Nothing Special   »   [go: up one dir, main page]

JP5328724B2 - Refrigerant distributor and heat pump device using the refrigerant distributor - Google Patents

Refrigerant distributor and heat pump device using the refrigerant distributor Download PDF

Info

Publication number
JP5328724B2
JP5328724B2 JP2010149214A JP2010149214A JP5328724B2 JP 5328724 B2 JP5328724 B2 JP 5328724B2 JP 2010149214 A JP2010149214 A JP 2010149214A JP 2010149214 A JP2010149214 A JP 2010149214A JP 5328724 B2 JP5328724 B2 JP 5328724B2
Authority
JP
Japan
Prior art keywords
outflow pipe
pipe
outflow
brazing
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010149214A
Other languages
Japanese (ja)
Other versions
JP2012013289A (en
Inventor
拓也 松田
晃 石橋
相武 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010149214A priority Critical patent/JP5328724B2/en
Publication of JP2012013289A publication Critical patent/JP2012013289A/en
Application granted granted Critical
Publication of JP5328724B2 publication Critical patent/JP5328724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、主として空気調和機等のヒートポンプ装置に用いられる熱交換器に取り付けられ、冷媒を分配する冷媒分配器に関する。   The present invention relates to a refrigerant distributor that is attached to a heat exchanger used mainly in a heat pump device such as an air conditioner and distributes a refrigerant.

空気調和機や冷凍装置などの冷凍サイクル装置の凝縮器または蒸発器として作用する熱交換器において、内部の冷媒流路を複数パスに分割した場合に、熱交換器の入口には各パスへ冷媒を分配する冷媒分配器が必要である。   In a heat exchanger that acts as a condenser or evaporator of a refrigeration cycle apparatus such as an air conditioner or a refrigeration apparatus, when the internal refrigerant flow path is divided into a plurality of paths, a refrigerant is supplied to each path at the inlet of the heat exchanger. A refrigerant distributor is needed to distribute the water.

また、例えば複数台の室外ユニットや室内ユニットを並列に接続してなるマルチ型空気調和機では、メインの冷媒流路から各ユニットへ冷媒を分配するためにも冷媒分配器が必要である。   For example, in a multi-type air conditioner in which a plurality of outdoor units or indoor units are connected in parallel, a refrigerant distributor is required to distribute the refrigerant from the main refrigerant channel to each unit.

一般に冷凍サイクル装置の膨張弁を通過した冷媒や蒸発器入口の冷媒は、ガス冷媒と液冷媒の気液二相の状態となっており、配管内を流れる冷媒の断面において密度分布が生じている。例えば流入配管に曲がりがある場合は遠心力の影響により、また、流入配管や冷媒分配器本体が水平に配置されている場合は重力の影響により、液冷媒が一方の管内面に偏って流れる偏流現象が生じる。   In general, the refrigerant that has passed through the expansion valve of the refrigeration cycle apparatus and the refrigerant at the inlet of the evaporator are in a gas-liquid two-phase state of gas refrigerant and liquid refrigerant, and density distribution occurs in the cross section of the refrigerant flowing in the pipe. . For example, if the inflow piping is bent, it is affected by the centrifugal force, and if the inflow piping or the refrigerant distributor body is horizontally arranged, due to the influence of gravity, the liquid refrigerant flows biased to the inner surface of one of the tubes. A phenomenon occurs.

従って冷媒分配器には、前記のような偏流の現象が生じることなく、気液の分離を防止でき、冷媒を均質に混合して、冷媒分配器入口での気液質量流量比と冷媒分配器出口での気液質量流量比が均等の状態で冷媒を分配する機能が要求される。   Therefore, the refrigerant distributor can prevent the gas-liquid separation without causing the phenomenon of drift as described above, and the refrigerant is homogeneously mixed so that the gas-liquid mass flow ratio at the refrigerant distributor inlet and the refrigerant distributor are mixed. A function of distributing the refrigerant in a state where the gas-liquid mass flow rate ratio at the outlet is uniform is required.

ところで、伝熱管が銅管の場合は、冷媒分配器の分配部は銅もしくは黄銅を削り出しにて成型されたもの、流出管は銅管が使用され、分配部と流出管の接合はロウ付け接合され、その流出管は蒸発器の伝熱管にロウ付け接合される。また、伝熱管がアルミ管の場合は、冷媒分配器の分配部はアルミ、流出管もアルミとなり、分配部と流出管の接合はロウ付け接合される(例えば、特許文献1参照)。   By the way, when the heat transfer tube is a copper tube, the distribution part of the refrigerant distributor is formed by cutting copper or brass, the copper pipe is used for the outflow pipe, and the joint between the distribution part and the outflow pipe is brazed The outlet pipe is brazed to the evaporator heat transfer pipe. When the heat transfer tube is an aluminum tube, the distribution portion of the refrigerant distributor is aluminum and the outflow tube is also aluminum, and the distribution portion and the outflow tube are joined by brazing (see, for example, Patent Document 1).

特開2006−266563号公報(段落[0023]、図3)JP 2006-266563 A (paragraph [0023], FIG. 3)

熱交換器の高効率化の代表例として、伝熱管の管径の縮小、マイクロチャネル化などが挙げられる。この場合、伝熱管の管径縮小により、蒸発器の冷媒の圧力損失が増大するので、冷媒流路数を増大する必要があり、冷媒分配器の流出管の本数が増える。   Typical examples of increasing the efficiency of heat exchangers include reducing the diameter of heat transfer tubes and making them microchannels. In this case, since the pressure loss of the refrigerant in the evaporator increases due to the reduction in the diameter of the heat transfer pipe, it is necessary to increase the number of refrigerant flow paths, and the number of outflow pipes of the refrigerant distributor increases.

また、アルミロウ付けの場合、ロウ材の融点は約590℃で、母材は約660℃となり、ロウ材の融点とアルミ母材の融点が近くなり、バーナーロウ付けの場合、温度管理が難しくロウ付け性が悪化する。   Also, in the case of aluminum brazing, the melting point of the brazing material is about 590 ° C., the base material is about 660 ° C., and the melting point of the brazing material is close to the melting point of the aluminum base material. Adhesiveness deteriorates.

また、流出管と分配部の熱容量差が大きいので、バーナーロウ付けで接合する場合、流出管の母材が溶けてしまうなど、温度管理が難しく、ロウ付け性が悪化する。つまり、アルミ製の冷媒分配器の分配部と流出管の接合は、ロウ材と母材の融点の差が近く、流出管の本数増大と、流出管と分配部の熱容量差が大きいので、製造性が難しいという問題があった。   In addition, since the heat capacity difference between the outflow pipe and the distribution section is large, when joining by burner brazing, the base material of the outflow pipe is melted, so that temperature management is difficult and brazing performance is deteriorated. In other words, the junction between the distribution section and the outflow pipe of the aluminum refrigerant distributor is close to the melting point difference between the brazing material and the base material, the number of outflow pipes increases, and the heat capacity difference between the outflow pipe and the distribution section is large. There was a problem that sex was difficult.

本発明の技術的課題は、アルミ製分配部と複数のアルミ製流出管との接合が良好で、信頼性を向上させ得るようにすることにある。   The technical problem of the present invention is to make it possible to improve the reliability by joining the aluminum distributor and the plurality of aluminum outflow pipes well.

本発明に係る冷媒分配器は、アルミ製流入管から流入した冷媒を複数のアルミ製流出管に分配するアルミ製分配部を備え、前記流出管を、それぞれ第1流出管と第2流出管で形成し、各第1流出管と分配部は炉中ロウ付けで接合し、各第1流出管と各第2流出管はそれぞれバーナーロウ付けで接合してなる冷媒分配器であって、第1流出管の管径をD[m]、第1流出管の軸方向長さをL[m]、肉厚t[m]とし、各第1流出管と各第2流出管とのバーナーロウ付けによる接合時に、各第1流出管と各第2流出管との接合部の温度がロウ材が溶ける温度となり、かつ各第1流出管と分配部の温度が再びロウ材が溶けない温度以下になる、
L≧sqrt(96/55×(t−t^2/D))
の関係が成立するように第1流出管の管径に合わせて当該第1流出管の軸方向長さを設定したものである。
Refrigerant distributor according to the present invention comprises an aluminum distribution unit for distributing the refrigerant flowing from the aluminum inlet pipe to a plurality of aluminum outlet pipe, said outlet pipe, a first outlet tube respectively and the second outlet pipe formed, the distribution unit and each of the first outflow pipe is joined by brazing in a furnace, a refrigerant distributor formed by joining a burner brazing each first outlet pipe and the second outlet pipe, first The diameter of the outflow pipe is D [m], the axial length of the first outflow pipe is L [m], and the wall thickness is t [m]. Burner brazing between each first outflow pipe and each second outflow pipe At the time of joining, the temperature at the joint between each first outflow pipe and each second outflow pipe becomes the temperature at which the brazing material melts, and the temperature at each first outflow pipe and the distribution section falls below the temperature at which the brazing material does not melt again. Become,
L ≧ sqrt (96/55 × (t−t ^ 2 / D))
The axial length of the first outflow pipe is set in accordance with the diameter of the first outflow pipe so that the above relationship is established .

本発明の冷媒分配器によれば、アルミ製分配部とアルミ製の各第1流出管とを炉中ロウ付けで接合するようにしているので、温度管理が容易となり、分配部と各第1流出管とを良好に接合でき、信頼性の高い冷媒分配器を提供できる。
また、L≧sqrt(96/55×(t−t^2/D))の関係が成立するように第1流出管の管径に合わせて当該第1流出管の軸方向長さを設定しているので、各第1流出管と各第2流出管をそれぞれバーナーロウ付けで接合しても、各第1流出管と分配部の温度を再びロウ材が溶けない温度以下にすることができる。さらに、これを実現するための第1流出管の軸方向長さを、第1流出管の管径に合わせて明確に導き出すことができる。
According to the refrigerant distributor of the present invention, since the aluminum distributor and the aluminum first outflow pipes are joined by brazing in the furnace, temperature management is facilitated, and the distributor and each of the first outlet pipes are joined. It is possible to provide a reliable refrigerant distributor that can be joined to the outflow pipe satisfactorily.
Further, the axial length of the first outflow pipe is set in accordance with the pipe diameter of the first outflow pipe so that the relationship of L ≧ sqrt (96/55 × (t−t ^ 2 / D)) is established. Therefore, even if each 1st outflow pipe and each 2nd outflow pipe are joined by burner brazing, the temperature of each 1st outflow pipe and a distribution part can be made below into the temperature which a brazing material does not melt again. . Furthermore, the axial length of the first outflow pipe for realizing this can be clearly derived according to the pipe diameter of the first outflow pipe.

本発明の実施の形態に係る冷媒分配器を用いた熱交換器の構成図である。It is a block diagram of the heat exchanger using the refrigerant distributor which concerns on embodiment of this invention. 本発明の実施の形態に係る冷媒分配器の縦断面図およびA−A線矢視断面図である。It is the longitudinal cross-sectional view and AA arrow directional cross-sectional view of the refrigerant distributor which concern on embodiment of this invention. 本発明の実施の形態に係る冷媒分配器の分配部の変形例を示す断面図である。It is sectional drawing which shows the modification of the distribution part of the refrigerant distributor which concerns on embodiment of this invention. 本発明の実施の形態に係る冷媒分配器の第1流出管3の変形例を示す断面図である。It is sectional drawing which shows the modification of the 1st outflow pipe 3 of the refrigerant distributor which concerns on embodiment of this invention. 本発明の実施の形態に係る冷媒分配器の製造手順を示すフローチャートである。It is a flowchart which shows the manufacture procedure of the refrigerant distributor which concerns on embodiment of this invention.

以下、図示実施形態により本発明を説明する。
図1は本発明の実施の形態に係る冷媒分配器を用いた熱交換器の構成図、図2はその冷媒分配器の縦断面図およびA−A線矢視断面図である。
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a configuration diagram of a heat exchanger using a refrigerant distributor according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view and a cross-sectional view taken along line AA of the refrigerant distributor.

本実施の形態の冷媒分配器2は、図1のように伝熱管5とフィン11で構成されるフィンアンドチューブ型の熱交換器1に流入する二相冷媒を分配するものであり、詳細については後述する。熱交換器1を通過したガス冷媒は、ガスヘッダー8で合流し流出するようになっている。伝熱管5とフィン11は、いずれもアルミまたはアルミ合金で構成されている。なお、伝熱管5は、円管、扁平管、その他どのような形状であっても採用可能である。   The refrigerant distributor 2 according to the present embodiment distributes the two-phase refrigerant flowing into the fin-and-tube heat exchanger 1 including the heat transfer tubes 5 and the fins 11 as shown in FIG. Will be described later. The gas refrigerant that has passed through the heat exchanger 1 joins and flows out at the gas header 8. The heat transfer tubes 5 and the fins 11 are both made of aluminum or an aluminum alloy. The heat transfer tube 5 may be a circular tube, a flat tube, or any other shape.

次に、本実施の形態の冷媒分配器を用いたフィンアンドチューブ型の熱交換器1の機能について説明する。ガス冷媒と液冷媒が混合された二相冷媒は、冷媒分配器2で複数の流出管に分配される。分配された二相冷媒は、熱交換器1の各パスを構成する伝熱管5に流入する。伝熱管5に流入した二相冷媒は、伝熱管5と一体化したフィン11を介して、熱交換器を通過する空気と熱交換し、ガス冷媒となって各パス出口よりガスヘッダー8の内部で合流し、出口ガスとなって流出する。   Next, the function of the fin-and-tube heat exchanger 1 using the refrigerant distributor of the present embodiment will be described. The two-phase refrigerant in which the gas refrigerant and the liquid refrigerant are mixed is distributed to the plurality of outflow pipes by the refrigerant distributor 2. The distributed two-phase refrigerant flows into the heat transfer tubes 5 constituting each path of the heat exchanger 1. The two-phase refrigerant that has flowed into the heat transfer tube 5 exchanges heat with the air passing through the heat exchanger via the fins 11 integrated with the heat transfer tube 5, and becomes a gas refrigerant from the outlet of each path to the inside of the gas header 8. At this point, the gas flows out as outlet gas.

冷媒分配器2は、図2のようにアルミ製の流入管7とアルミ製の分配部6と複数の流出管とを備え、各流出管が、軸方向長さLのアルミ製の第1流出管3とこれに接続されたアルミ製の第2流出管4で構成されている。そして、分配部6には、ここでは4個の流出孔が設けられ、各流出孔にそれぞれ第1流出管3が接続されている。   As shown in FIG. 2, the refrigerant distributor 2 includes an aluminum inflow pipe 7, an aluminum distribution section 6, and a plurality of outflow pipes, each outflow pipe being an aluminum first outflow pipe having an axial length L. It consists of a tube 3 and a second outflow tube 4 made of aluminum connected thereto. In the distribution section 6, four outflow holes are provided here, and the first outflow pipe 3 is connected to each outflow hole.

ここで、第1流出管3と分配部6の接続部10の接合方法について説明する。第1流出管3と分配部6は、炉中ロウ付け法で接合される。炉中ロウ付け法とは、一般的にノコロックロウ付け法と呼ばれ、非腐食性のフッ化物系フラックスを用いて、炉中内に窒素ガスを導入しヒーターで炉内の温度をコントロールしてロウ付けする接合方法である。   Here, the joining method of the connection part 10 of the 1st outflow pipe 3 and the distribution part 6 is demonstrated. The 1st outflow pipe 3 and the distribution part 6 are joined by the brazing method in a furnace. The in-furnace brazing method is generally referred to as a nocolok brazing method, which uses a non-corrosive fluoride flux to introduce nitrogen gas into the furnace and control the temperature in the furnace with a heater to braze. This is a joining method.

また、ノコロックロウ付け法以外の炉中ロウ付け法として、真空ロウ付け法と呼ばれる接合方法がある。この真空ロウ付け法は、炉内を高真空状態として酸素の供給をなくすことで、再酸化を防止してロウ付けする接合方法である。   Further, there is a joining method called a vacuum brazing method as an in-furnace brazing method other than the sawlock brazing method. This vacuum brazing method is a joining method in which the inside of a furnace is brought into a high vacuum state and supply of oxygen is eliminated to prevent reoxidation and braze.

ノコロックロウ付け法や真空ロウ付け法は、炉の中で温度管理を行いながらロウ付けすることができるので、信頼性の高いロウ付け法といえる。   The Nokolok brazing method and the vacuum brazing method can be said to be a highly reliable brazing method because brazing can be performed while performing temperature control in a furnace.

炉中ロウ付け以外には、バーナーロウ付け法がある。バーナーロウ付け法は、炉中ロウ付けのノコロックロウ付け法と同様にフッ化物フラックスを接合部に塗布してロウ材を接合部に設置した後に、バーナーでロウ材を融点590℃まで上昇させ、ロウ材を溶かして接合する接合方法である。ガスバーナーは、都市ガス、プロパン、アセチレンと酸素の混合ガス等を用いる。バーナーロウ付けは、大気中で行い、バーナーで接合部を直接、温度上昇させるので、温度調節が難しく、アルミ相互のロウ付けの場合は、融点近くになった時のアルミの色に変化がなく、ロウ材と母材の融点差が小さいので、ロウ付け性が難しい。ロウ付けがうまくいかず、未接合部ができた場合は、中を流れる冷媒が外気に流出してしまう。また、第1流出管3は複数本(ここでは4本)あり、さらに分配部6と第1流出管3との間の熱容量差が大きく、構造的にも複雑な形状となっており、バーナーロウ付けで接合するには非常に難しい。そのため、分配部6と第1流出管3をロウ付けした後に、第1流出管3と第2流出管4との接合部9をバーナーロウ付けする。   In addition to brazing in the furnace, there is a burner brazing method. In the burner brazing method, similar to the noco rock brazing method of brazing in the furnace, after applying the fluoride flux to the joint and placing the brazing material on the joint, the brazing material is raised to a melting point of 590 ° C. with a burner. This is a joining method in which materials are melted and joined. The gas burner uses city gas, propane, a mixed gas of acetylene and oxygen, or the like. Burner brazing is performed in the air, and the temperature of the joint is directly raised by the burner, so it is difficult to control the temperature. In the case of brazing between aluminum, there is no change in the color of the aluminum when it is close to the melting point. Since the melting point difference between the brazing material and the base material is small, it is difficult to braze. If the brazing is not successful and an unjoined part is formed, the refrigerant flowing inside flows out to the outside air. In addition, there are a plurality of first outflow pipes 3 (here, four), and the heat capacity difference between the distributor 6 and the first outflow pipe 3 is large, and the structure is complicated, and the burner It is very difficult to join by brazing. Therefore, after joining the distribution part 6 and the 1st outflow pipe 3, the junction part 9 of the 1st outflow pipe 3 and the 2nd outflow pipe 4 is burner brazed.

第2流出管4は、熱交換器1の伝熱管5に接続されるものであって、その軸方向長さは第1流出管3の軸方向長さLに比べて非常に長い。また、分配部6で冷媒二相流は均等に分配されるが、熱交換器1の各パスに流れた冷媒の出口ガスの温度が一定になるように、第2流出管4の長さ、穴径を調整する必要があるので、第2流出管4はそれぞれの長さ、穴径が異なっている。さらに、第2流出管4の軸方向長さが非常に長いのに、炉中ロウ付けの場合、炉の中に一度にたくさんのものを入れることができないため、製造効率が悪化する。したがって、第1流出管3と第2流出管4の接合部9は、バーナーロウ付けとすることが望ましい。   The second outflow pipe 4 is connected to the heat transfer pipe 5 of the heat exchanger 1, and its axial length is much longer than the axial length L of the first outflow pipe 3. In addition, the refrigerant two-phase flow is evenly distributed by the distribution unit 6, but the length of the second outflow pipe 4 is set so that the temperature of the outlet gas of the refrigerant flowing in each path of the heat exchanger 1 is constant. Since it is necessary to adjust the hole diameter, each of the second outflow pipes 4 is different in length and hole diameter. Furthermore, although the axial length of the second outflow pipe 4 is very long, in the case of brazing in the furnace, a lot of things cannot be put into the furnace at a time, so that the production efficiency is deteriorated. Therefore, it is desirable that the joint 9 between the first outflow pipe 3 and the second outflow pipe 4 be burner brazed.

すなわち、分配部6と第1流出管3の接合部10に関しては、接合箇所がたくさんあり、さらに熱容量差が異なるので、バーナーロウ付けでは未接合部ができるなど製造性が悪化する。第1流出管3と第2流出管4の接合部9に関しては、どちらも同じ円管の接続であり、熱容量差も小さいのでバーナーロウ付けでも問題無く接合することができる。   That is, as for the joint portion 10 between the distribution portion 6 and the first outflow pipe 3, there are many joint portions, and furthermore, the heat capacity difference is different. The joint 9 between the first outflow pipe 3 and the second outflow pipe 4 is the same circular pipe connection, and since the heat capacity difference is small, it can be joined without any problem even with burner brazing.

ここで、第1流出管3の長さLについて考察する。第1流出管3と第2流出管4をバーナーロウ付けする際、第1流出管3を介して熱伝導により、第1流出管3と分配部6のロウ付け部(接合部10)がロウ材の融点より高くなると、再びロウ材が溶けてしまう問題が起きる。そのため、第1流出管3と第2流出管4をバーナーロウ付けする際に第1流出管3を介して第1流出管3と分配部6のロウ付け部(接合部10)に伝わる熱がロウ材の融点である約590℃以下になるように、第1流出管3の長さLを設定する必要がある。その導出法を以下に示す。   Here, the length L of the first outflow pipe 3 will be considered. When the first outflow pipe 3 and the second outflow pipe 4 are subjected to burner brazing, the brazing portion (joint portion 10) of the first outflow pipe 3 and the distribution unit 6 is brazed by heat conduction through the first outflow pipe 3. When the melting point of the material becomes higher, there arises a problem that the brazing material is melted again. Therefore, when the first outflow pipe 3 and the second outflow pipe 4 are burner brazed, heat transmitted to the first outflow pipe 3 and the brazing portion (joint portion 10) of the distribution section 6 through the first outflow pipe 3 is transferred. It is necessary to set the length L of the first outflow pipe 3 so that the melting point of the brazing material is about 590 ° C. or lower. The derivation method is shown below.

第1流出管3の管径φ=D[m]、肉厚t[m]、長さL[m]とする。第1流出管3と第2流出管4の接合部9の温度はロウ材の融点590[℃]となる。第1流出管3と分配部6の温度は、再びロウ材が溶けないようにするために、550[℃]以下になるように設定する。
管径Dと肉厚tは耐圧強度P[MPa]により、以下の式より設定する。ただし、σは引張強度であり、アルミの焼きなまし後○材(管材)の場合、100[N/mm^2]となる。
P=(2×σ×t)/(D−0.8×t)
耐圧強度Pは、冷媒R410Aの場合、約20MPa確保できればよいので、
20≦(200t)/(D−0.8t)
20D−16t≦200t
t≧0.093D
第1流出管3と第2流出管4の接合部9から第1流出管3と分配部6の接合部10までの熱交換量Q1は熱伝導により以下の式で計算できる。
Q1=断面積A[m^2]×熱伝導率λ[W/(mK)]×温度差[K]/長さL[m]
={D^2/4×π−(D−2t)^2/4×π}×240×(590−550)/L
=9600×π×t×(D−t)/L
また、空気温度20[℃]、対流伝達率10[W/m^2・K]とすると、第1流出管3の外周面と空気との熱交換量Q2は以下の式で表される。
Q2=外周面積A[m^2]×熱伝達率10[W/m^2・K]×温度差[K]
=D×π×L×10×{(590+550)/2−20}
=D×π×L×10×550
=5500×π×D×L
ここで、Q1=Q2であるので、
L=sqrt(96/55×(t−t^2/D))
となる。
例えば、D=0.006[m]の場合では、L=0.002[m]より長ければ、第1流出管3と第2流出管4をバーナーロウ付けする際に第1流出管3と分配部6の接合部10の温度が550℃以下となり、第1流出管3と分配部6の接合部10のロウ材が再び溶けてしまうことはない。逆に、第1流出管3の長さLが0.002[m]より短いと融点に近づくので、第1流出管3と分配部6の接合部10のロウ材が再び溶けてしまう可能性がある。
The pipe diameter φ of the first outflow pipe 3 is set to D [m], the wall thickness t [m], and the length L [m]. The temperature of the joint 9 between the first outflow pipe 3 and the second outflow pipe 4 becomes the melting point 590 [° C.] of the brazing material. The temperature of the first outflow pipe 3 and the distributor 6 is set to be 550 [° C.] or less so that the brazing material does not melt again.
The tube diameter D and the wall thickness t are set according to the following formula according to the pressure strength P [MPa]. However, σ is the tensile strength, and is 100 [N / mm ^ 2] in the case of ○ material (tube material) after annealing of aluminum.
P = (2 × σ × t) / (D−0.8 × t)
In the case of the refrigerant R410A, the pressure strength P should be about 20 MPa, so
20 ≦ (200t) / (D−0.8t)
20D-16t ≦ 200t
t ≧ 0.093D
The heat exchange amount Q1 from the junction 9 between the first outflow pipe 3 and the second outflow pipe 4 to the junction 10 between the first outflow pipe 3 and the distribution section 6 can be calculated by the following equation by heat conduction.
Q1 = cross-sectional area A [m ^ 2] × thermal conductivity λ [W / (mK)] × temperature difference [K] / length L [m]
= {D ^ 2/4 × π− (D−2t) ^ 2/4 × π} × 240 × (590-550) / L
= 9600 × π × t × (D−t) / L
When the air temperature is 20 [° C.] and the convection transfer rate is 10 [W / m ^ 2 · K], the heat exchange amount Q2 between the outer peripheral surface of the first outflow pipe 3 and the air is expressed by the following equation.
Q2 = peripheral area A [m ^ 2] × heat transfer coefficient 10 [W / m ^ 2 · K] × temperature difference [K]
= D × π × L × 10 × {(590 + 550) / 2-20}
= D × π × L × 10 × 550
= 5500 × π × D × L
Here, since Q1 = Q2,
L = sqrt (96/55 × (t−t ^ 2 / D))
It becomes.
For example, in the case of D = 0.006 [m], if it is longer than L = 0.002 [m], the first outflow pipe 3 and the first outflow pipe 3 can be connected to the first outflow pipe 3 and the second outflow pipe 4 with the burner brazing. The temperature of the joint part 10 of the distribution part 6 becomes 550 ° C. or less, and the brazing material of the joint part 10 of the first outflow pipe 3 and the distribution part 6 does not melt again. On the contrary, when the length L of the first outflow pipe 3 is shorter than 0.002 [m], the melting point approaches the melting point, so that the brazing material at the joint 10 of the first outflow pipe 3 and the distribution unit 6 may be melted again. There is.

図3に分配部6の変形例を示す。図3に示すように、分配部6の流出孔は2個、6個、10個の例が示してあるが、これ以外に何個の流出孔が備えてあっても構わない。   FIG. 3 shows a modification of the distribution unit 6. As shown in FIG. 3, there are two, six, and ten outflow holes of the distribution unit 6, but any number of outflow holes may be provided in addition to this.

図4に流出管の変形例を示す。前述した仕様と異なる点は第1流出管3の形状であり、第1流出管3と第2流出管4との接合部9(図2参照)間の間隔が広くなるように、外側に大きく曲がった形状を有している点に特徴を有している。これにより、第1流出管3と第2流出管4の接合部9相互の間隔が広くなるので、バーナーロウ付けが容易となる。   FIG. 4 shows a modification of the outflow pipe. The difference from the above-mentioned specification is the shape of the first outflow pipe 3, and it is greatly increased outward so that the distance between the joints 9 (see FIG. 2) of the first outflow pipe 3 and the second outflow pipe 4 is widened. It is characterized by having a bent shape. Thereby, since the space | interval of the junction part 9 of the 1st outflow pipe 3 and the 2nd outflow pipe 4 becomes wide, burner brazing becomes easy.

さらに、第1流出管3の変形例として軸方向長さLを第1流出管3相互で異ならせる構造にすれば、さらに接合部9相互の間隔が大きくとれるので、バーナーロウ付けが容易となる。   Further, as a modification of the first outflow pipe 3, if the axial length L is made different between the first outflow pipes 3, the gap between the joint portions 9 can be further increased, so that the burner brazing becomes easy. .

また、熱交換器1の出口パスのガス温度が一定になるように、各第1流出管3の内径を異ならせた構造にすれば、第2流出管4の内径を調節する必要がなくなり、同じ内径の仕様の第2流出管4を用いることができ、内径が異なる仕様の円管を揃える手間が省け、製造効率を一層向上させることができる。   Moreover, if the inner diameter of each first outlet pipe 3 is made different so that the gas temperature in the outlet path of the heat exchanger 1 is constant, it is not necessary to adjust the inner diameter of the second outlet pipe 4. The second outflow pipe 4 having the same inner diameter specification can be used, and the labor for arranging circular pipes having different inner diameters can be saved, and the manufacturing efficiency can be further improved.

図5に本発明の製造工程を示すフローチャートを示す。まず、分配部6と第1流出管3を炉中ロウ付けする。その後、第1流出管3と第2流出管4をバーナーロウ付けする。これにより、アルミ製の製造性の高い冷媒分配器を提供することができ、延いてはヒートポンプ装置の信頼性を高めることができる。   FIG. 5 is a flowchart showing the manufacturing process of the present invention. First, the distributor 6 and the first outflow pipe 3 are brazed in the furnace. Thereafter, the first outflow pipe 3 and the second outflow pipe 4 are burner brazed. As a result, it is possible to provide a refrigerant distributor with high manufacturability made of aluminum, and by extension, the reliability of the heat pump device can be improved.

1 熱交換器、2 冷媒分配器、3 第1流出管、4 第2流出管、5 伝熱管、6 分配部、7 流入管、8 ガスヘッダー、9 第1流出管と第2流出管との接合部、10 分配部と第1流出管との接合部、11 フィン。   1 heat exchanger, 2 refrigerant distributor, 3 first outlet pipe, 4 second outlet pipe, 5 heat transfer pipe, 6 distribution section, 7 inlet pipe, 8 gas header, 9 first outlet pipe and second outlet pipe Junction part, 10 junction part of a distribution part and the 1st outflow pipe, 11 fin.

Claims (4)

アルミ製流入管から流入した冷媒を複数のアルミ製流出管に分配するアルミ製分配部を備え、前記流出管を、それぞれ第1流出管と第2流出管で形成し、各第1流出管と分配部は炉中ロウ付けで接合し、各第1流出管と各第2流出管はそれぞれバーナーロウ付けで接合してなる冷媒分配器であって、
第1流出管の管径をD[m]、第1流出管の軸方向長さをL[m]、肉厚t[m]とし、各第1流出管と各第2流出管とのバーナーロウ付けによる接合時に、各第1流出管と各第2流出管との接合部の温度がロウ材が溶ける温度となり、かつ各第1流出管と分配部の温度が再びロウ材が溶けない温度以下になる、
L≧sqrt(96/55×(t−t^2/D))
の関係が成立するように第1流出管の管径に合わせて当該第1流出管の軸方向長さを設定したことを特徴とする冷媒分配器。
Comprising an aluminum distribution unit for distributing the refrigerant flowing from the aluminum inlet pipe to a plurality of aluminum outflow pipe, a pre-Symbol outlet tube, respectively a first outlet pipe is formed with a second outlet pipe, the first outlet pipe And the distributor are joined by brazing in the furnace, and each first outlet pipe and each second outlet pipe are joined by burner brazing ,
The diameter of the first outflow pipe is D [m], the axial length of the first outflow pipe is L [m], and the thickness is t [m], and the burner between each first outflow pipe and each second outflow pipe At the time of joining by brazing, the temperature at the joint between each first outflow pipe and each second outflow pipe becomes a temperature at which the brazing material melts, and the temperature at each first outflow pipe and the distribution section becomes a temperature at which the brazing material does not melt again. Become
L ≧ sqrt (96/55 × (t−t ^ 2 / D))
A refrigerant distributor characterized in that the axial length of the first outflow pipe is set in accordance with the diameter of the first outflow pipe so that the above relationship is established .
各前記第1流出管の軸方向長さをそれぞれ異ならせたことを特徴とする請求項1記載の冷媒分配器。 Refrigerant distributor according to claim 1 Symbol mounting, characterized in that the axial length of each said first outflow pipe was varied, respectively. 各前記第1流出管の内径を、下流のガス温度が一定となるようにそれぞれ異ならせたことを特徴とする請求項1又は2記載の冷媒分配器。 The refrigerant distributor according to claim 1 or 2, wherein the inner diameter of each of the first outflow pipes is made different so that the downstream gas temperature is constant. 請求項1〜3のいずれかに記載の冷媒分配器を用いたヒートポンプ装置。 A heat pump device using the refrigerant distributor according to any one of claims 1 to 3 .
JP2010149214A 2010-06-30 2010-06-30 Refrigerant distributor and heat pump device using the refrigerant distributor Active JP5328724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149214A JP5328724B2 (en) 2010-06-30 2010-06-30 Refrigerant distributor and heat pump device using the refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149214A JP5328724B2 (en) 2010-06-30 2010-06-30 Refrigerant distributor and heat pump device using the refrigerant distributor

Publications (2)

Publication Number Publication Date
JP2012013289A JP2012013289A (en) 2012-01-19
JP5328724B2 true JP5328724B2 (en) 2013-10-30

Family

ID=45599938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149214A Active JP5328724B2 (en) 2010-06-30 2010-06-30 Refrigerant distributor and heat pump device using the refrigerant distributor

Country Status (1)

Country Link
JP (1) JP5328724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508871B2 (en) 2014-07-04 2019-12-17 Mitsubishi Electric Corporation Refrigerant distributor, and heat pump device having the refrigerant distributor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10175009B2 (en) 2015-01-07 2019-01-08 Mitsubishi Electric Corporation Method for manufacturing refrigerant distributor, refrigerant distributor manufacturing apparatus, refrigerant distributor, heat exchanger, and air-conditioning device
WO2019021457A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Refrigerant distributor and heat pump device having said refrigerant distributor
JP7011187B2 (en) * 2019-11-14 2022-02-10 ダイキン工業株式会社 Refrigerant shunt and air conditioner
US20230332776A1 (en) * 2020-11-12 2023-10-19 Mitsubishi Electric Corporation Indoor heat exchanger and indoor unit of air-conditioning apparatus
JP7323820B2 (en) * 2021-10-25 2023-08-09 ダイキン工業株式会社 HEAT EXCHANGER, AIR CONDITIONER, AND METHOD FOR MANUFACTURING HEAT EXCHANGER

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042855B2 (en) * 1980-04-28 1985-09-25 松下冷機株式会社 Flow divider in furnace brazing
JPH0719666A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Manufacture of refrigerant header and heat exchanger using the same header obtained by the manufacture
JPH07208831A (en) * 1994-01-20 1995-08-11 Mitsubishi Heavy Ind Ltd Distributor for refrigerator
JP3480392B2 (en) * 1999-10-15 2003-12-15 三菱電機株式会社 Refrigerant distributor and refrigeration cycle device using the same
JP3888215B2 (en) * 2002-04-24 2007-02-28 松下電器産業株式会社 Method for manufacturing refrigeration cycle apparatus
JP2007192496A (en) * 2006-01-20 2007-08-02 Sanyo Electric Co Ltd Air conditioning system
JP2009168196A (en) * 2008-01-18 2009-07-30 Hitachi Appliances Inc Distributor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508871B2 (en) 2014-07-04 2019-12-17 Mitsubishi Electric Corporation Refrigerant distributor, and heat pump device having the refrigerant distributor

Also Published As

Publication number Publication date
JP2012013289A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5328724B2 (en) Refrigerant distributor and heat pump device using the refrigerant distributor
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
JP5296990B2 (en) Brazed plate fin heat exchanger
WO2014115240A1 (en) Refrigerant distributor and heat pump device using refrigerant distributor
WO2016002088A1 (en) Coolant distributor and heat pump device comprising coolant distributor
JP2011106738A (en) Heat exchanger and heat pump system
JP4962278B2 (en) Heat exchanger and heat pump system
JP5517801B2 (en) Heat exchanger and heat pump system equipped with this heat exchanger
US20140151011A1 (en) Heat exchanger and method of manufacturing the same
JP2009121758A (en) Heat exchanger and cryogenic system
JP2018532093A (en) Heat exchanger
US10941989B2 (en) Air conditioner and method of manufacturing the same
JP6223603B2 (en) Heat exchanger and air conditioner
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
WO2020095621A1 (en) Heat exchanger and air conditioner
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
KR20070108078A (en) Transition assembly and method of connecting to a heat exchanger
KR100740699B1 (en) Header pipe for heat exchanger
JP2015064162A (en) Heat exchanger and manufacturing method of the same
JP7335690B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP2018151040A (en) Pipe joint, heat exchanger and manufacturing method of heat exchanger
JP2023050602A (en) Heat exchanger and air conditioner
JP6207724B2 (en) Header distributor, heat exchanger, air conditioner, and header distributor manufacturing method
CN108626915A (en) The parallel-flow evaporator used on refrigerator/freezer
JP7106814B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5328724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250