Nothing Special   »   [go: up one dir, main page]

JP5541540B2 - 複数の可変負荷を駆動するための、定容量ポンプを含む油圧システム及びその動作方法 - Google Patents

複数の可変負荷を駆動するための、定容量ポンプを含む油圧システム及びその動作方法 Download PDF

Info

Publication number
JP5541540B2
JP5541540B2 JP2011504205A JP2011504205A JP5541540B2 JP 5541540 B2 JP5541540 B2 JP 5541540B2 JP 2011504205 A JP2011504205 A JP 2011504205A JP 2011504205 A JP2011504205 A JP 2011504205A JP 5541540 B2 JP5541540 B2 JP 5541540B2
Authority
JP
Japan
Prior art keywords
hydraulic
control valve
pressure
fluid
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011504205A
Other languages
English (en)
Other versions
JP2011517752A (ja
Inventor
ダブリュウーユー,デュキアン
ブレンナー,ポール
フォーチュン,クラーク,ジー.
ジャゴダ,アーロン,エイッチ.
ケス,ジョン,ライアン
ストルツ,トーマス,ジェイ.
モリス,ベンジャミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Corp filed Critical Eaton Corp
Publication of JP2011517752A publication Critical patent/JP2011517752A/ja
Application granted granted Critical
Publication of JP5541540B2 publication Critical patent/JP5541540B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/021Installations or systems with accumulators used for damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/07Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors in distinct sequence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/162Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for giving priority to particular servomotors or users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/41Flow control characterised by the positions of the valve element
    • F15B2211/411Flow control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • F15B2211/427Flow control characterised by the type of actuation electrically or electronically with signal modulation, e.g. using pulse width modulation [PWM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/455Control of flow in the feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • F15B2211/781Control of multiple output members one or more output members having priority

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

本発明は、油圧システム及びその動作方法に関する。
油圧システムは、複数の油圧負荷を含むが、各油圧負荷は一定時間にわたり可変であり、異なるフロー及び圧力要求を持っている。油圧システムは、加圧された液体のフローを油圧負荷に供給するためのポンプを含む。ポンプは、可変容量又は定容量の構造を備える。
定容量ポンプは、通常、可変容量ポンプよりも小さく、軽く、安価である。一般的に言えば、ポンプは、ポンプ動作の各サイクル間に対して一定容積の液体を搬送する。しかし、ポンプの構成と、製造されるポンプが製造される精密さによっては、ポンプの出口側から入口側へにおける内部の漏れに起因してシステム圧力のレベルが増すが、それにつれ、実際上、ポンプのフロー出力は減じる。ポンプの出力容量は、ポンプ速度を調整することで制御可能である。ポンプの出口を閉じるか又は他の手段で制限すると、それに応じてシステム圧力が増加する。油圧システムに過剰な圧力がかかることを回避するために、ポンプは、通常、圧力レギュレータ又は非負荷弁を用いて、ポンプ出力が複数の油圧負荷のフロー要求を超える期間中にシステム内部の圧力レベルを制御する。油圧システムはさらに、加圧流体を複数の負荷に分配を制御するための様々な弁を含む。
図1は、複数の油圧負荷を駆動するための定容量ポンプを含む典型的な油圧システムを概略的に示した図である。 図2は、複数の油圧負荷への加圧流体の分配を制御するために、複数の制御弁によって適用される典型的なデューティサイクルのグラフを描いた図である。 図3は、図2に示された典型的なデューティサイクルを適用するときに起こり得る典型的な流体の流量及び圧力レベルのグラフを描いた図である。 図4は、図2に示された典型的なデューティサイクルを適用するときに起こり得る相対的なポンプ出力の圧力レベルのグラフを描いた図である。 図5は、油圧システムを用いて適用される制御弁の典型的な順序のグラフを描いた図である。 油圧負荷の圧力の要求における変化に適合する図5に示された弁のシーケンス順に対する変化のグラフを描いた図である。 システム圧力上の時間遅延の効果のグラフを描いた図である。 改良発展的なパルス幅制御を履行した典型的グラフを描いた図である。 図9は、連続して動作される3つの制御弁のそれぞれにおいて発生する典型的な圧力降下のグラフを描いた図である。 図10は、図9に表示された対応する圧力降下に基づき演算された時間遅延圧力誤差のグラフを描いた図である。 図11は、一つの制御弁を閉じることと次に後続する制御弁を開けることとの間の過渡期間を描く図9の一部の拡大図である。
以下の議論及び図面をさらに参照し、開示されたシステムや方法への例示的なアプローチが詳細に示されている。図面は実施可能な課題解決手段のいくつかを表すが、図面は必ずしも寸法通りではなく、本発明をより良く示し説明するために、構成要素は、誇張、移動、若しくはその一部が断面状にされている。さらに、本明細書の記載は完全なものを意図するものではなく、図面に示されかつ以下の詳細な説明に開示された簡潔な形態や構造に、特許請求の範囲を限定又は制限するものではない。
図1は、可変フローと可変圧力要求を持つ複数の油圧負荷を組み込みながら、複数の流体用回路を制御する典型的な油圧システム10を概略的に図示する。油圧負荷を駆動するための加圧流体は、油圧式定容量型ポンプ12により供給される。ポンプ12は、様々な公知の定容量型ポンプのいずれかを含む。限られないが、ギアポンプ、ベーンポンプ、軸ピストンポンプ、ラジアルピストンポンプを含む。ポンプ12は、ポンプを駆動するための駆動軸14を含む。駆動軸14は、回転トルクを出力することができる、エンジン、電動モータや、その他の電力源のような外部の電力源に接続される。ポンプ12の入口ポート16は、ポンプ入口通路20を介して流体リザーバ18に流体接続される。ポンプ排出通路22は、ポンプ排出ポート24に流体接続される。一つのポンプ12が、典型的な例示目的で示されているが、油圧システム10は複数のポンプを含み、かつ、各ポンプが、そこから独立した流体用回路からの共通の流体結合点から加圧流体と共に供給可能なように、共通の流体用結合点に流体接続された個々の排出ポートを持つ。複数のポンプは、例えば、より高い流量に達するように並列に流体接続されたり、与えられる流量に対し、より高い圧力が望まれるような場合には、直列に流体接続される。
ポンプ12は、複数の流体負荷(油圧負荷)を選択的に駆動するのに使用可能な加圧流体のフローを発生することができる。例示の目的で、油圧システム10は、より少ない油圧負荷がさらに特殊な応用の要求に応じて具備させることができることは理解されるが、3つの別々の油圧負荷を含むようにして図示されている。実施例を通じ、3つの油圧負荷は、油圧シリンダ26(流体シリンダ)、油圧モータ28(流体モータ)及びその他の油圧負荷30(流体負荷)であり、これらは、油圧駆動の装置の変形例の様々なもののいずれかを含む。勿論、油圧負荷の他の型も、特殊な応用の要求次第では、例示的な油圧負荷26、28及び30のうちの一つ若しくはそれ以上の代わりに、或いは組み合わされて使用される。
各油圧負荷26、28及び30は、別々の流体用回路に関連付けられている。第1の流体用回路32は流体シリンダ26を含み、第2の流体用回路34は流体用モータ28を含み、第3の流体用回路36はその他の流体用負荷30を含む。典型的な図示では、3つの流体用回路は、流体分岐38においてポンプ用排出路22に並列に流体接続されている。
各流体用回路は制御弁を含むが、これはデジタル制御弁として示されており、各流体用回路に関連付けられた油圧負荷の動作を個々に制御するためのものである。制御弁は、各流体用回路を通過する時間平均化された流量、及びそれに対応する圧力レベルを制御することができる。各制御弁はアクチュエータを含み、アクチュエータが駆動されると、各制御弁が開けられ、加圧流体を制御弁からの関連付けられた油圧負荷へ通過させる。時間平均化された流量によるアプローチによれば、流体が制御弁を通過する流量は、一般に公知のパルス幅変調(PWM)の方法を用いながら、制御弁を繰り返し回転する(即ち制御弁を開閉する)ことによって制御される。制御弁は、パルス幅変調を適用する予め設定された時間で十分開けられるか又は十分閉じられるかのいずれかである。制御弁を通る時間平均化された流量及び対応する圧力レベルはまた、弁のデューティサイクルとしても公知である、制御弁の開閉間の時間の期間(タイムピリオド)を調整することにより制御される。例えば、弁が当該時間で約50%開けられたデューティサイクルは、一般に、制御ポンプの瞬時のフロー出力の約50%の時間平均化された流量を供給する。制御弁のフロー出力における固有の変動は、制御弁の動作周波数が増加するにつれて減少する傾向にある。制御弁のフローにおける固有の変動は、負荷に寄与しうる圧力のリップルを生じさせる。アキュムレータは、圧力のリップルが、望まれる応用のために受け入れ可能な小さなサイズで一般に設計される。アキュムレータのサイズを大きくすることは、負荷の圧力の変化に対応するための要求される時間に悪影響を与える。デューティサイクルの動作周波数が増大され、それにより反応時間と圧力リップルの大きさの双方を向上させる一方、必要とされるアキュミュレータのサイズを減少する。周波数を十分高く増加させるならば、負荷のための圧力のリップル要求を満たすための搬送やオイルの適合性を有利に活用することによってアキュミュレータを取り除くことができる。弁の動作速度の限界や、効率を低下させる増加された弁パワー損失は、デューティサイクルの動作周波数が、制限する。
図1を参照しながら以下続ける。油圧システム10は、ポンプ12から第1流体回路32、特に流体シリンダ26への加圧流体の分配を制御するための第1制御弁を含む。制御弁40は、入口通路48を介した流体分路38においてポンプ排出通路22に流体接続された入口ポート46を含む。排出通路52が、制御弁40の排出ポート50に流体接続されている。第1の制御弁40はまた制御信号に反応し、入口ポート46と排出ポート50の間の流路を選択的に開閉するのに動作可能なアクチュエータ42を含む。アクチュエータ42は、制御弁40を開くけれども閉じないように構成され、係る場合には、第2のアクチュエータ43が制御バルブ40を選択的に閉じるために使用できる。アクチュエータ42、43は、様々な構成のいずれかを備えており、限られないが、パイロット弁、ソレノイド、スプリングのような付勢部材を含む。
制御弁40から流体シリンダ26への加圧流体の分配はさらに、流体シリンダ制御弁54により制御でき、この流体シリンダ制御弁54は、排出用通路52を介し制御弁40に流体接続される。流体シリンダ制御弁54は、流体シリンダ26の第1のチャンバ58と第2のチャンバ60の間で、制御弁40からの加圧流体を選択的に分配するように動作する。第1の供給通路62は、第1のチャンバ58を流体シリンダ制御弁54に流体接続し、かつ、第2の共通通路64は、第2のチャンバー60を流体用シリンダ制御弁54に流体接続する。流体シリンダ制御弁54に接続されるリザーバ18へ戻る通路66は、流体シリンダ26から流体リザーバ18に排出される流体を戻すために具備される。
パルス幅変調を使用して制御されるデジタル弁は、連続したフローの出力は創出しないが、むしろ全く流体が排出されない期間に続く弁から流体容量が排出される周期的な出力を創出する。制御弁の周期的な出力を補償しかつ加圧流体のより均一な流れを流体負荷に搬送するためにアキュミュレータ68が具備される。アキュミュレータ68は、弁のデューティサイクルの排出段階の間に制御弁40から排出される加圧流体を蓄積する。制御弁40の周期的な排出を補償しかつ流体の負荷26への加圧流体のより一定化した流れを搬送するために制御弁40が閉じられる期間中、蓄積された加圧流体が放出可能である。
アキュミュレータ68は、様々な構造のいずれも備えることができる。例えば、アキュ
ミュレータ68の一形態は、加圧流体を受取って、蓄積する流体リザーバ69を含む。リザーバ69は、供給/排出通路73を介して流体分岐71で排出通路52に流体接続可能である。アキュミュレータ68は、移動可能なダイアフラム75を含む。アキュミュレータ68の内部のダイアフラム75の位置は、リザーバ69の容積を選択的に変えるように調整可能である。付勢機構79は、リザーバ69の容積を最小化する傾向の方向(すなわち付勢機構79から離れて)にダイアフラム75を付勢する。付勢機構79は、リザーバ69の内部に存在する加圧流体によって発せられる圧力に対向する付勢力を発生する。2つの対向する力が均衡しない場合、ダイアフラム75は、リザーバ69の容積を増加するか又は減少するかのいずれかに変位され、これにより2つの対向する力の間でバランスを保つ。例えば、制御弁40が開かれるときに、流体分岐71における圧力レベルが増す傾向となる。通常、リザーバ69の内部の圧力レベルは流体分岐71における圧力に対応する。リザーバ69の内部の圧力レベルが付勢機構79により発生させられた対向する力を超える場合は、ダイアフラム75は付勢機構79の方へ向かって変位し、その結果、リザーバの容積と、リザーバ69に蓄積可能な流体の量を増加する。リザーバ69が流体で満たされることが連続するにつれ、付勢機構79によって発せられた対向する力と、さらにリザーバ69の内部から発生された対向する圧力とが、略等しい点まで増加する。リザーバ69の容積は、2つの対向する力が均衡するときには略一定に維持される。他方、制御弁40を閉じると、通常、流体分岐71における圧力レベルをリザーバ69の内部の圧力レベル未満に落下させる。これは、ダイアフラム75における圧力が不均衡であることにより、リザーバ69に蓄積された流体を、供給/排出通路73を介して、排出通路52に排出しかつ流体負荷26に搬送させるという事実に関連している。
流体システム10はまた、ポンプ12から、第2の流体用回路34及び特に流体モータ28に、ポンプ12から加圧流体の分配を制御するための第2の制御弁70を含む。制御バルブ70もまた、パルス幅変調を利用しながら前述の態様で動作可能な高周波数用のデジタル弁である。2方向2位置弁として図1に概略的に示されているが、他の弁構造が、特殊な応用例の要求に応じて使用される。制御弁70は、制御弁の入口通路76を介して、流体分岐74においてポンプ排気通路22に流体接続される入口ポート72を含む。制御弁70はまた、制御信号に反応して、入口ポート72と排出ポート78の間の流路を選択的に開閉するために動作可能なアクチュエータ77を含む。アクチュエータ77は制御弁70を開くように構成されるが、制御弁70を閉じることはない。係る場合、第2のアクチュエータ81が制御弁70を選択的に閉じるために使用される。アクチュエータ77、81は様々な構造のうちいずれかを備えており、限られないが、パイロット弁、ソレノイド、スプリングのような付勢部材を含む。
油圧モータ28と流体連通している油圧モータ用供給通路80が、制御弁70の排出ポート78に流体接続される。さらに、油圧流体は、流体分岐83においてリザーバへの戻り通路66に流体接続された排出通路82を介して流体モータ28から排出される。第2のアキュミュレータ84は、アキュミュレータ68について前述の態様とかなり同じ態様で加圧流体を蓄えるために、供給通路80に具備される。第2のアキュミュレータ84は、供給/排出通路87を介して流体分岐85において油圧モータ供給通路80に流体接続可能である。制御弁70から排出された加圧流体は、制御弁70の排出段階中にアキュミュレータ84を満たすのに使用可能である。蓄えられた加圧流体は、制御弁70が流体負荷28に搬送される加圧流体のフローにおける変動を最小化するために閉じられている期間中において放出可能である。
流体システム10はまた、加圧流体をポンプ12から第3の流体用回路36に配給することを制御するための第3の制御弁86を含む。制御弁40、70と同様に、制御弁86もまた、前述のような態様でパルス幅変調を用いて動作可能な高周波用のデジタル弁でよい。2方向2位置弁として図1に概略的に図示されているが、他の弁構造もまた、特殊な応用例の要求に応じて使用できることを理解されたい。制御弁86の入口ポート88は、制御弁の入口通路92を介して流体分岐90でポンプ引き用排出通路22に流体接続されている。制御弁86はまた、制御信号に反応して、入口ポート88と排出ポート96の間の流路を選択的に開閉するために動作可能なアクチュエータ93を含む。アクチュエータ93は、制御弁86を開くけれども閉じないように構成される。係る場合は、第2のアクチュエータ91が、制御弁86を選択的に閉じるように使用される。アクチュエータ91、93は、様々な構成のいずれかを持つことができ、限られないが、ピボット弁、ソレノイド、スプリングのような付勢部材も含む。
流体負荷用供給通路94(油圧負荷用供給通路)は、制御弁86の排出ポート96を流体負荷30に流体接続する。加圧油圧流体は、流体分岐103においてリザーバへの戻り通路66に流体接続された排出通路98を介して流体負荷30から排出される。アキュミュレータ95は、アキュミュレータ68に関する前述の態様とかなり同じ態様で加圧流体を蓄えるために具備される。アキュミュレータ95は、供給/排出通路99を介して、流体
分岐97において油圧負荷供給通路94に流体接続される。制御弁86から排出された加圧流体は、制御弁86の排出段階の間にアキュミュレータ95に使用される。蓄えられた加圧流体は、制御弁86が流体負荷30への加圧流体のフローにおける変動をオフセットするのに役立つように閉じられるとき放出される。
定容量ポンプ12の出口を閉じるか又は他の方法で制限することは、好ましくないレベルに達する流体システム10内の圧力を発生させることができる。ポンプ出力が油圧負荷のフロー要求を超える期間の間において油圧システムに過剰に圧力をかけることを避けるために、バイパス油圧回路101に関連付けられたバイパス制御弁100が備えられている。バイパス制御弁100の入口ポート102は、入口通路106を介して流体分岐104でポンプ排出通路22に流体接続されている。バイパス制御弁100は、流体リザーバ18に、減衰されるポンプ12によって発生される過剰フローを選択的に許可するように動作可能である。バイパス排出通路108は、流体分岐111において、リザーバ戻り通路66及びバイパス制御弁100の排出ポート110に流体接続される。バイパス制御弁100はまた、制御信号に反応して、バイパス弁100の入口ポート102と排出ポート110の間の流路を選択的に開閉するために動作可能なアクチュエータ112を含む。アクチュエータ112は、バイパス制御弁100を開くけれども閉じないように構成されている。係る場合は、第2のアクチュエータ113がバイパス制御弁100を選択的に閉じるように使用される。アクチュエータ112、113は、様々な構成のいずれかを備え、限られないが、パイロット弁、ソレノイド、バネのような付勢部材を含む。
制御器114は、制御弁40、70、86及び100の動作を制御するために備えられる。より一般的には、制御器114は、電子制御ユニット(ECU)に基づくより一般的なシステムの一部を形成してもよく、又は、そのようなECUと動作上コミュニケーション(通信)しているようにしてもよい。制御器114は、例えばとりわけ、マイクロプロセッサ、中央処理装置(CPU)やデジタル制御器を含む。
より具体的には、制御器114やいずれかの関連付けされたECUは、ここで議論されたプロセスの一又はそれ以上を実行するための命令のような一般的にコンピュータが可読可能な媒体上に記憶される命令を実行できる装置の典型例である。コンピュータが実行可能な命令は、Java(登録商標;ジャバ)、C(登録商標;シー)、C++(登録商標;シー
プラスプラス)、Visual Basic(登録商標;ヴィジュアル ベーシック)、Java Script(登録商標;ジャバ スクリプト)、Perl(登録商標;パール)等を単独あるいは併用で含むがこれに限定されず、様々な公知のプログラミング言語及び/又は技術を使用して作成されたコンピュータプログラムからコンパイル又はインタプリタされる。通常は、プロセッサ(例えばマイクロプロセッサ)は、例えばメモリ、コンピュタ読み取り可能な媒体等からの命令を受け取りかつそれらの命令を実行する。その結果、ここに記載されたプロセスの一又はそれ以上を含みながら、一又はそれ以上のプロセスを実行する。このような命令及び他のデータは、様々な公知のコンピュータに読取り可能な媒体を使用して記憶されたり送信されたりする。
コンピュータ読取り可能な媒体(プロセッサ読取り可能な媒体でもよい)は、コンピュータ(例えばコンピュタプロッセサやマイクロ制御器等)によって読まれるデータ(例えば命令)を供給することに寄与する有体物の媒体を含む。このような媒体は多くの形態を採用でき、例えば、限られないが不揮発性メモリや揮発性メモリである。不揮発性メモリは、例えば、光又は磁気ディスク、ROMや他の持続性のあるメモリを含む。揮発性媒体は、例えば、DRAMを含むが、これは典型的には主メモリを構成する。コンピュータ読取り可能な媒体の共通の形態は例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープその他の磁気媒体、CD-ROM、DVDその他の光学媒体、パンチカード、紙テープその他の穴パターンを備えた有体物の媒体、RAM、PROM、EPROM、フラッシュ-EEPROMその他のメモリチップ若しくはカートリッジ、又はコンピュータが読み取ることができるその他の媒体のいかなるものも含む。
伝送媒体は、一つの部品又は装置から他のものに命令を搬送することによって命令処理を容易にする。例えば、伝送媒体は、モバイル装置と遠隔通信用サーバの間の電気通信を容易にする。例えば、伝送媒体は、コンピュータプロセッサと接続されたシステムバスを備える配線も含みつつ、コアキシャルケーブル(同軸ケーブル)、銅線、ファイバ光部材を含み得る。伝送用媒体は、音波、光波、電磁波、無線周波数(RF)、赤外線(IR)データの間に発生されるこれらの波のようなものを含む。
デジタル制御器114が図示されている。第1の制御リンク116が、制御器114と制御弁40のアクチュエータ42を動作可能に接続する。第2の制御リンク117が、制御器114と制御弁40のアクチュエータ43を動作可能に接続する。第3の制御リンク118が、制御器114と制御弁70のアクチュエータ77を動作可能に接続する。第4の制御リンク119が、制御器114と制御弁70のアクチュエータ81を動作可能に接続する。第5の制御リンク120が、制御器114と制御弁86のアクチュエータ93を動作可能に接続する。第6の制御リンク121が、制御器114と制御弁86のアクチュエータ91を動作可能に接続する。第1のバイパス制御リンク122は、制御器114をバイパス制御弁100のアクチュエータ112に動作可能に接続する。第2のバイパス制御リンク123は、制御器114をバイパス制御弁100のアクチュエータ113に動作可能に接続する。制御器114は、例えば、とりわけ流体負荷の圧力及びフロー要求、ポンプ速度、ポンプ出口の圧力及びポンプ12からの排出流体の流量等の、様々なシステムへの入力に反応し制御弁の動作を制御するように構成されている。特殊な応用例の要求に応じて、流体システム10はシステムの様々な動作中の特徴を監視するための様々なセンサを含み、かつ、速度センサ124、圧力センサ126、フローセンサ128等を含む。
制御弁40、70、86及び100は、パルス幅変調を用いてデジタル的に制御される。通常、制御弁は、パルス幅変調を使用するときには、十分に開かれるか又は十分に閉じられるかのいずれかである。さらに、連続した弁の開閉用シーケンスの一部が同時に発生するが、典型的には、一つのみの制御弁がいずれかの望まれた瞬間に十分開かれる。このことはさらに詳細に後述される。ポンプ12から排出された流体のほぼ全量は、制御弁が開かれるときに制御弁を通過する。この態様で制御弁を動作することで、結果としてほぼ周期的な流体出力を得る。ここでは、ポンプ12の流体出力のすべてが制御弁から排出されるか又は全く排出されないかのいずれかである。制御弁40、70、86及び100は、典型的には比較的に高い動作周波数で動作される。動作周波数は、時間の単位で終了されるデューティサイクル数として定義され、典型的にはサイクル/秒又はヘルツとして表現される。
制御弁40、70、86及び100を通過する流体の効果的な流量は、それぞれの弁のデューティサイクルを調整することによって制御可能である。完全なデューティサイクルは、制御弁を1回開き1回閉じる動作を含む。デューティサイクルは、制御弁が開けられる時間の期間と、デューティサイクル動作期間との比として表現できる。デューティサイクル動作期間は、一つのデューティサイクルを完了するのに要求される時間として定義され得る。デューティサイクルは典型的には動作期間の%として表現される。例えば、75%のデューティサイクルは、結果として、当該時間、約75%開かれ、かつ、当該時間、約25%閉じられる制御弁を得る。語句「効果的な流量」は、ポンプ12のフロー出力の%として表現される一つの完全なデューティサイクルにわたり、制御弁から排出される流体の時間平均された流量に例えられる。効果的な流量は、一つの完全なデューティサイクルにわたり制御弁から排出される流体の全量をデューティサイクルの動作期間で、除算することにより決定される。例えば、ポンプ12のフロー出力の75%の効果的な排出流量を創出する。
制御弁40、70、86及び100のためのデューティサイクルの実施例が図2に示される。図2で示されたデューティサイクルは、流体システムの様々な見地を議論し例示する目的のために選択された代表的なデューティサイクルである。実用上、具備された制御弁のためのデューティサイクルは、デューティサイクルのいずれか又はすべてが様々な流体負荷の動作中の要求の変更を受け入れるために連続して改変されうることの例示、又は、全くそのものからそれ相応に変更する。
制御弁40、70、86及び100のそれぞれと共に用いられるデューティサイクルは、各動作サイクルに対して再評価され、かつ受け入れられる変化中の負荷条件に必要なように調整される。制御弁40、70、86及び100に対する適切なデューティサイクルを決定するときに考慮される因子は、流体負荷26、28、30のフロー及び圧力要求、ポンプ12のフロー出力、ポンプ12の排出圧力及びポンプ12の動作速度等を含む。
デューティサイクルは、図2における実線によって表示された略正方形の波形に追従する。制御弁のそれぞれのためのデューティサイクルは、通常、同一の動作期間を持つ。議論の目的で、20ミリ秒の動作期間が図2に示されている。しかし、制御弁のそれぞれが同一の動作期間を通常使用するならば、実用上は、より長いか若しくはより短い動作期間が油圧システム10の構成と油圧システムが使用されている特殊な応用例の要求に従い選択される。動作期間は、動作条件を変更することを受け入れるために連続して変更される。
制御弁40、70、86及び100の効果的な流量は、それぞれのデューティサイクルを変更することによって制御される。制御弁40、70、86及び100のそれぞれのためのデューティサイクルは、負荷条件を変更することを受け入れるために連続して変化される。制御器114は、制御弁のそれぞれのためのデューティサイクルを決定するように構成される。制御器114はまた、各制御弁の動作を制御するのに使用される所望のデューティサイクルに対応する制御信号を伝送するように構成される。制御器114は、様々な入力に基づいた適切なデューティサイクルを決定するための論理を含む。
制御器114により用いられる制御ストラテジー(制御方法)は、開ループ又は閉ループの制御スキームに基づかれる。閉ループシステムでは、制御器114は、2、3の例を挙げると、圧力、温度、速度のような様々な動作パラメータを監視するのに使用された様々なセンサからフィードバック情報を受け取る。制御器114は、必要に応じて、所望の負荷能力を達成するために各制御弁のデューティサイクルを調整するセンサから受け取られる情報を使用する。閉ループシステムは、圧力、速度及びフロー等の様々な動作パラメータを、より正確に制御されることを可能とする。閉ループシステムは、例えば、流体負荷30に適用される圧力を制御するために使用される。制御器114は、流体負荷30に適用される実際の圧力に関して、圧力センサ138からのフィードバック情報を受け取る。通信リンク139は、動作可能となるように圧力センサ138を制御器114に接続する。制御器114は、圧力センサ138によって検出されるような、流体負荷30に適用される圧力と、制御器114によって命令される圧力の差に対応する圧力誤差を演算するための圧力データを使用する。圧力誤差が、選択された誤差範囲外である場合、制御器114は、流体負荷30における所望の圧力を達成するための制御弁86のデューティサイクルを修正することができる。
閉ループシステムはまた、負荷感知用制御スキームを履行するのに使用される。負荷の感知を使用する流体システムは、システム圧力を監視する能力と流体負荷を動作するのに要求される圧力で、所望の流量を提供するのに必要な程度で、適切な調整をする能力を持つ。負荷の感知は、加圧流体を流体負荷に供給する通路の内部に位置決めされるオリフィスにおける圧力降下を監視することによって履行される。オリフィスにおける圧力降下は通常、所定の固定値に設定される。オリフィスにおける圧力降下を固定すると、オリフィスを通過する流量は、オリフィスのフローエリアに従属するのみである。このことは、流体が油圧負荷に搬送される速度を、一方で所望の一定の圧力降下を維持しながら、流体負荷に流体を搬送する速度を、オリフィスの断面の流量範囲を調整することにより制御することを可能とする。オリフィスの断面の流量範囲の増加は流量を増し、一方、オリフィスの断面の流量範囲の減少は流量を減させる。オリフィスにおける圧力降下の変化、これは例えば、流体負荷によって移動される動作中の負荷における増加に起因するものであるが、当該変化は、流体負荷に搬送される流体の流量において対応する変化を生じさせる。オリフィスにおける圧力降下の変化は、所望の圧力降下を達成するための上流側のオリフィスの圧力を調整することによって検出されかつ補償される。
負荷感知の能力は、特別なフローを要求する流体装置を制御しようとする一方で測距用のオリフィスにおける特殊な圧力降下を維持するときに効果的である。油圧シリンダ26はそのような場合の装置の例である。油圧シリンダ26は様々な用途に使用される。実施例を通じかつ議論の目的のため、流体シリンダ26の他の応用例がさらに可能であるとも理解されるが、油圧シリンダ26は、パワーステアリングシステムの文脈のところで記載されるであろう。流体シリンダ26は、シリンダハウジング141に滑動可能なように配置されたピストン140を含む。ピストン140の端部142は、自動車のホイールへの一連の接続部材を介して接続される。ピストン140は、加圧流体を第1、第2のチャンバ58、60に選択的に搬送することによってシリンダハウジング141の内部の長手方向において滑動される。流体が各チャンバに搬送される流量が、ピストン140の移動速度を決める。流体シリンダ制御弁54は、流体シリンダ26の流体チャンバ58、60の間に、加圧流体を分配するように動作する。油圧シリンダ制御弁54は、流体が油圧シリンダ26に搬送される速度を制御する様々な可変オリフィスを含む。流体シリンダ制御弁54は、弁を所望の流量を達成するため、オリフィスサイズに調整し、同弁を流体シリンダ26内の適切なチャンバに当該フローに向けさせるユーザ入力に反応する。
負荷感知制御スキームは、油圧シリンダ制御弁54の上流及び下流のそれぞれに、一対の圧力センサ144、146を配置することによって履行される第1の通信リンク145及び第2の通信リンク147は、圧力センサ144及び146のそれぞれと制御器114とを動作可能に接続する。圧力センサは、圧力信号を、各センサの位置における圧力を示す制御器4に送るように構成される。制御器114は、圧力弁40の動作を制御するために、制御器114に含まれる論理を用いながら、適切な制御信号を定式化するための圧力データを使用する。制御信号は、制御リンク116を渡り、アクチュエータ42に送られるパルス幅変調信号を含む。アクチュエータ42は、受け取られる信号に反応して制御弁40を開閉する。制御器114は、所望の圧力マージン(圧力許容幅)で所望のフローを流体シリンダ制御弁54(油圧シリンダ制御弁)に搬送するために演算される制御信号のために適切なパルス幅を決定する。制御器114は、油圧シリンダ制御弁54オリフィスにおける圧力降下を監視し、かつ、オリフィスにおける所望の圧力降下を維持するのに必要なような制御信号を調整できる。例えば、ピストン140の端部142に応用され、かつ対向する力を増加させることは、圧力センサ146によって監視される下流圧力において対応する増加分と、流体シリンダ制御弁54におけるオリフィスにおける圧力降下において対応する減少分とが生じる。減少さた圧力降下はまた、その結果として、流体の流量における対応する減少分を流体シリンダ26に得る。当該フローにおける減少分を補償するために、制御器114は、流体シリンダ制御弁54にその入口における圧力を増加させる。この圧力は、制御弁40の動作を制御する制御信号のデューティサイクルを調整することによって圧力センサ144を使用しながら監視される。入口への圧力は、ピストン140の端部142へ適用された対向力が増加する前に存在していたオリフィスにおける同一の圧力降下を達成するのに十分な量に増加される。このように、流体シリンダ26に搬送された所望の流量と、結果として得られるピストンの駆動速度が、ピストンに対して作用する力が連続して揺らぐという事実にもかかわらず、所望のレベルに維持できる。
閉ループシステムはまた、流体モータ28等の流体装置(油圧装置)の速度を制御するのに使用される。制御器114は、油圧モータ28の回転速度を示す速度センサ148からフィードバック情報を受け取る。通信リンク149は、速度センサ148を制御器114に動作可能に接続する。制御器114は、速度センサ148によって検出されるような、油圧モータ28の実際の回転速度と制御器114によって命令された速度との差に対応する速度誤差を演算するのために、速度データを使用する。速度誤差が、選択された誤差のレンジ外にある場合には、制御器114は、所望の速度で流体モータ28を動作するために制御弁70のデューティサイクルを修正する。
閉ループシステムはまた、油圧装置30等の流体装置に搬送される油圧流体の流量を制御するのに使用される。制御器114は、流体装置30に搬送される流体の流量を示すフローセンサ150からのフィードバック情報を受け取る。通信リンク151は、フローセンサ150と制御器114と動作可能に接続する。制御器114は、制御器114によって命令された流量と、フローセンサ150によって検出されるような現実の流量との差に対応するフロー誤差を演算するために、フローデータを使用する。フロー誤差が、選択された誤差レンジ外にある場合、制御器114は、所望の流量に達成するために制御弁86のデューティサイクルを修正する。
制御器114はまた、最大のスタンバイ圧力を制御するための論理を含む。最も大きいスタンバイ圧力は、油圧負荷に与えることが可能な最大圧力を示す。デジタルの高圧力のスタンバイ制御は、一般にアナログの油圧システムに使用される高スタンバイの安全弁として同じ目的で役立つ。しかし、圧力安全弁は、バックアップ手段としてデジタルの高圧力のスタンバイ制御に使用される最大のスタンバイ圧力の設定は、典型的には一つが使用される場合は、圧力安全弁の圧力の設定よりも低く設定される。このことは、圧力安全弁を通常の動作条件を満たさないで開くことを防止する。その結果、望まれないエネルギの損失がもたらされる。圧力が最大許容レベルに達したとき、制御器114は、油圧負荷に関連付けられた制御弁の動作を制御するのに使用される制御信号のパルス幅をゼロに調整する。このようにすることで、さらに圧力が増大するのを防ぐための制御弁を閉じる。
制御器114はまた、低いスタンバイ圧力を制御するための論理を含む。低いスタンバイ圧力制御は、負荷が何らフローを要求しないときに、所定の最小の圧力がいつも流体負荷に搬送されことを確実とするように動作する。最小のスタンバイ圧力を維持することは、流体負荷を予測可能かつ合理的な反応の方法で流体負荷を反応させることができる。低いスタンバイ圧力は、流体負荷に関連付けられた制御弁を制御するための狭いパルス幅を持つパルス幅制御信号を発生する制御器114によって維持可能である。狭いパルス幅制御信号は、上記弁に、以下のような効果的な開口を持たせるようにする。その開口は、最小のスタンバイ圧力レベルで圧力を維持する一方、システムのリークを補償するための制御弁を通過する十分なフローを許容するために十分に大きいものである。
低い圧力のスタンバイ制御は、例えば、流体シリンダ26を使用するパワーステアリングシステムに接続し使用される。低いスタンバイ圧力は、典型的には、パワーステアリング用のシステムがニュートラル位置に位置決めされるときに発生する。パワーステアリングシステムをニュートラル位置にしながら、制御器114は、要求された圧力を流体シリンダ26に搬送するように流体シリンダ制御弁54に指示を与えるための流体シリンダ制御弁54のための低いスタンバイ圧力の命令信号を発する。低いスタンバイ圧力は、要求された圧力を油圧シリンダ26を、車輌の所望のステアリングのジオメトリ(地形的な位置)に強固に維持し、かつステアリング機構の素早い駆動ができるように十分である。実用上、制御器114は、どらが高かろうとも、要求された圧力レベルの最大値と低いスタンバイ圧力レベルに基づき、制御弁を動作させるパルス幅変調制御信号を定式化する。
図2を参照しながら以下続ける。制御弁40は、典型的には40%のデューティサイクルを使用するために示されている。また、典型的には30%のデューティサイクルを使用するために示されているのが制御弁70で10%のデューティサイクルを使用するために示されているのが制御弁100である。図2に描かれているデューティサイクルは、例示目的のみのためのものであることを理解されたい。実用上、備えられた制御弁のためのデューティサイクルは示されたものと異なってもよく、また、負荷の要求の変更を受け入れるために時間につれて変更してもよい。
図1、図2を続いて以下参照する。制御弁40、70、86及び100は共通の動作期間を使用する。これは図示の目的のために、20ミリ秒で設定されている。前に注釈した
が、実際の動作期間は、流体システム10の構成や動作の要求に応じて変化し得る。制御弁は、一つの弁が閉じたとき又はいくつかの場面ではほとんど閉じるが、その次の弁は開かれるといったような態様で、一つからその次の一つへと連続して駆動される。連続駆動の弁の開閉のシーケンスが互いに交互する時間の比較的短い期間があるけれども、通常、一つの弁だけはいかなる与えられた時間においても十分開かれる。各弁は、通常、与えられた動作サイクルの間、一度だけ開閉される。一つの動作サイクルは、一度だけ、少なくとも利用可能な制御弁の予備のセット(一部)を介して巡回することを含む。弁が巡回するシーケンスは、動作サイクルの間に変化する。
油圧システム10を動作するときに、油圧負荷のフロー要求が、ポンプ12のフロー出力を超える場合があり得る。そのことが起こると、利用可能なフローが流体負荷の間でどのような比率で分配されるかに関する決定がなされる。このことは、各流体負荷に、優先度のレベルが割り当てられることによって達成される。例えば、優先度レベル1(1)が最も高い優先度、優先度レベル2(2)が二番目に高い優先度といったように考えられる。各流体負荷は、優先度レベルに割り当てられる。バイパス用回路は典型的には最も低い優先度のレベルに割り当てられる。
様々な基準が優先度の割り当てを決定するために使用される。それは、限られないが、とりわけ、安全に関すること、効率を考慮したこと、オペレータの使い勝手である。各流体負荷は、各優先度レベルに割り当てら、或いは複数の流体負荷が、特別な適用の要求に応じて同一の優先度レベルに割り当てられる。各負荷の優先度レベルの割り当ては、例えばメモリ153を介して又はメモリの中に又は制御器114と動作可能に通信するシステムレベルの電子制御ユニット(ECU)の他の有体物のストレージ機構のような制御器114保存される。
利用可能なフローは、最も高い優先度レベル(すなわち優先度レベル1)が割り当てられた油圧負荷がそれらが要求するフローのすべてを受け入れながら、かつ、残された油圧負荷が減じられたフロー若しくは全くフローのない状態を受け入れながら、優先度レベルの順位に基づき油圧負荷に分配される。流体用回路32、34、36及び101のために取りうる優先度レベルの割り当てと、結果として得られる優先度レベルの割り当てのフロー分配の実施例が以下にある表1に示されている。この実施例の目的のために、油圧ポンプ12が、150リットル/分の最大出力を持つと仮定されている。例示の目的のために、油圧シリンダ26を含む第1の流体用回路32は、優先度レベル1を割り当てられる。第2、第3の流体用回路34、36は優先度レベルの2が割り当てられる。バイパス流体用回路101、この回路は典型的には最も低い優先度のレベルが割り当てられるが、この回路は優先度レベルの3が割り当てられる。この実施例では、第1の流体用回路は全利用可能なフローの66.7%、又は100リットル/分を要求する。第2及び第3の流体用回路の両方が、利用可能なフローの1/3(33.3%)又は50リットル/分を要求する。3つの流体用回路のすべてのフロー要求の合計は、ポンプ12から利用可能なフローを超えるので、第1の流体用回路よりも低い優先度を割り当てられる第2、第3の流体用回路は、要求されたフローの一部のみを受け取る。第1の流体用回路は、100リットル/分のフロー要求の合計を受け取る。これで、第2、第3の流体用回路の間に分配されるべき50リットル/分が残る。第2、第3流体用回路は同一の優先度レベルを持つので、残る50リットル/分は、この二つの流体用回路間で均等に分けられる。このとき各回路は25リットル/分、受け取る。バイパス用流体用回路は、利用可能な流体のすべてがその他の3つの流体用回路に分配されているのでこの実施例ではバイパス用流体用回路は何ら流体を受け取らない。
Figure 0005541540
制御弁が駆動される順番は流体システムの効率に影響を与える。弁は、例えば圧力を減じたり若しくは上昇させたりするために、様々に選択された基準に基づき連続的な順番で駆動される。制御弁が駆動される順番は、例えば、油圧負荷26、28及び30のような、圧力負荷の要求に基づき決定される。典型的には、最も高い圧力要求を備えた流体負荷を供給する制御弁が最初に駆動される。そして、次に高い圧力要求を備えた流体負荷を供給する制御弁が追従し、アクチュエータ弁のすべてが駆動されるまでそのラインをそのようにして下流方向に進む。特殊な流体負荷が圧力を必要としない場合は、非動作の流体負荷に関連付けられた制御弁が特別な動作サイクルの間には開かれない。仮にあったとしても、残っている制御弁のすべて(すなわち制御弁40、70、86)が駆動されたあとで、バイパス用制御弁100は、典型的に最後に駆動される。すべての制御弁が一旦駆動されたら、現在動作中のサイクルが完了され、次の動作サイクルが開始される。
制御弁40、70、86及び100のために実行可能な連続したシーケンス順の実施例が、図5のグラフに例示されている。そのグラフにおける上部の曲線152は、例えば、圧力センサ126(図1参照)によって測定されるような実施例のための、システム圧力のプロファイルを示す。典型的な個々のチャンネル圧力曲線154、156及び158は、流体負荷26への入口において起こる圧力、すなわち各油圧負荷を示す。”チャンネル#1圧力”曲線154は、油圧シリンダ26への入口で測定されるような時間変化中の圧力が描かれている。”チャンネル#2圧力”曲線156は、油圧モータ28への入口で測定されるような時間変化中の圧力が描かれている。”チャンネル#3圧力”曲線158は、その他の流体負荷30への入口で測定されるような時間変化中の圧力が描かれている。図の底部に示された略正方形波の曲線160は、制御弁40、70、86及び100の開閉のシーケンスをグラフ上に描く。”#1”と名付けられたパルスは、制御弁40の典型的な開閉を示す。”#2”と名付けられたパルスは、制御弁70の典型的な開閉を示す。”#3”と名付けられたパルスは、制御弁86の典型的な開閉を示す。” バイパス”と名付けられたパルスは、バイパス用制御弁100の典型的な開閉を示す。流体シリンダ26はこの実施例では最も高い圧力の要求を持つので、制御弁40が最初に駆動され、油圧モータ28の動作を制御する制御弁70とその他の油圧負荷30の動作を制御する制御弁86によって順に追従される。バイパス用制御弁は最後に駆動される。同一のシーケンス、シケンスの順番を変更することを要求する油圧負荷の圧力要求に変化がない場合は、次の動作サイクルのために繰返えされる。
制御弁が連続される順番は必ずしも一致しない。連続する順番は、動作中のサイクル間で変更され、いくつかの場合は、動作サイクル中の途中で、負荷圧力の要求のような動作条件における変化を受け入れる。油圧負荷の圧力要求は、残存する油圧負荷の一つ又はそれ以上の圧力要求よりも高い場合は、連続する順番は、制御弁が最も高い圧力要求から最も低い圧力要求へと順番に続くように、順番が並び変えられる。例えば、図5では、油圧シリンダ26が、油圧モータ28やその他の油圧負荷30によって順に追従され、最も高圧力要求を持つように描かれている。したがって、制御弁は、制御弁70及び86によって追従されて、制御弁40が最初に駆動されながら、降順で連続化される。バイパス弁100は最後に駆動される。例えば図6Aに示されるように、仮にその他の油圧負荷30の圧力要求が、流体モータ28の圧力要求よりも高くなったとしても、連続する順番が再配列され、その結果、制御弁86が制御弁70より先に駆動する。修正された連続する順番は図6Bに示される。連続する順番は、続く動作サイクルのそれぞれの始めに、必要に応じて、再評価されかつ調整される。動作期間はまた、動作サイクル間においても変更可能である。
全体のシステムの性能における改良は、油圧負荷のフロー要求における変化を受け入れるように動作サイクルの途中で、制御弁のパルス幅を調整することによって変更することによって実現可能である。このことは、動作サイクルの出発点で各油圧負荷のためのパルス幅を決定すること及び動作サイクルの持続時間において同一のパルス幅を維持することに対して、対照的である。進歩的なパルス幅制御、そこでは、パルス幅が動作サイクルの途中で調整されているが、当該パルス制御はシステムのバンド幅を改良する。バンド幅はシステムの動作サイクル周波数により直接影響を受ける。進歩的なパルス幅制御の典型的な履行は、図8A及び図8Bでグラフ上に例示されている。図8Aは動作サイクルを示すが、そこでは、各油圧負荷及びそのバイパス(図8Aでは、”1”、”2”、”3”及び”バイパス”と称されている)のためのパルス幅が動作サイクルの最初で決定される。図8Aにおいて示されている実施例では、動作サイクルが図8Aの”現在(Current)”と目印が付けられた線によって定めれた時間まで進んでいる。制御弁2(図8Aでは”2”と目印が付けられている)は、現在、対応する油圧負荷にフローを供給するプロセスにある。ここで、デューティサイクルの途中で、制御弁2に関連付けられた油圧負荷のフロー要求で増加の過程にあると仮定されたい。増加したフロー要求を受け入れるために、制御弁2を制御するのに使用される制御信号のパルス幅は増加され、かつ、制御弁3若しくはバイパス弁を制御する信号のパルス幅が、制御弁2に関連付けられたパルス幅における増加分に比例して減少される。制御弁2に関連付けられた油圧負荷の、増加されたフロー要求を受け入れるためのデューティサイクルに対する変化が、図8Bに反映されている制御弁1に関連付けられた流体負荷のフロー要求は、既に現在の動作サイクル内で満足されているため、そのフロー要求におけるいかなる変化も、次の動作サイクルまで受け入られないであろう。
再び図5を参照する。一つの制御弁が閉じられかつその次の制御弁が開かれている間のタイミングは、油圧システムの効率に影響を与える。一つの弁を閉じることと次の弁を開くことの間の時間遅延の効果的な制御は、第1の流体回路32、第2の流体回路34、第3の流体回路36及びバイパス回路101(図1参照)のような流体回路間で起こるが、エネルギ損失を最小化するのに役立つ。時間遅延は、図5における「Δt」として定められる。第1の時間遅延(Δt)は、バイパス弁100を閉じることを開始すること、制御弁40を開くことを開始することの間の遅延を表す。第2の時間遅延(Δt)は、制御弁40を閉じることを開始することと、制御弁70を開くことを開始することの間の遅延を表す。第3の時間遅延(Δt)は、制御弁70を閉じることを開始すること、制御弁86を開くことを開始することの間の遅延を表す。第4の時間遅延(Δt)は、制御弁86を閉じることを開始すること、バイパス弁100を開くことを開始することの間の遅延を表す。
適切な時間遅延を決定するときに考慮される因子は、ポンプ12と制御弁40、70、86及び100間の流体供給回路のヴォリューム(容量)とコンプライアンスを含む。時間遅延は、流体回路間の圧力差の関数でもある。
一つの制御弁を閉じることを開始することと、次の連続する制御弁を開くことを開始することとの間の時間遅延が長すぎる場合は、制御弁へ導く供給回路に現存する流体が圧縮されるのでエネルギが浪費され、これによって、システム圧力にスパイクを生じさせる。この現象は、図7Bでグラフ化され示されている。図7Bの上部のグラフは、第1の制御弁が閉じかつ次の制御弁が開くにつれて、システム圧力((例えば図1の圧力センサ126によって感知される圧力)の典型的な変化を図示する。
図7Bの下部グラフは、典型的な、二つの制御弁を開けたり閉めたりすることをグラフ化して示す。弁は(Aor)のところで十分に開かれている。低めの曲線の左部は、第1の制御弁を閉じることをグラフ化して示し、かつ、曲線の右部分は、第2弁の開きをグラフ化して示す。時間遅延が短いという理由から、油圧ポンプと制御弁の間(すなわち、図1のポンプ排出通路22)の流体供給回路に現存する流体は、図7Bの上部圧力曲線で観察されることができる圧力のスパイクを生じさせながら圧縮される。
一つの弁を閉じることを開始することと、次の連続する弁を開くことを開始することの間の遅延が短かすぎる場合は、従前の油圧負荷(弁1)から次の油圧負荷(弁2)へ戻るように流体が流れる。この現象は、図7Aにグラフ化されて示されている。図7Aの上部曲線は、第1の制御弁が閉じかつ次の制御弁が開くにつれ、システム圧力(P)における典型的な変化を示す。図7Aの下部曲線は、制御弁の典型的な開閉をグラフ化して示す。弁は(Aor)で十分に開かれる。この実施例では、第2の制御弁が、第1の制御弁が十分に閉じる前に開き始める。第1の制御弁が閉じ始めるにつれ、図7Aの上のグラフで描かれたシステム圧力は降下し始めることに留意されたい。短時間の遅延をもつことは必ずしも効率の降下をもたらすものではないが、流体リザーバ18(図1参照)のように、例えば流体が油圧負荷からタンクに逆流しないならば、流体負荷によって要求された真のフローを供給するであろう制御信号パルス幅を決定する時点がそれにもかかわらず考慮される。したがって、バイパス制御弁を閉じ始めることと、続けて第1の制御弁を開き始めるこの間の時間遅延及びシーケンス中に最後の制御弁を閉じ始めることと、バイパス弁を開き始めることの間の時間遅延を最適化することも望ましい。適切な時間遅延を決定することは、図7Aで描かれたような制御弁間に起こる逆流の量を最小化することと、図7Bで描かれるようたシステム圧力スパイクの発生を最小化することとの間における調和点を必要とする。
時間遅延(Δt)は次の式を使って決定される。
Figure 0005541540
ここで、Δt(時間遅延)は、一つの制御弁を閉じ始めることと、次の連続する弁を開き始めることとの間の時間遅延である(例えば図5参照)。αは、様々なパラメータに従属するパラメータであり、例えば、弁の過渡速度、弁の摩擦、ポンプの流量、熱効果、油圧流体の効果的な体積弾性率及び内部のポンプの内部容積又は弁マニホルドのパラメータに従属する。ΔPは油圧負荷とポンプの出口との間の圧力差であり、時間遅延加算子(TimeDelayAdder)は、時間遅延を最適化するために、経験的に決定されたる補正因子である。
実施例を介して、αはマニホルド容積、ポンプ流量及び油圧流体の体積弾性率に従属しており、時間遅延(Δt)は次の式を使って決定される。
Figure 0005541540
ここで、Δt(時間遅延)は、一つの制御弁を閉じ始めることと、次の連続する弁を開き始めることの間の時間の期間である(例えば図5参照)。
ΔPは、流体負荷とポンプ出口の間の圧力差である。
Vは、ポンプ出口と制御弁入口の間の流体回路の流体体積である。
βは、流体システムの効果的な体積弾性率である。
Qは、ポンプの流量であり、そして、
時間遅延加算子(TimeDelayAdder)は、時間遅延を最適化するために実験により基づかれて決定される補正因子である。
体積弾性率は、次の式を用いて決定される。
Figure 0005541540
体積弾性率は、圧力で非線形に変化する。油圧の体積弾性率は、温度、混入空気、流
体組成及び他の物理パラメータの関数である。油圧システムの体積弾性率は、油圧システムのハードウェアの体積及び堅牢性を代表し、かつ適正な時間遅延を決定するときの因子である。流体システムの効果的な体積弾性率は、流体の体積弾性率とシステムハードウェアの体積弾性率とのコンピレーションである。実用上、体積弾性率は著しく変化し、可能ならば、時間遅延を演算するのに使用される正確な体積弾性率を取得するために測定される。効果的な体積弾性率の測定は、例えば、すべての制御弁40、70、86及び100を閉じた状態で、ポンプ12からの流体フローの関数として、油圧システム10における圧力上昇を監視することによって成し遂げられる。ポンプフローは、次の式を用いて概算される。
Figure 0005541540
圧力上昇は、ポンプ12と制御弁40、70、86及び100の間の流体供給回路に配置された圧力センサ(即ち図1の圧力センサ126)を用いて監視される。圧力の関数として効果的な体積弾性率のマップを含むルックアップテーブルが、時間遅延を演算するときの使用のために制御器114のメモリ163において発生されて記憶される。
体積弾性率は、初期の動作マップを提供するために、油圧システムの初動中にマッピングが可能である。体積弾性率は、安定状態の条件に到達されるまで油圧が加熱するにつれて周期的に測定可能である。従前の動作サイクル中に得られた同様のシステム条件用の体積弾性率のマップは、油圧システムの状態を評価するために比較され使用される。例えば、体積弾性率における実質的な減少は、油圧における混入空気の中で、顕著な増加を示すか、又は、油圧システムのホース若しくはパイプ中でまさに起ころうとしている不具合を示す。
時間遅延(Δt)を演算するための式に含まれる時間遅延加算子(TimeDelayAdder)のパラメータは、時間遅延(Δt)を最適化するための補正因子である。αパラメータと時間遅延加算子(TimeDelayAdder)パラメータは実験的に決定される。時間遅延の式のα項、これは例えば式(ΔPV/βQ)又は他の関数の関係に対応するものであるが、α項は、一つの制御弁を閉じ始めることと次の連続する弁を開け始めることの間の遅延量の推定値を提供する。しかし、それは単なる推定値であるので、演算された遅延(Δt)は、システム圧力のスパイクと、連続して駆動される制御弁間で起こる逆流を最小化する間の最適なバランスを創出しない。
時間遅延(Δt)の効果は、対応する時間遅延圧力誤差(Time Delay Pressure Error)を演算することによって評価されるが、当該時間遅延圧力誤差は、システム圧力内のスパイクと一つの制御弁からその次の制御弁への逆流を少なくとも部分的に考慮するものである。
時間遅延圧力誤差(Time Delay Pressure Error)は次式を用いて演算される。
Figure 0005541540
ここで、PPUMPは、例えば圧力センサ126を使いながら検出されるようなポンプ12からの圧力の出力である。PLOADは、流体負荷(即ち流体負荷26、28及び30)に搬送される圧力である。ΔPVALVEは、制御弁(即ち制御弁40、70、86及び100)における安定状態における圧力降下である。
制御弁(ΔP VALVE における安定状態の圧力降下は、制御器114のメモリ153に記憶されたルックアップテーブルから取得され、安定状態の圧力降下は、ポンプ12の流量と相関する。ポンプ12の流量は、測定されたポンプのRPM(回転数/分)を使用しながら演算される。RPMは、例えば速度センサ124を使用しながら、そして、ポンプフロー(Pump Flow)を決定するための、前記の式を使いながら演算される。
時間遅延圧力誤差(Time Delay Pressure Error)の実体は、図9から11を参照し、より良く理解される。図9は、3つの制御弁が連続して開閉されるにつれ、3つの別々の制御弁(即ち制御弁40、70及び86)において発生する圧力降下における典型的なゆらぎをグラフ化して示す。3つの制御弁は、前記態様で、順番に駆動される。この実施例では、制御弁40は、制御弁70、制御弁86の順番で追従されながら、最初に開かれる。各制御弁における圧力降下は、圧力弁が最初に開かれ始めた時点から始まり、その弁が十分に閉じられるときまで追跡される。その弁における安定状態の圧力降下は、3つの弁すべてにおいて全く同じであり、図9、11において引かれたような水平線によって示される。しかし、各弁は同一の圧力降下を持つことは必ずしも必要ではない。連続する制御弁に対する圧力降下の曲線は、一つの弁が閉じかつ次の弁が開いている間の過渡期間中、少なくとも一部、重複する。このことは、連続して駆動される弁が、先の弁が十分に閉じられる前に開き始めるという事実に起因する。
図9から観察可能なように、具備された制御弁における圧力降下は、その開閉位置の間の弁の過渡現象として、当該弁の対応する安定状態の圧力降下から顕著に変化しうる。圧力降下曲線から、過渡期間中、発生している非効率状態を検出することができる。例えば、当該弁が開くにつれ発生する安定状態の圧力低下の過度な状態では、具備された制御弁における圧力降下のスパイク(即ち図9における圧力スパイク162、164及び166)は、時間遅延(Δt)が小さくなりすぎ、開きつつある制御弁に、閉じつつある制御弁からの逆流させられた流体を生じさせることを示唆する。制御弁が閉じつつあるにつれ発生する具備された制御弁におけるネガティブ(負)な圧力降下(即ち、圧力降下168、170及び172)は、流体を、閉じつつある制御弁から、流体を制御弁に供給する通路(例えばポンプ排出通路22)に流れていることを示唆する。具備された制御弁が閉じるにつれて発生する安定状態の圧力が過度になった状態の具備された制御弁における圧力降下でのスパイクは、時間遅延(Δt)が長すぎ、システム圧力におけるスパイクを生じさせる。
図11は、閉じつつある制御弁70と開きつつある制御弁86の間の典型的な過渡期間を例示する図9の一部の拡大図である。制御弁が閉じ始めるにつれて発生する安定状態での圧力降下の上方に、制御弁40における圧力降下のスパイクがあることに注意されたい。これは、制御弁70が開くのが始まる前に、閉じ始める制御弁40に起因する。油圧ポンプ12と制御弁40の間の流体供給回路に存在する流体は、制御弁が閉じるにつれて圧縮され、それによりシステム圧力でスパイクが生じる。
図11を参照して以下続ける。制御弁40における圧力降下は、制御弁70が開き始めかつ弁40が閉じ始めるにつれて、安定状態圧力降下の下に落下し始め、かつ、弁40が閉じられるにつれて落下し始める。制御弁40における圧力降下は、弁40が閉じ始めかつ弁70が開き始めるにつれて、最終的には負方向に進行する。負方向への圧力降下は、制御弁40からポンプ排出部22への逆流の存在を示す。制御弁70における圧力降下におけるスパイクはまた、流体が制御弁40から制御弁70に逆流するという信号を発生している。制御弁40から制御弁70への流体の逆流とシステム圧力におけるスパイクは、システム効率に不利な降下をもたらす。これらの損失を最小化することで油圧システムの全効率を向上させることができる。
図11を参照して以下続ける。時間内の与えられた時点における時間遅延圧力誤差(Time Delay Pressure Error)は、その量により制御弁における圧力降下が安定状態の圧力降下(これは図9及び11で圧力降下”A”として定められている)を超える量と、その量により該圧力降下がゼロ未満に落ちる量(これは図9及び11で圧力降下”B”として定められている)と、を合計することによって演算される。時間遅延圧力誤差(Time Delay Pressure Error)の第1の項MAX[(PPump−(Pload−ΔPValve),0)]は、圧力降下”A”に対応し、かつ、第2の項(ABS(MIN[PPump−Pload,0]))は、圧力降下”B”に対応する。時間遅延圧力誤差(Time Delay Pressure Error)は、動作サイクルの間じゅう様々な時間間隔で演算される。図9から、圧力降下を使いて演算される時間遅延圧力誤差(Time Delay Pressure Error)のグラフは、図10に示される。時間遅延圧力誤差(Time Delay Pressure Error)は、圧力弁における圧力降下が一旦安定状態に達するときに、ゼロであることに注意されたい。
時間遅延(Δt)は、時間遅延圧力誤差(Time Delay Pressure Error)を最小化することによって最適化される。このことは、最小の時間遅延圧力誤差(Time Delay Pressure Error)が達成されるまで、時間遅延(Δt)の式で、時間遅延(Δt)における時間遅延加算子(TimeDelayAdder)を増加させながら変更することによって達成される。新たな時間遅延(Δt)は各時間遅延加算子(TimeDelayAdder)について演算される。そして、対応する制御弁が、修正された時間遅延(Δt)を使用しながら動作され、かつ、この制御弁において結果として得られた圧力降下が追跡される。新たな時間遅延圧力誤差(Time Delay Pressure Error)は、最新の圧力降下データに基づき演算され、かつ、従前に演算された時間遅延圧力誤差と比較される。この処理は最小の時間遅延圧力誤差が決定されるまで続行する。対応する圧力及び流量に従いながら、最小の時間遅延圧力誤差に対応する最適な時間遅延加算子は、これからの参照のためのルックアップテーブルの形式で制御器114のメモリ153に記憶される。
図1から図4を参照すると、油圧システム10の典型的な動作サイクルの動作が描かれている。制御弁40、70、86及び100のための典型的なデューティサイクルは、図2に例示されている。制御弁40、70、86及び100の時間変化中の流体出力は、ポンプ12の流体出力のパーセンテージとして表現される。典型的な動作サイクルはゼロに等しい時間で始まる。議論の目的のために、油圧負荷26は初期に最も高い圧力要求を持つとみなし、油圧負荷28及び油圧負荷30の順番で追従されるものとする。制御弁は、制御弁40をまず用いて降順に駆動され、このとき制御弁40は、制御弁70、86及び100の順に追従されながら、最も高い圧力要求を持つ油圧負荷を制御する。典型的な動作サイクルは、20ミリ秒の持続時間を持つが、これは上述したデューティサイクルのそれぞれの動作期間に対応する。20ミリ秒に等しい時間に始まる第2の動作サイクルを用いた、40ミリ秒に等しい時間で終了する二つの連続する動作サイクルが、図2から図4に描かれている。制御弁40、70、86及び100のための動作サイクルはすべて同一時間に始まりかつ同一時間に終わる。
図4は、圧力センサ126によって検出されるような、ポンプ排出ポート24の下流(ダウンストリーム)の流れを発生させる流体圧力における時間変化中の相対的な変動を、グラフ化し描く。対応する制御弁が油圧システム内部で起こる比較的低い圧力損により開けられるときに、圧力センサ126によって検出された圧力は理論通りに各負荷の入口で発生する圧力を概算する。
図3は、時間変化する相対的な流量と、各油圧負荷の入口近くに起こる圧力レベルをグラフ化し示す。油圧負荷を含まないバイパス用流体回路101の場合は、圧力及び流量が、バイパス用排出路108内部で発生する。システムの内部に起こる比較的低い圧力損失によれば、油圧負荷の入口近くに発生する圧力は、圧力センサ126によってポンプ排出ポート24のところで検出される圧力とかなり近似する。一方、図3に示されるような、具備された油圧負荷のための入口の圧力曲線は、通常、制御弁が開かれている期間にポンプ排出ポート24(図4に示されているような)において発生する圧力に対応する。
図1から図4を参照すると、典型的な動作サイクルは、制御弁40を開かつ入口ポート46と排出ポート50の間の流体接続を確立するようにアクチュエータに指示するアクチュエータ42に制御信号を送る制御器114によって(図2から4のゼロに等しい時間に)初期化される。40%のデューティサイクルに基づき、制御弁40は約8ミリ秒の期間において、開いたままとなるであろう。開いたままの位置にある制御弁40を用いて、ポンプ12から排出された流体の全体量は、制御弁40(図2参照)を介し流体分岐7
1へと通過する。油圧負荷26のフロー及び圧力要求に応じて、流体分岐71に到達する流体の一部が、排出通路52や油圧シリンダ制御弁54の現在のフロー設定に従い、第1の排出通路52か第2の供給路64のいずれか一方を通過して搬送される。流体が油圧負荷26に搬送される時間変化率は、図3にグラフ化されて描かれている。流体分岐71に到達する残存する流体は、供給/排出路73を介してアキュムレータ68を満たすために該アキュムレータ68に通過する。図4に示されるように、制御弁40が開かれている期間中、圧力センサ126によって検出される圧力(これは図3に示されるような、油圧負荷26の入口ポート近くで発生する圧力レベルに近似する)は、ポンプ12からの流体のフローを制限する油圧負荷26の結果として上昇し始める。制御弁40が約8ミリ秒の期間開かれた後、制御器114は、制御弁40を閉じるようにアクチュエータ42を指示する該アクチュエータ42に制御信号を送る。制御弁40が閉位置にされて、流体分岐71おける圧力と流量は、降下し始める。今度は、キュムレータ68に蓄えられた加圧流体を排出通路52に放出させる。図3から観察されるように、アキュムレータ68から排出される流体は少なくとも一部が、制御弁40が閉じられることに起因し、排出通路52の内部に発生するフローと圧力降下を補償する。その結果は、アキュミュレータ68が仮に利用されない場合に、起こりそうな突発的な降下より、むしろ、約8ミリ秒から約20ミリ秒の時間の期間にわたり起こる排出通路52内部の流体フロー及び圧力レベル内の漸次的な減少である。圧力及びフローは、約20ミリ秒(図2、3参照)とほぼ等しい時間に発生する、引き続き起こる動作サイクル間に、圧力弁40が開かれるまで、降下し続ける。圧力及びフロー曲線は、動作条件に変化がない限り、続く動作サイクルの間、ほぼ同一である。
制御弁40を閉じると、制御弁114は、制御弁70を開くと共に入力ポート72と排出ポート78との間の流体接続を確立するようにアクチュエータ77に指示を与えながら、該アクチュエータ77に制御信号を送る。30%のデューティサイクルに基づき、制御弁70は、約8ミリ秒で始まり、約14ミリ秒で終わりながら、約6ミリ秒の期間、開いたままの状態にある。制御弁70が開いた位置では、ポンプ12から排出される流体の全フローが制御弁70(図2参照)を介して流体分岐85を通過する。
図4に示されるように、初期に、(圧力センサ126によって検出されるような)ポンプ排出通路22の内部圧力は制御弁70を開くと圧力曲線の点174で示されるレベルまで降下する。流体負荷28のフロー及び圧力の要求に応じて、流体分岐85に到達する流体の一部は、油圧モータ供給通路80を介し油圧負荷28に搬送される。油圧負荷28の入口ポートの近くで、時間変化中の流体フローは図3にグラフ化され示されている。流体分岐85に到達し残存する流体は、アキュミュレータを満たすために供給/排出通路87を介してアキュミュレータ84へと通過する。制御弁70が開いている期間(約、8ミリ秒と14ミリ秒の間の時間の期間)中、圧力センサ126により検出される圧力(図4参照)と油圧負荷28の入口ポート近くの圧力レベル(図3参照)が、制御弁70が最初に開かれたときに(図4の点174)発生した初期の圧力を超えて上昇し始める。制御弁70が約6ミリ秒の期間で開かれたあとで、制御器114が、制御弁70入口ポート72と排出ポート78の間の流路を閉じさせるように、アクチュエータ77に制御信号を送ることができる。制御弁70が閉じられた状態で、流体分岐85における圧力レベルと流量が落下し始めるであろう。このことは、制御弁が閉じられている期間(14ミリ秒から28ミリ秒の時間の期間)中、アキュムレータ84に蓄えられた加圧流体を油圧モータ供給通路80に排出されるようにさせる。図3から観察可能なように、アキュミュレータ84から排出された流体は、少なくとも一部の、制御弁70が閉じられたときに生じるフロー及び圧力における落下を補償する。その結果は、約14ミリ秒から約28ミリ秒までの時間の期間にわたり起こる排出通路80の内部の流量及び圧力レベルにおける漸次的な減少である。圧力及びフローが、圧力弁70が、約28ミリ秒に等しい時間に発生する。続く動作サイクル中に再び開けられるまで降下し続ける。圧力及びフロー曲線は、続く動作条件で変化がない限り、続く動作サイクルと略同じである。
制御弁70を閉じると、制御器114は、制御弁86を開きかつ入力ポート88と排出ポート96の間の流体接続を確立するようにアクチュエータに指示するアクチュエータ93に制御信号を送る。20%のデューティサイクルに基づき、制御弁86は約14ミリ秒で始まり、約18ミリ秒で終わる4ミリ秒の期間中、開いた状態のままにある。制御弁86を開いた位置とし、ポンプ12から排出された流体の全フローが、制御弁86(図2参照)を介して流体分岐97まで通過する。図4に示されるように、(圧力センサ126によって検出されるような)ポンプ排出通路22の内部の圧力は、初期に制御弁86を開くと圧力曲線の点176で示されるレベルに降下する。油圧負荷30のフロー及び圧力要求に応じて、流体分岐97に到達する流体の一部は、流体負荷供給通路94を介して流体負荷30に搬送される。油圧負荷30の入力ポート30近くの時間変化中の流体フローは、図3にグラフ化され示されている。流体分岐97に到達する残存する流体は、供給/排出通路99を介してアキュミュレータ95へと通過して該アキュミュレータ95を満たす。制御弁86が開かれた期間中(約14ミリ秒から約18ミリ秒までの時間の期間)に、圧力センサ126により検出された圧力(図4参照)及び流体負荷の入口ポート近くに発生する圧力(図3参照)は、制御弁86が最初に開かれるとき(図4の点176)に発生した初期の圧力を超えて上昇し始める。制御弁86が約4ミリ秒の期間中、開かれていた後、制御器114は、制御弁86入口ポート88と排出ポート96との間の流路を閉じるために、制御信号88をアクチュエータ93に送る。制御弁86を閉位置にして、流体分岐97における流体フローの圧力レベルと流量が降下し始める。このことは、制御弁86が閉じられている期間(約18ミリ秒から約34ミリ秒の期間)中、アキュミュレータ95に蓄えられた加圧流体を油圧負荷供給通路94に排出されるようにさせる。図3から観察可能なように、アキュミュレータ95から排出された流体は、制御弁86が閉じられるときに発生するフロー及び圧力における降下を、少なくとも一部補償する。その結果が、18ミリ秒と34ミリ秒との間の時間の期間にわたって発生する、排出通路94内部の流量及び圧力レベルにおける漸次的な減少である。圧力及びフローは、制御弁78が次の動作サイクル(約34ミリ秒に相当する時間)中に再び開かれるまで降下し続ける。圧力及びフロー曲線は、連続する動作条件において変化がない限り、連続する動作サイクルに対して実質上同一である。
制御弁86を閉じると、制御弁100は、流体リザーバ18へのポンプ排出通路22の内部に存在する過度の圧力を減衰するために選択的に開かれる。制御器114は、アクチュエータ112に、バイパス用制御弁100を開きかつ入口ポート102と排出ポート110の間の流体接続を確立するように指示しながら、該アクチュエータ112に制御信号を送る。10%のデューティサイクルに基づき、制御弁86は、18ミリ秒で始まり20ミリ秒で終わる、2ミリ秒の期間中、開けられた状態のまま維持される。約20ミリ秒において制御弁86を閉じることは、進行中の動作サイクルの終わりとそれに続く動作サイクルの始まりに対応する。制御弁100を開いた位置にし、ポンプ12から排出される流体の全フローは、制御弁100(図2参照)及びバイパス用排出通路108を介してリザーバへの戻り通路66へと通過する。図4に示されたように、(圧力センサ126によって検出されたような)ポンプ排出通路22内部の圧力は、制御弁100が開かれたときの圧力曲線の点178で示したレベルまで降下し、かつ、制御弁100が約20ミリ秒に等しい時間で閉じられるまでその圧力に維持される。バイパス用制御弁100が2ミリ秒の期間中、開かれた後、制御器114が制御弁100に入口ポート102と排出ポート110の間の流路を閉じさせながら制御信号をアクチュエータ112に送る。
現在の典型的な動作シーケンスは、バイパス用制御100が閉じられたときに完了する。続く動作シーケンスは、制御弁40を駆動しかつ前述の動作シーケンスを繰り返すことによって開始される。例えば、油圧負荷の圧力要求が増加又は減少したような動作条件の変化がある場合は、その影響を受けた制御弁のデューティサイクルが必要に応じて再評価されかつ調整されて、変化後の動作条件を受け入れる。
ここで述べた、プロセス、システム、方法その他に関しては、上記のようなプロセス等のステップはある順番のシーケンスにしたがって発生するものとして記載されており、このようなプロセスはここで記載された順番以外の順番で実行される記載されたステップを用いて実行されうると理解されるべきである。さらに、あるステップは同時に実行されえいるだろうし、他のステップが付加されえるだろうし、ここに記載されたあるステップは省略も可能であろう。言い換えれば、ここでのプロセスの記述はある実施形態の例示の目的のために提供されており、かつ特許請求の範囲の発明に限定されるという、いかなる特別な方法によっても解釈されないと理解されたい。
上記の記載は、例示の意図のものであって制限的なものではないことに理解されるべきである。提供された実施例以外の多くの実施形態や応用は、上記の記載を読むと当業者には明らかであろう。発明の範囲は、上記の記載に参照して決定されるべきではないが、当該請求項が位置付ける十分な均等な範囲に沿って添付の請求項を参照して決定されるべきである。さらなる研究開発がここで議論された技術において発生すること、および、開示されたシステムや方法がこのような未来の実施形態に組み込まれるであろうことが予見されかつ意図される。総じて言えば、当該発明は修正及び改変が可能であり、添付の請求項によってのみ限定されることを理解されるべきである。
請求項で使用されたすべての語句は、ここで作成されている中での矛盾に対し明らかな指示がないならば、当業者によって理解されるような通常の意味や、当該語句の最も広くかつ理にかなった構成が提供される。特に、”一つ(a)”、”その(the)”、”前記(said)”は、請求項が矛盾した明白な限定を規定しないならば示された構成要素の一つ以上を規定するように読まれるべきである。

Claims (24)

  1. 複数の油圧負荷のそれぞれに関連付け優先度レベルを割り当て、
    該割り当てられた優先度レベルに基づきパルス幅変調制御信号を生成し、
    各弁が前記油圧負荷の少なくとも一つを圧力源に選択的に流体接続するように、動作可能な複数のデジタル弁に前記制御信号を伝送し、
    前記制御信号応答して、複数の前記デジタル弁の少なくとも一部順次駆動する方法であって、
    前記各優先度レベルは、特定の前記油圧負荷の圧力要求に基づいて割り当て、最も高い圧力要求を有する前記油圧負荷に関連付けた前記デジタル弁を最初に駆動し、残りの前記デジタル弁を関連付けた前記油圧負荷の圧力要求に基づいて降順で順次駆動し、前記各デジタル弁を一つの動作サイクルで一回だけ駆動することを特徴とする方法。
  2. 複数の油圧負荷のそれぞれに関連付けて優先度レベルを割り当て、
    該割り当てられた優先度レベルに基づきパルス幅変調の制御信号を生成し、
    各弁が前記油圧負荷の少なくとも一つを圧力源に選択的に流体接続するように、作動可能な複数のデジタル弁に前記制御信号を伝送し、
    前記制御信号に応答して、複数の前記デジタル弁の少なくとも一部を順次駆動する方法であって、
    前記各優先度レベルは、特定の前記油圧負荷の圧力要求に基づいて割り当て、最も低い圧力要求を有する前記油圧負荷に関連付けた前記デジタル弁を最初に駆動し、残りの前記デジタル弁を関連付けた前記油圧負荷の圧力要求に基づいて昇順で順次駆動し、前記各デジタル弁を一つの動作サイクルで一回だけ駆動することを特徴とする方法。
  3. 前記制御信号は、前記各デジタル弁が開位置及び閉位置に配置される動作サイクルの期間を決定することを特徴とする請求項1又は2に記載の方法。
  4. 前記各デジタル弁は、各動作サイクルに一回だけ開閉することを特徴とする請求項3に記載の方法。
  5. 最も高い優先度レベルを有した前記油圧負荷に関連付けられた前記デジタルは、最初に駆動されることを特徴とする請求項1又は2に記載の方法。
  6. 前記制御信号の生成は、前記デジタルが閉位置及び開位置に配置されている間の期間を定義する前記デジタル弁のそれぞれのデューティサイクル決定を含むことを特徴とする請求項1又は2に記載の方法。
  7. 複数の前記油圧負荷のそれぞれのフロー要求を決定し、
    前記各デジタル弁に対して、関連付けられた前記油圧負荷のフロー要求を創出するように演算されたデューティサイクルを決定することをさらに含むことを特徴とする請求項に記載の方法。
  8. すべての前記油圧負荷の合計フロー要求が、加圧流体の利用可能なフローよりも大きいとき、前記デジタル弁の少なくとも一つは、関連付けられた前記油圧負荷のフロー要求よりも小さいフローを生じるように決定されデューティサイクル割り当てられることを特徴とする請求項に記載の方法。
  9. 前記デューティサイクルは、関連した前記油圧負荷のフロー要求に基づき決定されることを特徴とする請求項に記載の方法。
  10. 前記デジタル弁のそれぞれのデューティサイクルは、動作サイクルを始める前に決定されることを特徴とする請求項に記載の方法。
  11. 前記デジタル弁のそれぞれのデューティサイクルは、動作サイクルにわたって維持されることを特徴とする請求項10に記載の方法。
  12. 前記各デジタル弁を駆動する前に該各デジタルのデューティサイクルを評価し、
    関連付けられた前記油圧負荷のフロー要求に基づき、動作サイクルを始める前に決定される前記デューティサイクルを修正することをさらに含むことを特徴とする請求項10に記載の方法。
  13. それぞれが対応する油圧負荷に流体接続可能であり、対応する前記油圧負荷を圧力源に流体接続するように動作可能である複数のデジタル弁と、
    複数の前記デジタル弁に動作可能に接続され、複数の前記油圧負荷のそれぞれに関連するように割り当てた優先度レベルを構成し、割り当てられた前記優先レベルに基いてパルス幅変調制御信号を生成、前記制御信号前記複数のデジタル弁に送信して前記デジタル弁の作動を制御するように動作するデジタル制御器と、を含む油圧システムであって、
    前記制御信号は、一つの動作サイクルで一回だけ、前記各デジタル弁を駆動するように生成され、
    前記制御器は、前記油圧負荷に割り当てられた前記優先度レベルに基づき前記デジタル弁を順次駆動し、
    前記油圧負荷の圧力要求に基づき前記優先度レベルを割り当て、
    最も高い圧力要求を有する前記油圧負荷に関連付けられた前記デジタル弁を最初に駆動し、残りの前記デジタル弁を関連付けた前記油圧負荷の圧力要求に基いて降順で順次駆動するように構成されていることを特徴とする油圧システム。
  14. それぞれが対応する油圧負荷に流体接続可能であり、対応する前記油圧負荷を圧力源に流体接続するように動作可能である複数のデジタル弁と、
    複数の前記デジタル弁に動作可能に接続され、複数の前記油圧負荷のそれぞれに関連す
    るように割り当てた優先度レベルを構成し、割り当てられた前記優先度レベルに基いてパルス幅変調の制御信号を生成し、前記制御信号を前記複数のデジタル弁に送信して前記デジタル弁の作動を制御するように動作するデジタル制御器と、を含む油圧システムであって、
    前記制御信号は、一つの動作サイクルで一回だけ、前記各デジタル弁を駆動するように生成され、
    前記制御器は、前記油圧負荷に割り当てられた前記優先度レベルに基づき前記デジタル弁を順次駆動し、
    前記油圧負荷の圧力要求に基づき前記優先度レベルを割り当て、
    最も低い圧力要求を有する前記油圧負荷に関連付けられた前記デジタル弁を最初に駆動し、残りの前記デジタル弁を関連付けた前記油圧負荷の圧力要求に基いて昇順で順次駆動するように構成されていることを特徴とする油圧システム。
  15. 前記制御信号は、前記各デジタル弁が開位置及び閉位置に配置され各動作サイクル中の期間を定義することを特徴とする請求項13又は14に記載の油圧システム。
  16. 前記各デジタル弁は、各動作サイクル中一回だけ、開閉されることを特徴とする請求項15に記載の油圧システム。
  17. 最も高い優先度レベルを持つ前記油圧負荷に関連付けられた前記デジタル弁が、最初に駆動されることを特徴とする請求項13又は14に記載の油圧システム。
  18. 前記制御器は、前記各デジタル弁に対して、前記デジタル弁が閉位置及び開位置に配置される期間を定義するデューティサイクルを決定するように構成されていることを特徴とする請求項13又は14に記載の流体システム。
  19. 前記制御器は、複数の前記油圧負荷のそれぞれにフロー要求を決定し、前記各デジタル弁に対して、関連付けられた前記油圧負荷のフロー要求を創出するように演算されデューティサイクルを決定するように構成されていることを特徴とする請求項18に記載の油圧システム。
  20. すべての前記油圧負荷の合計フロー要求が加圧流体の利用可能なフローよりも大きいとき、前記デジタル弁の少なくとも一つは、関連付けられた前記油圧負荷のフロー要求よりも小さいフローを創出するように決定されたデューティサイクルが割り当てられることを特徴とする請求項19に記載の油圧システム。
  21. 前記デューティサイクルは、関連付けられた前記油圧負荷のフロー要求に基づき決定されることを特徴とする請求項18に記載の油圧システム。
  22. 前記デジタル弁のそれぞれの前記デューティサイクルは、動作サイクルを始動する前に決定されることを特徴とする請求項18に記載の油圧システム。
  23. 前記デジタル弁のそれぞれの前記デューティサイクル動作サイクルにわたって維持されることを特徴とする請求項22に記載の油圧システム。
  24. 前記制御器は、前記各デジタル弁を駆動する前に前記デジタルのデューティサイクルを評価し、関連付けられた前記油圧負荷のフロー要求に基づき、動作サイクルを始動する前に決定された前記デューティサイクルを修正するように構成されていることを特徴とする請求項22に記載の油圧システム。
JP2011504205A 2008-04-11 2009-04-10 複数の可変負荷を駆動するための、定容量ポンプを含む油圧システム及びその動作方法 Expired - Fee Related JP5541540B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4433708P 2008-04-11 2008-04-11
US61/044,337 2008-04-11
PCT/US2009/040219 WO2009126893A1 (en) 2008-04-11 2009-04-10 Hydraulic system including fixed displacement pump for driving multiple variable loads and method of operation

Publications (2)

Publication Number Publication Date
JP2011517752A JP2011517752A (ja) 2011-06-16
JP5541540B2 true JP5541540B2 (ja) 2014-07-09

Family

ID=40765579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011504205A Expired - Fee Related JP5541540B2 (ja) 2008-04-11 2009-04-10 複数の可変負荷を駆動するための、定容量ポンプを含む油圧システム及びその動作方法

Country Status (6)

Country Link
US (5) US8474364B2 (ja)
EP (1) EP2271846B1 (ja)
JP (1) JP5541540B2 (ja)
KR (1) KR101639453B1 (ja)
CN (1) CN102057166B (ja)
WO (1) WO2009126893A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216625A (zh) * 2008-10-17 2011-10-12 伊顿公司 用于致动液压系统的控制阀的设备和方法
DE102009008082B3 (de) * 2009-02-09 2010-06-02 Compact Dynamics Gmbh Bremsaggregat einer schlupfgeregelten Kraftfahrzeug-Bremsanlage mit einer Fluidfördereinrichtung
DE102009026606A1 (de) * 2009-05-29 2010-12-02 Metso Paper, Inc. Digitalyhydraulischer Regler
US10240785B2 (en) * 2010-01-28 2019-03-26 Noritz Corporation Driving method for solenoid valve, solenoid valve driving apparatus, and combustion apparatus including same
US8580693B2 (en) * 2010-08-27 2013-11-12 Applied Materials, Inc. Temperature enhanced electrostatic chucking in plasma processing apparatus
US8485943B2 (en) * 2011-02-17 2013-07-16 GM Global Technology Operations LLC Vehicle fluid pressure control
KR101036302B1 (ko) * 2011-02-24 2011-05-23 (주) 대진유압기계 유압펌프 무선제어시스템
US8857165B2 (en) * 2011-03-17 2014-10-14 Ford Global Technologies, Llc Method and system for prioritizing vehicle vacuum
US8754720B2 (en) 2011-08-03 2014-06-17 Mi Yan Two-stage pulse signal controller
WO2013107466A1 (de) * 2012-01-18 2013-07-25 Festo Ag & Co. Kg Verfahren zur konfiguration einer fluidsteuereinheit, computerprogrammprodukt und fluidisches system
CA2768019A1 (en) * 2012-02-15 2013-08-15 Wave Control Systems Ltd. Method and apparatus for continuous online monitoring of a pulsating pump
WO2013130768A1 (en) 2012-02-28 2013-09-06 Eaton Corporation Digital hydraulic transformer and method for recovering energy and leveling hydraulic system loads
US9193046B2 (en) * 2012-08-03 2015-11-24 Spx Flow, Inc. Auto cycle pump and method of operation
DE102014206043B4 (de) * 2014-03-31 2021-08-12 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben eines Systems für einen thermodynamischen Kreisprozess mit einem mehrflutigen Verdampfer, Steuereinrichtung für ein System, System für einen thermodynamischen Kreisprozess mit einem mehrflutigen Verdampfer, und Anordnung einer Brennkraftmaschine und eines Systems
US9879700B1 (en) 2014-07-22 2018-01-30 Boston Dynamics, Inc. Robotic hydraulic system
JP6406574B2 (ja) * 2014-09-08 2018-10-17 日本電産トーソク株式会社 電磁弁制御装置、コントロールバルブ装置、および電磁弁制御方法
CN104728208A (zh) * 2015-03-17 2015-06-24 西南石油大学 一种大功率液力驱动压裂泵泵站系统
WO2017033015A1 (en) * 2015-08-25 2017-03-02 Artemis Intelligent Power Limited The measurement and use of hydraulic stiffness properties of hydraulic apparatus
CN108138816B (zh) * 2015-10-14 2020-03-03 日本电产东测有限公司 油振诊断装置以及油振诊断方法
EP3377776B1 (en) * 2015-11-17 2022-01-05 Transocean Innovation Labs Ltd Reliability assessable systems for actuating hydraulically actuated devices and related methods
DE102016206287A1 (de) * 2016-04-14 2017-10-19 Mahle International Gmbh Verfahren zur Regelung eines Druckes in einem Kurbelgehäuse
US10544783B2 (en) 2016-11-14 2020-01-28 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
US10259493B2 (en) * 2016-12-09 2019-04-16 Caterpillar Inc. Emergency steering pump system for a machine
WO2018137014A1 (pt) * 2017-01-27 2018-08-02 Caramona Empreendimentos E Participações Ltda Sistema hidráulico ou pneumático
IL269383B2 (en) * 2017-03-22 2023-03-01 Jonathan Ballesteros Low current fluid delivery system and low current devices therefor
CA2999317A1 (en) * 2017-03-29 2018-09-29 Coach Truck & Tractor Llc Hydraulic supply systems
US11162482B2 (en) 2017-04-28 2021-11-02 Graco Minnesota Inc. Portable hydraulic power unit having a pump fixed to an exterior side of a fluid supply tank
US10701857B2 (en) 2018-03-26 2020-07-07 Deere & Company Using a small diameter exit hose to improve delivery of liquid through a valve on a nutrient or chemical application system of an agricultural machine
US11154891B2 (en) 2018-03-26 2021-10-26 Deere & Company Using an accumulator to improve delivery of liquid through a valve on an agricultural machine
JP7323117B2 (ja) * 2019-03-04 2023-08-08 株式会社クボタ 作物収穫機
US11977056B2 (en) * 2019-07-09 2024-05-07 Shimadzu Corporation Liquid delivery pump and liquid chromatograph
USD977426S1 (en) 2019-12-13 2023-02-07 Graco Minnesota Inc. Hydraulic power pack
CA3074365A1 (en) 2020-02-28 2021-08-28 I-Jack Technologies Incorporated Multi-phase fluid pump system
DE102020205341A1 (de) * 2020-04-28 2021-10-28 Robert Bosch Gesellschaft mit beschränkter Haftung Ventilbaugruppe für eine Reservepumpe einer Fahrzeuglenkung
US11519403B1 (en) 2021-09-23 2022-12-06 I-Jack Technologies Incorporated Compressor for pumping fluid having check valves aligned with fluid ports
EP4224019A1 (en) * 2022-02-07 2023-08-09 Danfoss Scotland Limited Hydraulic apparatus and method for a vehicle
CN114165635B (zh) * 2022-02-11 2022-04-12 中国空气动力研究与发展中心低速空气动力研究所 一种数字阀的异步控制方法
CN115076442B (zh) * 2022-06-15 2024-09-03 江苏恒立液压科技有限公司 电液比例伺服驱动器的驱动电路
CN116292466B (zh) * 2022-12-26 2024-08-02 长沙亿美博智能科技有限公司 一种数液流量匹配系统及控制方法
US20240359730A1 (en) * 2023-04-27 2024-10-31 Deere & Company Apparatus for operating a load-controlled hydraulic supply of an agricultural tractor

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1801137A1 (de) * 1968-10-04 1970-04-16 Bosch Gmbh Robert Hydraulikanlage mit einer verstellbaren Pumpe
DE2345845A1 (de) * 1973-09-12 1975-03-20 Bosch Gmbh Robert Einrichtung zum steuern eines hydrozylinders
JPS6056890B2 (ja) 1978-09-19 1985-12-12 日産自動車株式会社 タ−ボチヤ−ジヤ付内燃機関のブロ−バイガス処理装置
JPS60149501U (ja) * 1984-03-16 1985-10-04 日産自動車株式会社 エアサ−ボ装置
GB8525835D0 (en) 1985-10-19 1985-11-20 Rolls Royce Motors Ltd Reciprocating i c engines
EP0235545B1 (en) * 1986-01-25 1990-09-12 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system
GB8608194D0 (en) * 1986-04-03 1986-05-08 Massey Ferguson Services Nv Valve control system
IT212303Z2 (it) 1987-08-04 1989-07-04 Fiat Auto Spa Dispositivo di controllo per il mantenimento in depressione dell in terno di un basamento di un motore a combustione interna
DE3834201A1 (de) * 1988-04-22 1989-11-02 Rexroth Mannesmann Gmbh Anordnung zum zufuehren von druckmittel zu hydraulischen verbrauchern
JP3136541B2 (ja) 1991-03-19 2001-02-19 ヤマハ発動機株式会社 内燃機関のブローバイガス処理装置
JPH05106608A (ja) * 1991-10-11 1993-04-27 Kayaba Ind Co Ltd 建設車両の制御回路
JPH0694007A (ja) * 1992-09-08 1994-04-05 Komatsu Ltd 油圧駆動機械の制御装置
US5829335A (en) * 1993-05-11 1998-11-03 Mannesmann Rexroth Gmbh Control for hydraulic drive or actuator
JP2987307B2 (ja) * 1995-04-17 1999-12-06 株式会社クボタ 作動油の流量制御装置
DE19709910C2 (de) 1997-03-11 1999-05-20 Daimler Chrysler Ag Kurbelgehäuseentlüftung für eine Brennkraftmaschine
DE19836843A1 (de) * 1998-08-14 2000-02-17 Schloemann Siemag Ag Vorrichtung zum hydraulischen Anstellen der Rollen von Strangführungssegmenten einer Stranggießanlage
SE521802C2 (sv) 1999-04-08 2003-12-09 Volvo Personvagnar Ab Vevhusventilation i en överladdad förbränningsmotor
US6354084B1 (en) 1999-08-20 2002-03-12 Cummins Engine Company, Inc. Exhaust gas recirculation system for a turbocharged internal combustion engine
US6523451B1 (en) * 1999-10-27 2003-02-25 Tol-O-Matic, Inc. Precision servo control system for a pneumatic actuator
BR0207935A (pt) 2001-03-07 2004-03-02 Hengst Gmbh & Co Kg Dispositivo para a evacuação de ar do carter de uma máquina de combustão interna
DE20118388U1 (de) 2001-11-13 2003-03-27 Hengst GmbH & Co.KG, 48147 Münster Einrichtung für die Kurbelgehäuse-Entlüftung einer Brennkraftmaschine
DE60106471T2 (de) 2001-12-24 2005-02-24 Visteon Global Technologies, Inc., Dearborn Kurbelgehäuse-Entlüftungssystem
US7278259B2 (en) 2002-08-23 2007-10-09 Donaldson Company, Inc. Apparatus for emissions control, system, and methods
US7155909B2 (en) * 2003-05-15 2007-01-02 Kobelco Construction Machinery Co., Ltd. Hydraulic controller for working machine
US6892715B2 (en) 2003-07-03 2005-05-17 Cummins, Inc. Crankcase ventilation system
US7185634B2 (en) 2004-03-25 2007-03-06 Sturman Industries, Inc. High efficiency, high pressure fixed displacement pump systems and methods
US7281532B2 (en) 2005-03-01 2007-10-16 Honda Motor Co., Ltd. Blow-by gas and purge gas treating device in intake valve lift variable engine
CN100464036C (zh) * 2005-03-28 2009-02-25 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制系统及方法
US20070071609A1 (en) * 2005-09-26 2007-03-29 Sturman Industries, Inc. Digital pump with multiple outlets
GB0603991D0 (en) * 2006-02-28 2006-04-05 Agco Gmbh Hydraulic systems for utility vehicles, in particular agricultural vehicles
GB2449199B (en) * 2006-05-15 2011-03-02 Komatsu Mfg Co Ltd Hydraulic traveling vehicle

Also Published As

Publication number Publication date
US20090257891A1 (en) 2009-10-15
CN102057166B (zh) 2014-12-10
US20090255245A1 (en) 2009-10-15
KR20100134746A (ko) 2010-12-23
US20090260352A1 (en) 2009-10-22
WO2009126893A1 (en) 2009-10-15
US20130291714A1 (en) 2013-11-07
US20090255246A1 (en) 2009-10-15
US9097268B2 (en) 2015-08-04
CN102057166A (zh) 2011-05-11
US8505291B2 (en) 2013-08-13
US8434302B2 (en) 2013-05-07
US8226370B2 (en) 2012-07-24
EP2271846B1 (en) 2017-03-08
EP2271846A1 (en) 2011-01-12
KR101639453B1 (ko) 2016-07-22
JP2011517752A (ja) 2011-06-16
US8474364B2 (en) 2013-07-02

Similar Documents

Publication Publication Date Title
JP5541540B2 (ja) 複数の可変負荷を駆動するための、定容量ポンプを含む油圧システム及びその動作方法
JP2964607B2 (ja) 油圧供給装置
US10584722B2 (en) Hydraulic fluid energy regeneration apparatus of work machine
KR20130137173A (ko) 병렬 구조의 어큐뮬레이터를 구비한 유압 구동 회로
JPH10131901A (ja) エネルギー変換装置
CN112112776A (zh) 液压机和系统
WO2012141128A1 (ja) 駆動力配分装置の油圧制御装置
CN101371050A (zh) 工程机械用三泵系统的扭矩控制装置
JP6647255B2 (ja) 油圧制御装置
JP5564541B2 (ja) アクチュエータ
JP2022547058A (ja) 油圧装置および動作方法
WO2010074507A3 (ko) 건설기계의 유압펌프 제어장치
CN109386602B (zh) 液压控制装置
US20190093677A1 (en) Vehicle hydraulic system
JPH11311266A (ja) クラッチ制御装置
US8176734B2 (en) Hydrostatic transmission having proportional pressure variable displacement pump for loop charge and fan flow supply
JP5668419B2 (ja) 油圧制御装置
EP2246576B1 (en) Confluence control system
KR102371603B1 (ko) 변속기용 유압 회로
US10822772B1 (en) Hydraulic systems with variable speed drives
WO2017204040A1 (ja) ハイブリッド建設機械の制御システム
KR20230054726A (ko) 유압 액티브 서스펜션 유량 제어 시스템
EP3608548B1 (en) Construction machine
JP2017155925A (ja) 油圧回路のポンプ駆動動力調整機構
CN216241552U (zh) 一种泵送液压系统及湿喷机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5541540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees