Nothing Special   »   [go: up one dir, main page]

JP5334501B2 - Nitride semiconductor device - Google Patents

Nitride semiconductor device Download PDF

Info

Publication number
JP5334501B2
JP5334501B2 JP2008224843A JP2008224843A JP5334501B2 JP 5334501 B2 JP5334501 B2 JP 5334501B2 JP 2008224843 A JP2008224843 A JP 2008224843A JP 2008224843 A JP2008224843 A JP 2008224843A JP 5334501 B2 JP5334501 B2 JP 5334501B2
Authority
JP
Japan
Prior art keywords
type
contact layer
layer
nitride semiconductor
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008224843A
Other languages
Japanese (ja)
Other versions
JP2010062254A (en
Inventor
好伸 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008224843A priority Critical patent/JP5334501B2/en
Publication of JP2010062254A publication Critical patent/JP2010062254A/en
Application granted granted Critical
Publication of JP5334501B2 publication Critical patent/JP5334501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

本発明は、窒化物半導体レーザ等の窒化物半導体素子に係り、特に、動作電圧の低減を図った窒化物半導体素子に関するものである。   The present invention relates to a nitride semiconductor device such as a nitride semiconductor laser, and more particularly to a nitride semiconductor device in which an operating voltage is reduced.

GaN、AlN、InN及びその混晶からなる窒化物半導体は、青色発光ダイオード(LED)や青紫レーザダイオード(LD)用の材料としてすでに実用化され、さらに、耐熱性や耐環境性が良いという特徴を活かし、電子デバイス用の半導体材料としての利用も盛んになってきている。   Nitride semiconductors composed of GaN, AlN, InN and mixed crystals thereof have already been put into practical use as materials for blue light-emitting diodes (LEDs) and blue-violet laser diodes (LDs), and also have good heat resistance and environmental resistance. Taking advantage of this, the use as a semiconductor material for electronic devices is also increasing.

ところで、窒化物半導体では、Mgをドーピングすることでp型窒化物半導体を作製するのが一般的である。この窒化物半導体は、アクセプタ準位が深いため、アクセプタの活性化率が非常に低く、ホール濃度を高くすることが困難であるという問題を抱えている。   By the way, in a nitride semiconductor, it is common to produce a p-type nitride semiconductor by doping Mg. Since this nitride semiconductor has a deep acceptor level, the activation rate of the acceptor is very low, and it is difficult to increase the hole concentration.

このため、p型窒化物半導体に対して低抵抗なオーム性電極を形成することは容易ではない。p型コンタクト層とp型電極との接触抵抗の高抵抗化は、窒化物半導体素子において、動作電圧の増加を引き起こす。さらに、動作電圧の増加は、p型電極での発熱を生み、p型電極の劣化を生じやすくするため、信頼性を低くしてしまう。   For this reason, it is not easy to form an ohmic electrode having a low resistance with respect to the p-type nitride semiconductor. Increasing the contact resistance between the p-type contact layer and the p-type electrode causes an increase in operating voltage in the nitride semiconductor device. Furthermore, an increase in the operating voltage generates heat at the p-type electrode and easily deteriorates the p-type electrode, thus lowering the reliability.

このp型コンタクト層とp型電極との接触抵抗の低減化という課題に対しては、p型電極側からp型不純物濃度の高い層と低い層、という異なるp型不純物濃度からなる二層構造のp型コンタクト層を用いるという手法が特許文献1に示されている。   To solve the problem of reducing the contact resistance between the p-type contact layer and the p-type electrode, a two-layer structure having different p-type impurity concentrations of a layer having a high p-type impurity concentration and a layer having a low p-type impurity concentration from the p-type electrode side. Japanese Patent Application Laid-Open No. H10-228473 discloses a technique of using a p-type contact layer.

特許文献1では、p型電極に対してオーミック接触を得るためには、p型電極と直接接触する層にアクセプタ不純物を高濃度にドーピングすることが有効であるとしている。   In Patent Document 1, in order to obtain ohmic contact with the p-type electrode, it is effective to dope the acceptor impurity at a high concentration in the layer that is in direct contact with the p-type electrode.

また、アクセプタ不純物を高濃度にドーピングすると、ホール濃度は逆に低下するため、その下層にホール濃度が最大となるような濃度のアクセプタ不純物をドーピングした層を設けることで、ホール注入効率の低下を防ぐという手法が示されている。   In addition, when the acceptor impurity is doped at a high concentration, the hole concentration decreases conversely. Therefore, by providing a layer doped with an acceptor impurity at a concentration that maximizes the hole concentration, lowering the hole injection efficiency. It shows how to prevent it.

一方で、p型コンタクト層にこの二層構造を用いた場合、アクセプタ不純物濃度の高い層の膜厚を厚くするにしたがって、閾値電圧が上昇することが特許文献2に示されている。これは、アクセプタ不純物濃度が高い層ではホール濃度が低いため、層の抵抗が高くなることが原因である。そのため、特許文献2では、アクセプタ不純物濃度が高い層の膜厚は、50nm以下にすることが望ましいとしている。   On the other hand, Patent Document 2 shows that when this two-layer structure is used for the p-type contact layer, the threshold voltage increases as the thickness of the layer having a high acceptor impurity concentration is increased. This is because a layer having a high acceptor impurity concentration has a low hole concentration, and therefore the resistance of the layer becomes high. Therefore, in Patent Document 2, it is desirable that the film thickness of the layer having a high acceptor impurity concentration is 50 nm or less.

さらに、特許文献3、4ではp型コンタクト層にp型InGaNを形成する手段が示されている。InNのバンドギャップは0.65eV付近とGaNの3.4eVに対して非常に狭いため、その混晶であるInGaNはGaNよりも狭いバンドギャップを得ることができる。さらに、InGaNはMgをp型不純物とした場合でも高いホール濃度が実現できる。このため、低抵抗なオーム性電極の形成が期待できる。   Further, Patent Documents 3 and 4 show means for forming p-type InGaN in the p-type contact layer. Since the band gap of InN is very narrow with respect to around 0.65 eV and 3.4 eV of GaN, InGaN which is a mixed crystal can obtain a narrower band gap than GaN. Further, InGaN can achieve a high hole concentration even when Mg is used as a p-type impurity. For this reason, formation of a low-resistance ohmic electrode can be expected.

なお、この出願の発明に関連する先行技術文献情報としては、次のものがある。   The prior art document information related to the invention of this application includes the following.

特開平8−97471号公報JP-A-8-97471 特開平10−242587号公報Japanese Patent Laid-Open No. 10-242587 特開平8−97468号公報JP-A-8-97468 特開平9−289351号公報JP-A-9-289351

しかしながら、窒化物半導体の動作電圧の低減化には未だ強い要求があり、p型コンタクト層とp型電極との接触抵抗においても更なる低減化が望まれている。   However, there is still a strong demand for reducing the operating voltage of nitride semiconductors, and further reduction in the contact resistance between the p-type contact layer and the p-type electrode is desired.

そこで、本発明の目的は、従来よりも低抵抗なオーム性電極の形成を実現することで、動作電圧を低下させた窒化物半導体素子を提供することである。   Accordingly, an object of the present invention is to provide a nitride semiconductor device in which the operating voltage is reduced by realizing the formation of an ohmic electrode having a lower resistance than in the prior art.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、窒化物半導体層上にp型コンタクト層を有し、前記p型コンタクト層がp型電極側から順にp型第一コンタクト層とp型第二コンタクト層によって構成される窒化物半導体素子において、前記第一コンタクト層がMgからなるp型不純物を1.4×10 20 cm -3 有したInxGa1-xN(x=0.07)からなり、前記p型第二コンタクト層はMgからなるp型不純物を7.0×10 19 cm -3 含有したGaNからなると共に、前記第一コンタクト層の膜厚は15nmであり、前記第二コンタクト層の膜厚は50nmである窒化物半導体素子である。 The present invention was devised to achieve the above object, and the invention of claim 1 has a p-type contact layer on a nitride semiconductor layer, and the p-type contact layer is in order from the p-type electrode side. in the nitride semiconductor device constituted by a p-type first contact layer and the p-type second contact layer, the first contact layer is p-type impurities have 1.4 × 10 20 cm -3 free consisting Mg an in x Ga 1-x consists N (x = 0.07), the p-type second contact layer with a GaN containing p-type impurities 7.0 × 10 19 cm -3 consisting of Mg, the first contact The nitride semiconductor device has a thickness of 15 nm and a thickness of the second contact layer of 50 nm .

請求項2の発明は、窒化物半導体層上にp型コンタクト層を有し、前記p型コンタクト層がp型電極側から順にp型第一コンタクト層とp型第二コンタクト層によって構成される窒化物半導体素子において、前記第一コンタクト層がMgからなるp型不純物を1.4×10 20 cm -3 含有したIn x Ga 1-x N(x=0.07)からなり、前記p型第二コンタクト層はMgからなるp型不純物を4.0×10 19 cm -3 含有し、In組成比が前記p型第一コンタクト層より低いIn y Ga 1-y N(y=0.02)からなると共に、前記第一コンタクト層の膜厚は15nmであり、前記第二コンタクト層の膜厚は50nmである窒化物半導体素子である。 The invention of claim 2 has a p-type contact layer on the nitride semiconductor layer, and the p-type contact layer is composed of a p-type first contact layer and a p-type second contact layer in order from the p-type electrode side. In the nitride semiconductor device, the first contact layer is made of In x Ga 1-x N (x = 0.07) containing 1.4 × 10 20 cm −3 of a p-type impurity made of Mg , and the p-type The second contact layer contains p-type impurities composed of Mg of 4.0 × 10 19 cm −3 and has an In composition ratio lower than that of the p-type first contact layer, In y Ga 1-y N (y = 0.02). ), The first contact layer has a thickness of 15 nm, and the second contact layer has a thickness of 50 nm .

本発明によれば、p型コンタクト層とp型電極との接触抵抗を従来よりも低減化できるため、窒化物半導体素子の動作電圧を低下させることができる。   According to the present invention, since the contact resistance between the p-type contact layer and the p-type electrode can be reduced as compared with the conventional case, the operating voltage of the nitride semiconductor device can be lowered.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の好適な実施の形態に係る窒化物半導体素子の断面模式図である。   FIG. 1 is a schematic cross-sectional view of a nitride semiconductor device according to a preferred embodiment of the present invention.

図1に示すように、窒化物半導体素子1は、Siドーピングによるn型GaN基板2上に、Siドーピングによるn型GaNバッファ層3、n型AlGaNクラッド層4、n型GaNガイド層5、ノンドープInGaN活性層6、Mgドーピングによるp型GaNガイド層7、p型AlGaNクラッド層8、p型InyGa1-yN(0≦y<0.2)第二コンタクト層9、p型InxGa1-xN(0<x≦0.2)第一コンタクト層10が順次積層された構造である。 As shown in FIG. 1, a nitride semiconductor device 1 includes an n-type GaN buffer layer 3, an n-type AlGaN cladding layer 4, an n-type GaN guide layer 5, and a non-doped layer on a Si-doped n-type GaN substrate 2. InGaN active layer 6, p-type GaN guide layer 7 doped with Mg, p-type AlGaN cladding layer 8, p-type In y Ga 1-y N (0 ≦ y <0.2) second contact layer 9, p-type In x In this structure, Ga 1-x N (0 <x ≦ 0.2) first contact layers 10 are sequentially stacked.

また、p型InxGa1-xN第一コンタクト層10表面には、Pd/Au積層によるp型電極11が形成され、n型GaN基板2の裏面には、Ti/Au積層によるn型電極12が形成される。 A p-type electrode 11 made of a Pd / Au laminate is formed on the surface of the p-type In x Ga 1-x N first contact layer 10, and an n-type made of a Ti / Au laminate is formed on the back surface of the n-type GaN substrate 2. Electrode 12 is formed.

さらに、p型AlGaNクラッド層8、p型InyGa1-yN第二コンタクト層9、p型InxGa1-xN第一コンタクト層10は、リッジ形状であり、そのリッジ側面とp型AlGaNクラッド層8の上面を絶縁膜13で覆った構造である。 Furthermore, the p-type AlGaN cladding layer 8, the p-type In y Ga 1-y N second contact layer 9, and the p-type In x Ga 1-x N first contact layer 10 have a ridge shape, and the ridge side surface and p The upper surface of the type AlGaN cladding layer 8 is covered with an insulating film 13.

前記のような構成のエピタキシャルウェハ上に、低抵抗なオーム性電極を形成するのに望ましいp型第一及び第二コンタクト層の構造条件(又は数値限定理由)を以下に示す。   The structural conditions (or reasons for limiting the numerical values) of the p-type first and second contact layers desirable for forming a low-resistance ohmic electrode on the epitaxial wafer having the above-described configuration are shown below.

まず、p型電極11に接するp型InxGa1-xN第一コンタクト層10のIn組成を0<x≦0.2(即ち20%以下)とした理由は、InGaNは、非混和性を有するため、高In組成の結晶成長が困難であるからである。 First, the reason why the In composition of the p-type In x Ga 1-x N first contact layer 10 in contact with the p-type electrode 11 is 0 <x ≦ 0.2 (that is, 20% or less) is that InGaN is immiscible. This is because it is difficult to grow a crystal with a high In composition.

また、InGaNはIn組成が高くなるほど低い温度で成長させる必要があるため、品質の良い結晶が得られにくいからである。つまり、比較的高温で結晶成長が可能なIn組成域では、GaNと比べ高いホール濃度を得ることが可能だが、In組成を高くするために成長温度を下げていくと、結晶品質の悪化で、ホール濃度が低下してしまう問題が生じるからである。   Further, since InGaN needs to be grown at a lower temperature as the In composition becomes higher, it is difficult to obtain a high-quality crystal. In other words, in the In composition region where crystal growth is possible at a relatively high temperature, it is possible to obtain a higher hole concentration than GaN, but if the growth temperature is lowered to increase the In composition, the crystal quality deteriorates. This is because the problem that the hole concentration is lowered occurs.

次に、p型InxGa1-xN第一コンタクト層10のMg濃度に関しては、1.0×1020cm-3以上2.0×1020cm-3以下の範囲に制御することが望ましく、より効果が高いのはMg濃度が1.4×1020cm-3のときである。 Next, the Mg concentration of the p-type In x Ga 1-x N first contact layer 10 can be controlled in the range of 1.0 × 10 20 cm −3 to 2.0 × 10 20 cm −3. It is desirable and more effective when the Mg concentration is 1.4 × 10 20 cm −3 .

図2は、p型InxGa1-xN第一コンタクト層10のMg濃度とp型電極11の接触抵抗の関係を表したものである。 FIG. 2 shows the relationship between the Mg concentration of the p - type In x Ga 1-x N first contact layer 10 and the contact resistance of the p-type electrode 11.

図2に示すように、Mg濃度が1.4×1020cm-3以下となる範囲では濃度を高くするにつれて接触抵抗が低減され、Mg濃度が1.4×1020cm-3を超える範囲では濃度を高くするにつれて接触抵抗が増大する。10-4Ωcm2程度以下の接触抵抗を得ようとした場合、p型InxGa1-xN第一コンタクト層10の最適なMg濃度は前述の範囲であることが分かる。 As shown in FIG. 2, in the range where the Mg concentration is 1.4 × 10 20 cm −3 or less, the contact resistance decreases as the concentration is increased, and the Mg concentration exceeds 1.4 × 10 20 cm −3. Then, the contact resistance increases as the concentration increases. When it is attempted to obtain a contact resistance of about 10 −4 Ωcm 2 or less, the optimum Mg concentration of the p-type In x Ga 1-x N first contact layer 10 is found to be in the above-mentioned range.

また、p型InxGa1-xN第一コンタクト層10の膜厚に関しては、2nm以上20nm以下の範囲に設定することが望ましい。これは、2nmよりも薄い膜厚のInGaNを所望の組成で、且つ所望のMg濃度で成長させるのは困難であり、また、膜厚を20nmよりも厚くすると、下層との格子不整合により転位が増加し、その結果、結晶品質が悪化して接触抵抗が高くなるからである。 The film thickness of the p-type In x Ga 1-x N first contact layer 10 is preferably set in the range of 2 nm to 20 nm. This is because it is difficult to grow InGaN having a film thickness of less than 2 nm with a desired composition and a desired Mg concentration, and when the film thickness is greater than 20 nm, dislocation occurs due to lattice mismatch with the lower layer. As a result, the crystal quality deteriorates and the contact resistance increases.

一方、p型InyGa1-yN第二コンタクト層9は、p型InxGa1-xN第一コンタクト層10よりもIn組成が小さいInGaN(0<y<0.2)もしくはGaN(y=0)であることが望ましい。 On the other hand, the p-type In y Ga 1-y N second contact layer 9 has InGaN (0 <y <0.2) or GaN having a smaller In composition than the p-type In x Ga 1-x N first contact layer 10. It is desirable that (y = 0).

また、p型InyGa1-yN第二コンタクト層9のMg濃度に関しては、p型InxGa1-xN第一コンタクト層10のMg濃度以下で、且つp型AlGaNクラッド層8のMg濃度以上であることが望ましい。 Further, the Mg concentration of the p-type In y Ga 1-y N second contact layer 9 is equal to or lower than the Mg concentration of the p-type In x Ga 1-x N first contact layer 10 and the p-type AlGaN cladding layer 8 It is desirable that the Mg concentration be equal to or higher.

これは、p型InyGa1-yN第二コンタクト層9のMg濃度がp型InxGa1-xN第一コンタクト層10のMg濃度よりも高い場合、接触抵抗を著しく増加させてしまうからである。また、p型InyGa1-yN第二コンタクト層9のMg濃度がp型AlGaNクラッド層8のMg濃度よりも低い場合、ホール濃度が低下してしまい、やはり接触抵抗を増加させてしまうからである。 This is because when the Mg concentration of the p - type In y Ga 1-y N second contact layer 9 is higher than the Mg concentration of the p-type In x Ga 1-x N first contact layer 10, the contact resistance is remarkably increased. Because it ends up. Further, when the Mg concentration of the p - type In y Ga 1-y N second contact layer 9 is lower than the Mg concentration of the p-type AlGaN cladding layer 8, the hole concentration is lowered, and the contact resistance is also increased. Because.

以上の構成からなる窒化物半導体素子1によれば、p型コンタクト層(p型InxGa1-xN第一コンタクト層10)とp型電極11との接触抵抗を従来よりも低減化できるため、動作電圧を低くすることができる。 According to the nitride semiconductor device 1 having the above configuration, the contact resistance between the p-type contact layer (p-type In x Ga 1-x N first contact layer 10) and the p-type electrode 11 can be reduced as compared with the conventional case. Therefore, the operating voltage can be lowered.

窒化物半導体素子1の変形例として、図3に示すように、n型GaNガイド層5、p型GaNガイド層7、絶縁膜13が無く、n型及びp型AlGaNクラッド層4,8がn型及びp型GaNクラッド層4’,8’であり、p型GaNクラッド層8’、p型InyGa1-yN第二コンタクト層9、p型InxGa1-xN第一コンタクト層10がリッジ形状ではない構造の窒化物半導体素子30でも同様の効果が得られる。 As a modification of the nitride semiconductor device 1, as shown in FIG. 3, there is no n-type GaN guide layer 5, p-type GaN guide layer 7, and insulating film 13, and n-type and p-type AlGaN cladding layers 4 and 8 are n. Type and p-type GaN cladding layers 4 'and 8', p-type GaN cladding layer 8 ', p-type In y Ga 1 -y N second contact layer 9, p-type In x Ga 1 -x N first contact The same effect can be obtained even in the nitride semiconductor device 30 having a structure in which the layer 10 is not ridge-shaped.

(実施例1)
実施例1では、図1の窒化物半導体素子1を用いた窒化物半導体レーザを作製した。
Example 1
In Example 1, a nitride semiconductor laser using the nitride semiconductor device 1 of FIG. 1 was produced.

まず、Siドーピングによるn型GaN基板2をMOVPE(有機金属気相成長)装置の反応炉内に設置し、アンモニアとキャリアガスの水素を供給しながら、n型GaN基板2の温度を900℃まで熱した。   First, an n-type GaN substrate 2 by Si doping is placed in a reactor of a MOVPE (metal organic vapor phase epitaxy) apparatus, and the temperature of the n-type GaN substrate 2 is increased to 900 ° C. while supplying ammonia and hydrogen as a carrier gas. Heated.

そして、n型GaN基板2を900℃まで昇温させた後、トリメチルガリウム(TMG)とシランガスを供給し、その後、温度を1050℃まで昇温させながら、n型GaN基板2の(0001)面上にSiドーピングによるn型GaNバッファ層3を成長させ、次に温度を1050℃に保ったままトリメチルアルミニウム(TMA)を供給し、Siドーピングによるn型AlGaNクラッド層4を積層した。   Then, after raising the temperature of the n-type GaN substrate 2 to 900 ° C., trimethylgallium (TMG) and silane gas are supplied, and then the temperature is raised to 1050 ° C. while the (0001) surface of the n-type GaN substrate 2 is raised. An n-type GaN buffer layer 3 by Si doping was grown thereon, then trimethylaluminum (TMA) was supplied while maintaining the temperature at 1050 ° C., and an n-type AlGaN cladding layer 4 by Si doping was laminated.

その後、TMAの供給を止め、Siドーピングによるn型GaNガイド層5を成長させた。ここで、TMGとシランガスの供給を止め、温度を800℃まで降温させた。その際、アンモニアは供給したままで、キャリアガスを水素から窒素に切り替え、温度が800℃になったら、TMGとトリメチルインジウム(TMI)を供給し、ノンドープInGaN活性層(多量子井戸(MQW))6を成長させた。このとき、TMIは供給量が異なる供給ラインを2つ用意し、それらを交互に切り替えることでIn組成の異なる井戸層と障壁層とを成長させた。   Thereafter, the supply of TMA was stopped, and an n-type GaN guide layer 5 was grown by Si doping. Here, the supply of TMG and silane gas was stopped, and the temperature was lowered to 800 ° C. At that time, the carrier gas is switched from hydrogen to nitrogen while ammonia is supplied, and when the temperature reaches 800 ° C., TMG and trimethylindium (TMI) are supplied, and a non-doped InGaN active layer (multi-quantum well (MQW)) 6 grew. At this time, TMI prepared two supply lines having different supply amounts, and alternately switched them to grow well layers and barrier layers having different In compositions.

次に、TMIとTMGの供給を止め、再び温度を1050℃まで昇温させ、キャリアガスを窒素から水素に切り替え、TMGとCp2Mg(シクロペンタジニエルマグネシウム)を供給し、Mgドーピングによるp型GaNガイド層7、さらにTMAを供給し、Mgドーピングによるp型AlGaNクラッド層8を積層した。 Next, the supply of TMI and TMG is stopped, the temperature is raised again to 1050 ° C., the carrier gas is switched from nitrogen to hydrogen, TMG and Cp 2 Mg (cyclopentadienyl magnesium) are supplied, and p by Mg doping The p-type AlGaN cladding layer 8 by Mg doping was laminated by supplying the type GaN guide layer 7 and TMA.

そして、TMAの供給を止め、Mgドーピングによるp型InyGa1-yN第二コンタクト層9を成長させ、その後TMGとCp2Mgの供給を止め、キャリアガスを水素から窒素に切り替え、温度を800℃まで降温させ、温度が800℃になったらTMIとTMGとCp2Mgとを再び供給し、Mgドーピングによるp型InxGa1-xN第一コンタクト層10を積層した。p型InxGa1-xN第一コンタクト層10の結晶成長終了後、TMI、TMG、Cp2Mg、アンモニアの供給を止め、キャリアガスの窒素のみを供給した状態で室温まで降温させた。 Then, the supply of TMA is stopped, the p-type In y Ga 1-y N second contact layer 9 is grown by Mg doping, the supply of TMG and Cp 2 Mg is then stopped, the carrier gas is switched from hydrogen to nitrogen, The temperature was lowered to 800 ° C., and when the temperature reached 800 ° C., TMI, TMG, and Cp 2 Mg were supplied again, and the p-type In x Ga 1-x N first contact layer 10 by Mg doping was laminated. After the crystal growth of the p-type In x Ga 1-x N first contact layer 10 was completed, the supply of TMI, TMG, Cp 2 Mg, and ammonia was stopped, and the temperature was lowered to room temperature with only nitrogen as a carrier gas being supplied.

温度を室温に戻した後、反応炉からn型GaN基板2を取り出し、アニーリング装置を用いて600℃の窒素雰囲気中、20分間アニーリングを行い、p型不純物の活性化を行った。   After returning the temperature to room temperature, the n-type GaN substrate 2 was taken out from the reaction furnace, and annealed in a nitrogen atmosphere at 600 ° C. for 20 minutes using an annealing apparatus to activate p-type impurities.

その後、RIE装置により、p型AlGaNクラッド層8とp型InyGa1-yN第二コンタクト層9とp型InxGa1-xN第一コンタクト層10を中央部を除いてp型AlGaNクラッド層8の途中までエッチングすることでリッジ形状とした。 Thereafter, the p-type AlGaN cladding layer 8, the p-type In y Ga 1-y N second contact layer 9, and the p-type In x Ga 1-x N first contact layer 10 are removed by the RIE apparatus except for the central portion. A ridge shape was obtained by etching halfway through the AlGaN cladding layer 8.

次に、表面全体を絶縁膜13で覆い、さらにフォトリソグラフィーによって、リッジ上部の絶縁膜13の除去を行い、露出したp型InxGa1-xN第一コンタクト層10表面上にPd/Au積層によるp型電極11を形成し、n型GaN基板2の裏面にはTi/Au積層によるn型電極12を形成した。 Next, the entire surface is covered with an insulating film 13, and further, the insulating film 13 on the ridge is removed by photolithography, and Pd / Au is formed on the exposed p-type In x Ga 1-x N first contact layer 10 surface. A p-type electrode 11 by lamination was formed, and an n-type electrode 12 by Ti / Au lamination was formed on the back surface of the n-type GaN substrate 2.

最後に、図示しないがへき開などによりレーザ共振器を形成し、窒化物半導体レーザ素子を形成した。   Finally, although not shown, a laser resonator was formed by cleavage or the like to form a nitride semiconductor laser element.

このとき、p型電極11に接するp型InxGa1-xN第一コンタクト層10は、膜厚が15nm、Mg濃度が1.4×1020cm-3、In組成がx=0.07(即ち7%)のInGaNとした。 At this time, the p-type In x Ga 1-x N first contact layer 10 in contact with the p-type electrode 11 has a film thickness of 15 nm, an Mg concentration of 1.4 × 10 20 cm −3 , and an In composition of x = 0. 07 (ie 7%) InGaN.

また、p型InyGa1-yN第二コンタクト層9は、膜厚が50nm、Mg濃度が7.0×1019cm-3のGaN(y=0(即ちIn組成は0%))で構成した。さらに、p型InyGa1-yN第二コンタクト層9の下層であるp型AlGaNクラッド層8のMg濃度は2.0×1019cm-3とした。 The p-type In y Ga 1-y N second contact layer 9 has a film thickness of 50 nm and an Mg concentration of 7.0 × 10 19 cm −3 (y = 0 (ie, the In composition is 0%)). Consists of. Further, the Mg concentration of the p-type AlGaN cladding layer 8, which is the lower layer of the p - type In y Ga 1-y N second contact layer 9, was 2.0 × 10 19 cm −3 .

実施例1で作製した半導体レーザは、p型InxGa1-xN第一コンタクト層10とp型電極11との接触抵抗、また動作電圧が従来に比べ十分に低かった。 In the semiconductor laser fabricated in Example 1, the contact resistance between the p-type In x Ga 1-x N first contact layer 10 and the p-type electrode 11 and the operating voltage were sufficiently lower than those in the past.

(実施例2)
実施例2では、図3に示す構造の窒化物半導体素子30を用いた窒化物半導体発光ダイオードを作製した。
(Example 2)
In Example 2, a nitride semiconductor light emitting diode using the nitride semiconductor element 30 having the structure shown in FIG. 3 was produced.

この窒化物半導体発光ダイオードは、有機金属気相成長法(MOVPE法)を用いてエピタキシャル成長させた。   This nitride semiconductor light-emitting diode was epitaxially grown using metal organic vapor phase epitaxy (MOVPE method).

まず、Siドーピングによるn型GaN基板2を炉内に設置し、アンモニアとキャリアガスの水素を供給しながらn型GaN基板2の温度を昇温した。900℃まで昇温したところでTMGとシランガスを供給し、さらに、1050℃まで昇温させながらSiドーピングによるn型GaNバッファ層3、温度が1050℃になったところでSiドーピングによるn型GaNクラッド層4’を成長させた。   First, the n-type GaN substrate 2 by Si doping was placed in a furnace, and the temperature of the n-type GaN substrate 2 was raised while supplying ammonia and hydrogen as a carrier gas. When the temperature is raised to 900 ° C., TMG and silane gas are supplied, and further, the n-type GaN buffer layer 3 is formed by Si doping while the temperature is raised to 1050 ° C., and the n-type GaN cladding layer 4 is formed by Si doping when the temperature reaches 1050 ° C. 'Grow up.

次に、TMGとシランガスの供給を止め、温度を800℃まで降温させ、アンモニアを供給したままキャリアガスを水素から窒素に切り替えた。その後、800℃になったら、TMGとTMIを供給し、ノンドープInGaN活性層(多量子井戸(MQW))6を成長させた。   Next, the supply of TMG and silane gas was stopped, the temperature was lowered to 800 ° C., and the carrier gas was switched from hydrogen to nitrogen while supplying ammonia. Thereafter, when the temperature reached 800 ° C., TMG and TMI were supplied, and a non-doped InGaN active layer (multi-quantum well (MQW)) 6 was grown.

このとき、TMIは供給量が異なるラインを2つ用意し、それらを交互に切り替えることでIn組成の異なる井戸層と障壁層とを成長させた。その後、TMIとTMGの供給を止め、温度を再び1050℃まで昇温させ、キャリアガスを窒素から水素に切り替え、TMGとCp2Mgを供給し、Mgドーピングによるp型GaNクラッド層8’を成長させた。 At this time, TMI prepared two lines with different supply amounts, and alternately switched them to grow well layers and barrier layers having different In compositions. Thereafter, the supply of TMI and TMG is stopped, the temperature is raised again to 1050 ° C., the carrier gas is switched from nitrogen to hydrogen, TMG and Cp 2 Mg are supplied, and a p-type GaN cladding layer 8 ′ is grown by Mg doping. I let you.

次に、TMGとCp2Mgの供給を止め、キャリアガスを水素から窒素に切り替え、温度を800℃まで降温させ、その後TMIとTMGとCp2Mgを供給し、Mgドーピングによるp型InyGa1-yN第二コンタクト層9、Mgドーピングによるp型InxGa1-xN第一コンタクト層10を積層した。 Next, the supply of TMG and Cp 2 Mg is stopped, the carrier gas is switched from hydrogen to nitrogen, the temperature is lowered to 800 ° C., and then TMI, TMG and Cp 2 Mg are supplied, and p-type In y Ga by Mg doping is used. A 1-y N second contact layer 9 and a p-type In x Ga 1-x N first contact layer 10 by Mg doping were laminated.

p型InxGa1-xN第一コンタクト層10の結晶成長終了後、TMI、TMG、Cp2Mg、アンモニアの供給を止め、キャリアガスの窒素のみを供給した状態で室温まで降温させた。 After the crystal growth of the p-type In x Ga 1-x N first contact layer 10 was completed, the supply of TMI, TMG, Cp 2 Mg, and ammonia was stopped, and the temperature was lowered to room temperature with only nitrogen as a carrier gas being supplied.

温度が室温に戻った後、反応炉からn型GaN基板2を取り出し、アニーリング装置を用いて600℃の窒素雰囲気中、20分間アニーリングを行い、p型不純物の活性化を行った。その後、p型InxGa1-xN第一コンタクト層10表面にはPd/Au積層によるp型電極11を形成し、n型GaN基板2の裏面にはTi/Au積層によるn型電極12を形成した。 After the temperature returned to room temperature, the n-type GaN substrate 2 was taken out from the reaction furnace, and annealed in a nitrogen atmosphere at 600 ° C. for 20 minutes using an annealing apparatus to activate p-type impurities. Thereafter, a p - type electrode 11 made of Pd / Au laminate is formed on the surface of the p-type In x Ga 1-x N first contact layer 10, and an n-type electrode 12 made of Ti / Au laminate is formed on the back surface of the n-type GaN substrate 2. Formed.

このとき、p型コンタクト層の構造は、p型InxGa1-xN第一コンタクト層10は膜厚が15nm、Mg濃度が1.4×1020cm-3、In組成x=0.07(即ち7%)のInGaNからなり、p型InyGa1-yN第二コンタクト層9は膜厚が50nm、Mg濃度が4.0×1019cm-3、In組成y=0.02(即ち2%)のInGaNからなる。さらに、p型InyGa1-yN第二コンタクト層9の下層であるp型GaNクラッド層8’のMg濃度は2.0×1019cm-3とした。 At this time, the p-type contact layer has a structure in which the p-type In x Ga 1-x N first contact layer 10 has a thickness of 15 nm, an Mg concentration of 1.4 × 10 20 cm −3 , and an In composition x = 0. The p-type In y Ga 1-y N second contact layer 9 is 50 nm thick, the Mg concentration is 4.0 × 10 19 cm −3 , and the In composition y = 0. 02 (ie 2%) of InGaN. Further, the Mg concentration of the p-type GaN clad layer 8 ′, which is the lower layer of the p - type In y Ga 1-y N second contact layer 9, was 2.0 × 10 19 cm −3 .

実施例2で作製した発光ダイオードの接触抵抗、動作電圧は従来に比べ十分に低かった。   The contact resistance and operating voltage of the light emitting diode produced in Example 2 were sufficiently lower than those in the past.

本発明の好適な実施の形態に係る窒化物半導体素子の断面模式図である。1 is a schematic cross-sectional view of a nitride semiconductor device according to a preferred embodiment of the present invention. 第一コンタクト層のMg濃度と電極の接触抵抗との関係を示す測定図である。It is a measurement figure which shows the relationship between Mg density | concentration of a 1st contact layer, and the contact resistance of an electrode. 本発明の実施例2で作製した窒化物半導体発光ダイオードの断面模式図である。It is a cross-sectional schematic diagram of the nitride semiconductor light-emitting diode produced in Example 2 of the present invention.

符号の説明Explanation of symbols

1 窒化物半導体素子
9 p型InyGa1-yN第二コンタクト層
10 p型InxGa1-xN第一コンタクト層
11 p型電極
First nitride semiconductor device 9 p-type In y Ga 1-y N second contact layer 10 p-type In x Ga 1-x N first contact layer 11 p-type electrode

Claims (2)

窒化物半導体層上にp型コンタクト層を有し、前記p型コンタクト層がp型電極側から順にp型第一コンタクト層とp型第二コンタクト層によって構成される窒化物半導体素子において、
前記第一コンタクト層がMgからなるp型不純物を1.4×10 20 cm -3 有したInxGa1-xN(x=0.07)からなり、
記p型第二コンタクト層はMgからなるp型不純物を7.0×10 19 cm -3 含有したGaNからなると共に、
前記第一コンタクト層の膜厚は15nmであり、前記第二コンタクト層の膜厚は50nmであることを特徴とする窒化物半導体素子。
In a nitride semiconductor device having a p-type contact layer on a nitride semiconductor layer, wherein the p-type contact layer includes a p-type first contact layer and a p-type second contact layer in order from the p-type electrode side.
Made from the first contact layer is made of Mg p-type impurity 1.4 × 10 20 cm -3 free has been In x Ga 1-x N ( x = 0.07),
With pre-Symbol p-type second contact layer made of GaN and the p-type impurity contained 7.0 × 10 19 cm -3 consisting of Mg,
A nitride semiconductor device, wherein the first contact layer has a thickness of 15 nm, and the second contact layer has a thickness of 50 nm .
窒化物半導体層上にp型コンタクト層を有し、前記p型コンタクト層がp型電極側から順にp型第一コンタクト層とp型第二コンタクト層によって構成される窒化物半導体素子において、
前記第一コンタクト層がMgからなるp型不純物を1.4×10 20 cm -3 有したInxGa1-xN(x=0.07)からなり、
記p型第二コンタクト層はMgからなるp型不純物を4.0×10 19 cm -3 含有し、In組成比が前記p型第一コンタクト層より低いInyGa1-yN(y=0.02)からなると共に、
前記第一コンタクト層の膜厚は15nmであり、前記第二コンタクト層の膜厚は50nmであることを特徴とする窒化物半導体素子。
In a nitride semiconductor device having a p-type contact layer on a nitride semiconductor layer, wherein the p-type contact layer includes a p-type first contact layer and a p-type second contact layer in order from the p-type electrode side.
Made from the first contact layer is made of Mg p-type impurity 1.4 × 10 20 cm -3 free has been In x Ga 1-x N ( x = 0.07),
Before Symbol p-type second contact layer is a p-type impurity 4.0 × 10 19 cm -3 contain consisting Mg, an In an In composition ratio lower than the p-type first contact layer y Ga 1-y N (y = 0.02 ) , and
A nitride semiconductor device, wherein the first contact layer has a thickness of 15 nm, and the second contact layer has a thickness of 50 nm .
JP2008224843A 2008-09-02 2008-09-02 Nitride semiconductor device Expired - Fee Related JP5334501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224843A JP5334501B2 (en) 2008-09-02 2008-09-02 Nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224843A JP5334501B2 (en) 2008-09-02 2008-09-02 Nitride semiconductor device

Publications (2)

Publication Number Publication Date
JP2010062254A JP2010062254A (en) 2010-03-18
JP5334501B2 true JP5334501B2 (en) 2013-11-06

Family

ID=42188760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224843A Expired - Fee Related JP5334501B2 (en) 2008-09-02 2008-09-02 Nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP5334501B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156253A (en) * 2011-01-25 2012-08-16 Sumitomo Electric Ind Ltd Manufacturing method of nitride semiconductor element
JP2013033930A (en) * 2011-06-29 2013-02-14 Sumitomo Electric Ind Ltd Group iii nitride semiconductor element and group iii nitride semiconductor element manufacturing method
JP5598437B2 (en) * 2011-07-12 2014-10-01 豊田合成株式会社 Group III nitride semiconductor light emitting device manufacturing method
CN104392916A (en) * 2014-11-17 2015-03-04 中国科学院半导体研究所 Device low-contact-resistivity p-GaN ohmic contact method
KR102445539B1 (en) * 2015-12-28 2022-09-23 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and lighting apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897468A (en) * 1994-09-28 1996-04-12 Rohm Co Ltd Semiconductor light emitting device
JP3223832B2 (en) * 1997-02-24 2001-10-29 日亜化学工業株式会社 Nitride semiconductor device and semiconductor laser diode
JP4148664B2 (en) * 2001-02-02 2008-09-10 三洋電機株式会社 Nitride-based semiconductor laser device and method for forming the same
JP2005150511A (en) * 2003-11-18 2005-06-09 Toshiba Corp Semiconductor laser element and device
JP2007227832A (en) * 2006-02-27 2007-09-06 Matsushita Electric Ind Co Ltd Nitride semiconductor element

Also Published As

Publication number Publication date
JP2010062254A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5533744B2 (en) Group III nitride semiconductor light emitting device
JP3656456B2 (en) Nitride semiconductor device
JP3609661B2 (en) Semiconductor light emitting device
JP5048236B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
WO2011077473A1 (en) Nitride semiconductor light-emitting element and method for manufacturing same
JP2006108585A (en) Group iii nitride compound semiconductor light emitting element
JPWO2008153130A1 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor
JP2011238971A (en) Method of manufacturing nitride semiconductor light-emitting element
JP5580965B2 (en) Nitride semiconductor laser device
JP5047508B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2015149342A (en) Semiconductor light-emitting element and method of manufacturing the same
JP5334501B2 (en) Nitride semiconductor device
JP3441329B2 (en) Gallium nitride based semiconductor device
JP3620292B2 (en) Nitride semiconductor device
JP5234814B2 (en) Manufacturing method of nitride semiconductor light emitting device
KR100475005B1 (en) Nitride semiconductor device
JP4423969B2 (en) Nitride semiconductor multilayer substrate and nitride semiconductor device and nitride semiconductor laser device using the same
JP4720519B2 (en) Method for manufacturing p-type nitride semiconductor
JPH077182A (en) Gallium nitride based compound semiconductor light emitting element
JP4628651B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2005129923A (en) Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
JP3496480B2 (en) Nitride semiconductor device
JP2011198931A (en) Method of manufacturing group iii nitride semiconductor light emitting element
JP4788138B2 (en) Nitride semiconductor device
JP2015115343A (en) Method of manufacturing nitride semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5334501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees