Nothing Special   »   [go: up one dir, main page]

JP5359074B2 - Aqueous carbon material composition and battery composition using the same - Google Patents

Aqueous carbon material composition and battery composition using the same Download PDF

Info

Publication number
JP5359074B2
JP5359074B2 JP2008181399A JP2008181399A JP5359074B2 JP 5359074 B2 JP5359074 B2 JP 5359074B2 JP 2008181399 A JP2008181399 A JP 2008181399A JP 2008181399 A JP2008181399 A JP 2008181399A JP 5359074 B2 JP5359074 B2 JP 5359074B2
Authority
JP
Japan
Prior art keywords
ethylenically unsaturated
resin
carbon material
aqueous
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008181399A
Other languages
Japanese (ja)
Other versions
JP2010021059A (en
Inventor
大 稲垣
幸子 木下
浩一郎 宮嶋
潤 金田
順幸 諸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2008181399A priority Critical patent/JP5359074B2/en
Publication of JP2010021059A publication Critical patent/JP2010021059A/en
Application granted granted Critical
Publication of JP5359074B2 publication Critical patent/JP5359074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous system carbon material composition extremely excellent in water resistance, alkali-proof capability, and chemical resistance and also excellent in preservation stability and rigidity of a coated film after coating process in order to realize a high conductive carbon material with an aqueous dispersion at high level, and provide a composition for a battery electrode excellent in high conductivity especially for a secondary battery and excellent in bonding property with a collector and in charge/discharge cycle characteristics even under a high temperature environment due to generated heat while in charge/discharge or the like, by realizing a high conductivity and high base material adhesion in application in a fuel cell, a solar cell and capacitor. <P>SOLUTION: The aqueous carbon material composition contains a carbon material treated by anion resin and/or nonionic resin, an aqueous resin and an aqueous medium. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、水に分散した炭素材料組成物としての高い導電性、保存安定性、高塗工性および環境安全性に優れた水系炭素材料組成物及び電池電極用組成物に関する。   The present invention relates to a water-based carbon material composition and a battery electrode composition excellent in high conductivity, storage stability, high coating property and environmental safety as a carbon material composition dispersed in water.

近年、低炭素社会への実現に向けて世界で様々な取り組みがなされているが、特に燃料電池、太陽電池、二次電池、キャパシタなどを利用した炭酸ガス削減を目的とした研究開発がなされている。   In recent years, various efforts have been made around the world to realize a low-carbon society, but research and development aimed at reducing carbon dioxide using fuel cells, solar cells, secondary batteries, capacitors, etc. have been made. Yes.

又、電子技術の進歩により、電子機器の性能が向上して小型化、ポータブル化が進み、その電源としてエネルギー密度の高い二次電池が望まれている。電子機器の小型化・軽量化は目覚しく、電源となる電池に対しても小型化・軽量化の要求が非常に強い。このような電池も一次電池に代わって、繰り返し使用できる二次電池に対する需要が更に高まっている。これらの要求に対して種々の二次電池が開発されており、例えばニッケルカドミウム電池、ニッケル水素二次電池、リチウムイオン二次電池等が実用化されている。   Further, due to the advancement of electronic technology, the performance of electronic devices has been improved and miniaturization and portability have progressed, and a secondary battery with high energy density is desired as its power source. Electronic devices are becoming smaller and lighter, and there is a strong demand for smaller and lighter batteries for power supplies. There is a growing demand for secondary batteries that can be used repeatedly instead of primary batteries. Various secondary batteries have been developed to meet these requirements. For example, nickel cadmium batteries, nickel hydride secondary batteries, lithium ion secondary batteries, and the like have been put into practical use.

これらの二次電池の構成部材となる電極としては、水素吸蔵合金や黒鉛等の活物質と、増粘剤としてのカルボキシメチルセルロースと、バインダーとしてのスチレン/ブタジエンラテックスと、分散媒としての水とを混練して得たペーストを集電体表面上に塗布、乾燥して製造する方法が開示されている(特許文献1、特許文献2)。   As electrodes constituting the constituent members of these secondary batteries, an active material such as a hydrogen storage alloy or graphite, carboxymethylcellulose as a thickener, styrene / butadiene latex as a binder, and water as a dispersion medium. A method is disclosed in which a paste obtained by kneading is applied on the surface of a current collector and dried to produce (Patent Document 1, Patent Document 2).

又、上記以外に、電極に使用されるバインダーとしては、アクリル系樹脂、ポリテトラフルオロエチレンなどの含フッ素系樹脂、エチレン/プロピレン/ジエン共重合体ゴム、スチレン/エチレン/ブテン/スチレンブロック共重合体ゴムなどの非水溶性樹脂が用いられ、必要に応じて更に、ポリビニルアルコール、ポリアクリル酸塩、水溶性セルロース誘導体、ポリエチレンオキサイド、ポリビニルピロリドンなどの水溶性樹脂などとの混合物が用いられている(特許文献3〜7)。   In addition to the above, binders used for electrodes include acrylic resins, fluorine-containing resins such as polytetrafluoroethylene, ethylene / propylene / diene copolymer rubber, styrene / ethylene / butene / styrene block copolymer. A water-insoluble resin such as a combined rubber is used, and a mixture with a water-soluble resin such as polyvinyl alcohol, polyacrylic acid salt, water-soluble cellulose derivative, polyethylene oxide, and polyvinylpyrrolidone is used as necessary. (Patent Documents 3 to 7).

しかし、これらのバインダーは、集電体との密着性が必ずしも十分であるとはいえなかった。電極層と集電体との密着性が十分ではない電極を用いた二次電池では、充放電サイクル特性をはじめとする電池特性の向上を図ることができないという問題があった。このようにバインダーとしては集電体と電極活物質及び導電性材料同士及び各材料間の結着力の高い樹脂であることが必要である。   However, it cannot be said that these binders have sufficient adhesion to the current collector. In a secondary battery using an electrode in which the adhesion between the electrode layer and the current collector is not sufficient, there is a problem that the battery characteristics such as the charge / discharge cycle characteristics cannot be improved. As described above, the binder is required to be a resin having a high binding force between the current collector, the electrode active material, and the conductive materials and between the materials.

更に、充放電サイクル寿命や電池容量の低下を解決するために、様々な樹脂が開示されている。例えば、エチレン/酢酸ビニル/長鎖ビニルエステル共重合体(特許文献8)、アクリル酸又はアクリル酸塩とビニルアルコールとの共重合体(特許文献9)が開示されている。   Furthermore, various resins have been disclosed in order to solve the decrease in charge / discharge cycle life and battery capacity. For example, an ethylene / vinyl acetate / long chain vinyl ester copolymer (Patent Document 8) and a copolymer of acrylic acid or acrylate and vinyl alcohol (Patent Document 9) are disclosed.

しかしながら、このようなバインダーでは集電体に対する電極活物質の密着性は、不十分であり、充放電サイクルの進行に伴って、活物質が集電体から徐々に脱落し、電池性能が劣化していくという問題点があった。特に、充放電時の発熱などにより繰り返しや高温環境下に長時間さらされたりすると急速に容量が低下するという問題があった。   However, in such a binder, the adhesion of the electrode active material to the current collector is insufficient, and as the charge / discharge cycle progresses, the active material gradually falls off the current collector, and the battery performance deteriorates. There was a problem of going. In particular, there has been a problem that the capacity rapidly decreases when repeatedly exposed to a high temperature environment for a long time due to heat generation during charging and discharging.

更に、電極と集電体との密着性を向上させて二次電池の特性を改善すべく、ゲル含量を所定の範囲に規定したカルボキシ変性スチレンブタジエン共重合体ラテックスを含有する電極用導電性結着組成物が開示されている(特許文献10)。又、ポリテトラフルオロエチレンと、ポリオキシエチレンアルキルエーテルとを含有する水性分散液組成物が、電池用結着剤として好適であることが開示されている(特許文献11)。   Furthermore, in order to improve the adhesion of the electrode and the current collector to improve the characteristics of the secondary battery, the conductive bond for the electrode containing a carboxy-modified styrene butadiene copolymer latex having a gel content defined within a predetermined range. A wearing composition is disclosed (Patent Document 10). Further, it is disclosed that an aqueous dispersion composition containing polytetrafluoroethylene and polyoxyethylene alkyl ether is suitable as a binder for batteries (Patent Document 11).

しかしながら、特許文献10、11で開示されたバインダーであっても、電極と集電体との密着性を向上させる効果は必ずしも十分であるとはいえない。上記同様、密着性不十分な電極を備えた二次電池を、充放電時の発熱などにより繰り返しや高温環境下に長時間さらされたりすると急速に容量が低下するという問題があった。
特開平11−67213号公報 特開2002−237305号公報 特開平4−272656号公報 特開平10−40916号公報 特開2001−283853号公報 特開平9−63589号公報 特開平6−13080号公報 特開平9−161803号公報 特開平7−226205号公報 特開平9−320604号公報 特開平8−269285号公報
However, even with the binders disclosed in Patent Documents 10 and 11, the effect of improving the adhesion between the electrode and the current collector is not necessarily sufficient. As described above, there is a problem in that the capacity of the secondary battery having an electrode having insufficient adhesion is rapidly reduced when it is repeatedly exposed to a high temperature environment for a long time due to heat generation during charging and discharging.
JP-A-11-67213 JP 2002-237305 A JP-A-4-272656 Japanese Patent Laid-Open No. 10-40916 Japanese Patent Laid-Open No. 2001-283553 Japanese Patent Laid-Open No. 9-63589 Japanese Patent Laid-Open No. 6-13080 JP-A-9-161803 JP 7-226205 A JP-A-9-320604 JP-A-8-269285

本発明は、上記従来技術の問題点を背景になされたもので、導電性の高い炭素材料を高いレベルでの水系分散を可能にするため、耐水性、耐アルカリ性、耐薬品性が極めて優れ、保存安定性および塗工後の塗膜強靭性も良好な水系炭素材料組成物を提供することを目的とする。更に燃料電池、太陽電池、キャパシタなどの用途において高い導電性と高基材密着を実現し、特に二次電池においては高い導電性と集電体との密着性に優れ、かつ充放電時の発熱などにより繰り返しや高温環境下にあっても充放電サイクル特性に優れた電池電極用組成物の提供を目的とする。   The present invention was made in the background of the above-mentioned problems of the prior art, and enables water-based dispersion of a highly conductive carbon material at a high level. Therefore, the water resistance, alkali resistance, and chemical resistance are extremely excellent. An object of the present invention is to provide an aqueous carbon material composition having excellent storage stability and coating film toughness after coating. Furthermore, it achieves high conductivity and high substrate adhesion in applications such as fuel cells, solar cells, capacitors, etc. Especially in secondary batteries, it has excellent conductivity and adhesion to current collectors, and it generates heat during charging and discharging. An object of the present invention is to provide a battery electrode composition having excellent charge / discharge cycle characteristics even under repeated and high temperature environments.

発明は、アニオン性樹脂及び/又はノニオン性樹脂で処理された炭素材料と、水系樹脂と、水系媒体と、を含み、水系樹脂が、全エチレン性不飽和単量体に対して、エポキシ基を有するエチレン性不飽和単量体、アルコキシシリル基を有するエチレン性不飽和単量体、及びN−メチロール基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.1〜5.0質量%と、カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.2〜5.0質量%と、その他の1種類以上のエチレン性不飽和単量体90.0〜99.7質量%と、を含むエチレン性不飽和単量体を乳化重合してなる水系樹脂である水系炭素材料組成物に関する。 The present invention includes a carbon material treated with an anionic resin and / or a nonionic resin, an aqueous resin, and an aqueous medium, and the aqueous resin is an epoxy group with respect to all ethylenically unsaturated monomers. One or more monomers selected from the group consisting of an ethylenically unsaturated monomer having an ethylenic unsaturated monomer having an alkoxysilyl group, and an ethylenically unsaturated monomer having an N-methylol group One or more monomers selected from the group consisting of 0.1 to 5.0% by mass , an ethylenically unsaturated monomer having a carboxyl group, and an ethylenically unsaturated monomer having a tertiary butyl group and 0.2 to 5.0 wt%, comprising other one or more ethylenically unsaturated monomers from 90.0 to 99.7 wt% of an ethylenically unsaturated monomer containing emulsion polymerization aqueous resin der Ru water based carbon material composition On.

又、発明は、アニオン性樹脂及び/又はノニオン性樹脂で処理された炭素材料と、水系樹脂と、水系媒体と、を含み、水系樹脂が、全エチレン性不飽和単量体に対して、カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.5〜10.0質量%と、その他の1種類以上のエチレン性不飽和単量体90.0〜99.5質量%と、を含むエチレン性不飽和単量体を乳化重合してなる水系樹脂であって、更に、カルボキシル基と反応しうる官能基を有する化合物とを含んでなる水系炭素材料組成物に関する。 The present invention also includes a carbon material treated with an anionic resin and / or a nonionic resin, an aqueous resin, and an aqueous medium, and the aqueous resin is based on the total ethylenically unsaturated monomer. 0.5 to 10.0% by mass of one or more monomers selected from the group consisting of an ethylenically unsaturated monomer having a carboxyl group and an ethylenically unsaturated monomer having a tertiary butyl group; An aqueous resin formed by emulsion polymerization of an ethylenically unsaturated monomer containing 90.0 to 99.5% by mass of one or more other ethylenically unsaturated monomers, ing and a compound having a reactive and functional group capable on water-based carbon material composition.

又、発明は、アニオン性樹脂及び/又はノニオン性樹脂で処理された炭素材料と、水系樹脂と、水系媒体と、を含み、水系樹脂が、全エチレン性不飽和単量体に対して、カルボニル基を有するエチレン性不飽和単量体0.5〜10.0質量%と、その他の1種類以上のエチレン性不飽和単量体90.0〜99.5質量%と、を含むエチレン性不飽和単量体を乳化重合してなる水系樹脂であって、更に、カルボニル基と反応しうる官能基を有する化合物とを含んでなる水系炭素材料組成物に関する。 The present invention also includes a carbon material treated with an anionic resin and / or a nonionic resin, an aqueous resin, and an aqueous medium, and the aqueous resin is based on the total ethylenically unsaturated monomer. Ethylenic containing 0.5 to 10.0% by mass of ethylenically unsaturated monomer having a carbonyl group and 90.0 to 99.5% by mass of one or more other ethylenically unsaturated monomers a water-based resin obtained by the emulsion polymerization of unsaturated monomer, further, relates to water-based carbon material composition ing and a compound having a functional group capable of reacting with a carbonyl group.

又、本発明は、アニオン性樹脂及び/又はノニオン性樹脂が、炭素材料に対して0.01〜50質量%である前記水系炭素材料組成物に関する。
又、発明は、その他の1種類以上のエチレン性不飽和単量が、スチレン、2−エチルヘキシルアクリレート、及びシクロヘキシルメタクリレートからなる群選ばれる1種類以上を含む前記水系炭素材料組成物に関する。
Moreover, this invention relates to the said water-based carbon material composition whose anionic resin and / or nonionic resin are 0.01-50 mass% with respect to a carbon material.
The present invention also relates to the aqueous carbon material composition, wherein the other one or more types of ethylenically unsaturated monomers include one or more selected from the group consisting of styrene, 2-ethylhexyl acrylate, and cyclohexyl methacrylate.

更に、発明は、前記水系炭素材料組成物を用いた電池電極用組成物に関する。 Furthermore, the present invention relates to a battery electrode composition using the aqueous carbon material composition.

本発明の水系炭素材料組成物は、塗工液の安定性、集電体との密着性及び可とう性に優れている。本発明の電池電極用組成物を用いた燃料電池、太陽電池、キャパシタ、二次電池は高い導電性を実現し、特に二次電池においては、充放電時の発熱などにより繰り返しや高温環境下にあっても充放電サイクルにおける放電容量低下の低減が可能となり、放電レート特性及びサイクル特性に優れた長寿命の二次電池を提供できる。   The aqueous carbon material composition of the present invention is excellent in the stability of the coating liquid, the adhesion to the current collector, and the flexibility. The fuel cell, solar cell, capacitor, and secondary battery using the battery electrode composition of the present invention achieve high conductivity. Especially in the secondary battery, it is repeatedly or under a high temperature environment due to heat generation during charging and discharging. Even if it exists, it becomes possible to reduce the discharge capacity fall in a charging / discharging cycle, and the long-life secondary battery excellent in the discharge rate characteristic and cycling characteristics can be provided.

本発明の水系炭素材料組成物の各構成要素について説明する。   Each component of the aqueous carbon material composition of the present invention will be described.

なお、「(メタ)アクリル酸」、「(メタ)アクリレート」、及び「(メタ)アクリロイルオキシ」と表記した場合には、それぞれ、「アクリル酸及び/又はメタクリル酸」、「アクリレート及び/又はメタクリレート」、及び「アクリロイルオキシ及び/又はメタアクリロイルオキシ」を示すものとする。   In addition, when expressed as “(meth) acrylic acid”, “(meth) acrylate”, and “(meth) acryloyloxy”, “acrylic acid and / or methacrylic acid”, “acrylate and / or methacrylate”, respectively. And “acryloyloxy and / or methacryloyloxy”.

<アニオン性樹脂及び/又はノニオン性樹脂>
本発明のアニオン性樹脂及び/又はノニオン性樹脂は、水系樹脂との相溶性に問題なく、炭素材料を水系媒体に安定的に分散できれば特に制限はない。
<Anionic resin and / or nonionic resin>
The anionic resin and / or nonionic resin of the present invention is not particularly limited as long as the carbon material can be stably dispersed in the aqueous medium without any problem in compatibility with the aqueous resin.

アニオン性樹脂としては、カルボキシル基、燐酸基、又はスルホン酸基等の酸性官能基を有する樹脂を、塩基性化合物で中和したものが挙げられる。具体的には、ポリ(メタ)アクリル酸、アクリル酸/スチレン共重合体、その他の(メタ)アクリル酸共重合体、無水マレイン酸/スチレン共重合体、無水マレイン酸/ジイソブチレン共重合体、無水マレイン酸/α−オレフィン共重合体、その他の無水マレイン酸共重合体、燐酸基を有する(メタ)アクリレート系モノマー共重合体、スルホン酸基を有する(メタ)アクリレートモノマー共重合体、ナフタリンスルホン酸ホルマリン縮合物、及びその他の芳香族スルホン酸ホルマリン縮合物等の酸性基を有する樹脂を、アンモニア、有機アミン、水酸化ナトリウム、及び水酸化カリウム等の塩基性化合物で中和したものが挙げられる。   As an anionic resin, what neutralized the resin which has acidic functional groups, such as a carboxyl group, a phosphoric acid group, or a sulfonic acid group, with the basic compound is mentioned. Specifically, poly (meth) acrylic acid, acrylic acid / styrene copolymer, other (meth) acrylic acid copolymers, maleic anhydride / styrene copolymers, maleic anhydride / diisobutylene copolymers, Maleic anhydride / α-olefin copolymers, other maleic anhydride copolymers, (meth) acrylate monomer copolymers having phosphoric acid groups, (meth) acrylate monomer copolymers having sulfonic acid groups, naphthalene sulfone Examples include those obtained by neutralizing resins having acidic groups such as acid formalin condensates and other aromatic sulfonic acid formalin condensates with basic compounds such as ammonia, organic amines, sodium hydroxide, and potassium hydroxide. .

また、ノニオン性樹脂とは、イオン性官能基を有しない水溶性樹脂で、ほとんど中性の水溶性樹脂が挙げられる。具体的には、ポリビニルアルコール、ポリアルキレングリコール変性アクリル樹脂、ポリビニルピロリドン、ポリビニルカプロラクタム、酢酸ビニル−ビニルピロリドン共重合体、ビニルピロリドン−メタクリル酸アミド−ビニルイミダゾール共重合体、及びアルキル化ビニルピロリドン−1−ブテン共重合体等のビニルピロリドン系樹脂などが挙げられる。   The nonionic resin is a water-soluble resin having no ionic functional group, and includes almost neutral water-soluble resins. Specifically, polyvinyl alcohol, polyalkylene glycol-modified acrylic resin, polyvinyl pyrrolidone, polyvinyl caprolactam, vinyl acetate-vinyl pyrrolidone copolymer, vinyl pyrrolidone-methacrylamide-vinyl imidazole copolymer, and alkylated vinyl pyrrolidone-1 -Vinylpyrrolidone resins such as butene copolymers.

<炭素材料>
炭素材料は導電性を有するものであれば特に制限はなく、アセチレンブラック、ケッチェンブラック、ファーネスブラック、黒鉛、黒鉛化カーボン、炭素繊維、及びフラーレン類等の炭素材料で、体積抵抗値が104Ω・cm以下の導電性が高いものが好ましい。
<Carbon material>
The carbon material is not particularly limited as long as it has conductivity, and is a carbon material such as acetylene black, ketjen black, furnace black, graphite, graphitized carbon, carbon fiber, and fullerenes, and has a volume resistance value of 10 4 Ω · Those having high conductivity of cm or less are preferable.

<水系樹脂>
本発明の水系炭素材料組成物及びそれを用いた電池電極用組成物の調整のしやすさ分散安定性の観点から、本発明で用いる水系樹脂は、ゴムラテックス又は樹脂エマルジョン等の様な水系樹脂組成物として調整して使用するのが好ましい。本発明の水系炭素材料組成物中の水系樹脂は、水に一部溶解するかもしくは溶解しないで、エマルション等の状態で安定した状態を保つものであれば特に制限はない。例えば、スチレン−ブタジエン共重合体、及び塩化ビニル−酢酸ビニル共重合体等のラテックス、ポリテトラフルオロエチレン(PTFE)、スチレンーアクリル酸共重合体、及びアクリル酸エステル共重合体等のエマルションが挙げられる。酸変性処理した樹脂を組み合わせて用いてもよい。
<Water-based resin>
From the viewpoint of dispersion stability of the aqueous carbon material composition of the present invention and the battery electrode composition using the same, the aqueous resin used in the present invention is an aqueous resin such as rubber latex or resin emulsion. It is preferable to prepare and use as a composition. The water-based resin in the water-based carbon material composition of the present invention is not particularly limited as long as it partially dissolves in water or does not dissolve and maintains a stable state in an emulsion or the like. Examples include latex such as styrene-butadiene copolymer and vinyl chloride-vinyl acetate copolymer, and emulsion such as polytetrafluoroethylene (PTFE), styrene-acrylic acid copolymer, and acrylic acid ester copolymer. It is done. A combination of acid-modified resins may be used.

本発明の水系樹脂として特に好ましいのは、特定の官能基を有するエチレン性不飽和単量体を含む単量体を乳化重合して得られる架橋型樹脂エマルションである。エマルション中の水系樹脂粒子が、特定の官能基による架橋構造をとることにより、耐電解液性、集電体との密着性、及び可とう性に優れ、二次電池電極用バインダーに用いた場合、電池の充放電サイクル特性、レート特性、及び高容量化を達成することが可能な電極を得ることができる。エマルション中の水系樹脂粒子の架橋構造は、粒子内部での架橋であっても粒子同士による架橋であってもよく、更には別途、架橋剤を添加して架橋したものであってもよい。   Particularly preferred as the aqueous resin of the present invention is a cross-linked resin emulsion obtained by emulsion polymerization of a monomer containing an ethylenically unsaturated monomer having a specific functional group. When the water-based resin particles in the emulsion have a cross-linked structure with specific functional groups, they are excellent in electrolytic solution resistance, adhesion to the current collector, and flexibility, and are used as binders for secondary battery electrodes. Thus, an electrode capable of achieving charge / discharge cycle characteristics, rate characteristics, and high capacity of the battery can be obtained. The cross-linked structure of the water-based resin particles in the emulsion may be cross-linking inside the particles or cross-linking between particles, and may be cross-linked by adding a cross-linking agent separately.

まず、エマルション中の水系樹脂粒子の架橋構造が粒子内部での架橋である場合について説明する。   First, the case where the crosslinked structure of the water-based resin particles in the emulsion is crosslinked inside the particles will be described.

本発明の二次電池電極用バインダーに用いる粒子内部架橋型樹脂エマルションは、全エチレン性不飽和単量体に対して、エポキシ基を有するエチレン性不飽和単量体、アルコキシシリル基を有するエチレン性不飽和単量体、及びN−メチロール基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.1〜5.0重量%と、カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.2〜5.0重量%と、その他の1種類以上のエチレン性不飽和単量体99.7〜90重量%と、を含むエチレン性不飽和単量体を乳化重合することにより得ることができる。   The particle internal cross-linked resin emulsion used for the secondary battery electrode binder of the present invention is an ethylenically unsaturated monomer having an epoxy group and an ethylenic group having an alkoxysilyl group with respect to all ethylenically unsaturated monomers. 0.1 to 5.0% by weight of one or more monomers selected from the group consisting of an unsaturated monomer and an ethylenically unsaturated monomer having an N-methylol group, and an ethylenic group having a carboxyl group 0.2 to 5.0% by weight of one or more monomers selected from the group consisting of an unsaturated monomer and an ethylenically unsaturated monomer having a tertiary butyl group, and one or more other types It can obtain by carrying out emulsion polymerization of the ethylenically unsaturated monomer containing 99.7-90 weight% of ethylenically unsaturated monomers.

エポキシ基を有するエチレン性不飽和単量体、アルコキシシリル基を有するエチレン性不飽和単量体、及びN−メチロール基を有するエチレン性不飽和単量体から選ばれる少なくとも1つの単量体が0.1重量%未満であるとエマルション中の水系樹脂粒子の架橋が十分でなくなり、耐電解液性が悪くなる。又、5.0重量%を超えると、乳化重合する際の重合安定性に問題を生じるか、重合できたとしても保存安定性に問題を生じる。   At least one monomer selected from an ethylenically unsaturated monomer having an epoxy group, an ethylenically unsaturated monomer having an alkoxysilyl group, and an ethylenically unsaturated monomer having an N-methylol group is 0 When the amount is less than 1% by weight, crosslinking of the water-based resin particles in the emulsion becomes insufficient, and the resistance to electrolytic solution is deteriorated. On the other hand, if it exceeds 5.0% by weight, there will be a problem in the polymerization stability at the time of emulsion polymerization, or even if it can be polymerized, there will be a problem in storage stability.

又、カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体から選ばれる少なくとも1つの単量体が0.2重量%未満であると、集電体との結着性が弱く、耐電解液性が悪くなるとともに、エマルションの安定性も悪くなる。又、5.0重量%を超えると、乾燥後の親水性が強くなりすぎて耐電解液性が悪くなる。   In addition, when at least one monomer selected from an ethylenically unsaturated monomer having a carboxyl group and an ethylenically unsaturated monomer having a tertiary butyl group is less than 0.2% by weight, The binding property with the body is weak, the electrolytic solution resistance is deteriorated, and the stability of the emulsion is also deteriorated. On the other hand, if it exceeds 5.0% by weight, the hydrophilicity after drying becomes too strong and the electrolytic solution resistance becomes poor.

エポキシ基を有するエチレン性不飽和単量体中のエポキシ基は、重合中及び乾燥時にカルボキシル基と反応してエマルション中の水系樹脂粒子に架橋構造を導入できる。この時、ターシャリーブチル基も一定温度以上の熱が加わるとターシャリーブチルアルコールが生成するとともにカルボキシル基が形成されるため、前記同様エポキシ基と反応することができる。エポキシ基を有するエチレン性不飽和単量体としては、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、3,2−グリシドキシエチル(メタ)アクリレート、3,4−エポキシブチル(メタ)アクリレート、及び4,5−エポキシペンチルメタクリレート等が挙げられる。   The epoxy group in the ethylenically unsaturated monomer having an epoxy group can react with a carboxyl group during polymerization and drying to introduce a crosslinked structure into the aqueous resin particles in the emulsion. At this time, the tertiary butyl group also reacts with the epoxy group in the same manner as described above because tertiary butyl alcohol is generated and a carboxyl group is formed when heat of a certain temperature or higher is applied. Examples of the ethylenically unsaturated monomer having an epoxy group include glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, and 3,2-glycidoxyethyl (meta ) Acrylate, 3,4-epoxybutyl (meth) acrylate, 4,5-epoxypentyl methacrylate, and the like.

アルコキシシリル基を有するエチレン性不飽和単量体中のアルコキシシリル基は、主に重合中にお互いが反応してエマルション中の水系樹脂粒子に架橋構造を導入できる。アルコキシシリル基を有するエチレン性不飽和単量体としては、例えば、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリイソプロポキシシラン、γ−メタクリロキシプロピルトリブトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシメチルトリメトキシシラン、γ−アクリロキシメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリブトキシシラン、及びビニルメチルジメトキシシラン等が挙げられる。   Alkoxysilyl groups in the ethylenically unsaturated monomer having an alkoxysilyl group can mainly react with each other during polymerization to introduce a crosslinked structure into the aqueous resin particles in the emulsion. Examples of the ethylenically unsaturated monomer having an alkoxysilyl group include γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropyltriisopropoxysilane, and γ-methacryloxypropyl. Tributoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropyltriethoxysilane, γ-acryloxypropylmethyldimethoxysilane, γ-methacryloxymethyltrimethoxysilane, γ-acryloxymethyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrib Toxisilane, vinylmethyldimethoxysilane and the like can be mentioned.

N−メチロール基を有するエチレン性不飽和単量体中のN−メチロール基は、主に重合中にお互いが反応してエマルション中の水系樹脂粒子に架橋構造を導入できる。N−メチロール基を有するエチレン性不飽和単量体としては、例えば、N−メチロールアクリルアミド、及びN−メチロールメタクリルアミドなどが挙げられる。   The N-methylol groups in the ethylenically unsaturated monomer having an N-methylol group can mainly react with each other during polymerization to introduce a crosslinked structure into the aqueous resin particles in the emulsion. Examples of the ethylenically unsaturated monomer having an N-methylol group include N-methylol acrylamide and N-methylol methacrylamide.

カルボキシル基を有するエチレン性不飽和単量体としては、例えば、
マレイン酸、フマル酸、イタコン酸、及びシトラコン酸等のエチレン性不飽和基を有するジカルボン酸類;
前記ジカルボン酸のアルキル若しくはアルケニルモノエステル類;
(メタ)アクリル酸、アクリル酸ダイマー、2−(メタ)アクリロイロキシエチルフタレート、2−(メタ)アクリロイロキシエチルイソフタレート、2−(メタ)アクリロイロキシエチルテレフタレート、2−(メタ)アクリロイロキシプロピルフタレート、2−(メタ)アクリロイロキシエチルヘキサヒドロフタレート、2−(メタ)アクリロイロキシプロピルヘキサヒドロフタレート、エチレンオキサイド変性コハク酸(メタ)アクリレート、β−カルボキシエチル(メタ)アクリレート、及びω-カルボキシポリカプロラクトン(メタ)アクリレート等のカルボキシル基を有する(メタ)アクリレート類;並びに、
クロトン酸、及びけい皮酸等のその他のエチレン性不飽和基を有するカルボン酸類等が挙げられる。
As an ethylenically unsaturated monomer having a carboxyl group, for example,
Dicarboxylic acids having an ethylenically unsaturated group such as maleic acid, fumaric acid, itaconic acid, and citraconic acid;
Alkyl or alkenyl monoesters of said dicarboxylic acids;
(Meth) acrylic acid, acrylic acid dimer, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl isophthalate, 2- (meth) acryloyloxyethyl terephthalate, 2- (meth) acryl Leuoxypropyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalate, 2- (meth) acryloyloxypropyl hexahydrophthalate, ethylene oxide-modified succinic acid (meth) acrylate, β-carboxyethyl (meth) acrylate, And (meth) acrylates having a carboxyl group, such as ω-carboxypolycaprolactone (meth) acrylate; and
Examples thereof include carboxylic acids having other ethylenically unsaturated groups such as crotonic acid and cinnamic acid.

又、ターシャリーブチル基を有するエチレン性不飽和単量体としては、ターシャリーブチル(メタ)アクリレートなどが挙げられる。   Examples of the ethylenically unsaturated monomer having a tertiary butyl group include tertiary butyl (meth) acrylate.

次に、エマルション中の水系樹脂粒子の架橋構造が粒子間での架橋である場合について説明する。   Next, the case where the crosslinked structure of the water-based resin particles in the emulsion is crosslinking between particles will be described.

本発明の二次電池電極用バインダーに用いる粒子間架橋型樹脂エマルションは、全エチレン性不飽和単量体に対して、カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.5〜10.0重量%と、その他の1種類以上のエチレン性不飽和単量体99.5〜90.0重量%と、を含むエチレン性不飽和単量体を乳化重合することにより得ることができる。更にこの場合は、得られた水系樹脂エマルションに、カルボキシル基と反応しうる官能基を有する化合物を架橋剤として添加し、バインダーとして使用して乾燥する際にエマルション中の水系樹脂粒子同士を架橋することができる。カルボキシル基と反応しうる官能基を有する化合物は、水系炭素材料組成物を調整する時に配合しても、予め、乳化重合後に、エマルション樹脂に添加しておいても良い。   The interparticle crosslinked resin emulsion used for the binder for secondary battery electrodes of the present invention has an ethylenically unsaturated monomer having a carboxyl group and a tertiary butyl group with respect to the total ethylenically unsaturated monomer. 0.5 to 10.0% by weight of one or more monomers selected from the group consisting of ethylenically unsaturated monomers and 99.5 to 90.90% of one or more other ethylenically unsaturated monomers. It can be obtained by emulsion polymerization of an ethylenically unsaturated monomer containing 0% by weight. Furthermore, in this case, a compound having a functional group capable of reacting with a carboxyl group is added as a crosslinking agent to the obtained aqueous resin emulsion, and the aqueous resin particles in the emulsion are crosslinked when dried using as a binder. be able to. The compound having a functional group capable of reacting with a carboxyl group may be added when adjusting the aqueous carbon material composition, or may be added in advance to the emulsion resin after emulsion polymerization.

カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体から選ばれる少なくとも1つの単量体が0.5重量%未満であると、エマルション中の水系樹脂粒子の架橋が十分でなくなり、水系樹脂の耐電解液性が悪くなるとともに、エマルション中の水系樹脂粒子の安定性も悪くなる。又、10.0重量%を超えると、乾燥後の親水性が強くなりすぎて水系樹脂の耐電解液性が悪くなるとともに、カルボキシル基と反応しうる官能基を有する化合物を添加した後のエマルション中の水系樹脂粒子の安定性が悪くなる。カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体としては上記したものと同様の単量体を使用する。   When at least one monomer selected from an ethylenically unsaturated monomer having a carboxyl group and an ethylenically unsaturated monomer having a tertiary butyl group is less than 0.5% by weight, the aqueous system in the emulsion Crosslinking of the resin particles is not sufficient, the resistance of the aqueous resin to the electrolytic solution is deteriorated, and the stability of the aqueous resin particles in the emulsion is also deteriorated. On the other hand, if it exceeds 10.0% by weight, the emulsion after adding a compound having a functional group capable of reacting with a carboxyl group while the hydrophilicity after drying becomes too strong, the electrolytic solution resistance of the aqueous resin deteriorates. The stability of the water-based resin particles in the inside deteriorates. As the ethylenically unsaturated monomer having a carboxyl group and the ethylenically unsaturated monomer having a tertiary butyl group, monomers similar to those described above are used.

架橋剤として使用するカルボキシル基と反応しうる官能基を有する化合物としては、例えば、ビスフェノールA−エピクロロヒドリン型のエポキシ系樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、及び1、3−ビス(N、N’−ジグリシジルアミノメチル)シクロヘキサン等が挙げられる。これらの化合物は、エマルションの固形分100重量部に対して0.1〜10.0重量部添加するのが好ましく、1.0〜5.0重量部添加するのが更に好ましい。   Examples of the compound having a functional group capable of reacting with a carboxyl group used as a crosslinking agent include bisphenol A-epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerin diglycidyl ether. Glycerin triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidylaniline, N, N, N ′, N′-tetraglycidyl-m-xylylenediamine, and 1,3 -Bis (N, N'-diglycidylaminomethyl) cyclohexane and the like. These compounds are preferably added in an amount of 0.1 to 10.0 parts by weight, more preferably 1.0 to 5.0 parts by weight, based on 100 parts by weight of the solid content of the emulsion.

架橋剤として使用するカルボキシル基と反応しうる官能基を有する化合物が、0.5重量%未満であると、エマルション中の水系樹脂粒子間の架橋が十分でなくなり、耐電解液性が悪くる。又、10.0重量%を超えると、カルボキシル基と反応しうる官能基を有する化合物を添加した後のエマルション中の水系樹脂粒子の安定性が悪くなる。   When the compound having a functional group capable of reacting with a carboxyl group used as a cross-linking agent is less than 0.5% by weight, cross-linking between water-based resin particles in the emulsion is not sufficient, and the resistance to electrolytic solution is deteriorated. On the other hand, if it exceeds 10.0% by weight, the stability of the aqueous resin particles in the emulsion after the addition of the compound having a functional group capable of reacting with a carboxyl group is deteriorated.

更に、エマルション中の水系樹脂粒子の架橋構造が粒子間での架橋であるもう一つの場合について説明する。   Furthermore, another case where the cross-linked structure of the water-based resin particles in the emulsion is cross-linking between particles will be described.

本発明では、二次電池電極用バインダーに用いる粒子間架橋型樹脂エマルションは、全エチレン性不飽和単量体に対して、カルボニル基を有する不飽和単量体を0.5〜10.0重量%と、その他の1種類以上のエチレン性不飽和単量体90.0〜99.5重量%と、を含むエチレン性不飽和単量体を乳化重合することにより得ることができる。更にこの場合も、得られた水系樹脂エマルションに、カルボニル基と反応しうる官能基を有する化合物を架橋剤として添加し、バインダーとして使用して乾燥する際にエマルション樹脂粒子同士を架橋することができる。カルボニル基と反応しうる官能基を有する化合物は、水系炭素材料組成物を調整する時に配合しても、予め、乳化重合後に、エマルション樹脂に添加しておいても良い。   In the present invention, the interparticle cross-linked resin emulsion used for the binder for the secondary battery electrode is 0.5 to 10.0 weight percent of the unsaturated monomer having a carbonyl group with respect to the total ethylenically unsaturated monomer. % And one or more other ethylenically unsaturated monomers 90.0 to 99.5% by weight can be obtained by emulsion polymerization. Furthermore, also in this case, the resulting aqueous resin emulsion can be added with a compound having a functional group capable of reacting with a carbonyl group as a crosslinking agent, and the emulsion resin particles can be crosslinked when used as a binder and dried. . The compound having a functional group capable of reacting with a carbonyl group may be blended when the aqueous carbon material composition is prepared, or may be added in advance to the emulsion resin after emulsion polymerization.

カルボニル基を有するエチレン性不飽和単量体が0.5重量%未満であると、エマルション中の水系樹脂粒子の架橋が十分でなくなり、耐電解液性が悪くなる。又、10.0重量%を超えると、カルボニル基と反応しうる官能基を有する化合物を添加した後の安定性が悪くなる。カルボニル基を有するエチレン性不飽和単量体としては、例えば、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アクロレイン、N−ビニルホルムアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチルアクリレート、アセトアセトキシプロピルアクリレート、アセトアセトキシブチルアクリレート、アセトアセトキシエチルメタクリレート、アセトアセトキシプロピルメタクリレート、及びアセトアセトキシブチルメタクリレート等が挙げられる。   When the ethylenically unsaturated monomer having a carbonyl group is less than 0.5% by weight, the aqueous resin particles in the emulsion are not sufficiently cross-linked, resulting in poor electrolyte solution resistance. On the other hand, if it exceeds 10.0% by weight, the stability after addition of a compound having a functional group capable of reacting with a carbonyl group becomes poor. Examples of the ethylenically unsaturated monomer having a carbonyl group include diacetone acrylamide, diacetone methacrylamide, acrolein, N-vinylformamide, vinyl methyl ketone, vinyl ethyl ketone, acetoacetoxyethyl acrylate, acetoacetoxypropyl acrylate, Examples include acetoacetoxybutyl acrylate, acetoacetoxyethyl methacrylate, acetoacetoxypropyl methacrylate, and acetoacetoxybutyl methacrylate.

架橋剤として使用するカルボニル基と反応しうる官能基を有する化合物としては、1分子中に少なくとも2つのヒドラジド基を有するヒドラジン誘導体が挙げられ、例えば、
シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、及びセバシン酸ジヒドラジド等の脂肪族ジヒドラジド、炭酸ポリヒドラジド、脂肪族ビスセミカルバジド、脂環族セミカルバジド、芳香族ビスセミカルバジド、芳香族ジカルボン酸ジヒドラジド、ポリアクリル酸のポリヒドラジド、芳香族炭化水素のジヒドラジド、ヒドラジン−ピリジン誘導体、並びに、マレイン酸ジヒドラジド等の不飽和ジカルボン酸のジヒドラジドなどが挙げられる。これらの化合物は、エマルションの固形分100重量部に対して0.1〜10.0重量部添加するのが好ましく、1〜5.0重量部添加するのが更に好ましい。
Examples of the compound having a functional group capable of reacting with a carbonyl group used as a crosslinking agent include hydrazine derivatives having at least two hydrazide groups in one molecule.
Aliphatic dihydrazides such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, and sebacic acid dihydrazide, carbonic acid polyhydrazide, aliphatic bissemicarbazide, alicyclic semicarbazide, aromatic bissemicarbazide, Dihydrazides of aromatic dicarboxylic acids, polyhydrazides of polyacrylic acid, dihydrazides of aromatic hydrocarbons, hydrazine-pyridine derivatives, and dihydrazides of unsaturated dicarboxylic acids such as maleic acid dihydrazide. These compounds are preferably added in an amount of 0.1 to 10.0 parts by weight, more preferably 1 to 5.0 parts by weight, based on 100 parts by weight of the solid content of the emulsion.

架橋剤として使用するカルボニル基と反応しうる官能基を有する化合物が、0.5重量%未満であると、エマルション中の水系樹脂粒子間の架橋が十分でなくなり、耐電解液性が悪くる。又、10.0重量%を超えると、カルボニル基と反応しうる官能基を有する化合物を添加した後の安定性が悪くなる。   When the compound having a functional group capable of reacting with a carbonyl group used as a crosslinking agent is less than 0.5% by weight, crosslinking between water-based resin particles in the emulsion becomes insufficient, and the resistance to electrolytic solution is deteriorated. On the other hand, if it exceeds 10.0% by weight, the stability after addition of a compound having a functional group capable of reacting with a carbonyl group is deteriorated.

本発明の架橋型樹脂エマルションを重合して得る際に使用しうる、上記エチレン性不飽和単量体以外のその他の1種類以上のエチレン性不飽和単量体としては、例えば、
メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、イコシル(メタ)アクリレート、及びヘンイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート等の直鎖アルキル(メタ)アクリレート類;
イソプロピル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、及びイソステアリル(メタ)アクリレート等の分岐アルキル(メタ)アクリレート類;
シクロヘキシル(メタ)アクリレート、ターシャリブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、及びイソボニル(メタ)アクリレート等の環状のアルキル(メタ)アクリレート類;
ブタジエン、イソプレン、(メタ)アクリル酸ビニル、ジビニルベンゼン、(メタ)アクリル酸アリル、エチレングリコールジ(メタ)アクリレート等のジオレフィン類;
テトラヒドロフルフリル(メタ)アクリレート、及び3−メチル−3−オキセタニル(メタ)アクリレート等の複素環を有する(メタ)アクリレート類;
ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、パラクミルフェノキシエチル(メタ)アクリレート、パラクミルフェノキシポリエチレングリコール(メタ)アクリレート、及びノニルフェノキシポリエチレングリコール(メタ)アクリレート等の芳香族環を有する(メタ)アクリレート類;
2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノ−2−エチルヘキシルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノラウリルエーテル(メタ)アクリレート、及びポリエチレングリコールモノステアリルエーテル(メタ)アクリレート等の(ポリ)アルキレングリコールモノアルキルエーテル(メタ)アクリレート類;
2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−アクリロイロキシエチル−2−ヒドロキシエチル(メタ)フタレート、
ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、
ポリテトラメチレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール−プロピレングリコール)モノ(メタ)アクリレート、ポリ(エチレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール−テトラメチレングリコール)モノ(メタ)アクリレート、及びグリセロール(メタ)アクリレート等のヒドロキシル基を有する(メタ)アクリレート類;
4-ヒドロキシビニルベンゼン、1−エチニル−1−シクロヘキサノール、及びアリルアルコール等のヒドロキシル基を有するオレフィン類;
ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、及びジエチルアミノプロピル(メタ)アクリレート等の三級アミノ基を有する(メタ)アクリレート類;
ジメチルアミノスチレン、及びジエチルアミノスチレン等の三級アミノ基を有するスチレン類;
(メタ)アクリルアミド、N−メトキシメチル−(メタ)アクリルアミド、N−エトキシメチル−(メタ)アクリルアミド、N−プロポキシメチル−(メタ)アクリルアミド、N−ブトキシメチル−(メタ)アクリルアミド、N−ペントキシメチル−(メタ)アクリルアミドなどのモノアルキロール(メタ)アクリルアミド、N,N−ジ(メチロール)アクリルアミド、N−メチロール−N−メトキシメチル(メタ)アクリルアミド、N,N−ジ(メトキシメチル)アクリルアミド、N−エトキシメチル−N−メトキシメチルメタアクリルアミド、N,N−ジ(エトキシメチル)アクリルアミド、N−エトキシメチル−N−プロポキシメチルメタアクリルアミド、N,N−ジ(プロポキシメチル)アクリルアミド、N−ブトキシメチル−N−(プロポキシメチル)メタアクリルアミド、N,N−ジ(ブトキシメチル)アクリルアミド、N−ブトキシメチル−N−(メトキシメチル)メタアクリルアミド、N,N−ジ(ペントキシメチル)アクリルアミド、N−メトキシメチル−N−(ペントキシメチル)メタアクリルアミド、及びジアルキロール(メタ)アクリルアミド等の(メタ)アクリルアミド類;
N−ビニルホルムアミド等のビニルアミド類;
パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2−パーフルオロブチルエチル(メタ)アクリレート、2−パーフルオロヘキシルエチル(メタ)アクリレート、2−パーフルオロオクチルエチル(メタ)アクリレート、2−パーフルオロイソノニルエチル(メタ)アクリレート、2−パーフルオロノニルエチル(メタ)アクリレート、2−パーフルオロデシルエチル(メタ)アクリレート、パーフルオロプロピルプロピル(メタ)アクリレート、パーフルオロオクチルプロピル(メタ)アクリレート、パーフルオロオクチルアミル(メタ)アクリレート、及びパーフルオロオクチルウンデシル(メタ)アクリレート等の炭素数1〜20のパーフルオロアルキル基を有するパーフルオロアルキル(メタ)アクリレート類;
パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、及びパーフルオロデシルエチレン等のパーフルオロアルキル基を有するオレフィン類;
(メタ)アクリロキシ変性ポリジメチルシロキサン(シリコーンマクロマー)類;
ラクトン変性(メタ)アクリレートなどのポリエステル鎖を有するオレフィン類;
(メタ)アクリル酸ジメチルアミノエチルメチルクロライド塩等の四級アンモニウム塩基を有する(メタ)アクリレート類;
トリメチル−3−(1−(メタ)アクリルアミド−1,1−ジメチルプロピル)アンモニウムクロライド、トリメチル−3−(1−(メタ)アクリルアミドプロピル)アンモニウムクロライド、及びトリメチル−3−(1−(メタ)アクリルアミド−1,1−ジメチルエチル)アンモニウムクロライド等の四級アンモニウム塩基を有する(メタ)アクリルアミド類;
1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、及び1−ヘキサデセン等のα−オレフィン類;
酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等の脂肪酸ビニル類;
ブチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;
酢酸アリル、アリルベンゼン、及びシアン化アリル等のアリル類;
シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトン、スチレン、α−メチルスチレン、2−メチルスチレン、クロロスチレンなどのその他のビニル類;
ブタジエン、及びイソプレン等のジエン類;
ジビニルベンゼン、(メタ)アクリル酸ビニル、(メタ)アクリル酸アリル、及びエチレングリコールジ(メタ9アクリレート等の二つのエチレン性不飽和基を有するオレフィン類;並びに、
アセチレン、アセチルアルコール、エチニルベンゼン、及びエチニルトルエン等のエチニル類等が挙げられる。これらを単独で用いても、2種類以上を併用しても構わない。
Examples of one or more other ethylenically unsaturated monomers other than the ethylenically unsaturated monomer that can be used when polymerizing the crosslinked resin emulsion of the present invention include, for example,
Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, pentyl (meth) acrylate, heptyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, Nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl ( (Meth) acrylate, octadecyl (meth) acrylate, nonadecyl (meth) acrylate, icosyl (meth) acrylate, heicosyl (meth) acrylate, docosyl Meth) linear alkyl (meth) acrylates such as acrylate;
Branched alkyl (meth) acrylates such as isopropyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isomyristyl (meth) acrylate, and isostearyl (meth) acrylate;
Cyclohexyl (meth) acrylate, Tertiarybutylcyclohexyl (meth) acrylate, Dicyclopentanyl (meth) acrylate, Dicyclopentanyloxyethyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, Dicyclopentenyloxyethyl (meth) ) Acrylates and cyclic alkyl (meth) acrylates such as isobornyl (meth) acrylate;
Diolefins such as butadiene, isoprene, vinyl (meth) acrylate, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate;
(Meth) acrylates having a heterocyclic ring such as tetrahydrofurfuryl (meth) acrylate and 3-methyl-3-oxetanyl (meth) acrylate;
Benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, paracumylphenoxyethyl (meth) acrylate, paracumylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, etc. (Meth) acrylates having the following aromatic ring;
2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, diethylene glycol monomethyl ether (meth) acrylate, diethylene glycol monoethyl ether (meta ) Acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate, diethylene glycol mono-2-ethylhexyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, tripropylene glycol mono (Meth) acrylate, polyethylene glycol monolauryl ether (meth) acrylate, and polyester Glycol monostearyl ether (meth) acrylate of (poly) alkylene glycol monoalkyl ether (meth) acrylates;
2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-acryloyloxyethyl-2-hydroxyethyl (meth) Phthalates,
Diethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, propylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate,
Polytetramethylene glycol mono (meth) acrylate, poly (ethylene glycol-propylene glycol) mono (meth) acrylate, poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate, poly (propylene glycol-tetramethylene glycol) mono ( (Meth) acrylates and (meth) acrylates having hydroxyl groups such as glycerol (meth) acrylate;
Olefins having a hydroxyl group such as 4-hydroxyvinylbenzene, 1-ethynyl-1-cyclohexanol, and allyl alcohol;
(Meth) acrylates having a tertiary amino group such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, and diethylaminopropyl (meth) acrylate;
Styrenes having tertiary amino groups such as dimethylaminostyrene and diethylaminostyrene;
(Meth) acrylamide, N-methoxymethyl- (meth) acrylamide, N-ethoxymethyl- (meth) acrylamide, N-propoxymethyl- (meth) acrylamide, N-butoxymethyl- (meth) acrylamide, N-pentoxymethyl -Monoalkylol (meth) acrylamide such as (meth) acrylamide, N, N-di (methylol) acrylamide, N-methylol-N-methoxymethyl (meth) acrylamide, N, N-di (methoxymethyl) acrylamide, N -Ethoxymethyl-N-methoxymethylmethacrylamide, N, N-di (ethoxymethyl) acrylamide, N-ethoxymethyl-N-propoxymethylmethacrylamide, N, N-di (propoxymethyl) acrylamide, N-butoxymethyl- N- Propoxymethyl) methacrylamide, N, N-di (butoxymethyl) acrylamide, N-butoxymethyl-N- (methoxymethyl) methacrylamide, N, N-di (pentoxymethyl) acrylamide, N-methoxymethyl-N- (Meth) acrylamides such as (pentoxymethyl) methacrylamide and dialkyrol (meth) acrylamide;
Vinylamides such as N-vinylformamide;
Perfluoromethylmethyl (meth) acrylate, perfluoroethylmethyl (meth) acrylate, 2-perfluorobutylethyl (meth) acrylate, 2-perfluorohexylethyl (meth) acrylate, 2-perfluorooctylethyl (meth) acrylate , 2-perfluoroisononylethyl (meth) acrylate, 2-perfluorononylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, perfluoropropylpropyl (meth) acrylate, perfluorooctylpropyl (meta ) Perfluoroalkyl having a C 1-20 perfluoroalkyl group such as acrylate, perfluorooctyl amyl (meth) acrylate, and perfluorooctyl undecyl (meth) acrylate Kill (meth) acrylates;
Olefin having a perfluoroalkyl group such as perfluorobutylethylene, perfluorohexylethylene, perfluorooctylethylene, and perfluorodecylethylene;
(Meth) acryloxy-modified polydimethylsiloxanes (silicone macromers);
Olefins having a polyester chain such as lactone-modified (meth) acrylate;
(Meth) acrylates having a quaternary ammonium base such as dimethylaminoethyl methyl chloride (meth) acrylate;
Trimethyl-3- (1- (meth) acrylamide-1,1-dimethylpropyl) ammonium chloride, trimethyl-3- (1- (meth) acrylamidepropyl) ammonium chloride, and trimethyl-3- (1- (meth) acrylamide (Meth) acrylamides having a quaternary ammonium base such as -1,1-dimethylethyl) ammonium chloride;
Α-olefins such as 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, and 1-hexadecene;
Fatty acid vinyls such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl hexanoate, vinyl caprylate, vinyl laurate, vinyl palmitate, vinyl stearate;
Vinyl ethers such as butyl vinyl ether and ethyl vinyl ether;
Allyls such as allyl acetate, allylbenzene, and allyl cyanide;
Other vinyls such as vinyl cyanide, vinyl cyclohexane, vinyl methyl ketone, styrene, α-methyl styrene, 2-methyl styrene, chlorostyrene;
Dienes such as butadiene and isoprene;
Olefins having two ethylenically unsaturated groups, such as divinylbenzene, vinyl (meth) acrylate, allyl (meth) acrylate, and ethylene glycol di (meth-9acrylate); and
Examples include ethynyls such as acetylene, acetyl alcohol, ethynylbenzene, and ethynyltoluene. These may be used alone or in combination of two or more.

これらの単量体中でもスチレン、2−エチルヘキシルアクリレート、及びシクロヘキシルメタクリレートからなる群から選ばれる1種類以上の単量体を使用することが、耐電解液性、集電体との密着性及び可とう性に優れるため好ましい。スチレンを使用する場合、その使用量は、エチレン性不飽和単量体100重量%中、5〜60重量%であるのが好ましい。又、2−エチルヘキシルアクリレートを使用する場合、その使用量は、エチレン性不飽和単量体100重量%中、20〜60重量%であるのが好ましい。又、シクロヘキシルメタクリレートを使用する場合、その使用量は、エチレン性不飽和単量体100重量%中、5〜50重量%であるのが好ましい。   Among these monomers, it is possible to use at least one monomer selected from the group consisting of styrene, 2-ethylhexyl acrylate, and cyclohexyl methacrylate, which provides resistance to electrolyte, adhesion to a current collector, and flexibility. It is preferable because of its excellent properties. When using styrene, it is preferable that the usage-amount is 5 to 60 weight% in 100 weight% of ethylenically unsaturated monomers. Moreover, when using 2-ethylhexyl acrylate, it is preferable that the usage-amount is 20 to 60 weight% in 100 weight% of ethylenically unsaturated monomers. Moreover, when using cyclohexyl methacrylate, it is preferable that the usage-amount is 5 to 50 weight% in 100 weight% of ethylenically unsaturated monomers.

本発明で使用する水系樹脂の架橋型樹脂エマルションは、従来既知の乳化重合方法により合成される。   The cross-linked resin emulsion of the aqueous resin used in the present invention is synthesized by a conventionally known emulsion polymerization method.

乳化重合の際に用いられる乳化剤としては、エチレン性不飽和基を有する反応性乳化剤、及び/又はエチレン性不飽和基を有しない非反応性乳化剤など、従来公知のものを任意に使用することができる。   As the emulsifier used in the emulsion polymerization, a conventionally known one such as a reactive emulsifier having an ethylenically unsaturated group and / or a non-reactive emulsifier having no ethylenically unsaturated group may be arbitrarily used. it can.

エチレン性不飽和基を有する反応性乳化剤はさらに大別して、アニオン系、ノニオン系のものが例示できる。特にエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン系反応性乳化剤を用いると、共重合体の分散粒子径が微細となるとともに粒度分布が狭くなるため、二次電池電極用バインダーとして使用した際に耐電解液性を向上することができるために好ましい。このエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤は、1種を単独で使用しても、複数種を混合して用いても良い。   The reactive emulsifier having an ethylenically unsaturated group can be further roughly classified into anionic and nonionic ones. Especially when anionic reactive emulsifier or nonionic reactive emulsifier having an ethylenically unsaturated group is used, the dispersion particle size of the copolymer becomes fine and the particle size distribution becomes narrow, so it is used as a binder for secondary battery electrodes. This is preferable because the resistance to electrolytic solution can be improved. This anionic reactive emulsifier or nonionic reactive emulsifier having an ethylenically unsaturated group may be used singly or in combination.

エチレン性不飽和基を有するアニオン系反応性乳化剤の一例として、以下にその具体例を例示するが、本願発明において使用可能とする乳化剤は、以下に記載するもののみを限定するものではない。前記乳化剤としては、アルキルエーテル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンKH−05、KH−10、KH−20、株式会社ADEKA製アデカリアソープSR−10N、SR−20N、花王株式会社製ラテムルPD−104等);
スルフォコハク酸エステル系(市販品としては、例えば、花王株式会社製ラテムルS−120、S−120A、S−180P、S−180A、三洋化成株式会社製エレミノールJS−2等);
アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンH−2855A、H−3855B、H−3855C、H−3856、HS−05、HS−10、HS−20、HS−30、株式会社ADEKA製アデカリアソープSDX−222、SDX−223、SDX−232、SDX−233、SDX−259、SE−10N、SE−20N、SE−等);
(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製アントックスMS−60、MS−2N、三洋化成工業株式会社製エレミノールRS−30等);
リン酸エステル系(市販品としては、例えば、第一工業製薬株式会社製H−3330PL、株式会社ADEKA製アデカリアソープPP−70等)が挙げられる。
Specific examples of the anionic reactive emulsifier having an ethylenically unsaturated group are illustrated below, but the emulsifiers that can be used in the present invention are not limited to those described below. Examples of the emulsifier include alkyl ethers (commercially available products include, for example, Aqualon KH-05, KH-10, KH-20, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Adeka Soap SR-10N, SR-20N manufactured by ADEKA Corporation. Latemuru PD-104 manufactured by Kao Corporation);
Sulfosuccinic acid ester-based (for example, Latmul S-120, S-120A, S-180P, S-180A, Sanyo Chemical Co., Ltd., Elemiol JS-2, etc., manufactured by Kao Corporation);
Alkyl phenyl ether type or alkyl phenyl ester type (commercially available products include, for example, Aqualon H-2855A, H-3855B, H-3855C, H-3856, HS-05, HS-10, HS, manufactured by Daiichi Kogyo Seiyaku Co., Ltd. -20, HS-30, ADEKA Corporation ADEKA rear soap SDX-222, SDX-223, SDX-232, SDX-233, SDX-259, SE-10N, SE-20N, SE-, etc.);
(Meth) acrylate sulfate ester (commercially available products such as Antox MS-60, MS-2N, Sanyo Kasei Kogyo Co., Ltd. Elminol RS-30 manufactured by Nippon Emulsifier Co., Ltd.);
Examples of the phosphoric acid ester (commercially available products include H-3330PL manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Adeka Soap PP-70 manufactured by ADEKA Co., Ltd.), and the like.

本発明で用いることのできるノニオン系反応性乳化剤としては、例えばアルキルエーテル系(市販品としては、例えば、株式会社ADEKA製アデカリアソープER−10、ER−20、ER−30、ER−40、花王株式会社製ラテムルPD−420、PD−430、PD−450等);
アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンRN−10、RN−20、RN−30、RN−50、株式会社ADEKA製アデカリアソープNE−10、NE−20、NE−30、NE−40等);
(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製RMA−564、RMA−568、RMA−1114等)が挙げられる。
Nonionic reactive emulsifiers that can be used in the present invention include, for example, alkyl ether-based (commercially available products such as Adeka Soap ER-10, ER-20, ER-30, ER-40, manufactured by ADEKA Corporation, Latemu PD-420, PD-430, PD-450, etc. manufactured by Kao Corporation);
Alkyl phenyl ether type or alkyl phenyl ester type (commercially available products include, for example, Aqualon RN-10, RN-20, RN-30, RN-50, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., ADEKA rear soap NE- manufactured by ADEKA Co., Ltd. 10, NE-20, NE-30, NE-40, etc.);
(Meth) acrylate sulfate-based (as commercial products, for example, RMA-564, RMA-568, RMA-1114, etc. manufactured by Nippon Emulsifier Co., Ltd.) can be mentioned.

本発明で使用する水系樹脂の架橋型樹脂エマルションを乳化重合により得るに際しては、前記したエチレン性不飽和基を有する反応性乳化剤とともに、必要に応じエチレン性不飽和基を有しない非反応性乳化剤を併用することができる。非反応性乳化剤は、非反応性アニオン系乳化剤と非反応性ノニオン系乳化剤とに大別することができる。   When obtaining a cross-linked resin emulsion of an aqueous resin used in the present invention by emulsion polymerization, a non-reactive emulsifier that does not have an ethylenically unsaturated group, if necessary, together with the above-described reactive emulsifier having an ethylenically unsaturated group. Can be used together. Non-reactive emulsifiers can be broadly classified into non-reactive anionic emulsifiers and non-reactive nonionic emulsifiers.

非反応性ノニオン系乳化剤の例としては、ポリオキシエチレンラウリルエーテル、及びポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル類;
ポリオキシエチレンオクチルフェニルエーテル、及びポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;
ソルビタンモノラウレート、ソルビタンモノステアレート、及びソルビタントリオレエート等のソルビタン高級脂肪酸エステル類;
ポリオキシエチレンソルビタンモノラウレート等のポリオキシエチレンソルビタン高級脂肪酸エステル類;
ポリオキシエチレンモノラウレート、及びポリオキシエチレンモノステアレート等のポリオキシエチレン高級脂肪酸エステル類;
オレイン酸モノグリセライド、及びステアリン酸モノグリセライド等のグリセリン高級脂肪酸エステル類;
ポリオキシエチレン・ポリオキシプロピレン・ブロックコポリマー; 並びに、ポリオキシエチレンジスチレン化フェニルエーテル等を例示することができる。
Examples of non-reactive nonionic emulsifiers include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether;
Polyoxyethylene alkylphenyl ethers such as polyoxyethylene octylphenyl ether and polyoxyethylene nonylphenyl ether;
Sorbitan higher fatty acid esters such as sorbitan monolaurate, sorbitan monostearate, and sorbitan trioleate;
Polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate;
Polyoxyethylene higher fatty acid esters such as polyoxyethylene monolaurate and polyoxyethylene monostearate;
Glycerin higher fatty acid esters such as oleic acid monoglyceride and stearic acid monoglyceride;
Examples thereof include polyoxyethylene / polyoxypropylene / block copolymers; and polyoxyethylene distyrenated phenyl ether.

又、非反応性アニオン系乳化剤の例としては、オレイン酸ナトリウム等の高級脂肪酸塩類;
ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩類;
ラウリル硫酸ナトリウム等のアルキル硫酸エステル塩類;
ポリエキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩類;
ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類;
モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウム等のアルキルスルホコハク酸エステル塩、及びその誘導体類;並びに、
ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩類等を例示することができる。
Examples of non-reactive anionic emulsifiers include higher fatty acid salts such as sodium oleate;
Alkylaryl sulfonates such as sodium dodecylbenzenesulfonate;
Alkyl sulfate salts such as sodium lauryl sulfate;
Polyoxyethylene alkyl ether sulfate ester salts such as sodium polyoxyethylene lauryl ether sulfate;
Polyoxyethylene alkylaryl ether sulfate salts such as sodium polyoxyethylene nonylphenyl ether sulfate;
Alkyl sulfosuccinic acid ester salts such as sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, sodium polyoxyethylene lauryl sulfosuccinate, and derivatives thereof; and
Examples thereof include polyoxyethylene distyrenated phenyl ether sulfate salts.

乳化重合の際に用いられる乳化剤の使用量は、必ずしも限定されるものではなく、本発明で用いられる水系樹脂が、最終的に二次電池電極用バインダーとして使用される際に求められる物性に従って適宜選択できる。例えば、エチレン性不飽和単量体の合計100重量部に対して、乳化剤は通常0.1〜30重量部であることが好ましく、0.3〜20重量部であることがより好ましく、0.5〜10重量部の範囲内であることが更に好ましい。   The amount of the emulsifier used in the emulsion polymerization is not necessarily limited, and is appropriately determined according to the physical properties required when the aqueous resin used in the present invention is finally used as a binder for a secondary battery electrode. You can choose. For example, the amount of the emulsifier is usually preferably 0.1 to 30 parts by weight, more preferably 0.3 to 20 parts by weight, based on 100 parts by weight of the total of ethylenically unsaturated monomers. More preferably, it is in the range of 5 to 10 parts by weight.

乳化重合に際しては、水溶性保護コロイドを併用することもできる。水溶性保護コロイドとしては、例えば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、及び変性ポリビニルアルコール等のポリビニルアルコール類;
ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、及びカルボキシメチルセルロース塩等のセルロース誘導体;並びに、
グアガムなどの天然多糖類等が挙げられ、これらは、単独でも複数種併用の態様でも利用できる。水溶性保護コロイドの使用量としては、エチレン性不飽和単量体の合計100重量部当り0.1〜5重量部であり、更に好ましくは0.5〜2重量%である。
In emulsion polymerization, a water-soluble protective colloid can be used in combination. Examples of the water-soluble protective colloid include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, and modified polyvinyl alcohol;
Cellulose derivatives such as hydroxyethylcellulose, hydroxypropylcellulose, and carboxymethylcellulose salts; and
Natural polysaccharides such as guar gum and the like can be mentioned, and these can be used alone or in a combination of plural kinds. The amount of the water-soluble protective colloid used is 0.1 to 5 parts by weight, more preferably 0.5 to 2% by weight, based on 100 parts by weight of the total amount of ethylenically unsaturated monomers.

乳化重合に際して用いられる水性媒体としては、水が挙げられ、親水性の有機溶剤も本発明の目的を損なわない範囲で使用することができる。   Examples of the aqueous medium used in the emulsion polymerization include water, and a hydrophilic organic solvent can be used as long as the object of the present invention is not impaired.

乳化重合の際に用いられる重合開始剤としては、ラジカル重合を開始する能力を有するものであれば特に制限はなく、公知の油溶性重合開始剤や水溶性重合開始剤を使用することができる。油溶性重合開始剤としては特に限定されず、例えば、
ベンゾイルパーオキサイド、tert−ブチルパーオキシベンゾエート、tert−ブチルハイドロパーオキサイド、tert−ブチルパーオキシ(2−エチルヘキサノエート)、tert−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、及びジ−tert−ブチルパーオキサイド等の有機過酸化物;並びに、
2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス−2,4−ジメチルバレロニトリル、2,2'−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、及び1,1'−アゾビス−シクロヘキサン−1−カルボニトリル等のアゾビス化合物等を挙げることができる。これらは1種類または2種類以上を混合して使用することができる。これら重合開始剤は、エチレン性不飽和単量体100重量部に対して、0.1〜10.0重量部の量を用いるのが好ましい。
The polymerization initiator used in the emulsion polymerization is not particularly limited as long as it has the ability to initiate radical polymerization, and known oil-soluble polymerization initiators and water-soluble polymerization initiators can be used. The oil-soluble polymerization initiator is not particularly limited, for example,
Benzoyl peroxide, tert-butylperoxybenzoate, tert-butyl hydroperoxide, tert-butylperoxy (2-ethylhexanoate), tert-butylperoxy-3,5,5-trimethylhexanoate, and Organic peroxides such as di-tert-butyl peroxide; and
2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 1, Examples thereof include azobis compounds such as 1′-azobis-cyclohexane-1-carbonitrile. These can be used alone or in combination of two or more. These polymerization initiators are preferably used in an amount of 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the ethylenically unsaturated monomer.

本発明で使用する水系樹脂の架橋型樹脂エマルションを乳化重合により得るに際してはエマルションの安定性の観点から、特に、水溶性重合開始剤を使用することが好ましく、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、及び2,2’−アゾビス(2−メチルプロピオンアミジン)ジハイドロクロライドなど、従来既知のものを好適に使用することができる。又、乳化重合を行うに際して、所望により重合開始剤とともに還元剤を併用することができる。これにより、乳化重合速度を促進したり、低温において乳化重合を行ったりすることが容易になる。このような還元剤としては、例えば、アスコルビン酸、エルソルビン酸、酒石酸、クエン酸、ブドウ糖、ホルムアルデヒドスルホキシラートなどの金属塩等の還元性有機化合物、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム等の還元性無機化合物、塩化第一鉄、ロンガリット、及び二酸化チオ尿素などを例示できる。これら還元剤は、全エチレン性不飽和単量体100重量部に対して、0.05〜5.0重量部の量を用いるのが好ましい。   In obtaining a cross-linked resin emulsion of an aqueous resin used in the present invention by emulsion polymerization, it is particularly preferable to use a water-soluble polymerization initiator from the viewpoint of emulsion stability. For example, ammonium persulfate, potassium persulfate, Conventionally known materials such as hydrogen peroxide and 2,2′-azobis (2-methylpropionamidine) dihydrochloride can be suitably used. Moreover, when performing emulsion polymerization, a reducing agent can be used together with a polymerization initiator if desired. Thereby, it becomes easy to accelerate the emulsion polymerization rate or to perform the emulsion polymerization at a low temperature. Examples of such a reducing agent include reducing organic compounds such as metal salts such as ascorbic acid, ersorbic acid, tartaric acid, citric acid, glucose, formaldehyde sulfoxylate, sodium thiosulfate, sodium sulfite, sodium bisulfite, Examples include reducing inorganic compounds such as sodium bisulfite, ferrous chloride, Rongalite, and thiourea dioxide. These reducing agents are preferably used in an amount of 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the total ethylenically unsaturated monomer.

なお前記した重合開始剤によらずとも、光化学反応や、放射線照射等によっても重合を行うことができる。重合温度は各重合開始剤の重合開始温度以上とする。例えば、過酸化物系重合開始剤では、通常70℃程度とすればよい。重合時間は特に制限されないが、通常2〜24時間である。   In addition, it can superpose | polymerize by a photochemical reaction, radiation irradiation, etc. irrespective of an above described polymerization initiator. The polymerization temperature is not less than the polymerization start temperature of each polymerization initiator. For example, in the case of a peroxide-based polymerization initiator, it may be usually about 70 ° C. The polymerization time is not particularly limited, but is usually 2 to 24 hours.

更に必要に応じて、緩衝剤として、酢酸ナトリウム、クエン酸ナトリウム、及び重炭酸ナトリウム等の塩が、又、連鎖移動剤としてのオクチルメルカプタン、チオグリコール酸2−エチルヘキシル、ステアリルメルカプタン、ラウリルメルカプタン、及びt−ドデシルメルカプタン等のメルカプタン類が適量使用できる。   Further, if necessary, salts such as sodium acetate, sodium citrate, and sodium bicarbonate as buffering agents, octyl mercaptan, 2-ethylhexyl thioglycolate, stearyl mercaptan, lauryl mercaptan, and An appropriate amount of mercaptans such as t-dodecyl mercaptan can be used.

本発明で使用する水系樹脂の架橋型樹脂エマルションを乳化重合により得るに際に、カルボキシル基を有するエチレン性不飽和単量体等の酸性官能基を有する単量体を使用する場合、重合前や重合後に塩基性化合物で中和することができる。中和する際、アンモニアもしくはトリメチルアミン、トリエチルアミン、及びブチルアミン等のアルキルアミン類;
2−ジメチルアミノエタノール、ジエタノールアミン、トリエタノールアミン、及びアミノメチルプロパノール等のアルコールアミン類;並びに、
モルホリン等の塩基で中和することができる。ただ、乾燥性に効果が高いのは揮発性の高い塩基であり、好ましい塩基はアミノメチルプロパノール、アンモニアである。
When a monomer having an acidic functional group such as an ethylenically unsaturated monomer having a carboxyl group is used for obtaining a cross-linked resin emulsion of an aqueous resin used in the present invention by emulsion polymerization, It can neutralize with a basic compound after superposition | polymerization. When neutralizing, ammonia or alkylamines such as trimethylamine, triethylamine, and butylamine;
Alcohol amines such as 2-dimethylaminoethanol, diethanolamine, triethanolamine, and aminomethylpropanol; and
It can be neutralized with a base such as morpholine. However, it is a highly volatile base that has a high effect on drying properties, and preferred bases are aminomethylpropanol and ammonia.

又、架橋型樹脂エマルション中の水系樹脂のガラス転移温度(以下、Tgともいう)は、−5〜70℃が好ましく、10℃〜50℃が更に好ましい。Tgが−5℃未満の場合、バインダーが過度に電極活物質を覆い、インピーダンスが高くなりやすい。又、Tg が70℃を超えると、バインダーの柔軟性、粘着性が乏しくなり、電極活物質の集電材への接着性、電極の成形性が劣る場合がある。なお、ガラス転移温度は、DSC(示差走査熱量計)を用いて求めた値である。   Further, the glass transition temperature (hereinafter also referred to as Tg) of the aqueous resin in the cross-linked resin emulsion is preferably −5 to 70 ° C., and more preferably 10 ° C. to 50 ° C. When Tg is less than −5 ° C., the binder excessively covers the electrode active material, and the impedance tends to increase. On the other hand, if Tg exceeds 70 ° C., the flexibility and tackiness of the binder become poor, and the adhesion of the electrode active material to the current collector and the moldability of the electrode may be inferior. The glass transition temperature is a value obtained using a DSC (differential scanning calorimeter).

又、本発明においては架橋型樹脂エマルションの粒子構造を多層構造、いわゆるコアシェル粒子にすることもできる。例えば、コア部又はシェル部に官能基を有する単量体を主に重合させた樹脂を局在化させたり、コアとシェルによってTgや組成に差を設けたりすることにより、硬化性、乾燥性、成膜性を向上させることができる。   In the present invention, the particle structure of the cross-linked resin emulsion may be a multi-layer structure, so-called core-shell particles. For example, it is possible to localize a resin obtained by mainly polymerizing a monomer having a functional group in the core part or the shell part, or to provide a difference in Tg or composition between the core and the shell, thereby providing curability and drying properties. The film forming property can be improved.

架橋型樹脂エマルションの平均粒子径は、電極活物質の結着性やエマルションの安定性の点から、10〜500nmであることが好ましく、30〜200nmであることがより好ましい。又、1μmを超えるような粗大粒子が多く含有されるようになるとエマルションの安定性が損なわれるので、1μmを超える粗大粒子は多くとも5重量%以下であることが好ましい。なお、本発明における平均粒子径とは、体積平均粒子径のことを表し、動的光散乱法により測定できる。   The average particle size of the cross-linked resin emulsion is preferably 10 to 500 nm, and more preferably 30 to 200 nm, from the viewpoint of the binding property of the electrode active material and the stability of the emulsion. Further, when a large amount of coarse particles exceeding 1 μm are contained, the stability of the emulsion is impaired, so that the coarse particles exceeding 1 μm are preferably at most 5% by weight. In addition, the average particle diameter in the present invention represents a volume average particle diameter and can be measured by a dynamic light scattering method.

以上の様に、本発明の水系炭素材料組成物中の水系樹脂は、エマルション
<水系媒体>
本発明の水系炭素材料組成物中の水系媒体は水を含むものであれば特に制限はないが、水に溶解するアルコール系溶剤、エステル系溶剤などがある。
As described above, the aqueous resin in the aqueous carbon material composition of the present invention is an emulsion <aqueous medium>.
The aqueous medium in the aqueous carbon material composition of the present invention is not particularly limited as long as it contains water, but examples thereof include alcohol solvents and ester solvents that dissolve in water.

<水系炭素材料組成物>
本発明の水系炭素材料組成物中の固形分(不揮発分)は、1〜60重量%、好ましくは、5〜55重量%である。1重量%未満では、安定した塗膜形成が難しく、60重量%を超えると、安定的な塗工液として保持するのが難しくなり、ゲル化など引き起こすなど問題がある。
<Water-based carbon material composition>
The solid content (nonvolatile content) in the aqueous carbon material composition of the present invention is 1 to 60% by weight, preferably 5 to 55% by weight. If it is less than 1% by weight, it is difficult to form a stable coating film, and if it exceeds 60% by weight, it is difficult to hold it as a stable coating solution, causing problems such as gelation.

本発明の水系炭素材料組成物中の炭素材料は、0.5〜50重量%、好ましくは、1〜40重量%である。0.5重量%未満では、導電性が十分でなく、50重量%を超えると、粒子間が密になりすぎて安定的な工液として保持するのが難しくなる。   The carbon material in the aqueous carbon material composition of the present invention is 0.5 to 50% by weight, preferably 1 to 40% by weight. If it is less than 0.5% by weight, the conductivity is not sufficient, and if it exceeds 50% by weight, the particles become too dense to be held as a stable working solution.

本発明の水系炭素材料組成物中のアニオン性樹脂及び/又はノニオン性樹脂は、炭素材料に対して、0.01〜50重量%、好ましくは、0.05〜30重量%である。0.01%重量未満では、分散が不十分となり、50%を超えると炭素材料の表面を覆いつくすことで導電性を損ねてしまう。   The anionic resin and / or nonionic resin in the aqueous carbon material composition of the present invention is 0.01 to 50% by weight, preferably 0.05 to 30% by weight, based on the carbon material. If it is less than 0.01% by weight, the dispersion is insufficient, and if it exceeds 50%, the conductivity is impaired by covering the surface of the carbon material.

本発明の水系炭素材料組成物中の水系樹脂は、固形分として、0.5〜50重量%、好ましくは、1〜40重量%である。0.5%重量未満では、塗膜形成が困難になり、50重量%を超えると安定的な塗工液として保持するのが難しくなる。   The aqueous resin in the aqueous carbon material composition of the present invention has a solid content of 0.5 to 50% by weight, preferably 1 to 40% by weight. If it is less than 0.5% by weight, it becomes difficult to form a coating film, and if it exceeds 50% by weight, it is difficult to hold it as a stable coating solution.

<水系電池電極用組成物>
本発明の水系炭素材料組成物に、電極活物質を配合することによって、電池電極用組成物として使用することができる。本発明の水系炭素材料組成物は、ニッケル水素電池、リチウム電池、ニッケルカドミウム電池、及び鉛蓄電池等の二次電池の正極、及び負極に使用することができ、特にニッケル水素電池の負極に好適に使用することができる。その他、エネルギーデバイス、すなわち、電気二重層キャパシタ、太陽電池等にも使用することができる。
<Composition for aqueous battery electrode>
By mix | blending an electrode active material with the water-system carbon material composition of this invention, it can be used as a composition for battery electrodes. The aqueous carbon material composition of the present invention can be used for a positive electrode and a negative electrode of a secondary battery such as a nickel metal hydride battery, a lithium battery, a nickel cadmium battery, and a lead storage battery, and is particularly suitable for a negative electrode of a nickel metal hydride battery. Can be used. In addition, it can also be used for energy devices, that is, electric double layer capacitors, solar cells, and the like.

本発明の水系炭素材料組成物は、電極活物質と配合して電池電極用組成物とし、この電池電極用組成物を集電体に塗布し、乾燥することにより、電池用電極を製造することができる。   The aqueous carbon material composition of the present invention is blended with an electrode active material to form a battery electrode composition, and the battery electrode composition is applied to a current collector and dried to produce a battery electrode. Can do.

電極活物質としては、正極活物質ではコバルト酸系リチウム塩、マンガン酸系リチウム塩、リン酸鉄系リチウム塩、水酸化ニッケル、又はオキシ水酸化ニッケル等があり、負極活物質ではグラファイト、チタン酸系リチウム塩、又はシリコン合金系等がある。特に、ニッケル水素電池の負極として用いられる水素吸蔵合金が好ましく用いられ、具体的には、LaNi5系、TiNi系、Ti2Ni系、ZrNi系、又はMgNi系等が挙げられる。その他、LaNi5のLaをミッシュメタルMm(希土類の混合物であるミッシュメタルを表す。)に換えて、Niの一部をMn、Al、又はCo等で置換したものが挙げられる。 Examples of the electrode active material include cobalt acid lithium salt, manganate lithium salt, iron phosphate lithium salt, nickel hydroxide, or nickel oxyhydroxide for the positive electrode active material, and graphite, titanate for the negative electrode active material. A lithium salt or a silicon alloy. In particular, a hydrogen storage alloy used as a negative electrode of a nickel metal hydride battery is preferably used, and specific examples include LaNi 5 , TiNi, Ti 2 Ni, ZrNi, or MgNi. In addition, LaNi 5 in which La is replaced with Misch metal Mm (representing a misch metal that is a mixture of rare earths) and a part of Ni is replaced with Mn, Al, Co, or the like.

炭素材料以外に、電極活物質と併用する導電性材料としては、例えば、ニッケル粉末、酸化コバルト、又は酸化チタン等を挙げることができる。   In addition to the carbon material, examples of the conductive material used in combination with the electrode active material include nickel powder, cobalt oxide, and titanium oxide.

本発明の炭素系組成物を、電池電極用組成物として使用する場合、本発明の炭素系組成物中の炭素材料を含む導電性材料が、電極活物質に対して、0.1〜20重量%になるように、且つ、バインダー樹脂として機能する水系樹脂が、電極活物質に対して、固形分で、0.1〜20重量%、好ましくは、0.5〜10重量%になるように、配合するのが好ましい。電極活物質に対して、導電性材料(炭素材料を含む)が、0.1重量%未満では導電性が低く、高レートで充放電した場合の容量が低下する場合がある。又、バインダー樹脂(水系樹脂)が、電極活物質に対して、0.1重量%未満であると、電極活物質を集電体に結着させる力が不十分であり、電極活物質が脱落し電池の容量が低下する場合があり、20重量%を超えると、電池内の抵抗が増して電池の容量が低下する場合がある。   When the carbon-based composition of the present invention is used as a battery electrode composition, the conductive material containing the carbon material in the carbon-based composition of the present invention is 0.1 to 20 weights with respect to the electrode active material. %, And the water-based resin functioning as the binder resin is 0.1 to 20% by weight, preferably 0.5 to 10% by weight, based on the electrode active material, in solid content It is preferable to blend. If the conductive material (including the carbon material) is less than 0.1% by weight with respect to the electrode active material, the conductivity is low, and the capacity may be reduced when charging / discharging at a high rate. If the binder resin (water-based resin) is less than 0.1% by weight based on the electrode active material, the force for binding the electrode active material to the current collector is insufficient, and the electrode active material falls off. However, the capacity of the battery may be reduced, and if it exceeds 20% by weight, the resistance in the battery may increase and the capacity of the battery may decrease.

<その他の添加剤>
本発明の水系炭素材料組成物を用いた電池電極組成物には、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤等を、必要に応じて配合できる。本発明の水系炭素材料組成物を調整する際、あるいは本発明で用いる水系樹脂組成物を調整する際に、予め配合することもできる。
<Other additives>
In the battery electrode composition using the aqueous carbon material composition of the present invention, a film forming aid, an antifoaming agent, a leveling agent, a preservative, a pH adjusting agent, a viscosity adjusting agent and the like can be blended as necessary. When adjusting the water-based carbon material composition of the present invention, or when adjusting the water-based resin composition used in the present invention, it can be blended in advance.

成膜助剤は、塗膜の形成を助け、塗膜が形成された後においては比較的速やかに蒸発揮散して塗膜の強度を向上させる一時的な可塑化機能を担うものであり、沸点が110〜200℃の溶媒が好適に用いられる。具体的には、プロピレングリコールモノブチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノプロピルエーテル、カルビトール、ブチルカルビトール、ジブチルカルビトール、及びベンジルアルコール等の水系媒体に可溶な有機溶剤が挙げられる。中でも、エチレングリコールモノブチルエーテル、及びプロピレングリコールモノブチルエーテルは少量で高い成膜助剤効果を有するため特に好ましい。これら成膜助剤は、電池電極用組成物中に0.5〜15重量%含まれることが好ましい。   The film-forming aid is responsible for the temporary plasticization function that helps the formation of the coating film and evaporates relatively quickly after the coating film is formed, thereby improving the strength of the coating film. Is preferably a solvent having a temperature of 110 to 200 ° C. Specifically, propylene glycol monobutyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, dipropylene glycol monopropyl ether, carbitol, butyl carbitol, dibutyl carbitol, and benzyl alcohol An organic solvent soluble in an aqueous medium such as Among these, ethylene glycol monobutyl ether and propylene glycol monobutyl ether are particularly preferable because they have a high film forming auxiliary effect in a small amount. These film-forming aids are preferably contained in the battery electrode composition in an amount of 0.5 to 15% by weight.

粘性調整剤は、固形分に対して、0.01〜20重量%用いてもよい。粘性調整剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(及びその塩)、酸化スターチ、リン酸化スターチ、及びカゼインなどが挙げられる。   You may use a viscosity modifier 0.01 to 20weight% with respect to solid content. Examples of the viscosity modifier include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (and its salt), oxidized starch, phosphorylated starch, and casein.

<電池用電極>
電池用電極を形成するには、前記電池電極用組成物を集電体に塗布し、加熱し、乾燥する。電池電極用組成物の塗布方法としては、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法など任意のコーターヘッドを用いることができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できる。また、乾燥後、プレス成形して電池用電極として用いられる。
<Battery electrode>
In order to form a battery electrode, the battery electrode composition is applied to a current collector, heated and dried. As a coating method for the battery electrode composition, any coater head such as reverse roll method, comma bar method, gravure method, air knife method, etc. can be used. Infrared heaters, far-infrared heaters, etc. can be used. Moreover, after drying, it is press-molded and used as a battery electrode.

集電体としては、二次電池電極に通常用いられているものであれば特に限定されず、例えば、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、アルミ箔、銅箔などを挙げることができる。   The current collector is not particularly limited as long as it is usually used for secondary battery electrodes. For example, punching metal, expanded metal, wire mesh, foam metal, mesh metal fiber sintered body, aluminum foil, copper foil And so on.

本発明の電池電極用組成物は、これ用いて二次電池用電極を製作することができる。上記のようにして得られた電池電極を用いて、例えばニッケル水素電池を組み立てる場合、電解液に水酸化カリウム水溶液、水酸化カリウム水溶液に水酸化ナトリウムおよびまたは水酸化リチウムを添加したものなどを使用し、更に、セパレーター、集電体、端子、絶縁板などの部品を用いて電池が構成される。セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられる。   The battery electrode composition of the present invention can be used to produce a secondary battery electrode. For example, when assembling a nickel metal hydride battery using the battery electrode obtained as described above, a potassium hydroxide aqueous solution is used as the electrolyte, and sodium hydroxide and / or lithium hydroxide is added to the potassium hydroxide aqueous solution. Furthermore, a battery is configured using components such as a separator, a current collector, a terminal, and an insulating plate. Examples of the separator include polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyamide nonwoven fabric, and those obtained by subjecting them to hydrophilic treatment.

以下に、実施例により、本発明をさらに詳細に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における「部」は「重量部」、「%」は「重量%」を表す。   EXAMPLES The present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the scope of rights of the present invention. In the examples, “part” represents “part by weight” and “%” represents “% by weight”.

水系樹脂は、乳化重合により合成し、水系樹脂組成物(エマルション)として調整した。   The aqueous resin was synthesized by emulsion polymerization and prepared as an aqueous resin composition (emulsion).

[水系樹脂組成物の調整例1]
攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、イオン交換水40部と界面活性剤としてアデカリアソープSR−10(株式会社ADEKA製)0.2部とを仕込み、別途、スチレン10部、2−エチルヘキシルアクリレート60部、メチルメタクリレート10部、シクロヘキシルメタクリレート10部、アクリル酸5部、アクリルアミド1部、グリシジルメタクリレート4部、イオン交換水53部及び界面活性剤としてアデカリアソープSR−10(株式会社ADEKA製)1.8部をあらかじめ混合しておいたプレエマルションのうちの1%を更に加えた。内温を70℃に昇温し十分に窒素置換した後、過硫酸カリウムの5%水溶液10部の10%を添加し重合を開始した。反応系内を70℃で5分間保持した後、内温を70℃に保ちながらプレエマルションの残りと過硫酸カリウムの5%水溶液の残りを3時間かけて滴下し、更に2時間攪拌を継続した。固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却した。25%アンモニア水を添加して、pHを8.5とし、更にイオン交換水で固形分を48%に調整して水系樹脂組成物1(架橋型樹脂エマルション)を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[Example 1 of preparation of aqueous resin composition]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser was charged with 40 parts of ion-exchanged water and 0.2 part of Adeka Soap SR-10 (manufactured by ADEKA) as a surfactant. 10 parts of styrene, 60 parts of 2-ethylhexyl acrylate, 10 parts of methyl methacrylate, 10 parts of cyclohexyl methacrylate, 5 parts of acrylic acid, 1 part of acrylamide, 4 parts of glycidyl methacrylate, 53 parts of ion-exchanged water, and ADEKA rear soap SR- 1% of the pre-emulsion in which 1.8 parts of 10 (manufactured by ADEKA Co., Ltd.) was mixed in advance was further added. After raising the internal temperature to 70 ° C. and sufficiently substituting with nitrogen, 10% of 10 parts of a 5% aqueous solution of potassium persulfate was added to initiate polymerization. After maintaining the reaction system at 70 ° C. for 5 minutes, the remaining pre-emulsion and the remaining 5% aqueous solution of potassium persulfate were added dropwise over 3 hours while maintaining the internal temperature at 70 ° C., and stirring was further continued for 2 hours. . After confirming that the conversion rate exceeded 98% by solid content measurement, the temperature was cooled to 30 ° C. 25% aqueous ammonia was added to adjust the pH to 8.5, and the solid content was adjusted to 48% with ion-exchanged water to obtain an aqueous resin composition 1 (crosslinked resin emulsion). In addition, solid content was calculated | required by 150 degreeC 20 minute baking residue.

[水系樹脂組成物の調整例2〜4、8〜9]
表1に示す配合組成で、水系樹脂組成物の調整例1と同様の方法で合成し、調整例2〜4の水系樹脂組成物2〜4(架橋型樹脂エマルション)、水系樹脂組成物8〜9(非架橋型樹脂エマルション)を得た。
[Preparation Examples 2 to 4 and 8 to 9 of aqueous resin composition]
The composition shown in Table 1 was synthesized in the same manner as in Preparation Example 1 of the aqueous resin composition, and the aqueous resin compositions 2 to 4 (crosslinked resin emulsion) of Adjustment Examples 2 to 4 and aqueous resin compositions 8 to 8 were prepared. 9 (non-crosslinked resin emulsion) was obtained.

[水系樹脂組成物の調整例5、及び7]
表1に示す配合組成で、使用する界面活性剤の10%を反応容器に仕込み、残りの90%をプレエマルションの作製に使用する以外は、水系樹脂組成物の調整例1と同様の方法で、乳化重合を行った後に、表1に示したアジピン酸ヒドラジド(カルボニ基と反応しうる官能基を有する化合物)を添加して、水系樹脂組成物5、及び7(架橋型樹脂エマルション)を得た。
[Preparation Examples 5 and 7 of aqueous resin composition]
In the composition shown in Table 1, in the same manner as in Preparation Example 1 of the aqueous resin composition, except that 10% of the surfactant to be used is charged in a reaction vessel and the remaining 90% is used for preparation of a pre-emulsion. After emulsion polymerization, adipic acid hydrazide (compound having a functional group capable of reacting with a carbonyl group) shown in Table 1 was added to obtain aqueous resin compositions 5 and 7 (crosslinked resin emulsion). It was.

[水系樹脂組成物の調整例6]
表1に示す配合組成で、使用する界面活性剤の10%を反応容器に仕込み、残りの90%をプレエマルションの作製に使用する以外は、水系樹脂組成物の調整例1と同様の方法で、乳化重合を行った後に、表1に示したカルボジライトV−02(カルボキシル基と反応しうる官能基を有する化合物 日清紡績製 カルボジイミド硬化剤)を添加して、水系樹脂組成物6(架橋型樹脂エマルション)を得た。
[Example 6 of preparation of aqueous resin composition]
In the composition shown in Table 1, in the same manner as in Preparation Example 1 of the aqueous resin composition, except that 10% of the surfactant to be used is charged in a reaction vessel and the remaining 90% is used for preparation of a pre-emulsion. After emulsion polymerization, carbodilite V-02 (compound having a functional group capable of reacting with a carboxyl group) shown in Table 1 was added, and an aqueous resin composition 6 (crosslinked resin) was added. Emulsion).

Figure 0005359074
・カルボジライト V−02(カルボジイミド硬化剤 日清紡績株式会社 NCN当量600 カルボキシル基と反応しうる官能基を有する化合物)
・アジピン酸ジヒドラジド(カルボニル基と反応しうる官能基を有する化合物)
・アデカリアソープ SR−10:アルキルエーテル系アニオン性界面活性剤(株式会社ADEKA製)
・アデカリアソープ ER−20:アルキルエーテル系ノニオン性界面活性剤(株式会社ADEKA製)
[実施例1−1]
炭素材料に密度1.0g/mlの時の体積抵抗値が3.3×10-2Ω・cmのアセチレンブラックであるHS100(電気化学工業製)を選び、炭素材料100部に対してノニオン性樹脂であるポリビニルピロリドン1.5部およびイオン交換水100部を混合し、0.8mmガラスビーズ200部を入れたのちスキャンデックスで2時間分散処理した。更にビーズを取り除いて、水系樹脂組成物1 208部とイオン交換水を加えて調整し、固形分30%の水系炭素材料組成物1−1を得た。
Figure 0005359074
Carbodilite V-02 (carbodiimide curing agent Nisshinbo Co., Ltd. NCN equivalent 600 compound having a functional group capable of reacting with a carboxyl group)
Adipic acid dihydrazide (compound having a functional group capable of reacting with a carbonyl group)
・ Adekaria soap SR-10: alkyl ether anionic surfactant (manufactured by ADEKA Corporation)
Adekaria soap ER-20: alkyl ether nonionic surfactant (manufactured by ADEKA Corporation)
[Example 1-1]
HS100 (manufactured by Denki Kagaku Kogyo), which is an acetylene black having a volume resistance value of 3.3 × 10 −2 Ω · cm at a density of 1.0 g / ml, is selected as the carbon material, and nonionic properties with respect to 100 parts of the carbon material After mixing 1.5 parts of polyvinyl pyrrolidone as a resin and 100 parts of ion-exchanged water, 200 parts of 0.8 mm glass beads were added, and then dispersed with Scandex for 2 hours. Further, the beads were removed and 208 parts of aqueous resin composition 1 and ion-exchanged water were added for adjustment to obtain an aqueous carbon material composition 1-1 having a solid content of 30%.

[実施例1−2〜1−9]
水系樹脂組成物1を水系樹脂組成物2〜9に替える以外は、実施例1−1と同様にして、水系炭素系組成物1−2〜1−9を得た。
[Examples 1-2 to 1-9]
Aqueous carbon-based compositions 1-2 to 1-9 were obtained in the same manner as in Example 1-1 except that the aqueous resin composition 1 was replaced with the aqueous resin compositions 2 to 9.

[実施例2]
炭素材料に密度1.0g/mlの時の体積抵抗値が3.3×10-2Ω・cmのアセチレンブラックであるHS100(電気化学工業製)を選び、炭素材料100部に対して中和アニオン性樹脂であるナフタレンスルホン酸ナトリウムホルマリン縮合樹脂1.5部およびイオン交換水100部を混合し、0.8mmガラスビーズ200部を入れたのちスキャンデックスで2時間分散処理した。更にビーズを取り除いて、水系樹脂組成物5 208部とイオン交換水を加えて調整し、固形分30%の水系炭素材料組成物2を得た。
[Example 2]
HS100 (manufactured by Denki Kagaku Kogyo), which is an acetylene black having a volume resistance value of 3.3 × 10 −2 Ω · cm at a density of 1.0 g / ml, is selected as a carbon material and neutralized with respect to 100 parts of the carbon material. 1.5 parts of sodium naphthalene sulfonate formalin condensation resin, which is an anionic resin, and 100 parts of ion-exchanged water were mixed, and 200 parts of 0.8 mm glass beads were added, followed by dispersion treatment with Scandex for 2 hours. Further, the beads were removed, 208 parts of aqueous resin composition 5 and ion-exchanged water were added for adjustment, and aqueous carbon material composition 2 having a solid content of 30% was obtained.

[実施例3]
炭素材料に密度1.0g/mlの時の体積抵抗値が3.3×10-2Ω・cmのアセチレンブラックであるHS100(電気化学工業製)を選び、炭素材料100部に対してノニオン性樹脂であるポリビニルピロリドン1.5部およびイオン交換水100部を混合し、0.8mmガラスビーズ200部を入れたのちスキャンデックスで2時間分散処理した。更にビーズを取り除いて、水系樹脂組成物5 208部とイオン交換水を加えて調整し、固形分30%の水系炭素材料組成物3を得た。
[Example 3]
HS100 (manufactured by Denki Kagaku Kogyo), which is an acetylene black having a volume resistance value of 3.3 × 10 −2 Ω · cm at a density of 1.0 g / ml, is selected as the carbon material, and nonionic properties with respect to 100 parts of the carbon material After mixing 1.5 parts of polyvinyl pyrrolidone as a resin and 100 parts of ion-exchanged water, 200 parts of 0.8 mm glass beads were added, and then dispersed with Scandex for 2 hours. Further, the beads were removed and 208 parts of aqueous resin composition 5 and ion-exchanged water were added for adjustment to obtain aqueous carbon material composition 3 having a solid content of 30%.

[実施例4]
炭素材料に密度1.0g/mlの時の体積抵抗値が3.3×10-2Ω・cmのアセチレンブラックであるHS100(電気化学工業製)を選び、炭素材料100部に対して中和アニオン性樹脂であるナフタレンスルホン酸ナトリウムホルマリン縮合樹脂1.5部およびイオン交換水100部を混合し、0.8mmガラスビーズ200部を入れたのちスキャンデックスで2時間分散処理した。更にビーズを取り除いて、水系樹脂組成物1 208部とイオン交換水を加えて調整し、固形分30%の水系炭素材料組成物4を得た。
[Example 4]
HS100 (manufactured by Denki Kagaku Kogyo), which is an acetylene black having a volume resistance value of 3.3 × 10 −2 Ω · cm at a density of 1.0 g / ml, is selected as a carbon material and neutralized with respect to 100 parts of the carbon material. 1.5 parts of sodium naphthalene sulfonate formalin condensation resin, which is an anionic resin, and 100 parts of ion-exchanged water were mixed, and 200 parts of 0.8 mm glass beads were added, followed by dispersion treatment with Scandex for 2 hours. Further, the beads were removed and 208 parts of aqueous resin composition 1 and ion-exchanged water were added for adjustment to obtain aqueous carbon material composition 4 having a solid content of 30%.

[実施例5]
炭素材料に密度1.0g/mlの時の体積抵抗値が3.3×10-2Ω・cmのアセチレンブラックであるHS100(電気化学工業製)を選び、炭素材料100部に対してノニオン性樹脂であるポリビニルピロリドン1.5部およびイオン交換水100部を混合し、0.8mmガラスビーズを200部を入れたのちスキャンデックスで2時間分散処理した。更にビーズを取り除いて、水系樹脂組成物1 208部とイオン交換水を加えて調整し、固形分30%の水系炭素材料組成物5を得た。
[Example 5]
HS100 (manufactured by Denki Kagaku Kogyo), which is an acetylene black having a volume resistance value of 3.3 × 10 −2 Ω · cm at a density of 1.0 g / ml, is selected as the carbon material, and nonionic properties with respect to 100 parts of the carbon material A resin, 1.5 parts of polyvinylpyrrolidone and 100 parts of ion-exchanged water, were mixed, 200 parts of 0.8 mm glass beads were added, and then dispersed with Scandex for 2 hours. Further, the beads were removed and 208 parts of aqueous resin composition 1 and ion-exchanged water were added for adjustment to obtain aqueous carbon material composition 5 having a solid content of 30%.

本願において、下記[実施例6]は参考例である。
[実施例6]
炭素材料に密度1.0g/mlの時の体積抵抗値が3.3×10-2Ω・cmのアセチレンブラックであるHS100(電気化学工業製)を選び、炭素材料100部に対してノニオン性樹脂であるポリビニルピロリドン1.5部およびイオン交換水100部を混合し、0.8mmガラスビーズを200部を入れたのちスキャンデックスで2時間分散処理した。更にビーズを取り除いて、ナルスターSR−130(日本エイ アンド エル製 スチレン−ブタジエン共重合体ラテックス 固形分49%)204部とイオン交換水を加えて調整し、固形分30%の水系炭素材料組成物6を得た。
In the present application, the following [Example 6] is a reference example.
[Example 6]
HS100 (manufactured by Denki Kagaku Kogyo), which is an acetylene black having a volume resistance value of 3.3 × 10 −2 Ω · cm at a density of 1.0 g / ml, is selected as the carbon material, and nonionic properties with respect to 100 parts of the carbon material. A resin, 1.5 parts of polyvinylpyrrolidone and 100 parts of ion-exchanged water, were mixed, 200 parts of 0.8 mm glass beads were added, and then dispersed with Scandex for 2 hours. Further, the beads were removed and adjusted by adding 204 parts of Nalstar SR-130 (Nippon A & L Co., Ltd., styrene-butadiene copolymer latex, solid content 49%) and ion-exchanged water, and an aqueous carbon material composition having a solid content of 30%. 6 was obtained.

[比較例1]
ノニオン性樹脂であるポリビニルピロリドン1.5部をカチオン性樹脂であるポリアリルアミン(MW=1.5万)1.5部に変えた以外は実施例1−1と同様にして、水系炭素材料組成物7を得た。
[Comparative Example 1]
Aqueous carbon material composition in the same manner as in Example 1-1 except that 1.5 parts of polyvinyl pyrrolidone which is a nonionic resin is changed to 1.5 parts of polyallylamine (MW = 15,000) which is a cationic resin. Product 7 was obtained.

[二次電池電極用組成物及び二次電池用電極の作成]
上記得られた水系炭素材料組成物2部に対して、平均粒径37μmの水素吸蔵合金粉末100部、併用する他のバインダーとしてカルボキシメチルセルロース0.5部を添加し全固形分が50%になるように適量のイオン交換水を加えて、本発明の電池電極用組成物として、負極用スラリー(塗液)を調整した。このスラリー(塗液)をパンチングメタル(厚み60μm)に塗布し、120℃1時間乾燥した後ロールプレスを行って負極を得た。生成した負極の厚みは160μmであった。
[Creation of secondary battery electrode composition and secondary battery electrode]
100 parts of hydrogen storage alloy powder having an average particle size of 37 μm and 0.5 part of carboxymethylcellulose as another binder to be used together are added to 2 parts of the obtained water-based carbon material composition, so that the total solid content becomes 50%. Thus, an appropriate amount of ion-exchanged water was added to prepare a negative electrode slurry (coating solution) as the battery electrode composition of the present invention. This slurry (coating solution) was applied to a punching metal (thickness 60 μm), dried at 120 ° C. for 1 hour, and then roll pressed to obtain a negative electrode. The thickness of the produced negative electrode was 160 μm.

一方、ポリテトラフルオロエチレン粉末(PTFE)1部に対して、水酸化ニッケル粉末90部、一酸化コバルト粉末10部、増粘剤としてカルボキシメチルセルロース2部を添加し、全固形分が50%になるように適量のイオン交換水を加えて混練して正極用スラリーを調整した。このスラリーをニッケルめっきした発泡メタルシートに充填し、更にその両側にも塗布した後120℃で1時間乾燥した後ロールプレスを行って正極を得た。生成した正極の厚みは150μmであった。   On the other hand, to 1 part of polytetrafluoroethylene powder (PTFE), 90 parts of nickel hydroxide powder, 10 parts of cobalt monoxide powder, and 2 parts of carboxymethylcellulose as a thickener are added, resulting in a total solid content of 50%. Thus, an appropriate amount of ion-exchanged water was added and kneaded to prepare a positive electrode slurry. This slurry was filled in a nickel-plated foam metal sheet, applied to both sides thereof, dried at 120 ° C. for 1 hour, and then roll pressed to obtain a positive electrode. The thickness of the produced positive electrode was 150 μm.

水系炭素材料組成物1−1〜1−9、2〜7について、上記の方法で正極及び負極を作成し、密着性、塗液安定性、電池特性を評価した。   With respect to the aqueous carbon material compositions 1-1 to 1-9 and 2 to 7, positive electrodes and negative electrodes were prepared by the above-described methods, and adhesion, coating solution stability, and battery characteristics were evaluated.

(密着性)
負極表面にナイフを用いて、合材層から集電体に達する深さまでの切込みを2mm間隔で縦横それぞれ6本入れて碁盤目の切込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で判定した。評価結果を表1に示す。評価基準を下記に示す。
(Adhesion)
Using a knife on the surface of the negative electrode, six cuts were made from the composite material layer to the depth reaching the current collector, both vertically and horizontally at intervals of 2 mm, to make a grid cut. An adhesive tape was applied to the cut and immediately peeled off, and the degree of the active material falling off was determined by visual judgment. The evaluation results are shown in Table 1. The evaluation criteria are shown below.

○:「剥離なし」
○△:「ごく1部剥離」
△:「ほとんどの部分で剥離」
×:「完全に剥離」
(塗液安定性)
作成した負極電極用ペースト(電池電極用組成物)を40℃1週間放置して、相溶性の評価を活物質の沈降や溶液のゲル化、白濁の程度を目視判定で判定した。評価結果を表1に示す。評価基準を下記に示す。
○: “No peeling”
○ △: “Partial separation”
Δ: “Peeling at most parts”
×: “Completely peeled”
(Coating solution stability)
The prepared negative electrode electrode paste (battery electrode composition) was allowed to stand at 40 ° C. for 1 week, and the compatibility was evaluated by visual judgment for the degree of sedimentation of the active material, gelation of the solution, and cloudiness. The evaluation results are shown in Table 1. The evaluation criteria are shown below.

○:「ゲル化なし」
○△:「ごく1部ゲル化又は白濁」
△:「ほとんどの部分でゲル化」
×:「完全にゲル化もしくは沈降」
(電池特性評価)
水系炭素材料組成物1−1〜1−9、2〜6を用いて調整した正極、負極と電解液として6規定の水酸化カリウム水溶液およびセパレーターを組み込んだニッケル水素二次電池の充放電サイクル試験を行った。1回目の放電容量を100%として100サイクルでの放電容量を測定し変化率とした(100%に近いほど良好)。評価結果を表1に示す。
○: “No gelation”
○ △: “Partial gelation or cloudiness”
Δ: “Gelation in most parts”
×: “Complete gelation or sedimentation”
(Battery characteristics evaluation)
Charge / discharge cycle test of a nickel-hydrogen secondary battery incorporating a 6N aqueous potassium hydroxide solution and a separator as a positive electrode, a negative electrode, and an electrolyte prepared using aqueous carbon material compositions 1-1 to 1-9 and 2-6 Went. The discharge capacity at 100 cycles was measured with the first discharge capacity as 100%, and the rate of change was determined (the closer to 100%, the better). The evaluation results are shown in Table 1.

○:放電容量98%以上を保持
△:放電容量95%以上から98%未満を保持
×:95%未満
評価結果を表2に示す。
○: Holds discharge capacity of 98% or more Δ: Holds discharge capacity of 95% or more to less than 98% ×: Less than 95% Evaluation results are shown in Table 2.

Figure 0005359074
表2から明らかなように、アニオン性樹脂及び/又はノニオン性樹脂で処理された炭素材料と、水系樹脂と、水系媒体と、を含んでなる本発明の水系炭素材料組成物を用いた電池電極用組成物は、実施例1−1〜1−9、並びに実施例2〜6では、密着性と塗液安定性のバランスが取れ、電池特性であるサイクル試験においても、100サイクル後も放電容量の低下が抑制され、問題のない電気特性を示した。
Figure 0005359074
As is apparent from Table 2, a battery electrode using the aqueous carbon material composition of the present invention comprising a carbon material treated with an anionic resin and / or a nonionic resin, an aqueous resin, and an aqueous medium. In Examples 1-1 to 1-9 and Examples 2 to 6, the composition for use had a good balance between adhesion and coating solution stability, and the battery capacity and the cycle capacity after 100 cycles were also the discharge capacity. The decrease in the resistance was suppressed, and there was no problem in electrical characteristics.

但し、水系樹脂として架橋型樹脂エマルジョンを用いた、実施例1−1〜1−7、並びに実施例2〜5に比べて、水系樹脂として非架橋型樹脂エマルションを用いた実施例1−8及び1−9実施例では、電気特性が若干劣り、水性樹脂としてスチレン-ブタジエン共重合体ラテックスを用いた実施例6では、密着性及び電気特性が若干劣る結果となった。   However, in comparison with Examples 1-1 to 1-7 and Examples 2 to 5 using a cross-linked resin emulsion as an aqueous resin, Examples 1 to 8 using a non-cross-linked resin emulsion as an aqueous resin and In Example 1-9, electrical characteristics were slightly inferior, and in Example 6 in which styrene-butadiene copolymer latex was used as the aqueous resin, adhesion and electrical characteristics were slightly inferior.

一方、比較例1のように、カチオン性樹脂を炭素材料に処理した場合、塗液安定性が非常に悪く、密着性及び電池特性の評価においても、非常に悪い結果となった。   On the other hand, when the cationic resin was treated with a carbon material as in Comparative Example 1, the coating solution stability was very poor, and the evaluation of adhesion and battery characteristics was very bad.

Claims (6)

アニオン性樹脂及び/又はノニオン性樹脂で処理された炭素材料と、水系樹脂と、水系媒体と、を含み、
水系樹脂が、全エチレン性不飽和単量体に対して、
エポキシ基を有するエチレン性不飽和単量体、アルコキシシリル基を有するエチレン性不飽和単量体、及びN−メチロール基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.1〜5質量%と、
カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.2〜5.0質量%と、
その他の1種類以上のエチレン性不飽和単量体90.0〜99.7質量%と、
を含むエチレン性不飽和単量体を乳化重合してなる水系樹脂である水系炭素材料組成物。
A carbon material treated with an anionic resin and / or a nonionic resin, an aqueous resin, and an aqueous medium,
The water-based resin is based on the total ethylenically unsaturated monomer
One or more types of monomers selected from the group consisting of an ethylenically unsaturated monomer having an epoxy group, an ethylenically unsaturated monomer having an alkoxysilyl group, and an ethylenically unsaturated monomer having an N-methylol group 0.1 to 5% by mass of a monomer,
0.2 to 5.0% by mass of one or more monomers selected from the group consisting of an ethylenically unsaturated monomer having a carboxyl group and an ethylenically unsaturated monomer having a tertiary butyl group;
Other one or more ethylenically unsaturated monomers from 90.0 to 99.7% by weight of,
Ethylenically unsaturated monomers emulsion polymerization was aqueous resin der Ru water based carbon material composition comprising including.
アニオン性樹脂及び/又はノニオン性樹脂で処理された炭素材料と、水系樹脂と、水系媒体と、を含み、
水系樹脂が、全エチレン性不飽和単量体に対して、
カルボキシル基を有するエチレン性不飽和単量体、及びターシャリーブチル基を有するエチレン性不飽和単量体からなる群から選ばれる1種類以上の単量体0.5〜10.0質量%と、
その他の1種類以上のエチレン性不飽和単量体90.0〜99.5質量%と、
を含むエチレン性不飽和単量体を乳化重合してなる水系樹脂であって、
更に、カルボキシル基と反応しうる官能基を有する化合物とを含んでなる水系炭素材料組成物。
A carbon material treated with an anionic resin and / or a nonionic resin, an aqueous resin, and an aqueous medium,
The water-based resin is based on the total ethylenically unsaturated monomer
0.5 to 10.0% by mass of one or more monomers selected from the group consisting of an ethylenically unsaturated monomer having a carboxyl group and an ethylenically unsaturated monomer having a tertiary butyl group;
Other one or more ethylenically unsaturated monomers from 90.0 to 99.5% by weight of,
An aqueous resin obtained by emulsion polymerization of an ethylenically unsaturated monomer containing
Furthermore, compounds with a comprise ing water-based carbon material composition having a functional group capable of reacting with carboxyl groups.
アニオン性樹脂及び/又はノニオン性樹脂で処理された炭素材料と、水系樹脂と、水系媒体と、を含み、
水系樹脂が、全エチレン性不飽和単量体に対して、
カルボニル基を有するエチレン性不飽和単量体0.5〜10.0質量%と、
その他の1種類以上のエチレン性不飽和単量体90.0〜99.5質量%と、
を含むエチレン性不飽和単量体を乳化重合してなる水系樹脂であって、
更に、カルボニル基と反応しうる官能基を有する化合物とを含んでなる水系炭素材料組成物。
A carbon material treated with an anionic resin and / or a nonionic resin, an aqueous resin, and an aqueous medium,
The water-based resin is based on the total ethylenically unsaturated monomer
0.5 to 10.0% by mass of an ethylenically unsaturated monomer having a carbonyl group;
Other one or more ethylenically unsaturated monomers from 90.0 to 99.5% by weight of,
An aqueous resin obtained by emulsion polymerization of an ethylenically unsaturated monomer containing
Furthermore, compounds with a comprise ing water-based carbon material composition having a functional group capable of reacting with a carbonyl group.
アニオン性樹脂及び/又はノニオン性樹脂が、炭素材料に対して0.01〜50質量%である請求項1〜3いずれか記載の水系炭素材料組成物。 The aqueous carbon material composition according to any one of claims 1 to 3 , wherein the anionic resin and / or the nonionic resin is 0.01 to 50% by mass relative to the carbon material. その他の1種類以上のエチレン性不飽和単量体が、スチレン、2−エチルヘキシルアクリレート、及びシクロヘキシルメタクリレートからなる群選ばれる1種類以上を含む請求項1〜4いずれか記載の水系炭素材料組成物。 The aqueous carbon material composition according to any one of claims 1 to 4 , wherein the other one or more ethylenically unsaturated monomers include one or more selected from the group consisting of styrene, 2-ethylhexyl acrylate, and cyclohexyl methacrylate. 請求項1〜いずれか記載の水系炭素材料組成物を使用した電池電極用組成物。 The composition for battery electrodes which uses the water-system carbon material composition in any one of Claims 1-5 .
JP2008181399A 2008-07-11 2008-07-11 Aqueous carbon material composition and battery composition using the same Active JP5359074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008181399A JP5359074B2 (en) 2008-07-11 2008-07-11 Aqueous carbon material composition and battery composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181399A JP5359074B2 (en) 2008-07-11 2008-07-11 Aqueous carbon material composition and battery composition using the same

Publications (2)

Publication Number Publication Date
JP2010021059A JP2010021059A (en) 2010-01-28
JP5359074B2 true JP5359074B2 (en) 2013-12-04

Family

ID=41705738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181399A Active JP5359074B2 (en) 2008-07-11 2008-07-11 Aqueous carbon material composition and battery composition using the same

Country Status (1)

Country Link
JP (1) JP5359074B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703580B2 (en) * 2010-03-31 2015-04-22 株式会社豊田中央研究所 Electrode mixture for aqueous lithium secondary battery, electrode paste for aqueous lithium secondary battery, electrode for aqueous lithium secondary battery, and aqueous lithium secondary battery
JP5530851B2 (en) * 2010-07-30 2014-06-25 古河電池株式会社 Method for producing electrode of lithium ion secondary battery and method for producing lithium ion secondary battery
KR101731671B1 (en) * 2010-08-31 2017-05-11 교리쯔 가가꾸 산교 가부시키가이샤 Electroconductive composition for coating current collector of battery or electric double-layer capacitor, current collector for battery or electric double-layer capacitor, and battery and electric double-layer capacitor
JP5809636B2 (en) * 2010-10-15 2015-11-11 日本エイアンドエル株式会社 Secondary battery electrode binder, secondary battery electrode slurry, and secondary battery electrode
JP5570393B2 (en) * 2010-11-11 2014-08-13 東洋化学株式会社 Electrode binder
JP5673039B2 (en) * 2010-12-02 2015-02-18 コニカミノルタ株式会社 Negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2012133030A1 (en) * 2011-03-31 2012-10-04 東洋インキScホールディングス株式会社 Aqueous composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JP5880544B2 (en) * 2011-03-31 2016-03-09 東洋インキScホールディングス株式会社 Aqueous composition for secondary battery electrode formation, secondary battery electrode, and secondary battery
WO2012173072A1 (en) 2011-06-15 2012-12-20 東洋インキScホールディングス株式会社 Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
CN104115315A (en) 2012-04-03 2014-10-22 株式会社杰士汤浅国际 Positive electrode for cell, and cell
JP6211752B2 (en) * 2012-08-09 2017-10-11 東洋インキScホールディングス株式会社 Binder resin composition for nickel metal hydride secondary battery electrode and composite ink containing the same
JP6003517B2 (en) * 2012-10-18 2016-10-05 東洋インキScホールディングス株式会社 Binder resin composition for non-aqueous secondary battery electrode
CN105103349A (en) * 2013-03-27 2015-11-25 Jsr株式会社 Binder composition for electricity storage devices
JP6314402B2 (en) * 2013-10-01 2018-04-25 日本ゼオン株式会社 Binder composition for electrochemical capacitor, slurry composition for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor
JP6295687B2 (en) * 2014-01-31 2018-03-20 日本ゼオン株式会社 Lithium ion secondary battery porous membrane composition, lithium ion secondary battery porous membrane, and lithium ion secondary battery
TWI575014B (en) 2014-04-08 2017-03-21 奇美實業股份有限公司 Resin for negative electrode of lithium battery, resin composition, slurry, negative electrode and lithium battery
JP6464734B2 (en) * 2014-12-25 2019-02-06 東洋インキScホールディングス株式会社 Aqueous catalyst paste composition for fuel cell and fuel cell
JP6746929B2 (en) * 2015-03-26 2020-08-26 東洋インキScホールディングス株式会社 Coating composition, current collector with coat layer and fuel cell
JP6834524B2 (en) * 2016-01-27 2021-02-24 東洋インキScホールディングス株式会社 Electrode-forming compositions, electrodes, and microbial fuel cells used in microbial fuel cells
CN106833448B (en) * 2017-02-08 2019-02-15 北京蓝海黑石科技有限公司 A kind of lithium ion cell positive aqueous binder and preparation method thereof
KR20240068657A (en) * 2021-09-29 2024-05-17 아라까와 가가꾸 고교 가부시끼가이샤 Power storage device separator binder aqueous solution, power storage device separator slurry, power storage device separator, power storage device separator/electrode laminate, and power storage device.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069912A (en) * 1996-08-27 1998-03-10 Japan Synthetic Rubber Co Ltd Binder for battery electrode forming
JP3601250B2 (en) * 1997-04-25 2004-12-15 Jsr株式会社 Binder for non-aqueous battery electrode
JP3721727B2 (en) * 1997-07-04 2005-11-30 Jsr株式会社 Battery electrode binder
JP3743744B2 (en) * 1999-03-18 2006-02-08 東洋鋼鈑株式会社 Surface-treated steel sheet for battery case, method for producing the same, battery case using the surface-treated steel sheet for battery case, and battery using the same
JP3685364B2 (en) * 1999-03-23 2005-08-17 シャープ株式会社 Method for producing carbon-coated graphite particles and non-aqueous secondary battery
JP4412443B2 (en) * 2000-12-27 2010-02-10 日本ゼオン株式会社 Thickener for lithium ion secondary battery negative electrode and lithium ion secondary battery
JP4824302B2 (en) * 2004-12-17 2011-11-30 パナソニック株式会社 Aqueous dispersion containing electrode binder, hydrogen storage alloy electrode and method for producing the same, alkaline storage battery, and lithium ion secondary battery
JP2007211330A (en) * 2006-02-13 2007-08-23 Hitachi Powdered Metals Co Ltd Electroplating method

Also Published As

Publication number Publication date
JP2010021059A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5359074B2 (en) Aqueous carbon material composition and battery composition using the same
JP5476980B2 (en) Nonaqueous secondary battery electrode binder composition
JP5449327B2 (en) Nonaqueous secondary battery electrode binder composition
JP5880544B2 (en) Aqueous composition for secondary battery electrode formation, secondary battery electrode, and secondary battery
JP5252134B2 (en) Aqueous composition for secondary battery electrode formation, secondary battery electrode, and secondary battery
JP2013168323A (en) Binder resin composition for electrode for nonaqueous secondary battery
JP6539978B2 (en) CONDUCTIVE COMPOSITION, ELECTRODE FOR STORAGE DEVICE, AND STORAGE DEVICE
JP5760945B2 (en) Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP2011134649A (en) Resin fine grain for nonaqueous secondary cell electrode
JP6365011B2 (en) Resin fine particles for electricity storage device underlayer, ink for forming underlayer, current collector with underlayer, electrode for electricity storage device, electricity storage device.
JP5857420B2 (en) Nonaqueous secondary battery electrode binder composition
WO2014129313A1 (en) Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device
JP5626063B2 (en) Binder resin composition for non-aqueous secondary battery electrode
JP2012150896A (en) Resin current collector and secondary battery
JP2014165108A (en) Slurry composition for lithium ion secondary battery positive electrode use, method for manufacturing lithium ion secondary battery positive electrode, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP7234934B2 (en) Binder for secondary battery electrode and its use
JP7385499B2 (en) Binder and its use
JP6244783B2 (en) Capacitor electrode forming composition, capacitor electrode, and capacitor
WO2020110847A1 (en) Binder for secondary battery electrode, composition for secondary battery electrode mixture layer, and secondary battery electrode
JP5035234B2 (en) Binder composition for electric double layer capacitor electrode, electric double layer capacitor electrode, and electric double layer capacitor
JP2014216432A (en) Composition for forming capacitor electrode, capacitor electrode, and capacitor
JP5962108B2 (en) Binder resin composition for non-aqueous secondary battery electrode
JP2012204245A (en) Binder resin composition for nonaqueous secondary battery electrode
JP6003517B2 (en) Binder resin composition for non-aqueous secondary battery electrode
JP6503684B2 (en) Coating composition, coated layer separator and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250