. As the fluid, a commercially available myocardial protective solution (St. Thomas II solution) was used.

図8に、拍動流心筋保護実験回路の構成説明図を示す。図中の英文表記は、それぞれ以下のとおりである。
cardioplegia reserver:貯血槽
roller pump :ローラーポンプ
pillow:ピロー
pulsatile generator :拍動流発生装置
control unit:制御装置
FIG. 8 shows a configuration explanatory diagram of a pulsatile flow myocardial protection experimental circuit. The English text in the figure is as follows.
cardioplegia reserver: blood reservoir
roller pump: roller pump
pillow: pillow
pulsatile generator : Pulsatile flow generator
control unit: Control unit

〔実験結果及び考察〕表1に示す測定結果は、10回の計測血の平均値であり、小数点以下は切捨てとした。なお、表1の(a)は対照データであって定常流(拍動流発生装置OFF)の場合を示すものである。   [Experimental Results and Discussion] The measurement results shown in Table 1 are the average values of 10 times of measured blood, and the numbers after the decimal point are rounded down. In addition, (a) of Table 1 is a reference data and shows the case of steady flow (pulsating flow generator OFF).

Figure 0005557175
Figure 0005557175

表1に示すとおり、ローラーポンプによる通常の心筋保護システムにおいても、20mmHgの脈圧を確認することができた(a)。一方、本発明構成の適用した拍動型心筋保護注入法では、最大で50mmHgの脈圧を発生させることが可能であった(b)。また、駆動中に回路内において気体の発生は見られなかったことから、本発明が心筋保護注入法においても適用可能であることが認められた。   As shown in Table 1, even in a normal myocardial protection system using a roller pump, a pulse pressure of 20 mmHg could be confirmed (a). On the other hand, in the pulsatile myocardial protective injection method to which the configuration of the present invention is applied, it was possible to generate a maximum pulse pressure of 50 mmHg (b). Further, since no gas was generated in the circuit during driving, it was confirmed that the present invention can also be applied to the myocardial protective injection method.

この実験的事実から理解されるように、心筋保護液供給時に本発明手法を適用すれば、心筋保護効果の向上に寄与することが期待できる。   As understood from this experimental fact, if the method of the present invention is applied when supplying the myocardial protective solution, it can be expected to contribute to the improvement of the myocardial protective effect.

本発明は、心機能低下に対して施行される補助循環治療において、心電図に同期させた生理的拍動流を供給することが可能である。   The present invention is capable of supplying a physiological pulsatile flow synchronized with an electrocardiogram in an auxiliary circulatory therapy performed for a decrease in cardiac function.

また、通常の心臓手術時においても、従来的には心停止の状態で可能であった拍動流の供給を、体外循環の循環中を通して可能とするものである。   Further, even during normal cardiac surgery, it is possible to supply pulsatile flow that was conventionally possible in a cardiac arrest state throughout the circulation of the extracorporeal circulation.

さらに、現在定常流で行われている心筋保護法や、胸部大動脈瘤の治療において行われている脳分離体外循環(slective cerebral perfusion )に関しても生理的拍動流を供給することが可能であり、心筋保護や脳保護の観点からも有用である。   Furthermore, it is possible to supply physiological pulsatile flow with respect to myocardial protection currently performed in steady flow and cerebral isolated extracorporeal circulation (slective cerebral perfusion) performed in the treatment of thoracic aortic aneurysms, It is also useful from the viewpoint of myocardial protection and brain protection.

本発明の拍動型補助循環システムの構成概要説明図である。It is a composition outline explanatory view of the pulsation type auxiliary circulation system of the present invention. 同じくコントロールボックス〔制御装置〕の操作系を示す説明図である。It is explanatory drawing which similarly shows the operation system of a control box [control apparatus]. 実施例装置(拍動流発生制御装置)の構成概要説明図である。It is a structure outline explanatory drawing of an Example apparatus (pulsatile flow generation control apparatus). 実施例装置(拍動流発生制御装置)の制御手段(手順)を示すフローシート(フローチャート)である。It is a flow sheet (flowchart) which shows the control means (procedure) of an Example apparatus (pulsatile flow generation control apparatus). 実施例装置(拍動流発生制御装置)における心電波形と電磁弁開閉動作の時間関係を示すタイムチャートである。It is a time chart which shows the time relationship of the electrocardiogram waveform and electromagnetic valve opening / closing operation | movement in an Example apparatus (pulsatile flow generation control apparatus). 実施例2記載の本発明システム(拍動流発生制御装置を含む)の回路構成説明図である。It is circuit structure explanatory drawing of this invention system (including a pulsatile flow generation control apparatus) of Example 2. FIG. 同じく実験結果であるCPK−MB値の変化(推移)を示すデータプロットである。It is a data plot which shows the change (transition) of CPK-MB value which is also an experimental result. 実施例3記載の拍動流心筋保護実験回路を示す構成説明図である。FIG. 10 is a configuration explanatory view showing a pulsatile flow myocardial protection experimental circuit described in Example 3;

1 脱血口つき送血管〔脱血管路〕
2 静脈血送血管〔脱血管路〕
3 遠心ポンプ
4 連結管〔送血管路〕
5 人工肺(酸素付加器)
6 弾性送血管〔送血管路〕
7 電磁弁
8 動脈血送血管〔送血管路〕
9 左大腿動脈
10 大静脈洞又は右心房
11 制御装置(拍動流発生制御手段;制御手段)
110 駆動開始スイッチ
111 増幅率調節操作手段
112 R波感度調節操作手段
113 遅延調節操作手段
12a 心電波形測定電極
12b 心電波形測定電極
12c 心電波形測定電極
13 心電波形計測装置〔生体信号監視装置〕
14 増幅器(増幅回路)
15 波形整形回路
16 遅延回路
17 電磁弁電流開閉制御回路
18 電磁弁遮断器(リレー)
20 心電波形
21 R波検出用閾値(電圧)
22 R波
23 波形整形回路出力波形
24 ΔT(電磁弁電流導通時間幅;設定遅延時間)
25 電磁弁への電流導通時間(パルス信号)
26 電磁弁開閉の時間推移

H 患者
X 拍動型補助循環システム
Y 拍動流発生制御装置〔実施例装置〕
1. Blood-feeding vessel with blood removal port [Devascularization]
2 Venous blood feeding blood vessels [devascularization]
3 Centrifugal pump 4 Connection pipe [feeding line]
5 Artificial lung (oxygenator)
6 Elastic blood vessel
7 Solenoid valve 8 Arterial blood-feeding blood vessel
9 Left femoral artery
10 Cava or right atrium
11 Control device (pulsating flow generation control means; control means)
110 Drive start switch
111 Gain adjustment control
112 R wave sensitivity adjustment operation means
113 Delay adjustment operation means
12a Electrocardiogram measurement electrode
12b Electrocardiogram waveform measurement electrode
12c Electrocardiogram waveform measurement electrode
13 ECG waveform measuring device (biological signal monitoring device)
14 Amplifier (amplifier circuit)
15 Waveform shaping circuit
16 delay circuit
17 Solenoid valve current switching control circuit
18 Solenoid valve circuit breaker (relay)
20 ECG waveform
21 R-wave detection threshold (voltage)
22 R wave
23 Waveform shaping circuit output waveform
24 ΔT (Solenoid valve current conduction time width; set delay time)
25 Current conduction time to solenoid valve (pulse signal)
26 Time evolution of solenoid valve opening and closing

H patient X pulsatile auxiliary circulation system Y pulsatile flow generation control device [Example device]

Claims (4)

心機能が低下した人体(患者に同じ)に外部接続され、脱血管路と送血管路からなる血液循環路と、該血液循環路を補助循環路として使用するため、又は人体と人工肺との間で血液を循環させるための遠心ポンプとを備えた血液循環システムにおいて、
心電波形および/または圧波形の計測に基づき、送血管路の遮断と開放を周期的に操作して、患者の自己拍動における収縮期及び拡張期に同期した拍動流を発生させることにより、補助循環治療を施行又は推進するための拍動流発生制御装置であって、
送血管路で人工肺の送出側の管路中に設けられ、管路断面を部分的に拡径し、かつ、血液を一時貯留するピローと、
前記ピローに対向して設けられ、該ピローを圧閉又は開放操作して送血管路の開閉が可能な電磁弁と、
前記電磁弁の開閉動作に係る制御出力をおこなう制御手段と、
前記制御手段に接続され少なくとも心電波形および/または圧波形を含む生体信号を計測可能で画像表示出力可能な生体信号監視装置を具備し、
前記制御手段が、心電波形の増幅回路、波形整形回路、遅延回路、電磁弁電流開閉制御回路及び電磁弁開閉器を有し、患者から採取した心電波形を増幅し、波形整形処理により閾値に達した心電R波形(トリガ波形に同じ)のピーク検出に同期して前記電磁弁と前記遅延回路へそれぞれ信号送出し、前記電磁弁への通電開始に係る閉動作駆動入力信号と前記遅延回路への起点入力信号として用い、かつまた前記遅延回路からの出力信号を前記電磁弁に送出して通電解除に係る開動作駆動入力信号として用いて、前記心電波形の検出に対応する所定時間幅で前記電磁弁の通電維持に基づく閉動作維持と通電解除に基づく閉動作解除(開動作駆動に同じ)に係る制御出力を繰り返すものであり、
前記所定時間幅が前記遅延回路の設定遅延時間であって、前記閾値に達した心電R波形のピークを起点とし、心電T波形の発生初期を終点とする時間差をタイミング設定したものであり、
前記電磁弁により前記ピローを圧閉又は開放操作して拍動流と脈圧の発生を相乗するようにしたことを特徴とする拍動流発生制御装置。
A blood circuit that is externally connected to the human body (same as the patient) with reduced cardiac function and is composed of a devascularization channel and a blood transmission channel, and the blood circuit is used as an auxiliary circuit, or between the human body and the oxygenator A blood circulation system with a centrifugal pump for circulating blood between them,
Based on the measurement of the electrocardiogram waveform and / or pressure waveform, by periodically operating the blockage and opening of the vascular line to generate pulsatile flow synchronized with the systole and diastole of the patient's self-beat A pulsatile flow generation control device for enforcing or promoting assisted circulation treatment,
A pillow that is provided in the delivery line of the artificial lung in the delivery line, partially expands the diameter of the pipeline section, and temporarily stores blood;
An electromagnetic valve provided opposite to the pillow and capable of opening and closing the blood-feeding passage by performing a pressure closing or opening operation of the pillow;
Control means for performing a control output related to the opening and closing operation of the solenoid valve;
A biological signal monitoring device connected to the control means, capable of measuring a biological signal including at least an electrocardiogram waveform and / or a pressure waveform and capable of outputting an image display ;
The control means includes an electrocardiographic waveform amplification circuit, a waveform shaping circuit, a delay circuit, an electromagnetic valve current switching control circuit, and an electromagnetic valve switch, amplifies the electrocardiographic waveform collected from the patient, and thresholds by waveform shaping processing In synchronization with detection of the peak of the electrocardiogram R waveform (same as the trigger waveform) that has reached 1, signals are sent to the solenoid valve and the delay circuit, respectively, and the closing operation drive input signal and the delay related to the start of energization of the solenoid valve A predetermined time corresponding to the detection of the electrocardiogram waveform, used as a starting point input signal to the circuit, and also used as an opening operation drive input signal related to deenergization by sending the output signal from the delay circuit to the solenoid valve The control output related to the closing operation release based on the energization maintenance of the solenoid valve and the closing operation release based on the energization release (same as the opening operation drive) is repeated in the width,
The predetermined time width is a set delay time of the delay circuit, and a timing is set for a time difference starting from the peak of the electrocardiogram R waveform that has reached the threshold and starting from the initial generation of the electrocardiogram T waveform. ,
A pulsating flow generation control device characterized in that the generation of pulsating flow and pulsating pressure is made synergistic by closing or opening the pillow with the electromagnetic valve.
脈圧が20〜50mmHgである請求項1記載の拍動流発生制御装置。   The pulsatile flow generation control device according to claim 1, wherein the pulsating pressure is 20 to 50 mmHg. 心機能が低下した人体(患者に同じ)に外部接続され、脱血管路と送血管路からなる血液循環路と、該血液循環路を補助循環路として使用するため、又は人体と人工肺との間で血液を循環させるための遠心ポンプとを備えた血液循環システムにおいて、
送血管路で人工肺の送出側の管路中に設けられ、管路断面を部分的に拡径し、かつ、血液を一時貯留するピローと;前記ピローに対向して設けられ、該ピローを圧閉又は開放操作して送血管路の開閉が可能な電磁弁と;該電磁弁の開閉動作に係る制御出力をおこなうために心電波形の増幅回路、波形整形回路、遅延回路、電磁弁電流開閉制御回路及び電磁弁開閉器を有した制御手段と該制御手段に接続され少なくとも心電波形および/または圧波形を含む生体信号を計測可能で画像表示出力可能な生体信号監視装置を具備して装置系を構成し、前記生体信号の計測に基づき、送血管路の遮断と開放を周期的に操作して、患者の自己拍動における収縮期及び拡張期に同期した拍動流を発生させることにより、心疾患治療を施行又は推進するようにした拍動流発生制御方法であって、
患者から採取した心電波形を増幅し、波形整形処理により閾値に達した心電R波形(トリガ波形に同じ)のピーク検出に同期して前記電磁弁への通電開始に係る閉動作駆動入力信号と前記遅延回路への起点入力信号としてそれぞれ信号送出し、
かつまた前記遅延回路からの出力信号を前記電磁弁への通電解除に係る閉動作解除信号として送出する制御出力をおこない、
前記電磁弁への通電開始に基づき閉動作駆動し、かつ、前記心電波形の検出に対応する所定時間幅(設定遅延時間に同じ)で通電維持に基づき閉動作維持し、前記電磁弁への通電解除に基づき閉動作解除(開動作駆動に同じ)する開閉動作を繰り返し、
前記電磁弁により前記ピローを圧閉又は開放操作して拍動流と脈圧の発生を相乗するようにしたことを特徴とする拍動流発生制御方法。
A blood circuit that is externally connected to the human body ( same as the patient) with reduced cardiac function and is composed of a devascularization channel and a blood transmission channel, and the blood circuit is used as an auxiliary circuit, or between the human body and the oxygenator A blood circulation system with a centrifugal pump for circulating blood between them,
A pillow that is provided in a pipeline on the delivery side of the artificial lung in the blood-feeding channel, partially expands the cross-section of the pipeline, and temporarily stores blood; provided opposite to the pillow, An electromagnetic valve capable of opening and closing the blood-feeding vessel path by a pressure closing or opening operation; an electrocardiographic waveform amplification circuit, a waveform shaping circuit, a delay circuit, and an electromagnetic valve current for performing a control output related to the opening and closing operation of the electromagnetic valve and control means having a switching control circuit and the solenoid valve switch; connected to the control means comprises an image display capable of outputting the biological signal monitoring apparatus capable of measuring a bio signal including at least the electrocardiographic waveform and / or pressure waveform The device system is configured, and based on the measurement of the biological signal, the vascular flow is blocked and opened periodically to generate pulsatile flow synchronized with the systole and diastole of the patient's self-pulsation. To implement or promote heart disease treatment A pulsatile flow generation control method in,
A closed operation drive input signal related to the start of energization of the solenoid valve in synchronism with the peak detection of the electrocardiogram R waveform (same as the trigger waveform) that has amplified the electrocardiogram waveform collected from the patient and reached the threshold by the waveform shaping process And sending signals as starting point input signals to the delay circuit,
And also performs a control output to send the output signal from the delay circuit as a closing operation release signal related to the release of energization to the solenoid valve,
A closing operation is driven based on the start of energization of the solenoid valve, and the closing operation is maintained based on the energization maintenance for a predetermined time width (same as the set delay time) corresponding to the detection of the electrocardiogram waveform. Based on the energization cancellation, repeat the opening / closing operation to release the closing operation (same as the opening operation drive)
A pulsatile flow generation control method characterized in that the generation of pulsatile flow and pulsation pressure is made synergistic by closing or opening the pillow with the electromagnetic valve.
所定時間幅が遅延回路の設定遅延時間であって、閾値に達した心電R波形のピークを起点とし、心電T波形の発生初期を終点とする時間差をタイミング設定するものであり、
脈圧が20〜50mmHgである請求項3記載の拍動流発生制御方法。
The predetermined time width is the set delay time of the delay circuit, and the timing is set to the time difference starting from the peak of the electrocardiogram R waveform reaching the threshold and ending at the initial generation of the electrocardiogram T waveform,
The pulsatile flow generation control method according to claim 3, wherein the pulse pressure is 20 to 50 mmHg.
JP2008059331A 2007-03-27 2008-03-10 Pulsating flow generation control device and pulsating flow generation control method Expired - Fee Related JP5557175B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008059331A JP5557175B2 (en) 2007-03-27 2008-03-10 Pulsating flow generation control device and pulsating flow generation control method
US12/079,282 US20080249456A1 (en) 2007-03-27 2008-03-26 Pulsation-type auxiliary circulation system, pulsatile flow generation control device, and pulsatile flow generation control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007082888 2007-03-27
JP2007082888 2007-03-27
JP2008059331A JP5557175B2 (en) 2007-03-27 2008-03-10 Pulsating flow generation control device and pulsating flow generation control method

Publications (2)

Publication Number Publication Date
JP2008264512A JP2008264512A (en) 2008-11-06
JP5557175B2 true JP5557175B2 (en) 2014-07-23

Family

ID=40044836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059331A Expired - Fee Related JP5557175B2 (en) 2007-03-27 2008-03-10 Pulsating flow generation control device and pulsating flow generation control method

Country Status (1)

Country Link
JP (1) JP5557175B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US12121713B2 (en) 2019-09-25 2024-10-22 Shifamed Holdings, Llc Catheter blood pumps and collapsible blood conduits

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105818B1 (en) 2009-11-18 2012-01-17 주식회사 리브라하트 Emergency measure device using blood pump and method for using thereof
KR101259057B1 (en) 2010-11-25 2013-04-29 주식회사 리브라하트 Ventricular assist device having cardiac pacemaker
US8608636B2 (en) 2010-11-12 2013-12-17 Libraheart, Inc.V Ventricular assist device cannula and ventricular assist device including the same
EP2851100A1 (en) * 2013-09-20 2015-03-25 Berlin Heart GmbH Blood pump control system and method for controlling a blood pump
DE102015000771A1 (en) 2015-01-26 2016-07-28 Xenios Ag Arrangement with a suction line, a pressure line and a pump
CN112891730A (en) * 2021-03-22 2021-06-04 曾建新 Implantable electromagnetic pulsation type artificial heart blood pump

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888609B2 (en) * 1990-06-07 1999-05-10 テルモ株式会社 Blood assist circulator
JPH0663124A (en) * 1991-03-19 1994-03-08 Aisin Seiki Co Ltd Artificial heart
JP2847103B2 (en) * 1992-01-30 1999-01-13 日本ゼオン株式会社 Timing setting display for heart assist device
US5916191A (en) * 1996-04-30 1999-06-29 Medtronic, Inc. Pulsatile flow generation in heart-lung machines
US5820579A (en) * 1996-04-30 1998-10-13 Medtronic, Inc. Method and apparatus for creating pulsatile flow in a cardiopulmonary bypass circuit
JPH1076002A (en) * 1996-09-05 1998-03-24 Eisuke Kusaba Multicylinder pulse wave generating pump
JP4052333B2 (en) * 1998-04-13 2008-02-27 株式会社ジェイ・エム・エス Extracorporeal circulation device with control function
JP4051812B2 (en) * 1998-04-13 2008-02-27 株式会社ジェイ・エム・エス Extracorporeal circulation device with control function
JP2002345949A (en) * 2001-05-30 2002-12-03 Mazda Motor Corp Cardinal function supporting device
JP2004097611A (en) * 2002-09-11 2004-04-02 Aisin Seiki Co Ltd Blood pump drive device
JP2007043436A (en) * 2005-08-03 2007-02-15 Nec Saitama Ltd Clock synchronizing apparatus and clock synchronizing method to be used for the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11717670B2 (en) 2017-06-07 2023-08-08 Shifamed Holdings, LLP Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US12076545B2 (en) 2018-02-01 2024-09-03 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US12121713B2 (en) 2019-09-25 2024-10-22 Shifamed Holdings, Llc Catheter blood pumps and collapsible blood conduits

Also Published As

Publication number Publication date
JP2008264512A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5557175B2 (en) Pulsating flow generation control device and pulsating flow generation control method
US6669624B2 (en) Temporary heart-assist system
EP3311859B1 (en) Ventricular assist device control
US20080249456A1 (en) Pulsation-type auxiliary circulation system, pulsatile flow generation control device, and pulsatile flow generation control method
EP4364786A2 (en) Ventricular assist device
JP5250866B2 (en) Artificial heart control device and artificial heart system
US20070208210A1 (en) Method and apparatus to unload a failing heart
US7572217B1 (en) System and method for providing cardiac support and promoting myocardial recovery
US8608636B2 (en) Ventricular assist device cannula and ventricular assist device including the same
US20020173693A1 (en) Single cannula ventricular-assist method and apparatus
US20030176760A1 (en) Physiologically compatible cardiac assist device and method
Amacher et al. Control of ventricular unloading using an electrocardiogram-synchronized Thoratec paracorporeal ventricular assist device
US20220313889A1 (en) Control for Non-Occlusive Blood Pumps
US8016738B2 (en) Methods and apparatus for selecting intra-aortic balloon deflation timing
US20220016410A1 (en) System for Cardiac Assistance, Method for Operating the System and Cardiac Support Method
CN111481763A (en) Pulse type artificial lung extracorporeal circulation manager
de la Rivière et al. Mechanical assistance of the pulmonary circulation after right ventricular exclusion
Mariani et al. Off-pump coronary artery bypass graft surgery with a pulsatile catheter pump for left ventricular dysfunction
Jang et al. Neural Network-Driven Counter-Pulsation in Pulsatile Extracorporeal Membrane Oxygenator (ECMO): Enhancing Real-time Pulse Discrimination and Control Efficiency
JP2011019653A (en) Pulsation flow generation control device and adjustment method for the same
Jang et al. Counter-pulsation Control of a Pulsatile Extracorporeal Membrane Oxygenator Device using Deep Neural Networks for Blood Pressure Waveform Analysis
KR101400454B1 (en) Ventricular assist device
Kitamura et al. Reliable trigger of direct cardiac potential for stable drive control of ventricular assist device
Housman et al. Intra-aortic balloon counterpulsation in the treatment of refractory intra-operative cardiogenic shock
JPS59108559A (en) Roller pump with pulsed blood flow amount automatic seting mechanism

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5557175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees