WO2020110847A1 - Binder for secondary battery electrode, composition for secondary battery electrode mixture layer, and secondary battery electrode - Google Patents
Binder for secondary battery electrode, composition for secondary battery electrode mixture layer, and secondary battery electrode Download PDFInfo
- Publication number
- WO2020110847A1 WO2020110847A1 PCT/JP2019/045360 JP2019045360W WO2020110847A1 WO 2020110847 A1 WO2020110847 A1 WO 2020110847A1 JP 2019045360 W JP2019045360 W JP 2019045360W WO 2020110847 A1 WO2020110847 A1 WO 2020110847A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- secondary battery
- less
- binder
- meth
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/56—Acrylamide; Methacrylamide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a binder for a secondary battery electrode, a composition for a secondary battery electrode mixture layer, and a secondary battery electrode.
- the electrodes used in these secondary batteries are produced by applying a composition for forming an electrode mixture layer containing an active material, a binder and the like onto a current collector and drying the composition.
- a composition for forming an electrode mixture layer containing an active material, a binder and the like onto a current collector and drying the composition.
- a water-based binder containing styrene-butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as a binder used in the composition for the negative electrode mixture layer.
- a binder excellent in dispersibility and binding property a binder containing an acrylic acid polymer aqueous solution or an aqueous dispersion is known.
- a polyvinylidene fluoride (PVDF) N-methyl-2-pyrrolidone (NMP) solution is widely used as a binder for the positive electrode mixture layer.
- Patent Document 1 discloses an acrylic acid polymer crosslinked with a polyalkenyl ether as a binder for forming a negative electrode coating film of a lithium ion secondary battery.
- Patent Document 2 contains a water-soluble polymer having a specific aqueous solution viscosity, containing a structural unit derived from an ethylenically unsaturated carboxylic acid salt monomer and a structural unit derived from an ethylenically unsaturated carboxylic acid ester monomer.
- a water-based electrode binder for secondary batteries is disclosed.
- Patent Document 3 discloses an aqueous dispersion having a specific viscosity containing a salt of a cross-linked polymer containing a structural unit derived from an ethylenically unsaturated carboxylic acid salt monomer.
- binders disclosed in Patent Documents 1 to 3 are all capable of imparting good binding properties, but as the performance of secondary batteries is improved, there is an increasing demand for binders with higher binding power. ..
- a secondary battery electrode is obtained by applying an electrode mixture layer composition (electrode slurry) containing an active material and a binder onto the surface of an electrode current collector and drying it.
- electrode mixture layer composition electrode slurry
- the solid content concentration of the electrode slurry generally increases as the active material concentration increases, for example, in the case of a high concentration slurry in which the active material concentration in the electrode slurry exceeds 50% by mass, good coating is achieved. It is difficult to secure sex.
- the present invention has been made in view of such circumstances, while being able to exhibit superior binding properties than conventional, even when the active material concentration in the electrode mixture layer is high, Provided is a binder for a secondary battery electrode, which can reduce the viscosity of an electrode slurry.
- a composition for a secondary battery electrode mixture layer and a secondary battery electrode obtained by using the binder are also provided.
- the present inventors have conducted extensive studies to solve the above problems, and include a structural unit derived from an ethylenically unsaturated carboxylic acid monomer and a structural unit derived from a specific unsaturated monomer having a hydroxyl group. It was found that when a binder containing a crosslinked polymer or a salt thereof is used, both the viscosity-reducing effect of the electrode slurry and the binding property are excellent. According to the present disclosure, the following means are provided based on these findings.
- a binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof comprising: The crosslinked polymer or a salt thereof has 50% by mass or more and 99.5% by mass or less of the first structural unit derived from an ethylenically unsaturated carboxylic acid monomer, and the formula (1 ) And a second structural unit derived from one or more kinds of monomers selected from the group consisting of the monomers represented by the formula (2) is contained in an amount of 0.5% by mass or more and 50% by mass or less, A binder for a secondary battery electrode, which has a volume-based median diameter of 0.1 ⁇ m or more and 10 ⁇ m or less after being neutralized to a degree of neutralization of 80 to 100 mol %.
- R 1 represents a hydrogen atom or a methyl group
- R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms
- R 3 represents an alkylene group having 2 to 4 carbon atoms
- R 4 represents an alkylene group having 1 to 8 carbon atoms
- m represents an integer of 2 to 15
- n represents an integer of 1 to 15.
- a binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof comprising: The cross-linked polymer or a salt thereof has a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer of 50% by mass or more and 99.5% by mass or less, and a formula weight, based on all structural units thereof.
- a binder for a secondary battery electrode which has a volume-based median diameter of 0.1 ⁇ m or more and 10 ⁇ m or less after being neutralized to a degree of neutralization of 80 to 100 mol %.
- a composition for a secondary battery electrode mixture layer comprising the binder for a secondary battery electrode according to any one of [1] to [5], an active material and water.
- a secondary battery electrode which comprises an electrode mixture layer containing the binder for a secondary battery electrode according to any one of [1] to [5] on the surface of the current collector.
- the binder for secondary battery electrodes of the present invention exhibits excellent binding properties to electrode active materials and the like. Therefore, the electrode mixture layer containing the binder and the electrode provided with the binder layer have excellent binding properties and can maintain their integrity.
- the composition for an electrode mixture layer containing the above binder can exhibit a low slurry viscosity even under conditions where the active material concentration is high. Therefore, it is possible to reduce a medium such as water that is dried and removed when forming the electrode mixture layer, which can contribute to an improvement in productivity when manufacturing the electrode and the like.
- the binder for a secondary battery electrode of the present invention contains a crosslinked polymer or a salt thereof, and can be made into a composition for an electrode mixture layer by mixing with an active material and water.
- the composition may be in a slurry state in which it can be applied to a current collector, or may be prepared in a wet powder state so that it can be pressed on the surface of the current collector.
- the secondary battery electrode of the present invention can be obtained by forming a mixture layer formed of the above composition on the surface of a current collector such as copper foil or aluminum foil.
- binder for a secondary battery electrode means acryl and/or methacryl
- (meth)acrylate means acrylate and/or methacrylate
- (meth)acryloyl group means an acryloyl group and/or a methacryloyl group.
- the binder of the present invention contains a crosslinked polymer or a salt thereof.
- the crosslinked polymer has a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer and a second structural unit derived from a specific monomer having a hydroxyl group.
- the crosslinked polymer may have a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a)”).
- component (a) ethylenically unsaturated carboxylic acid monomer
- the cross-linked polymer has a carboxyl group by having such a structural unit, the adhesion to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small and the high rate.
- An electrode with excellent characteristics can be obtained. Further, since the water swelling property is imparted, the dispersion stability of the active material and the like in the composition for electrode mixture layer can be enhanced.
- the component (a) can be introduced into the crosslinked polymer by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer, for example. Alternatively, it can also be obtained by (co)polymerizing a (meth)acrylic acid ester monomer and then hydrolyzing it. Moreover, after polymerizing (meth)acrylamide, (meth)acrylonitrile, etc., you may process with a strong alkali, and the method of making an acid anhydride react with the polymer which has a hydroxyl group may be sufficient.
- Examples of the ethylenically unsaturated carboxylic acid monomer include (meth)acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid; (meth)acrylamidoalkyl acid such as (meth)acrylamidohexanoic acid and (meth)acrylamidododecanoic acid.
- Carboxylic acid ethylenically unsaturated monomers having a carboxyl group such as succinic acid monohydroxyethyl (meth)acrylate, ⁇ -carboxy-caprolactone mono(meth)acrylate, ⁇ -carboxyethyl (meth)acrylate or the like (part thereof) )
- Alkali-neutralized products are mentioned, and one of them may be used alone, or two or more thereof may be used in combination.
- a polymer having a long primary chain length is obtained because of a high polymerization rate, and a compound having an acryloyl group as a polymerizable functional group is preferable in that the binding force of the binder is good, and acrylic acid is particularly preferable. is there.
- acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
- the content of the component (a) in the crosslinked polymer is not particularly limited, but for example, the content may be 10% by mass or more and 99.5% by mass or less based on the total structural units of the crosslinked polymer.
- the lower limit is, for example, 20% by mass or more, for example, 30% by mass or more, and for example, 40% by mass or more.
- the lower limit is 50% by mass or more, the dispersion stability of the composition for an electrode mixture layer becomes good, which is preferable, and may be 60% by mass or more, 70% by mass or more, and 80% by mass. It may be more than.
- the upper limit is, for example, 99% by mass or less, for example 98% by mass or less, for example 95% by mass or less, for example 90% by mass or less, and for example 80% by mass or less.
- the range may be a range in which the lower limit and the upper limit are appropriately combined, but is, for example, 30% by mass or more and 99.5% by mass or less, and for example, 50% by mass or more and 99.5% by mass or less.
- the crosslinked polymer of the present invention can have a second structural unit (hereinafter, also referred to as “component (b)”) derived from a specific monomer having a hydroxyl group, in addition to the component (a).
- component (b) a second structural unit derived from a specific monomer having a hydroxyl group
- the viscosity of the composition for electrode mixture layer obtained by using the binder containing the crosslinked polymer can be reduced.
- the component (b) is introduced into the crosslinked polymer by polymerizing, for example, at least one monomer selected from the group consisting of monomers represented by the following formulas (1) and (2). be able to.
- R 1 represents a hydrogen atom or a methyl group
- R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms
- R 3 represents an alkylene group having 2 to 4 carbon atoms
- R 4 represents an alkylene group having 1 to 8 carbon atoms
- m represents an integer of 2 to 15
- n represents an integer of 1 to 15.
- the monomer represented by the above formula (1) is a (meth)acrylate compound having a hydroxyl group.
- R 2 is a monovalent organic group having 1 to 8 carbon atoms having a hydroxyl group, the number of the hydroxyl group may be only one, or may be two or more.
- the monovalent organic group is not particularly limited, and examples thereof include an alkyl group which may have a linear, branched or cyclic structure, and an aryl group and an alkoxyalkyl group. Be done.
- R 2 is (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H
- the alkylene group represented by R 3 or R 4 may be linear. It may be branched.
- Examples of the monomer represented by the above formula (1) include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyhexyl (meth)acrylate and hydroxyoctyl (meth).
- Hydroxyalkyl (meth)acrylate having a hydroxyalkyl group having 1 to 8 carbon atoms such as acrylate; polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, polybutylene glycol mono(meth)acrylate and polyethylene glycol- Polyalkylene glycol mono(meth)acrylates such as polypropylene glycol mono(meth)acrylate; Dihydroxyalkyl (meth)acrylates such as glycerin mono(meth)acrylate; Caprolactone modified hydroxymethacrylate (trade name "Placcel FM1" manufactured by Daicel Corp., " Placcel FM5" and the like), caprolactone-modified hydroxyacrylate (manufactured by Daicel, trade names "Plaxel FA1", “Plaxel FA10L”, etc.), and the like. As the monomer represented by the above formula (1), one of these may be used alone, or two or more thereof may be used in combination.
- the monomer represented by the above formula (2) is a (meth)acrylamide derivative having a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms.
- R 7 represents a hydrogen atom or a monovalent organic group.
- the monovalent organic group is not particularly limited, and examples thereof include an alkyl group which may have a linear, branched or cyclic structure, an aryl group and an alkoxyalkyl group. It is preferably an organic group having 1 to 8 carbon atoms.
- R 7 may be a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms.
- Examples of the monomer represented by the above formula (2) include hydroxy(meth)acrylamide; N-hydroxyethyl(meth)acrylamide, N-hydroxypropyl(meth)acrylamide, N-hydroxybutyl(meth)acrylamide, Hydroxyalkyl groups having 1 to 8 carbon atoms such as N-hydroxyhexyl (meth)acrylamide, N-hydroxyoctyl (meth)acrylamide, N-methylhydroxyethyl (meth)acrylamide and N-ethylhydroxyethyl (meth)acrylamide (Meth)acrylamide derivative having: N,N-dihydroxyethyl(meth)acrylamide and N,N-dihydroxyethyl(meth)acrylamide such as N,N-dihydroxyethyl(meth)acrylamide.
- the monomer represented by the above formula (2) one of these may be used alone, or two or more thereof may be used in combination.
- Examples of the monomer having a formula weight of 200 or less and having a (meth)acryloyl group and a hydroxyl group include, for example, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyhexyl ( Hydroxyalkyl (meth)acrylates such as (meth)acrylate and hydroxyoctyl acrylate; Dialkylene glycol mono(meth)acrylates such as diethylene glycol mono(meth)acrylate and dipropylene glycol monoacrylate; N-hydroxyethyl (meth)acrylamide, N- Having a hydroxyalkyl group having 1 to 8 carbon atoms such as hydroxypropyl (meth)acrylamide, N-hydroxybutyl (meth)acrylamide, N-hydroxyhexyl (meth)acrylamide and N-hydroxyoctyl (meth)acrylamide (meta) ) Acrylamide derivative; N-methyl
- the second structural unit is a hydroxyalkyl (meth)acrylate having a hydroxyalkyl group having 1 to 8 carbon atoms, or a compound having a formula weight of 200 or less, from the viewpoint of excellent viscosity reducing effect of the composition for electrode mixture layer.
- Hydroxyalkyl (meth)acrylate is preferred. More preferred are hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate and hydroxybutyl (meth)acrylate.
- the content of the component (b) in the crosslinked polymer can be 0.5% by mass or more based on the total structural units of the crosslinked polymer.
- the content of the component (b) is 0.5% by mass or more, the viscosity of the composition for electrode mixture layer (electrode slurry) can be sufficiently lowered, and good coatability can be secured.
- the lower limit may be 1.0 mass% or more, 3.0 mass% or more, 5.0 mass% or more, and 10 mass% or more.
- the content of the component (b) is 50% by mass or less, as a result, the amount of the component (a) can be secured, and the dispersion stability of the composition for electrode mixture layer (electrode slurry) can be improved. Can be sufficient.
- the upper limit may be 40% by mass or less, 30% by mass or less, and 20% by mass or less.
- the range may be a range in which the lower limit and the upper limit are appropriately combined, and is, for example, 0.5% by mass or more and 50% by mass or less, or, for example, 1.0% by mass or more and 50% by mass or less. It can be set to 1.0% by mass or more and 30% by mass or less.
- the cross-linked polymer is a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (a) and the component (b) (hereinafter, also referred to as “component (c)”). ) Can be included.
- the component (c) include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a nonionic ethylenic non-ionic compound other than the component (b).
- Structural units derived from saturated monomers and the like can be mentioned.
- These structural units include ethylenically unsaturated monomer compounds having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or nonionic ethylenically unsaturated monomers other than component (b). It can be introduced by copolymerizing a monomer containing a body.
- component (c) a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and the binder has excellent binding properties.
- (Meth)acrylamide and its derivatives, and nitrile group-containing ethylenically unsaturated monomers are preferred.
- a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g/100 ml or less is introduced as the component (c)
- strong interaction with the electrode material can be achieved, Good binding properties can be exhibited for the active material. This is preferable because it is possible to obtain a firm and good electrode mixture layer.
- a structural unit derived from an alicyclic structure-containing ethylenically unsaturated monomer is particularly preferable.
- the ratio of the component (c) can be 0% by mass or more and 49.5% by mass or less based on the total structural units of the crosslinked polymer.
- the proportion of the component (c) may be 1% by mass or more and 40% by mass or less, 2% by mass or more and 40% by mass or less, and 2% by mass or more and 30% by mass or less. It may be 5% by mass or more and 30% by mass or less. Further, when the component (c) is contained in an amount of 1% by mass or more based on the total structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, and the effect of improving lithium ion conductivity can also be expected.
- Examples of the (meth)acrylamide derivative include N-alkyl(meth)acrylamide compounds such as isopropyl(meth)acrylamide, t-butyl(meth)acrylamide; Nn-butoxymethyl(meth)acrylamide, N-isobutoxymethyl.
- N-alkoxyalkyl(meth)acrylamide compounds such as (meth)acrylamide; N,N-dialkyl(meth)acrylamide compounds such as dimethyl(meth)acrylamide, diethyl(meth)acrylamide, and the like. They may be used alone or in combination of two or more.
- nitrile group-containing ethylenically unsaturated monomer examples include (meth)acrylonitrile; cyanoalkyl (meth)acrylate compounds such as cyanomethyl (meth)acrylate and cyanoethyl (meth)acrylate; 4-cyanostyrene Cyano group-containing unsaturated aromatic compounds such as 4-cyano- ⁇ -methylstyrene; vinylidene cyanide and the like. One of these may be used alone, or two or more thereof may be used in combination. May be used.
- Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, and (meth ) A cycloalkyl ester of (meth)acrylic acid which may have an aliphatic substituent such as cyclodecyl acrylate and cyclododecyl (meth)acrylate; isomethanyl (meth)acrylate, adamantyl (meth)acrylate, (meth) ) Dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and cyclohexanedimethanol mono(meth)acrylate and cyclodecanedimethanol mono(meth)acrylate Examples
- (meth)acrylic acid ester examples include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
- (Meth)acrylic acid alkyl ester compound Aromatic (meth)acrylate compounds such as phenyl (meth)acrylate, phenylmethyl (meth)acrylate, and phenylethyl (meth)acrylate; (Meth)acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth)acrylic acid and 2-ethoxyethyl (meth)acrylic acid; and the like, and one of these may be used alone. However, two or more kinds may be used in combination. From the viewpoint of adhesion to the active material and cycle characteristics, an aromatic (meth)acrylic acid ester compound can be preferably used.
- a compound having an ether bond such as a (meth)acrylic acid alkoxyalkyl ester compound is preferable, and 2-methoxyethyl (meth)acrylic acid is more preferable.
- nonionic ethylenically unsaturated monomers a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained because of its high polymerization rate and the binding force of the binder is good.
- a compound having a homopolymer glass transition temperature (Tg) of 0° C. or lower is preferable in that the obtained electrode has good bending resistance.
- the cross-linked polymer may be a salt.
- the type of salt is not particularly limited, but alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium salt and barium salt; other metal salts such as magnesium salt and aluminum salt; ammonium salt and organic salt Examples thereof include amine salts.
- alkali metal salts and magnesium salts are preferable, and alkali metal salts are more preferable, because they are unlikely to adversely affect battery characteristics.
- the cross-linking method in the cross-linked polymer of the present invention is not particularly limited, and examples thereof include the following method. 1) Copolymerization of crosslinkable monomer 2) Utilizing chain transfer to polymer chain during radical polymerization 3) After synthesizing a polymer having a reactive functional group, postcrosslinking by adding a crosslinking agent if necessary Since the polymer has a crosslinked structure, the binder containing the polymer or a salt thereof can have excellent binding force.
- the method of copolymerizing a crosslinkable monomer is preferable because the operation is simple and the degree of crosslinking can be easily controlled.
- crosslinkable monomer examples include polyfunctional polymerizable monomers having two or more polymerizable unsaturated groups, and monomers having self-crosslinkable crosslinkable functional groups such as hydrolyzable silyl groups. Can be mentioned.
- the polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth)acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth)acrylate compound, a polyfunctional alkenyl compound, ( Examples thereof include compounds having both a (meth)acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable in that a uniform crosslinked structure is easily obtained, and a polyfunctional allyl ether compound having two or more allyl ether groups in the molecule is particularly preferable.
- polyfunctional (meth)acrylate compound examples include ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di( Di(meth)acrylates of dihydric alcohols such as (meth)acrylate; trimethylolpropane tri(meth)acrylate, trimethylolpropane ethylene oxide modified tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri( Poly(meth)acrylates such as tri(meth)acrylates of trihydric or higher polyhydric alcohols such as (meth)acrylates and pentaerythritol tetra(meth)acrylates; poly(meth)acrylates such as tetra(meth)acrylate; methylenebisacrylamide, hydroxyethylenebisacrylamide, etc. Examples thereof include bisamides,
- polyfunctional alkenyl compound examples include trimethylolpropane diallyl ether, trimethylolpropane triallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, polyallyl saccharose and the like; diallyl phthalate and the like.
- polyfunctional allyl compound examples include a polyfunctional vinyl compound such as divinylbenzene.
- Examples of the compound having both a (meth)acryloyl group and an alkenyl group include allyl (meth)acrylate, isopropenyl (meth)acrylate, butenyl (meth)acrylate, pentenyl (meth)acrylate, and (meth)acrylic acid. 2-(2-vinyloxyethoxy)ethyl and the like can be mentioned.
- the monomer having a crosslinkable functional group capable of self-crosslinking include hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth)acrylamide, N-methoxyalkyl (meth)acrylate and the like. Is mentioned. These compounds may be used alone or in combination of two or more.
- the hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group.
- vinylsilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane and vinyldimethylmethoxysilane
- silyl compounds such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate and methyldimethoxysilylpropyl acrylate.
- silyl group-containing methacrylic acid ester such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether, etc.
- silyl group-containing vinyl ethers include silyl group-containing vinyl esters such as trimethoxysilyl vinyl undecanoate.
- the amount of the cross-linkable monomer used is 100 total amount of monomers other than the cross-linkable monomer (non-cross-linkable monomer). It is preferably 0.1 parts by mass or more and 2.0 parts by mass or less, more preferably 0.3 parts by mass or more and 1.5 parts by mass or less, further preferably 0.5 parts by mass or more and 1 part by mass with respect to parts by mass. It is 0.5 parts by mass or less.
- the amount of the crosslinkable monomer used is 0.1 part by mass or more, the binding property and the stability of the electrode slurry are improved, which is preferable. If it is 2.0 parts by mass or less, the stability of the crosslinked polymer tends to be high.
- the amount of the crosslinkable monomer used is 0.02 to 0.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is more preferably 0.03 to 0.4 mol %.
- a binder containing a polymer is preferable because it can exhibit good binding performance.
- the crosslinked polymer or a salt thereof of the present invention has a particle size (water-swelling particle size) when a polymer having a degree of neutralization based on a carboxyl group of the crosslinked polymer of 80 to 100 mol% is dispersed in water.
- the volume-based median diameter is preferably in the range of 0.1 ⁇ m or more and 10.0 ⁇ m or less.
- the electrode mixture layer composition has a high stability because the electrode mixture layer composition is uniformly present in a suitable size. It becomes possible to exhibit excellent binding properties. If the particle size exceeds 10.0 ⁇ m, the binding property may be insufficient as described above.
- the coatability may be insufficient.
- the lower limit of the particle size may be 0.2 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
- the upper limit of the particle diameter may be 9.0 ⁇ m or less, may be 8.0 ⁇ m or less, may be 7.0 ⁇ m or less, may be 5.0 ⁇ m or less, and may be 3.0 ⁇ m or less. It may be.
- the range of the particle diameter can be set by appropriately combining the lower limit value and the upper limit value described above, and may be, for example, 0.1 ⁇ m or more and 9.0 ⁇ m or less, or 0.2 ⁇ m or more and 8.0 ⁇ m or less. It may be present or may be 0.3 ⁇ m or more and 5.0 ⁇ m or less.
- the water-swollen particle size can be measured by the method described in Examples of this specification.
- the crosslinked polymer When the crosslinked polymer is unneutralized or has a degree of neutralization of less than 80 mol%, it is neutralized to a degree of neutralization of 80 to 100 mol% with an alkali metal hydroxide and the particle size when dispersed in water is measured. do it.
- the cross-linked polymer or its salt often exists as aggregated particles in which primary particles are associated and aggregated in a powder or solution (dispersion) state.
- the particle size when dispersed in water is within the above range, the crosslinked polymer or a salt thereof has extremely excellent dispersibility and is neutralized to a degree of neutralization of 80 to 100 mol% with water.
- Agglomerates are unraveled by dispersion, and even if it is a dispersion of almost primary particles or a secondary agglomerate, a stable dispersion state is formed in which the particle diameter is within the range of 0.1 to 10.0 ⁇ m. It is a thing.
- the particle size distribution which is a value obtained by dividing the volume average particle size of the water swollen particle size by the number average particle size, is preferably 10 or less, more preferably 5.0 or less from the viewpoint of binding property and coatability. Yes, more preferably 3.0 or less, and even more preferably 1.5 or less.
- the lower limit of the particle size distribution is usually 1.0.
- the particle size (dry particle size) of the crosslinked polymer of the present invention or a salt thereof when dried is preferably in the range of 0.03 ⁇ m or more and 3 ⁇ m or less in terms of volume-based median diameter.
- a more preferable range of the particle diameter is 0.1 ⁇ m or more and 1 ⁇ m or less, and a further preferable range is 0.3 ⁇ m or more and 0.8 ⁇ m or less.
- the crosslinked polymer or a salt thereof has an acid group such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer so that the degree of neutralization is 20 to 100 mol% in the composition for an electrode mixture layer. It is preferably neutralized and used as the salt form.
- the degree of neutralization is more preferably 50 to 100 mol%, further preferably 60 to 95 mol%. When the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable.
- the degree of neutralization can be calculated from the charged values of the monomer having an acid group such as a carboxyl group and the neutralizing agent used for neutralization.
- the crosslinked polymer of the present invention has a three-dimensional crosslinked structure and exists as a microgel in a medium such as water. Generally, such a three-dimensional crosslinked polymer is insoluble in a solvent, and therefore its molecular weight cannot be measured. Similarly, it is usually difficult to measure and quantify the primary chain length of a crosslinked polymer.
- the crosslinked polymer or salt thereof of the present invention preferably has a water swelling degree at pH 8 of 3.0 or more and 100 or less.
- the degree of water swelling is within the above range, the crosslinked polymer or a salt thereof swells appropriately in an aqueous medium, and therefore, when forming the electrode mixture layer, a sufficient adhesion area to the active material and the current collector is provided. It becomes possible to secure the same, and the binding property tends to be good.
- the water swelling degree may be, for example, 4.0 or more, 5.0 or more, 7.0 or more, 10 or more, 15 or more. Good.
- the degree of water swelling When the degree of water swelling is 3.0 or more, the crosslinked polymer or a salt thereof spreads on the surface of the active material or the current collector, and a sufficient adhesive area can be secured, so that good binding property is obtained.
- the upper limit of the degree of water swelling at pH 8 may be 95 or less, 90 or less, 80 or less, 60 or less, or 50 or less.
- the degree of water swelling exceeds 100, the viscosity of the composition for electrode mixture layer (electrode slurry) containing the crosslinked polymer or a salt thereof tends to increase, resulting in insufficient uniformity of the mixture layer, resulting in sufficient
- the binding strength may not be obtained.
- the coatability of the electrode slurry may be reduced.
- the range of the degree of water swelling at pH 8 can be set by appropriately combining the upper limit value and the lower limit value, and is, for example, 4.0 or more and 100 or less, or, for example, 5.0 or more and 100 or less, Further, for example, it is 5.0 or more and 80 or less.
- the water swelling degree at pH 8 can be obtained by measuring the swelling degree of the crosslinked polymer or its salt in water at pH 8.
- the pH value may be adjusted by using a suitable acid or alkali, a buffer solution or the like, if necessary.
- the pH at the time of measurement is, for example, in the range of 8.0 ⁇ 0.5, preferably in the range of 8.0 ⁇ 0.3, and more preferably in the range of 8.0 ⁇ 0.2.
- the range is preferably 8.0 ⁇ 0.1.
- the degree of water swelling can be adjusted by controlling the composition and structure of the crosslinked polymer or its salt.
- the degree of water swelling can be increased by introducing an acidic functional group or a structural unit having high hydrophilicity into the crosslinked polymer. Further, even if the degree of crosslinking of the crosslinked polymer is lowered, the degree of swelling in water is usually increased.
- the crosslinked polymer or salt thereof of the present invention preferably has a viscosity of a 3% by mass aqueous solution of 10,000 mPa ⁇ s or less.
- the viscosity of the 3% by mass aqueous solution is more preferably 7,000 mPa ⁇ s or less, further preferably 5,000 mPa ⁇ s or less, and further preferably 3,000 mPa ⁇ s or less.
- the lower limit of the viscosity of the 3% by mass aqueous solution is not particularly limited.
- the lower limit value may be, for example, 10 mPa ⁇ s or more, 20 mPa ⁇ s or more, 50 mPa ⁇ s or more, and 100 mPa ⁇ s or more.
- the viscosity of the 3% by mass aqueous solution is obtained by measuring the viscosity at a rotor speed of 12 rpm using a B type viscometer at a liquid temperature of 25°C.
- ⁇ Method for producing crosslinked polymer or salt thereof> For the cross-linked polymer, it is possible to use known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization and emulsion polymerization, but from the viewpoint of productivity, precipitation polymerization and suspension polymerization (reverse phase suspension polymerization) ) Is preferred. Heterogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and precipitation polymerization method is more preferable, from the viewpoint of obtaining better performance in terms of binding property and the like.
- Precipitation polymerization is a method of producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer that is a raw material but does not substantially dissolve a produced polymer.
- the polymer particles become larger due to aggregation and growth, and a dispersion liquid of polymer particles in which primary particles of several tens nm to several hundreds nm are secondarily aggregated to several ⁇ m to several tens ⁇ m is obtained.
- Dispersion stabilizers can also be used to control the particle size of the polymer.
- the secondary aggregation can be suppressed by selecting a dispersion stabilizer or a polymerization solvent.
- precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
- a solvent selected from water, various organic solvents, etc. can be used as the polymerization solvent in consideration of the types of monomers used.
- a solvent having a small chain transfer constant In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
- Specific polymerization solvents include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. These can be used alone or in combination of two or more. Alternatively, they may be used as a mixed solvent of these and water.
- the water-soluble solvent refers to one having a solubility in water at 20° C. of more than 10 g/100 ml.
- Methyl ethyl ketone and acetonitrile are preferable in that they are easy), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and that the operation is easy at the time of the step neutralization described later. ..
- a highly polar solvent water and methanol are preferably mentioned.
- the amount of the highly polar solvent used is preferably 0.05 to 20.0% by mass, more preferably 0.1 to 10.0% by mass, and still more preferably 0.1 to 5%, based on the total mass of the medium. It is 0.0% by mass, and more preferably 0.1 to 1.0% by mass.
- the proportion of the highly polar solvent is 0.05% by mass or more, the effect on the neutralization reaction is recognized, and when it is 20.0% by mass or less, no adverse effect on the polymerization reaction is observed.
- the production of the crosslinked polymer or a salt thereof preferably includes a polymerization step of polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer.
- a polymerization step of polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer For example, 50% by mass or more and 99.5% by mass or less of the ethylenically unsaturated carboxylic acid monomer from which the component (a) is derived, and 0. 5% by mass or more and 50% by mass or less, and a polymerization step of polymerizing a monomer component containing 0% by mass or more and 49.5% by mass or less of another ethylenically unsaturated monomer from which the component (c) is derived Preferably.
- the specific monomer having a hydroxyl group one or more kinds of monomers selected from the group consisting of monomers represented by the following formulas (1) and (2), and a formula weight of 200
- the following are monomers having a (meth)acryloyl group and a hydroxyl group.
- CH 2 C(R 1 )COOR 2 (1)
- R 1 represents a hydrogen atom or a methyl group
- R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms
- R 3 represents an alkylene group having 2 to 4 carbon atoms
- R 4 represents an alkylene group having 1 to 8 carbon atoms
- m represents an integer of 2 to 15
- n represents an integer of 1 to 15.
- R 5 represents a hydrogen atom or a methyl group
- R 6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms
- R 7 represents a hydrogen atom or a monovalent organic group.
- a structural unit (component a) derived from an ethylenically unsaturated carboxylic acid monomer is introduced into the crosslinked polymer in an amount of 50% by mass or more and 99.5% by mass or less, and a specific unit amount having a hydroxyl group.
- a structural unit (component b) derived from the body is introduced in an amount of 0.5% by mass or more and 50% by mass or less.
- the amount of the ethylenically unsaturated carboxylic acid monomer used is, for example, 30% by mass or more and 99.5% by mass or less, and for example, 50% by mass or more and 99.5% by mass or less, and for example.
- 50 mass% or more and 99 mass% or less 50 mass% or more and 98 mass% or less, and for example, 50 mass% or more and 95 mass% or less.
- the amount of the specific monomer having a hydroxyl group used is, for example, 1.0% by mass or more and 50% by mass or less, and for example, 1.0% by mass or more and 30% by mass or less.
- Examples of the other ethylenically unsaturated monomer include, for example, an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, and other than the component (b). Examples thereof include nonionic ethylenically unsaturated monomers. Specific examples of the compound include monomer compounds into which the component (c) described above can be introduced. The other ethylenically unsaturated monomer may be contained in an amount of 0% by mass or more and 49.5% by mass or less, or 1% by mass or more and 40% by mass or less, based on the total amount of the monomer components. 2 mass% or more and 40 mass% or less, 2 mass% or more and 30 mass% or less, and 5 mass% or more and 30 mass% or less.
- the monomer component polymerized in the polymerization step may contain a crosslinkable monomer.
- the crosslinkable monomer has a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, and a self-crosslinkable functional group such as a hydrolyzable silyl group. Examples thereof include monomers.
- the amount of the crosslinkable monomer used is preferably 0.1 parts by mass or more and 2.0 parts by mass or less based on 100 parts by mass of the total amount of the monomers (non-crosslinking monomers) other than the crosslinking monomer. And more preferably 0.3 parts by mass or more and 1.5 parts by mass or less, and further preferably 0.5 parts by mass or more and 1.5 parts by mass or less.
- the monomer concentration during polymerization is preferably higher from the viewpoint of obtaining a polymer having a longer primary chain length.
- the monomer concentration at the start of polymerization is generally in the range of about 2 to 40% by mass, preferably 5 to 40% by mass.
- the “monomer concentration” refers to the monomer concentration in the reaction liquid at the time of starting the polymerization.
- the crosslinked polymer may be produced by carrying out a polymerization reaction in the presence of a basic compound. By carrying out the polymerization reaction in the presence of a base compound, the polymerization reaction can be stably carried out even under high monomer concentration conditions.
- the monomer concentration may be 13.0 mass% or more, preferably 15.0 mass% or more, more preferably 17.0 mass% or more, and further preferably 19.0 mass% or more. And more preferably 20.0 mass% or more.
- the monomer concentration is more preferably 22.0% by mass or more, and even more preferably 25.0% by mass or more. Generally, the higher the monomer concentration at the time of polymerization, the higher the molecular weight can be made, and the polymer having a long primary chain length can be produced.
- the upper limit of the monomer concentration varies depending on the type of the monomer and the solvent used, and the polymerization method and various polymerization conditions, but if the heat of the polymerization reaction can be removed, as described above in the precipitation polymerization. It is about 40%, about 50% for suspension polymerization, and about 70% for emulsion polymerization.
- the basic compound is a so-called alkaline compound, and either an inorganic basic compound or an organic basic compound may be used.
- the polymerization reaction can be stably carried out even under a high monomer concentration condition of, for example, more than 13.0 mass %. Further, the polymer obtained by polymerizing at such a high monomer concentration has a high molecular weight (because of its long primary chain length) and is therefore excellent in binding property.
- the inorganic base compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and the like.
- the organic base compound include ammonia and organic amine compounds, and one or more of them can be used.
- the organic amine compound is preferable from the viewpoint of polymerization stability and binding property of the binder containing the obtained crosslinked polymer or a salt thereof.
- organic amine compound examples include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monobutylamine, dibutylamine, tributylamine, monohexylamine, dihexylamine, trihexylamine, trioctylamine and tridodecylamine.
- Alkylalkanolamines such as monoethanolamine, diethanolamine, triethanolamine, propanolamine, dimethylethanolamine and N,N-dimethylethanolamine; pyridine, piperidine, piperazine, 1,8- Cyclic amines such as bis(dimethylamino)naphthalene, morpholine and diazabicycloundecene (DBU); diethylenetriamine, N,N-dimethylbenzylamine and the like, and one or more of them can be used. ..
- C/N represents the ratio of the number of carbon atoms to the number of nitrogen atoms present in the organic amine compound, the higher the polymerization stabilization effect due to the steric repulsion effect.
- the value of C/N is preferably 3 or more, more preferably 5 or more, further preferably 10 or more, and further preferably 20 or more.
- the amount of the base compound used is preferably 0.001 mol% or more and 4.0 mol% or less with respect to the ethylenically unsaturated carboxylic acid monomer. When the amount of the base compound used is within this range, the polymerization reaction can be smoothly carried out.
- the amount used may be 0.05 mol% or more and 4.0 mol% or less, 0.1 mol% or more and 4.0 mol% or less, and 0.1 mol% or more and 3.0 mol% or less. % Or less, or 0.1 mol% or more and 2.0 mol% or less.
- the amount of the base compound used represents the molar concentration of the base compound used with respect to the ethylenically unsaturated carboxylic acid monomer, and does not mean the degree of neutralization. That is, the valence of the basic compound used is not considered.
- polymerization initiator known polymerization initiators such as azo compounds, organic peroxides and inorganic peroxides can be used, but are not particularly limited.
- the use conditions can be adjusted by a known method such as thermal initiation, redox initiation using a reducing agent in combination, UV initiation, etc., so that an appropriate amount of radicals is generated.
- thermal initiation thermal initiation
- redox initiation using a reducing agent in combination
- UV initiation etc.
- azo compounds examples include 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(N-butyl-2-methylpropionamide), 2-(tert-butylazo)-2. -Cyanopropane, 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(2-methylpropane), etc., and one or more of them are used. be able to.
- organic peroxide examples include 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane (trade name “Pertetra A” manufactured by NOF CORPORATION), 1,1-di(t- Hexylperoxy)cyclohexane (the same “Perhexa HC”), 1,1-di(t-butylperoxy)cyclohexane (the same “Perhexa C”), n-butyl-4,4-di(t-butylperoxy) Valerate (the same "Perhexa V"), 2,2-di(t-butylperoxy)butane (the same "Perhexa 22"), t-butyl hydroperoxide (the same "Perbutyl H"), cumene hydroperoxide (Japan Oil company, trade name "Parkmill H”), 1,1,3,3-tetramethylbutyl hydroperoxide (the same "Perocta H”), t-but
- inorganic peroxide examples include potassium persulfate, sodium persulfate, ammonium persulfate and the like.
- sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, sulfurous acid gas (SO 2 ), ferrous sulfate, etc. can be used as a reducing agent.
- the preferred amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass, and for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 part by mass.
- the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
- the polymerization temperature is preferably 0 to 100°C, more preferably 20 to 80°C, although it depends on conditions such as the type and concentration of the monomer used.
- the polymerization temperature may be constant or may change during the period of the polymerization reaction.
- the polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 10 hours.
- the crosslinked polymer dispersion obtained through the polymerization step can be subjected to reduced pressure and/or heat treatment in the drying step to distill off the solvent to obtain the desired crosslinked polymer in a powder state.
- a solid-liquid separation step such as centrifugation and filtration, water, etc. It is preferable to include a washing step using methanol, the same solvent as the polymerization solvent, or the like.
- a polymerization reaction of a monomer composition containing an ethylenically unsaturated carboxylic acid monomer is performed in the presence of a basic compound, but an alkali compound is added to the polymer dispersion obtained by the polymerization step.
- step neutralization After neutralizing the polymer (hereinafter, also referred to as “step neutralization”), the solvent may be removed in the drying step.
- an alkali compound is added when preparing the electrode slurry to neutralize the polymer (hereinafter, also referred to as “post-neutralization”). You may say).
- the step neutralization is preferable because the secondary aggregate tends to be easily loosened.
- composition for a secondary battery electrode mixture layer of the present invention contains a binder containing the above crosslinked polymer or a salt thereof, an active material, and water.
- the amount of the crosslinked polymer or salt thereof used in the composition for an electrode mixture layer of the present invention is, for example, 0.1 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the total amount of the active material.
- the amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. ..
- the amount of the crosslinked polymer and its salt used is less than 0.1 part by mass, sufficient binding properties may not be obtained. In addition, the dispersion stability of the active material and the like becomes insufficient, which may reduce the uniformity of the formed mixture layer.
- the amount of the crosslinked polymer and its salt used exceeds 20 parts by mass, the composition for electrode mixture layer may have a high viscosity and the coatability on the current collector may be deteriorated. As a result, the obtained mixture layer may have bumps or irregularities, which may adversely affect the electrode characteristics.
- the amount of the crosslinked polymer and its salt used is within the above range, a composition having excellent dispersion stability can be obtained, and a mixture layer having extremely high adhesion to the current collector can be obtained. As a result, the durability of the battery is improved. Further, the above-mentioned crosslinked polymer and its salt exhibit a sufficiently high binding property with respect to the active material even in a small amount (for example, 5% by mass or less), and since they have a carboxy anion, they have a low interfacial resistance and high rate characteristics. An excellent electrode can be obtained.
- a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, layered rock salt type and spinel type lithium-containing metal oxides can be used.
- the spinel-type positive electrode active material include lithium manganate.
- phosphates, silicates, sulfur, and the like are used.
- phosphates include olivine-type lithium iron phosphate.
- the positive electrode active material one of the above may be used alone, or two or more of them may be used in combination as a mixture or composite.
- the amount of the unneutralized or partially neutralized crosslinked polymer used is such that the amount of unneutralized carboxyl groups of the crosslinked polymer is equivalent to or more than the amount of alkali eluted from the active material. Is preferred.
- the positive electrode active materials Since all positive electrode active materials have low electrical conductivity, they are generally used with a conductive additive added.
- the conductive aid include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among them, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. , Are preferred. Moreover, as the carbon black, Ketjen black and acetylene black are preferable.
- the conductive auxiliary agent one type described above may be used alone, or two or more types may be used in combination. The amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density. It can be 2 to 10 parts by mass.
- the positive electrode active material a surface-coated carbon-based material having conductivity may be used.
- examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or more of these may be used in combination.
- active materials composed of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as “carbon-based active material”) are preferable, and graphite such as natural graphite and artificial graphite, and Hard carbon is more preferred.
- graphite spheroidized graphite is preferably used from the viewpoint of battery performance, and the preferable particle size range is, for example, 1 to 20 ⁇ m and, for example, 5 to 15 ⁇ m.
- a metal or metal oxide capable of occluding lithium such as silicon or tin can be used as the negative electrode active material.
- silicon has a higher capacity than graphite, and active materials made of silicon-based materials such as silicon, silicon alloys and silicon oxides such as silicon monoxide (SiO) (hereinafter, also referred to as “silicon-based active material”).
- silicon-based active material has a high capacity, but on the other hand, the volume change due to charge and discharge is large. Therefore, it is preferable to use the carbon-based active material together.
- the amount of the silicon active material used is preferably 2 to 80 mass% with respect to the total amount of the carbon-based active material and the silicon-based active material.
- the amount of the silicon-based active material used may be 5 to 70% by mass, 8 to 60% by mass, or 10 to 50% by mass.
- the binder containing the crosslinked polymer of the present invention has a structural unit (component (a)) in which the crosslinked polymer is derived from an ethylenically unsaturated carboxylic acid monomer.
- component (a) has a high affinity for the silicon-based active material and exhibits a good binding property. Therefore, the binder of the present invention exhibits excellent binding properties even when a high-capacity type active material containing a silicon-based active material is used, and is therefore effective for improving the durability of the obtained electrode. Thought to be a thing.
- the crosslinked polymer of the present invention has a structural unit (component (b)) derived from a specific monomer having a hydroxyl group.
- component (b) a structural unit derived from a specific monomer having a hydroxyl group.
- the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive auxiliary agent.
- a conductive auxiliary agent is added for the purpose of further reducing resistance, the amount used is, for example, 10% by mass or less and 5% by weight or less, based on the total amount of the active material, from the viewpoint of energy density. Is.
- the amount of the active material used is, for example, in the range of 10 to 75 mass% with respect to the total amount of the composition.
- the amount of the active material used is 10% by mass or more, migration of the binder and the like can be suppressed.
- the amount of the active material used is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more because it is advantageous in terms of the cost of drying the medium. ..
- it is 75 mass% or less the fluidity and coatability of the composition can be secured, and a uniform mixture layer can be formed.
- the water for the medium for the secondary battery electrode mixture layer composition is used. Further, for the purpose of adjusting the properties and drying properties of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, water-soluble organic solvents such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with.
- the proportion of water in the mixed medium is, for example, 50% by mass or more and, for example, 70% by mass or more.
- the content of the medium containing water in the entire composition is the coatability of the slurry, and the energy cost required for drying, and the viewpoint of productivity. Therefore, it may be in the range of, for example, 25 to 90% by mass, and may be in the range of 35 to 70% by mass.
- the binder of the present invention may be composed only of the above-mentioned crosslinked polymer or a salt thereof, but in addition to this, other binders such as styrene/butadiene latex (SBR), acrylic latex and polyvinylidene fluoride latex can be used. You may use a binder component together.
- the other binder component is used in combination, the amount thereof can be, for example, 0.1 to 5% by mass or less, and for example, 0.1 to 2% by mass or less, based on the active material. And can be, for example, 0.1 to 1% by mass or less. If the amount of the other binder component used exceeds 5% by mass, the resistance may increase and the high rate property may become insufficient.
- a styrene/butadiene-based latex is preferable because it has an excellent balance of binding property and flex resistance.
- the styrene/butadiene latex is a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene.
- An aqueous dispersion is shown.
- the aromatic vinyl monomer include ⁇ -methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used.
- the structural unit derived from the aromatic vinyl monomer in the copolymer can be in the range of, for example, 20 to 60% by mass mainly from the viewpoint of binding property, and is, for example, 30 to 50% by mass. It can be in the range of mass%.
- Examples of the aliphatic conjugated diene-based monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene etc. are mentioned and 1 type or 2 types or more of these can be used.
- the structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. The range can be, for example, 40 to 60% by mass.
- the styrene/butadiene latex is a nitrile group-containing monomer such as (meth)acrylonitrile, (meth), in order to further improve the performance such as binding property.
- a carboxyl group-containing monomer such as acrylic acid, itanconic acid or maleic acid may be used as a copolymerization monomer.
- the structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, and can be in the range of, for example, 0 to 20% by mass.
- the composition for a secondary battery electrode mixture layer of the present invention contains the above active material, water and a binder as essential constituent components, and can be obtained by mixing the components using a known means.
- the mixing method of each component is not particularly limited, and a known method can be adopted, but after dry blending the powder components such as the active material, the conductive auxiliary agent and the crosslinked polymer particles that are the binder, water is added.
- a method of mixing and dispersing with a dispersion medium such as, for example, is preferable.
- the composition for electrode mixture layer is obtained in the form of a slurry, it is preferable to finish the slurry with no dispersion failure or aggregation.
- a known mixer such as a planetary mixer, a thin film swirling mixer and a revolving mixer can be used, but a thin film swirling mixer is used in that a good dispersion state can be obtained in a short time. It is preferable to carry out.
- a thin film swirling mixer it is preferable to carry out preliminary dispersion with a stirrer such as a disper in advance.
- the viscosity of the slurry can be set in the range of 500 to 100,000 mPa ⁇ s, for example.
- the upper limit of the viscosity is preferably 20,000 mPa ⁇ s or less, more preferably 10,000 mPa ⁇ s or less, and further preferably 6,000 mPa ⁇ s or less, It is preferably 5,000 mPa ⁇ s or less, more preferably 4,000 mPa ⁇ s or less, still more preferably 3,000 mPa ⁇ s or less.
- the slurry viscosity can be measured by the method described in Examples under the condition that the liquid temperature is 25°C.
- composition for electrode mixture layer when the composition for electrode mixture layer is obtained in a wet powder state, it is preferable to use a Henschel mixer, a blender, a planetary mixer, a twin-screw kneader, or the like to knead the mixture to a uniform state without uneven density.
- the secondary battery electrode of the present invention comprises a mixture layer formed of the above composition for an electrode mixture layer on the surface of a current collector such as copper or aluminum.
- the mixture layer is formed by coating the surface of the current collector with the composition for an electrode mixture layer of the present invention, and then drying and removing a medium such as water.
- the method for applying the composition for electrode mixture layer is not particularly limited, and known methods such as a doctor blade method, a dipping method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method are used. Can be adopted.
- the drying can be performed by a known method such as blowing hot air, reducing pressure, (far) infrared rays, or microwave irradiation.
- the mixture layer obtained after drying is subjected to compression treatment by a die press, a roll press or the like.
- the thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 ⁇ m.
- the electrolytic solution may be liquid or gel.
- the separator is disposed between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between both electrodes and holding an electrolytic solution to ensure ionic conductivity.
- the separator is preferably a film-like insulating microporous film having good ion permeability and mechanical strength.
- polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene, or the like can be used.
- the electrolytic solution a commonly used known electrolytic solution can be used depending on the type of active material.
- a specific solvent a cyclic carbonate having a high dielectric constant and a high electrolyte dissolving ability such as propylene carbonate and ethylene carbonate, and a chain having a low viscosity such as ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate. Carbonates and the like, and these can be used alone or as a mixed solvent.
- the electrolytic solution is used by dissolving a lithium salt such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents.
- an aqueous solution of potassium hydroxide can be used as the electrolytic solution.
- the secondary battery is obtained by accommodating a positive electrode plate and a negative electrode plate, which are partitioned by a separator, in a spiral or laminated structure in a case or the like.
- the binder for secondary battery electrodes disclosed in the present specification exhibits excellent binding properties with the electrode material in the mixture layer and excellent adhesion with the current collector.
- the secondary battery equipped with the electrode obtained by using the above binder is expected to be able to ensure good integrity and to show good durability (cycle characteristics) even after repeated charging and discharging. Suitable for batteries and the like.
- the particle size distribution of the hydrogel was measured with a laser diffraction/scattering type particle size distribution analyzer (Microtrack MT-3300EXII, manufactured by Microtrack Bell) using ion exchanged water as a dispersion medium.
- a laser diffraction/scattering type particle size distribution analyzer Microtrack MT-3300EXII, manufactured by Microtrack Bell
- the particle size distribution shape measured after several minutes became stable.
- the particle size distribution is measured, and the volume-based median diameter (D50) as a representative value of the particle diameter and the particle diameter distribution represented by (volume-based average particle diameter)/(number-based average particle diameter) Got
- the water swelling degree at pH 8 was measured by the following method.
- the measuring device is shown in FIG.
- the measuring device is composed of ⁇ 1> to ⁇ 3> in FIG.
- a buret 1 provided with a branch pipe for venting air, a pinch cock 2, a silicon tube 3 and a polytetrafluoroethylene tube 4.
- a support cylinder 8 having a large number of holes on its bottom is provided on the funnel 5, and a filter paper 10 for the apparatus is further provided thereon.
- a sample 6 (measurement sample) of a crosslinked polymer or a salt thereof is sandwiched between two pieces of sample fixing filter paper 7, and the sample fixing filter paper is fixed by an adhesive tape 9.
- All the filter papers used were ADVANTEC No. 2.
- the inner diameter is 55 mm.
- ⁇ 1> and ⁇ 2> are connected by the silicon tube 3.
- the height of the funnel 5 and the support cylinder 8 is fixed with respect to the buret 1, and the lower end of the polytetrafluoroethylene tube 4 installed inside the buret branch pipe and the bottom surface of the support cylinder 8 are at the same height. It is set as follows (dotted line in FIG. 1).
- the measuring method will be described below.
- the pinch cock 2 in ⁇ 1> is removed, ion-exchanged water is introduced from the upper part of the buret 1 through the silicon tube 3, and the buret 1 and the filter paper 10 for the apparatus are filled with the ion-exchanged water 12.
- the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the buret branch pipe with a rubber stopper.
- the ion-exchanged water 12 is continuously supplied from the buret 1 to the device filter paper 10.
- the scale reading (a) of the buret 1 is recorded.
- the water absorption amount of only the two filter papers 7 containing no sample of the crosslinked polymer or its salt is measured (d).
- the above operation was performed and the water swelling degree was calculated from the following formula.
- the solid content used for the calculation used the value measured by the method mentioned later.
- Water swelling degree ⁇ dry weight of measurement sample (g)+(cd) ⁇ / ⁇ dry weight of measurement sample (g) ⁇
- the dry weight of the measurement sample (g) the weight of the measurement sample (g) x (solid content% / 100)
- the viscosity at a rotor speed of 12 rpm was measured using a B-type viscometer (TVB-10 manufactured by Toki Sangyo Co., Ltd.).
- the monomer concentration was calculated to be 15.0%.
- the polymerization reaction was continued while adjusting the external temperature (water bath temperature) to maintain the internal temperature at 55°C, and the internal temperature was raised to 65°C when 6 hours passed from the polymerization initiation point.
- the internal temperature was maintained at 65°C, cooling of the reaction solution was started 12 hours after the initiation point of polymerization, and the internal temperature was lowered to 25°C.
- lithium hydroxide monohydrate hereinafter, referred to as "LiOH - 41.9 parts powder of H 2 O "hereinafter) was added. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction liquid in which particles of the crosslinked polymer salt R-1 (Li salt, neutralization degree: 90 mol %) were dispersed in a medium.
- the obtained polymerization reaction liquid was centrifuged to precipitate polymer particles, and then the supernatant was removed. Then, a washing operation of redispersing the precipitate in acetonitrile having the same weight as that of the polymerization reaction solution and then allowing the polymer particles to settle by centrifugation and removing the supernatant was repeated twice.
- the precipitate was recovered and dried under reduced pressure at 80° C. for 3 hours to remove volatile matter, thereby obtaining a powder of crosslinked polymer salt R-1. Since the cross-linked polymer salt R-1 has a hygroscopic property, it was sealed and stored in a container having a water vapor barrier property.
- the powder of the crosslinked polymer salt R-1 was subjected to IR measurement, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C ⁇ O group of the carboxylic acid and the peak derived from the C ⁇ O of the carboxylic acid Li. 90 mol% equal to the value calculated from The particle diameter (water-swelling particle diameter) of the crosslinked polymer salt R-1 obtained above in an aqueous medium was measured and found to be 0.88 ⁇ m, and the particle diameter distribution was calculated to be 1.8.
- the degree of water swelling was 4.1, and the viscosity of the 3% by mass aqueous solution was less than 15 mPa ⁇ s.
- the obtained polymerization reaction liquid was centrifuged to precipitate polymer particles, and then the supernatant was removed. After that, the procedure of redispersing the precipitate in the same amount of methanol as the polymerization reaction liquid and then precipitating the polymer particles by centrifugation and removing the supernatant was repeated twice.
- the precipitate was recovered and dried under reduced pressure at 80° C. for 3 hours to remove volatile matter, thereby obtaining a powder of crosslinked polymer salt R-20. Since the crosslinked polymer salt R-20 has a hygroscopic property, it was sealed and stored in a container having a water vapor barrier property.
- the powder of the crosslinked polymer salt R-20 was subjected to IR measurement, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C ⁇ O group of carboxylic acid and the peak derived from C ⁇ O of Li carboxylic acid. 90 mol% equal to the value calculated from Physical properties of the obtained crosslinked polymer salt R-20 were measured in the same manner as in Production Example 1, and the results are shown in Table 3.
- AA acrylic acid
- HEA 2-hydroxyethyl acrylate
- 4HBA 4-hydroxybutyl acrylate
- HEAAm hydroxyethyl acrylamide
- MEA 2-methoxyethyl acrylate
- AN acrylonitrile
- T-20 trimethylolpropane diallyl ether (manufactured by Daiso) (Product name "Neoallyl T-20")
- AMA Allyl Methacrylate
- TEA Triethylamine AcN: Acetonitrile MeOH: Methanol
- V-65 2,2'-Azobis(2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)
- ACVA 4,4'-azobiscyanovaleric acid (Otsuka Chemical Co., Ltd., trade name "ACVA”)
- LiOH/H 2 O lithium hydroxide/monohydrate
- NaOH/H 2 O sodium hydroxide/
- graphite which is an active material for a negative electrode, or graphite and silicon particles, and an electrode mixture layer composition using each cross-linked polymer salt as a binder, its slurry viscosity and the formed mixture layer /
- the peel strength between the current collectors (that is, the binding property of the binder) was measured.
- Natural graphite manufactured by Nippon Graphite Co., Ltd., trade name “CGB-10” was used as graphite
- Si nanopowder manufactured by Sigma-Aldrich, particle diameter ⁇ 100 nm
- Example 1 2.4 parts of powdered cross-linked polymer Li salt R-1 was weighed in 100 parts of natural graphite, mixed well in advance, 90 parts of ion-exchanged water was added and predispersed with a disper, and then thin film rotation type The main dispersion was performed for 15 seconds at a peripheral speed of 20 m/sec using a mixer (FM-56-30, manufactured by Primix Co., Ltd.) to obtain a slurry composition for electrode mixture layer (electrode slurry). The active material concentration in the electrode slurry was calculated to be 52.0%, and the solid content concentration in the electrode slurry was calculated to be 53.2%.
- a mixer FM-56-30, manufactured by Primix Co., Ltd.
- the above electrode slurry was applied onto a copper foil (manufactured by Japan Foil Co., Ltd.) having a thickness of 20 ⁇ m, and dried at 100° C. for 15 minutes in a ventilation dryer to form a mixture layer. Formed. Then, the mixture layer was rolled to a thickness of 50 ⁇ 5 ⁇ m and a packing density of 1.70 ⁇ 0.20 g/cm 3 to obtain a negative electrode.
- the negative electrode obtained above was cut into a strip having a width of 25 mm, and the mixture layer surface of the negative electrode was attached to a double-sided tape fixed on a horizontal surface to prepare a sample for peel test. After the test sample was dried at 60° C. under reduced pressure overnight, 90° peeling (measurement temperature: 23° C.) at a pulling speed of 50 mm/min was performed to measure the peel strength between the mixture layer and the copper foil. The peel strength was as high as 11.4 N/m, which was good.
- Examples 2 to 20 and Comparative Examples 1 to 3 An electrode slurry was prepared by performing the same operations as in Example 1 except that the active material, the crosslinked polymer salt used as the binder, and the ion-exchanged water were used as shown in Tables 4 to 6.
- the active material, the crosslinked polymer salt used as the binder, and the ion-exchanged water were used as shown in Tables 4 to 6.
- natural graphite and silicon particles were stirred at 400 rpm for 1 hour using a planetary ball mill (P-5, manufactured by FRITSCH), and the obtained mixture was mixed with a powdered crosslinked polymer Li salt.
- 2.4 parts of R-2 was weighed, mixed well in advance, and then the same operation as in Example 1 was performed to prepare an electrode slurry. The coatability and 90° peel strength of each electrode slurry were evaluated. The results are shown in Tables 4 to 6.
- Each example is a composition for an electrode mixture layer containing a binder for a secondary battery electrode according to the present invention, and an electrode prepared by using the composition.
- the composition for each electrode mixture layer (electrode slurry) had a sufficiently low value even under a high concentration condition such that the active material concentration exceeded 50% by mass, and good coatability could be ensured. .. Further, the amount of the medium (water) removed during drying can be reduced, which can contribute to the improvement of productivity. Further, the peel strength between the mixture layer of the obtained electrode and the current collector was high, and the binding strength was excellent.
- the slurry viscosity (5,200 mPa ⁇ s) of Example 16 using the crosslinked polymer salt R-14 having a structural unit derived from an acrylamide derivative was used.
- the slurry viscosity when using the cross-linked polymer salt R-2 or R-13 having a structural unit derived from hydroxyalkyl (meth)acrylate was 2,200 mPa ⁇ s (Example 2 ) And 2,100 mPa ⁇ s (Example 15), showing a higher slurry viscosity reducing effect.
- the secondary battery electrode binder of the present invention exhibits excellent binding properties in the mixture layer. Therefore, the secondary battery including the electrode obtained by using the binder has good durability (cycle characteristics). ) Is expected to be applied to in-vehicle secondary batteries. It is also useful for using an active material containing silicon, and is expected to contribute to increasing the capacity of the battery. Furthermore, the viscosity of the composition for electrode mixture layer (electrode slurry) can be reduced even under conditions where the active material concentration is high. Therefore, it is advantageous in reducing the drying energy and improving the productivity when forming the mixture layer.
- the binder for a secondary battery electrode of the present invention can be suitably used particularly for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The present invention provides a binder that is for a secondary battery electrode and that can exhibit excellent binding properties better than conventional products, and, even when the concentration of an active material in the electrode mixture layer is high, can reduce the viscosity of electrode slurry. This binder for a secondary battery electrode contains a crosslinked polymer or a salt thereof, wherein the crosslinked polymer or a salt thereof contains 50-99.5 mass% of a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer, and 0.5-50 mass% of a second structural unit derived from a specific monomer having a hydroxy group, with respect to all structural units, and the particle size as measured in an aqueous medium after neutralization to a neutralization degree of 80-100 mol% is 0.1-10 μm in terms of volume-based median diameter.
Description
本発明は、二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極に関する。
The present invention relates to a binder for a secondary battery electrode, a composition for a secondary battery electrode mixture layer, and a secondary battery electrode.
二次電池として、ニッケル水素二次電池、リチウムイオン二次電池、電気二重層キャパシタ等の様々な蓄電デバイスが実用化されている。これらの二次電池に使用される電極は、活物質及びバインダー等を含む電極合剤層を形成するための組成物を集電体上に塗布・乾燥等することにより作製される。例えばリチウムイオン二次電池では、負極合剤層用組成物に用いられるバインダーとして、スチレンブタジエンゴム(SBR)ラテックス及びカルボキシメチルセルロース(CMC)を含む水系のバインダーが使用されている。また、分散性及び結着性に優れるバインダーとして、アクリル酸系重合体水溶液又は水分散液を含むバインダーが知られている。一方、正極合剤層に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)のN-メチル-2-ピロリドン(NMP)溶液が広く使用されている。
As a secondary battery, various storage devices such as nickel-hydrogen secondary battery, lithium-ion secondary battery, and electric double layer capacitor have been put to practical use. The electrodes used in these secondary batteries are produced by applying a composition for forming an electrode mixture layer containing an active material, a binder and the like onto a current collector and drying the composition. For example, in a lithium ion secondary battery, a water-based binder containing styrene-butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as a binder used in the composition for the negative electrode mixture layer. Further, as a binder excellent in dispersibility and binding property, a binder containing an acrylic acid polymer aqueous solution or an aqueous dispersion is known. On the other hand, a polyvinylidene fluoride (PVDF) N-methyl-2-pyrrolidone (NMP) solution is widely used as a binder for the positive electrode mixture layer.
一方、各種二次電池の用途が拡大するにつれて、エネルギー密度、信頼性及び耐久性向上への要求が強まる傾向にある。例えば、リチウムイオン二次電池の電気容量を高める目的で、負極用活物質としてシリコン系の活物質を用いる仕様が増えてきている。しかしながら、シリコン系活物質は充放電時の体積変化が大きいことが知られており、繰り返し使用するにつれて電極合剤層の剥離又は脱落等が生じ、その結果、電池の容量が低下し、サイクル特性(耐久性)が悪化するという問題があった。このような不具合を抑制するためには、一般的にはバインダーの結着性を高めることが有効であり、耐久性を改善する目的で、バインダーの結着性向上に関する検討が行われている。
On the other hand, as the use of various secondary batteries expands, demands for improving energy density, reliability and durability tend to increase. For example, specifications for using a silicon-based active material as the negative electrode active material are increasing in order to increase the electric capacity of the lithium-ion secondary battery. However, it is known that the volume change of a silicon-based active material during charge/discharge is large, and peeling or dropping of the electrode mixture layer occurs as it is repeatedly used, and as a result, the capacity of the battery decreases and the cycle characteristics There was a problem that (durability) deteriorates. In order to suppress such a problem, it is generally effective to enhance the binding property of the binder, and for the purpose of improving the durability, studies on improving the binding property of the binder have been conducted.
例えば、特許文献1では、リチウムイオン二次電池の負極塗膜を形成する結着剤としてポリアルケニルエーテルにより架橋したアクリル酸重合体が開示されている。特許文献2には、エチレン性不飽和カルボン酸塩単量体由来の構造単位及びエチレン性不飽和カルボン酸エステル単量体由来の構造単位を含み、特定の水溶液粘度を有する水溶性高分子を含有する二次電池用水系電極バインダーが開示されている。特許文献3には、エチレン性不飽和カルボン酸塩単量体由来の構造単位を含む架橋重合体の塩を含む特定粘度の水分散液が開示されている。
For example, Patent Document 1 discloses an acrylic acid polymer crosslinked with a polyalkenyl ether as a binder for forming a negative electrode coating film of a lithium ion secondary battery. Patent Document 2 contains a water-soluble polymer having a specific aqueous solution viscosity, containing a structural unit derived from an ethylenically unsaturated carboxylic acid salt monomer and a structural unit derived from an ethylenically unsaturated carboxylic acid ester monomer. A water-based electrode binder for secondary batteries is disclosed. Patent Document 3 discloses an aqueous dispersion having a specific viscosity containing a salt of a cross-linked polymer containing a structural unit derived from an ethylenically unsaturated carboxylic acid salt monomer.
特許文献1~3に開示されるバインダーは、いずれも良好な結着性を付与し得るものであるが、二次電池の性能向上に伴い、より結着力の高いバインダーを求める要求が高まりつつある。
The binders disclosed in Patent Documents 1 to 3 are all capable of imparting good binding properties, but as the performance of secondary batteries is improved, there is an increasing demand for binders with higher binding power. ..
また、一般に、二次電池電極は、活物質及びバインダーを含む電極合剤層用組成物(電極スラリー)を電極集電体表面に塗布乾燥することにより得られる。この際、電極スラリーの乾燥効率を高め、電極の生産性を向上する観点から、電極スラリー中の活物質濃度を高くすることが有利である。しかしながら、通常、活物質濃度を高くするにつれて電極スラリーの固形分濃度も高くなるため、例えば、電極スラリー中の活物質濃度が50質量%を超えるような高濃度のスラリーの場合、良好な塗工性を確保することが難しい。
Further, generally, a secondary battery electrode is obtained by applying an electrode mixture layer composition (electrode slurry) containing an active material and a binder onto the surface of an electrode current collector and drying it. At this time, it is advantageous to increase the concentration of the active material in the electrode slurry from the viewpoint of improving the drying efficiency of the electrode slurry and improving the productivity of the electrode. However, since the solid content concentration of the electrode slurry generally increases as the active material concentration increases, for example, in the case of a high concentration slurry in which the active material concentration in the electrode slurry exceeds 50% by mass, good coating is achieved. It is difficult to secure sex.
本発明は、このような事情に鑑みてなされたものであり、従来よりも優れた結着性を発揮することができるとともに、電極合剤層中の活物質濃度が高い場合であっても、電極スラリー粘度の低減が可能な二次電池電極用バインダーを提供する。また、併せて、上記バインダーを用いて得られる二次電池電極合剤層用組成物及び二次電池電極も提供する。
The present invention has been made in view of such circumstances, while being able to exhibit superior binding properties than conventional, even when the active material concentration in the electrode mixture layer is high, Provided is a binder for a secondary battery electrode, which can reduce the viscosity of an electrode slurry. In addition, a composition for a secondary battery electrode mixture layer and a secondary battery electrode obtained by using the binder are also provided.
本発明者らは、上記課題を解決するために鋭意検討した結果、エチレン性不飽和カルボン酸単量体に由来する構造単位及び水酸基を有する特定の不飽和単量体に由来する構造単位を含む架橋重合体又はその塩を含有するバインダーを用いた場合に、電極スラリーの粘度低減効果と結着性の双方に優れるという知見を得た。本開示によれば、こうした知見に基づき以下の手段が提供される。
The present inventors have conducted extensive studies to solve the above problems, and include a structural unit derived from an ethylenically unsaturated carboxylic acid monomer and a structural unit derived from a specific unsaturated monomer having a hydroxyl group. It was found that when a binder containing a crosslinked polymer or a salt thereof is used, both the viscosity-reducing effect of the electrode slurry and the binding property are excellent. According to the present disclosure, the following means are provided based on these findings.
本発明は以下の通りである。
〔1〕架橋重合体又はその塩を含有する二次電池電極用バインダーであって、
前記架橋重合体又はその塩は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位を50質量%以上99.5質量%以下、並びに、式(1)及び式(2)で表される単量体からなる群より選ばれる1種以上の単量体に由来する第二の構造単位を0.5質量%以上50質量%以下含み、
かつ、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上10μm以下である、二次電池電極用バインダー。
CH2=C(R1)COOR2 (1)
[式中、R1は水素原子又はメチル基を表し、R2は水酸基を有する炭素原子数1~8の一価の有機基、(R3O)mH又はR4O[CO(CH2)5O]nHを表す。なお、R3は炭素原子数2~4のアルキレン基を表し、R4は炭素原子数1~8のアルキレン基を表し、mは2~15の整数を表し、nは1~15の整数を表す。]
CH2=C(R5)CONR6R7 (2)
[式中、R5は水素原子又はメチル基を表し、R6は水酸基又は炭素原子数1~8のヒドロキシアルキル基を表し、R7は水素原子又は1価の有機基を表す。]
〔2〕架橋重合体又はその塩を含有する二次電池電極用バインダーであって、
前記架橋重合体又はその塩は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位を50質量%以上99.5質量%以下、並びに、式量が200以下であって、(メタ)アクリロイル基及び水酸基を有する単量体に由来する第二の構造単位を0.5質量%以上50質量%以下含み、
かつ、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上10μm以下である、二次電池電極用バインダー。
〔3〕前記第二の構造単位は、ヒドロキシアルキル(メタ)アクリレートに由来する構造単位である〔1〕又は〔2〕に記載の二次電池電極用バインダー。
〔4〕前記架橋重合体又はその塩は、3質量%濃度水溶液の粘度が10,000mPa・s以下である〔1〕~〔3〕のいずれか一に記載の二次電池電極用バインダー。
〔5〕前記架橋重合体又はその塩は、pH8における水膨潤度が3.0以上、100以下である〔1〕~〔4〕のいずれか一に記載の二次電池電極用バインダー。
〔6〕〔1〕~〔5〕のいずれか一に記載の二次電池電極用バインダー、活物質及び水を含む、二次電池電極合剤層用組成物。
〔7〕集電体表面に、〔1〕~〔5〕のいずれか一に記載の二次電池電極用バインダーを含有する電極合剤層を備える、二次電池電極。 The present invention is as follows.
[1] A binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof, comprising:
The crosslinked polymer or a salt thereof has 50% by mass or more and 99.5% by mass or less of the first structural unit derived from an ethylenically unsaturated carboxylic acid monomer, and the formula (1 ) And a second structural unit derived from one or more kinds of monomers selected from the group consisting of the monomers represented by the formula (2) is contained in an amount of 0.5% by mass or more and 50% by mass or less,
A binder for a secondary battery electrode, which has a volume-based median diameter of 0.1 μm or more and 10 μm or less after being neutralized to a degree of neutralization of 80 to 100 mol %.
CH 2 =C(R 1 )COOR 2 (1)
[In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms, (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H. In addition, R 3 represents an alkylene group having 2 to 4 carbon atoms, R 4 represents an alkylene group having 1 to 8 carbon atoms, m represents an integer of 2 to 15, and n represents an integer of 1 to 15. Represent ]
CH 2 =C(R 5 )CONR 6 R 7 (2)
[In the formula, R 5 represents a hydrogen atom or a methyl group, R 6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms, and R 7 represents a hydrogen atom or a monovalent organic group. ]
[2] A binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof, comprising:
The cross-linked polymer or a salt thereof has a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer of 50% by mass or more and 99.5% by mass or less, and a formula weight, based on all structural units thereof. 200 or less, containing 0.5% by mass or more and 50% by mass or less of the second structural unit derived from a monomer having a (meth)acryloyl group and a hydroxyl group,
A binder for a secondary battery electrode, which has a volume-based median diameter of 0.1 μm or more and 10 μm or less after being neutralized to a degree of neutralization of 80 to 100 mol %.
[3] The binder for a secondary battery electrode according to [1] or [2], wherein the second structural unit is a structural unit derived from hydroxyalkyl (meth)acrylate.
[4] The binder for a secondary battery electrode according to any one of [1] to [3], wherein the crosslinked polymer or a salt thereof has a viscosity of a 3% by mass aqueous solution of 10,000 mPa·s or less.
[5] The binder for a secondary battery electrode according to any one of [1] to [4], wherein the crosslinked polymer or a salt thereof has a water swelling degree atpH 8 of 3.0 or more and 100 or less.
[6] A composition for a secondary battery electrode mixture layer, comprising the binder for a secondary battery electrode according to any one of [1] to [5], an active material and water.
[7] A secondary battery electrode, which comprises an electrode mixture layer containing the binder for a secondary battery electrode according to any one of [1] to [5] on the surface of the current collector.
〔1〕架橋重合体又はその塩を含有する二次電池電極用バインダーであって、
前記架橋重合体又はその塩は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位を50質量%以上99.5質量%以下、並びに、式(1)及び式(2)で表される単量体からなる群より選ばれる1種以上の単量体に由来する第二の構造単位を0.5質量%以上50質量%以下含み、
かつ、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上10μm以下である、二次電池電極用バインダー。
CH2=C(R1)COOR2 (1)
[式中、R1は水素原子又はメチル基を表し、R2は水酸基を有する炭素原子数1~8の一価の有機基、(R3O)mH又はR4O[CO(CH2)5O]nHを表す。なお、R3は炭素原子数2~4のアルキレン基を表し、R4は炭素原子数1~8のアルキレン基を表し、mは2~15の整数を表し、nは1~15の整数を表す。]
CH2=C(R5)CONR6R7 (2)
[式中、R5は水素原子又はメチル基を表し、R6は水酸基又は炭素原子数1~8のヒドロキシアルキル基を表し、R7は水素原子又は1価の有機基を表す。]
〔2〕架橋重合体又はその塩を含有する二次電池電極用バインダーであって、
前記架橋重合体又はその塩は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位を50質量%以上99.5質量%以下、並びに、式量が200以下であって、(メタ)アクリロイル基及び水酸基を有する単量体に由来する第二の構造単位を0.5質量%以上50質量%以下含み、
かつ、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上10μm以下である、二次電池電極用バインダー。
〔3〕前記第二の構造単位は、ヒドロキシアルキル(メタ)アクリレートに由来する構造単位である〔1〕又は〔2〕に記載の二次電池電極用バインダー。
〔4〕前記架橋重合体又はその塩は、3質量%濃度水溶液の粘度が10,000mPa・s以下である〔1〕~〔3〕のいずれか一に記載の二次電池電極用バインダー。
〔5〕前記架橋重合体又はその塩は、pH8における水膨潤度が3.0以上、100以下である〔1〕~〔4〕のいずれか一に記載の二次電池電極用バインダー。
〔6〕〔1〕~〔5〕のいずれか一に記載の二次電池電極用バインダー、活物質及び水を含む、二次電池電極合剤層用組成物。
〔7〕集電体表面に、〔1〕~〔5〕のいずれか一に記載の二次電池電極用バインダーを含有する電極合剤層を備える、二次電池電極。 The present invention is as follows.
[1] A binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof, comprising:
The crosslinked polymer or a salt thereof has 50% by mass or more and 99.5% by mass or less of the first structural unit derived from an ethylenically unsaturated carboxylic acid monomer, and the formula (1 ) And a second structural unit derived from one or more kinds of monomers selected from the group consisting of the monomers represented by the formula (2) is contained in an amount of 0.5% by mass or more and 50% by mass or less,
A binder for a secondary battery electrode, which has a volume-based median diameter of 0.1 μm or more and 10 μm or less after being neutralized to a degree of neutralization of 80 to 100 mol %.
CH 2 =C(R 1 )COOR 2 (1)
[In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms, (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H. In addition, R 3 represents an alkylene group having 2 to 4 carbon atoms, R 4 represents an alkylene group having 1 to 8 carbon atoms, m represents an integer of 2 to 15, and n represents an integer of 1 to 15. Represent ]
CH 2 =C(R 5 )CONR 6 R 7 (2)
[In the formula, R 5 represents a hydrogen atom or a methyl group, R 6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms, and R 7 represents a hydrogen atom or a monovalent organic group. ]
[2] A binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof, comprising:
The cross-linked polymer or a salt thereof has a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer of 50% by mass or more and 99.5% by mass or less, and a formula weight, based on all structural units thereof. 200 or less, containing 0.5% by mass or more and 50% by mass or less of the second structural unit derived from a monomer having a (meth)acryloyl group and a hydroxyl group,
A binder for a secondary battery electrode, which has a volume-based median diameter of 0.1 μm or more and 10 μm or less after being neutralized to a degree of neutralization of 80 to 100 mol %.
[3] The binder for a secondary battery electrode according to [1] or [2], wherein the second structural unit is a structural unit derived from hydroxyalkyl (meth)acrylate.
[4] The binder for a secondary battery electrode according to any one of [1] to [3], wherein the crosslinked polymer or a salt thereof has a viscosity of a 3% by mass aqueous solution of 10,000 mPa·s or less.
[5] The binder for a secondary battery electrode according to any one of [1] to [4], wherein the crosslinked polymer or a salt thereof has a water swelling degree at
[6] A composition for a secondary battery electrode mixture layer, comprising the binder for a secondary battery electrode according to any one of [1] to [5], an active material and water.
[7] A secondary battery electrode, which comprises an electrode mixture layer containing the binder for a secondary battery electrode according to any one of [1] to [5] on the surface of the current collector.
本発明の二次電池電極用バインダーは、電極活物質等に対して優れた結着性を示す。このため、上記バインダーを含む電極合剤層及びこれを備えた電極は、結着性に優れるとともにその一体性を維持することができる。また、上記バインダーを含む電極合剤層用組成物は、活物質濃度が高い条件下であっても低いスラリー粘度を示すことができる。したがって、電極合剤層を形成する際に乾燥除去する水などの媒体を低減することができるため、電極等を製造する際の生産性向上に寄与し得る。
The binder for secondary battery electrodes of the present invention exhibits excellent binding properties to electrode active materials and the like. Therefore, the electrode mixture layer containing the binder and the electrode provided with the binder layer have excellent binding properties and can maintain their integrity. In addition, the composition for an electrode mixture layer containing the above binder can exhibit a low slurry viscosity even under conditions where the active material concentration is high. Therefore, it is possible to reduce a medium such as water that is dried and removed when forming the electrode mixture layer, which can contribute to an improvement in productivity when manufacturing the electrode and the like.
本発明の二次電池電極用バインダーは、架橋重合体又はその塩を含有するものであり、活物質及び水と混合することにより電極合剤層用組成物とすることができる。上記の組成物は、集電体への塗工が可能なスラリー状態であってもよいし、湿粉状態として調製し、集電体表面へのプレス加工に対応できるようにしてもよい。銅箔又はアルミニウム箔等の集電体表面に上記組成物から形成される合剤層を形成することにより、本発明の二次電池電極が得られる。
The binder for a secondary battery electrode of the present invention contains a crosslinked polymer or a salt thereof, and can be made into a composition for an electrode mixture layer by mixing with an active material and water. The composition may be in a slurry state in which it can be applied to a current collector, or may be prepared in a wet powder state so that it can be pressed on the surface of the current collector. The secondary battery electrode of the present invention can be obtained by forming a mixture layer formed of the above composition on the surface of a current collector such as copper foil or aluminum foil.
以下に、本発明の二次電池電極用バインダー、当該バインダーを用いて得られる二次電池電極合剤層用組成物及び二次電池電極の各々について詳細に説明する。
尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。 Each of the binder for a secondary battery electrode, the composition for a secondary battery electrode mixture layer obtained by using the binder, and the secondary battery electrode of the present invention will be described in detail below.
In addition, in this specification, "(meth)acryl" means acryl and/or methacryl, and "(meth)acrylate" means acrylate and/or methacrylate. Further, the “(meth)acryloyl group” means an acryloyl group and/or a methacryloyl group.
尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。 Each of the binder for a secondary battery electrode, the composition for a secondary battery electrode mixture layer obtained by using the binder, and the secondary battery electrode of the present invention will be described in detail below.
In addition, in this specification, "(meth)acryl" means acryl and/or methacryl, and "(meth)acrylate" means acrylate and/or methacrylate. Further, the “(meth)acryloyl group” means an acryloyl group and/or a methacryloyl group.
<バインダー>
本発明のバインダーは、架橋重合体又はその塩を含む。当該架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位及び水酸基を有する特定の単量体に由来する第二の構造単位を有する。 <Binder>
The binder of the present invention contains a crosslinked polymer or a salt thereof. The crosslinked polymer has a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer and a second structural unit derived from a specific monomer having a hydroxyl group.
本発明のバインダーは、架橋重合体又はその塩を含む。当該架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位及び水酸基を有する特定の単量体に由来する第二の構造単位を有する。 <Binder>
The binder of the present invention contains a crosslinked polymer or a salt thereof. The crosslinked polymer has a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer and a second structural unit derived from a specific monomer having a hydroxyl group.
<架橋重合体の構造単位>
<第一の構造単位>
架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位(以下、「(a)成分」ともいう)を有することができる。架橋重合体が、係る構造単位を有することによりカルボキシル基を有する場合、集電体への接着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、水膨潤性が付与されるため、電極合剤層用組成物中における活物質等の分散安定性を高めることができる。
上記(a)成分は、例えば、エチレン性不飽和カルボン酸単量体を含む単量体を重合することにより架橋重合体に導入することができる。その他にも、(メタ)アクリル酸エステル単量体を(共)重合した後、加水分解することによっても得られる。また、(メタ)アクリルアミド及び(メタ)アクリロニトリル等を重合した後、強アルカリで処理してもよいし、水酸基を有する重合体に酸無水物を反応させる方法であってもよい。 <Structural unit of cross-linked polymer>
<First structural unit>
The crosslinked polymer may have a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a)”). When the cross-linked polymer has a carboxyl group by having such a structural unit, the adhesion to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small and the high rate. An electrode with excellent characteristics can be obtained. Further, since the water swelling property is imparted, the dispersion stability of the active material and the like in the composition for electrode mixture layer can be enhanced.
The component (a) can be introduced into the crosslinked polymer by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer, for example. Alternatively, it can also be obtained by (co)polymerizing a (meth)acrylic acid ester monomer and then hydrolyzing it. Moreover, after polymerizing (meth)acrylamide, (meth)acrylonitrile, etc., you may process with a strong alkali, and the method of making an acid anhydride react with the polymer which has a hydroxyl group may be sufficient.
<第一の構造単位>
架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位(以下、「(a)成分」ともいう)を有することができる。架橋重合体が、係る構造単位を有することによりカルボキシル基を有する場合、集電体への接着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、水膨潤性が付与されるため、電極合剤層用組成物中における活物質等の分散安定性を高めることができる。
上記(a)成分は、例えば、エチレン性不飽和カルボン酸単量体を含む単量体を重合することにより架橋重合体に導入することができる。その他にも、(メタ)アクリル酸エステル単量体を(共)重合した後、加水分解することによっても得られる。また、(メタ)アクリルアミド及び(メタ)アクリロニトリル等を重合した後、強アルカリで処理してもよいし、水酸基を有する重合体に酸無水物を反応させる方法であってもよい。 <Structural unit of cross-linked polymer>
<First structural unit>
The crosslinked polymer may have a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter, also referred to as “component (a)”). When the cross-linked polymer has a carboxyl group by having such a structural unit, the adhesion to the current collector is improved, and the lithium ion desolvation effect and the ionic conductivity are excellent, so that the resistance is small and the high rate. An electrode with excellent characteristics can be obtained. Further, since the water swelling property is imparted, the dispersion stability of the active material and the like in the composition for electrode mixture layer can be enhanced.
The component (a) can be introduced into the crosslinked polymer by polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer, for example. Alternatively, it can also be obtained by (co)polymerizing a (meth)acrylic acid ester monomer and then hydrolyzing it. Moreover, after polymerizing (meth)acrylamide, (meth)acrylonitrile, etc., you may process with a strong alkali, and the method of making an acid anhydride react with the polymer which has a hydroxyl group may be sufficient.
エチレン性不飽和カルボン酸単量体としては、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸;(メタ)アクリルアミドヘキサン酸及び(メタ)アクリルアミドドデカン酸等の(メタ)アクリルアミドアルキルカルボン酸;コハク酸モノヒドロキシエチル(メタ)アクリレート、ω-カルボキシ-カプロラクトンモノ(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート等のカルボキシル基を有するエチレン性不飽和単量体またはそれらの(部分)アルカリ中和物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましく、特に好ましくはアクリル酸である。エチレン性不飽和カルボン酸単量体としてアクリル酸を用いた場合、カルボキシル基含有量の高い重合体を得ることができる。
Examples of the ethylenically unsaturated carboxylic acid monomer include (meth)acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid; (meth)acrylamidoalkyl acid such as (meth)acrylamidohexanoic acid and (meth)acrylamidododecanoic acid. Carboxylic acid; ethylenically unsaturated monomers having a carboxyl group such as succinic acid monohydroxyethyl (meth)acrylate, ω-carboxy-caprolactone mono(meth)acrylate, β-carboxyethyl (meth)acrylate or the like (part thereof) ) Alkali-neutralized products are mentioned, and one of them may be used alone, or two or more thereof may be used in combination. Among the above, a polymer having a long primary chain length is obtained because of a high polymerization rate, and a compound having an acryloyl group as a polymerizable functional group is preferable in that the binding force of the binder is good, and acrylic acid is particularly preferable. is there. When acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer having a high carboxyl group content can be obtained.
架橋重合体における(a)成分の含有量は、特に限定するものではないが、例えば、架橋重合体の全構造単位に対して10質量%以上、99.5質量%以下含むことができる。かかる範囲で(a)成分を含有することで、集電体に対する優れた接着性を容易に確保することができる。下限は、例えば20質量%以上であり、また例えば30質量%以上であり、また例えば40質量%以上である。下限が50質量%以上の場合、電極合剤層用組成物の分散安定性が良好となるため好ましく、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、上限は、例えば99質量%以下であり、また例えば98質量%以下であり、また例えば95質量%以下であり、また例えば90質量%以下であり、また例えば80質量%以下である。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、30質量%以上、99.5質量%以下であり、また例えば50質量%以上、99.5質量%以下であり、また例えば50質量%以上、99質量%以下であり、また例えば50質量%以上、98質量%以下であり、また例えば50質量%以上、95質量%以下などとすることができる。
The content of the component (a) in the crosslinked polymer is not particularly limited, but for example, the content may be 10% by mass or more and 99.5% by mass or less based on the total structural units of the crosslinked polymer. By containing the component (a) in such a range, excellent adhesiveness to the current collector can be easily ensured. The lower limit is, for example, 20% by mass or more, for example, 30% by mass or more, and for example, 40% by mass or more. When the lower limit is 50% by mass or more, the dispersion stability of the composition for an electrode mixture layer becomes good, which is preferable, and may be 60% by mass or more, 70% by mass or more, and 80% by mass. It may be more than. Further, the upper limit is, for example, 99% by mass or less, for example 98% by mass or less, for example 95% by mass or less, for example 90% by mass or less, and for example 80% by mass or less. The range may be a range in which the lower limit and the upper limit are appropriately combined, but is, for example, 30% by mass or more and 99.5% by mass or less, and for example, 50% by mass or more and 99.5% by mass or less. And 50 mass% or more and 99 mass% or less, or 50 mass% or more and 98 mass% or less, or, for example, 50 mass% or more and 95 mass% or less.
<第二の構造単位>
本発明の架橋重合体は、(a)成分以外に、水酸基を有する特定の単量体に由来する第二の構造単位(以下、「(b)成分」ともいう)を有することができる。架橋重合体が(b)成分を有する場合、当該架橋重合体を含むバインダーを用いて得られる電極合剤層用組成物の粘度を低減することができる。(b)成分は、例えば、以下の式(1)及び式(2)で表される単量体からなる群より選ばれる1種以上の単量体を重合することにより架橋重合体に導入することができる。又は、式量が200以下であって、(メタ)アクリロイル基及び水酸基を有する単量体を重合することにより架橋重合体に導入してもよい。
CH2=C(R1)COOR2 (1)
[式中、R1は水素原子又はメチル基を表し、R2は水酸基を有する炭素原子数1~8の一価の有機基、(R3O)mH又はR4O[CO(CH2)5O]nHを表す。なお、R3は炭素原子数2~4のアルキレン基を表し、R4は炭素原子数1~8のアルキレン基を表し、mは2~15の整数を表し、nは1~15の整数を表す。]
CH2=C(R5)CONR6R7 (2)
[式中、R5は水素原子又はメチル基を表し、R6は水酸基又は炭素原子数1~8のヒドロキシアルキル基を表し、R7は水素原子又は1価の有機基を表す。] <Second structural unit>
The crosslinked polymer of the present invention can have a second structural unit (hereinafter, also referred to as “component (b)”) derived from a specific monomer having a hydroxyl group, in addition to the component (a). When the crosslinked polymer has the component (b), the viscosity of the composition for electrode mixture layer obtained by using the binder containing the crosslinked polymer can be reduced. The component (b) is introduced into the crosslinked polymer by polymerizing, for example, at least one monomer selected from the group consisting of monomers represented by the following formulas (1) and (2). be able to. Alternatively, it may be introduced into the crosslinked polymer by polymerizing a monomer having a formula weight of 200 or less and having a (meth)acryloyl group and a hydroxyl group.
CH 2 =C(R 1 )COOR 2 (1)
[In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms, (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H. In addition, R 3 represents an alkylene group having 2 to 4 carbon atoms, R 4 represents an alkylene group having 1 to 8 carbon atoms, m represents an integer of 2 to 15, and n represents an integer of 1 to 15. Represent ]
CH 2 =C(R 5 )CONR 6 R 7 (2)
[In the formula, R 5 represents a hydrogen atom or a methyl group, R 6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms, and R 7 represents a hydrogen atom or a monovalent organic group. ]
本発明の架橋重合体は、(a)成分以外に、水酸基を有する特定の単量体に由来する第二の構造単位(以下、「(b)成分」ともいう)を有することができる。架橋重合体が(b)成分を有する場合、当該架橋重合体を含むバインダーを用いて得られる電極合剤層用組成物の粘度を低減することができる。(b)成分は、例えば、以下の式(1)及び式(2)で表される単量体からなる群より選ばれる1種以上の単量体を重合することにより架橋重合体に導入することができる。又は、式量が200以下であって、(メタ)アクリロイル基及び水酸基を有する単量体を重合することにより架橋重合体に導入してもよい。
CH2=C(R1)COOR2 (1)
[式中、R1は水素原子又はメチル基を表し、R2は水酸基を有する炭素原子数1~8の一価の有機基、(R3O)mH又はR4O[CO(CH2)5O]nHを表す。なお、R3は炭素原子数2~4のアルキレン基を表し、R4は炭素原子数1~8のアルキレン基を表し、mは2~15の整数を表し、nは1~15の整数を表す。]
CH2=C(R5)CONR6R7 (2)
[式中、R5は水素原子又はメチル基を表し、R6は水酸基又は炭素原子数1~8のヒドロキシアルキル基を表し、R7は水素原子又は1価の有機基を表す。] <Second structural unit>
The crosslinked polymer of the present invention can have a second structural unit (hereinafter, also referred to as “component (b)”) derived from a specific monomer having a hydroxyl group, in addition to the component (a). When the crosslinked polymer has the component (b), the viscosity of the composition for electrode mixture layer obtained by using the binder containing the crosslinked polymer can be reduced. The component (b) is introduced into the crosslinked polymer by polymerizing, for example, at least one monomer selected from the group consisting of monomers represented by the following formulas (1) and (2). be able to. Alternatively, it may be introduced into the crosslinked polymer by polymerizing a monomer having a formula weight of 200 or less and having a (meth)acryloyl group and a hydroxyl group.
CH 2 =C(R 1 )COOR 2 (1)
[In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms, (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H. In addition, R 3 represents an alkylene group having 2 to 4 carbon atoms, R 4 represents an alkylene group having 1 to 8 carbon atoms, m represents an integer of 2 to 15, and n represents an integer of 1 to 15. Represent ]
CH 2 =C(R 5 )CONR 6 R 7 (2)
[In the formula, R 5 represents a hydrogen atom or a methyl group, R 6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms, and R 7 represents a hydrogen atom or a monovalent organic group. ]
上記式(1)で表される単量体は、水酸基を有する(メタ)アクリレート化合物である。R2が水酸基を有する炭素原子数1~8の一価の有機基である場合、当該水酸基の数は、1個のみでもよいし、2個以上であってもよい。上記一価の有機基としては、特段制限されるものではないが、例えば、直鎖状、分岐状または環状構造を有していてもよいアルキル基、並びに、アリール基及びアルコキシアルキル基等が挙げられる。また、R2が(R3O)mH又はR4O[CO(CH2)5O]nHである場合、R3又はR4が表すアルキレン基は、直鎖状であってもよいし分岐状であってもよい。
The monomer represented by the above formula (1) is a (meth)acrylate compound having a hydroxyl group. When R 2 is a monovalent organic group having 1 to 8 carbon atoms having a hydroxyl group, the number of the hydroxyl group may be only one, or may be two or more. The monovalent organic group is not particularly limited, and examples thereof include an alkyl group which may have a linear, branched or cyclic structure, and an aryl group and an alkoxyalkyl group. Be done. When R 2 is (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H, the alkylene group represented by R 3 or R 4 may be linear. It may be branched.
上記式(1)で表される単量体としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチル(メタ)アクリレート等の炭素原子数1~8のヒドロキシアルキル基を有するヒドロキシアルキル(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート及びポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;グリセリンモノ(メタ)アクリレート等のジヒドロキシアルキル(メタ)アクリレート;カプロラクトン変性ヒドロキシメタクリレート(ダイセル社製、商品名「プラクセルFM1」、「プラクセルFM5」等)、カプロラクトン変性ヒドロキシアクリレート(ダイセル社製、商品名「プラクセルFA1」、「プラクセルFA10L」等)等が挙げられる。上記式(1)で表される単量体は、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the monomer represented by the above formula (1) include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyhexyl (meth)acrylate and hydroxyoctyl (meth). Hydroxyalkyl (meth)acrylate having a hydroxyalkyl group having 1 to 8 carbon atoms such as acrylate; polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, polybutylene glycol mono(meth)acrylate and polyethylene glycol- Polyalkylene glycol mono(meth)acrylates such as polypropylene glycol mono(meth)acrylate; Dihydroxyalkyl (meth)acrylates such as glycerin mono(meth)acrylate; Caprolactone modified hydroxymethacrylate (trade name "Placcel FM1" manufactured by Daicel Corp., " Placcel FM5" and the like), caprolactone-modified hydroxyacrylate (manufactured by Daicel, trade names "Plaxel FA1", "Plaxel FA10L", etc.), and the like. As the monomer represented by the above formula (1), one of these may be used alone, or two or more thereof may be used in combination.
上記式(2)で表される単量体は、水酸基又は炭素原子数1~8のヒドロキシアルキル基を有する(メタ)アクリルアミド誘導体である。式(2)において、R7は水素原子又は1価の有機基を表す。上記1価の有機基としては、特段制限されるものではないが、例えば、直鎖状、分岐状または環状構造を有していてもよいアルキル基、並びに、アリール基及びアルコキシアルキル基等が挙げられ、炭素原子数1~8の有機基であることが好ましい。その他に、R7は、水酸基又は炭素原子数1~8のヒドロキシアルキル基であってもよい。
The monomer represented by the above formula (2) is a (meth)acrylamide derivative having a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms. In the formula (2), R 7 represents a hydrogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, and examples thereof include an alkyl group which may have a linear, branched or cyclic structure, an aryl group and an alkoxyalkyl group. It is preferably an organic group having 1 to 8 carbon atoms. In addition, R 7 may be a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms.
上記式(2)で表される単量体としては、例えば、ヒドロキシ(メタ)アクリルアミド;N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド、N-ヒドロキシへキシル(メタ)アクリルアミド及びN-ヒドロキシオクチル(メタ)アクリルアミド、N-メチルヒドロキシエチル(メタ)アクリルアミド及びN-エチルヒドロキシエチル(メタ)アクリルアミド等の炭素原子数1~8のヒドロキシアルキル基を有する(メタ)アクリルアミド誘導体;N,N-ジヒドロキシエチル(メタ)アクリルアミド及びN,N-ジヒドロキシエチル(メタ)アクリルアミド等のN,N-ジ-ヒドロキシアルキル(メタ)アクリルアミド等が挙げられる。上記式(2)で表される単量体は、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the monomer represented by the above formula (2) include hydroxy(meth)acrylamide; N-hydroxyethyl(meth)acrylamide, N-hydroxypropyl(meth)acrylamide, N-hydroxybutyl(meth)acrylamide, Hydroxyalkyl groups having 1 to 8 carbon atoms such as N-hydroxyhexyl (meth)acrylamide, N-hydroxyoctyl (meth)acrylamide, N-methylhydroxyethyl (meth)acrylamide and N-ethylhydroxyethyl (meth)acrylamide (Meth)acrylamide derivative having: N,N-dihydroxyethyl(meth)acrylamide and N,N-dihydroxyethyl(meth)acrylamide such as N,N-dihydroxyethyl(meth)acrylamide. As the monomer represented by the above formula (2), one of these may be used alone, or two or more thereof may be used in combination.
式量が200以下であって、(メタ)アクリロイル基及び水酸基を有する単量体としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチルアクリレート等のヒドロキシアルキル(メタ)アクリレート;ジエチレングリコールモノ(メタ)アクリレート及びジプロピレングリコールモノアクリレート等のジアルキレングリコールモノ(メタ)アクリレート;N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド、N-ヒドロキシへキシル(メタ)アクリルアミド及びN-ヒドロキシオクチル(メタ)アクリルアミド等の炭素原子数1~8のヒドロキシアルキル基を有する(メタ)アクリルアミド誘導体;N-メチロール(メタ)アクリルアミド等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the monomer having a formula weight of 200 or less and having a (meth)acryloyl group and a hydroxyl group include, for example, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyhexyl ( Hydroxyalkyl (meth)acrylates such as (meth)acrylate and hydroxyoctyl acrylate; Dialkylene glycol mono(meth)acrylates such as diethylene glycol mono(meth)acrylate and dipropylene glycol monoacrylate; N-hydroxyethyl (meth)acrylamide, N- Having a hydroxyalkyl group having 1 to 8 carbon atoms such as hydroxypropyl (meth)acrylamide, N-hydroxybutyl (meth)acrylamide, N-hydroxyhexyl (meth)acrylamide and N-hydroxyoctyl (meth)acrylamide (meta) ) Acrylamide derivative; N-methylol (meth)acrylamide and the like can be mentioned, and one of these may be used alone, or two or more thereof may be used in combination.
第二の構造単位としては、電極合剤層用組成物の粘度低減効果に優れる点で、炭素原子数1~8のヒドロキシアルキル基を有するヒドロキシアルキル(メタ)アクリレート、又は式量が200以下のヒドロキシアルキル(メタ)アクリレートが好ましい。より好ましくは、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート及びヒドロキシブチル(メタ)アクリレートである。
The second structural unit is a hydroxyalkyl (meth)acrylate having a hydroxyalkyl group having 1 to 8 carbon atoms, or a compound having a formula weight of 200 or less, from the viewpoint of excellent viscosity reducing effect of the composition for electrode mixture layer. Hydroxyalkyl (meth)acrylate is preferred. More preferred are hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate and hydroxybutyl (meth)acrylate.
架橋重合体における(b)成分の含有量は、架橋重合体の全構造単位に対して0.5質量%以上含むことができる。(b)成分の含有量が0.5質量%以上であれば、電極合剤層用組成物(電極スラリー)の粘度を十分低くすることができ、良好な塗工性を確保することが可能となる。下限は、1.0質量%以上でもよく、3.0質量%以上でもよく、5.0質量%以上でもよく、10質量%以上でもよい。また、(b)成分の含有量が50質量%以下であれば、結果として(a)成分の量を確保することが可能となり、電極合剤層用組成物(電極スラリー)の分散安定性を十分なものとすることができる。上限は、40質量%以下でもよく、30質量%以下でもよく、20質量%以下でもよい。範囲としては、こうした下限及び上限を適宜組み合わせた範囲とすることができるが、例えば、0.5質量%以上、50質量%以下であり、また例えば1.0質量%以上、50質量%以下であり、また例えば1.0質量%以上、30質量%以下などとすることができる。
The content of the component (b) in the crosslinked polymer can be 0.5% by mass or more based on the total structural units of the crosslinked polymer. When the content of the component (b) is 0.5% by mass or more, the viscosity of the composition for electrode mixture layer (electrode slurry) can be sufficiently lowered, and good coatability can be secured. Becomes The lower limit may be 1.0 mass% or more, 3.0 mass% or more, 5.0 mass% or more, and 10 mass% or more. Further, when the content of the component (b) is 50% by mass or less, as a result, the amount of the component (a) can be secured, and the dispersion stability of the composition for electrode mixture layer (electrode slurry) can be improved. Can be sufficient. The upper limit may be 40% by mass or less, 30% by mass or less, and 20% by mass or less. The range may be a range in which the lower limit and the upper limit are appropriately combined, and is, for example, 0.5% by mass or more and 50% by mass or less, or, for example, 1.0% by mass or more and 50% by mass or less. It can be set to 1.0% by mass or more and 30% by mass or less.
<その他の構造単位>
本架橋重合体は、(a)成分及び(b)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(c)成分」ともいう。)を含むことができる。(c)成分としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、または(b)成分以外の非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、または(b)成分以外の非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。これらの内でも、(c)成分としては、耐屈曲性良好な電極が得られる観点から非イオン性のエチレン性不飽和単量体に由来する構造単位が好ましく、バインダーの結着性が優れる点で(メタ)アクリルアミド及びその誘導体、並びに、ニトリル基含有エチレン性不飽和単量体等が好ましい。また、(c)成分として水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体に由来する構造単位を導入した場合、電極材料と強い相互作用を奏することができ、活物質に対して良好な結着性を発揮することができる。これにより、堅固で一体性の良好な電極合剤層を得ることができるため好ましい。特に脂環構造含有エチレン性不飽和単量体に由来する構造単位が好ましい。 <Other structural units>
The cross-linked polymer is a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (a) and the component (b) (hereinafter, also referred to as “component (c)”). ) Can be included. Examples of the component (c) include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a nonionic ethylenic non-ionic compound other than the component (b). Structural units derived from saturated monomers and the like can be mentioned. These structural units include ethylenically unsaturated monomer compounds having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or nonionic ethylenically unsaturated monomers other than component (b). It can be introduced by copolymerizing a monomer containing a body. Among these, as the component (c), a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and the binder has excellent binding properties. (Meth)acrylamide and its derivatives, and nitrile group-containing ethylenically unsaturated monomers are preferred. When a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g/100 ml or less is introduced as the component (c), strong interaction with the electrode material can be achieved, Good binding properties can be exhibited for the active material. This is preferable because it is possible to obtain a firm and good electrode mixture layer. A structural unit derived from an alicyclic structure-containing ethylenically unsaturated monomer is particularly preferable.
本架橋重合体は、(a)成分及び(b)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(c)成分」ともいう。)を含むことができる。(c)成分としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、または(b)成分以外の非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、または(b)成分以外の非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。これらの内でも、(c)成分としては、耐屈曲性良好な電極が得られる観点から非イオン性のエチレン性不飽和単量体に由来する構造単位が好ましく、バインダーの結着性が優れる点で(メタ)アクリルアミド及びその誘導体、並びに、ニトリル基含有エチレン性不飽和単量体等が好ましい。また、(c)成分として水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体に由来する構造単位を導入した場合、電極材料と強い相互作用を奏することができ、活物質に対して良好な結着性を発揮することができる。これにより、堅固で一体性の良好な電極合剤層を得ることができるため好ましい。特に脂環構造含有エチレン性不飽和単量体に由来する構造単位が好ましい。 <Other structural units>
The cross-linked polymer is a structural unit derived from another ethylenically unsaturated monomer copolymerizable with the component (a) and the component (b) (hereinafter, also referred to as “component (c)”). ) Can be included. Examples of the component (c) include an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, or a nonionic ethylenic non-ionic compound other than the component (b). Structural units derived from saturated monomers and the like can be mentioned. These structural units include ethylenically unsaturated monomer compounds having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or nonionic ethylenically unsaturated monomers other than component (b). It can be introduced by copolymerizing a monomer containing a body. Among these, as the component (c), a structural unit derived from a nonionic ethylenically unsaturated monomer is preferable from the viewpoint of obtaining an electrode having good bending resistance, and the binder has excellent binding properties. (Meth)acrylamide and its derivatives, and nitrile group-containing ethylenically unsaturated monomers are preferred. When a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g/100 ml or less is introduced as the component (c), strong interaction with the electrode material can be achieved, Good binding properties can be exhibited for the active material. This is preferable because it is possible to obtain a firm and good electrode mixture layer. A structural unit derived from an alicyclic structure-containing ethylenically unsaturated monomer is particularly preferable.
(c)成分の割合は、架橋重合体の全構造単位に対し、0質量%以上、49.5質量%以下とすることができる。(c)成分の割合は、1質量%以上、40質量%以下であってもよく、2質量%以上、40質量%以下であってもよく、2質量%以上、30質量%以下であってもよく、5質量%以上、30質量%以下であってもよい。また、架橋重合体の全構造単位に対して(c)成分を1質量%以上含む場合、電解液への親和性が向上するため、リチウムイオン伝導性が向上する効果も期待できる。
The ratio of the component (c) can be 0% by mass or more and 49.5% by mass or less based on the total structural units of the crosslinked polymer. The proportion of the component (c) may be 1% by mass or more and 40% by mass or less, 2% by mass or more and 40% by mass or less, and 2% by mass or more and 30% by mass or less. It may be 5% by mass or more and 30% by mass or less. Further, when the component (c) is contained in an amount of 1% by mass or more based on the total structural units of the crosslinked polymer, the affinity for the electrolytic solution is improved, and the effect of improving lithium ion conductivity can also be expected.
(メタ)アクリルアミド誘導体としては、例えば、イソプロピル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド化合物;N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド等のN-アルコキシアルキル(メタ)アクリルアミド化合物;ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド化合物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the (meth)acrylamide derivative include N-alkyl(meth)acrylamide compounds such as isopropyl(meth)acrylamide, t-butyl(meth)acrylamide; Nn-butoxymethyl(meth)acrylamide, N-isobutoxymethyl. N-alkoxyalkyl(meth)acrylamide compounds such as (meth)acrylamide; N,N-dialkyl(meth)acrylamide compounds such as dimethyl(meth)acrylamide, diethyl(meth)acrylamide, and the like. They may be used alone or in combination of two or more.
ニトリル基含有エチレン性不飽和単量体としては、例えば、(メタ)アクロリニトリル;(メタ)アクリル酸シアノメチル、(メタ)アクリル酸シアノエチル等の(メタ)アクリル酸シアノアルキルエステル化合物;4-シアノスチレン、4-シアノ-α-メチルスチレン等のシアノ基含有不飽和芳香族化合物;シアン化ビニリデン等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the nitrile group-containing ethylenically unsaturated monomer include (meth)acrylonitrile; cyanoalkyl (meth)acrylate compounds such as cyanomethyl (meth)acrylate and cyanoethyl (meth)acrylate; 4-cyanostyrene Cyano group-containing unsaturated aromatic compounds such as 4-cyano-α-methylstyrene; vinylidene cyanide and the like. One of these may be used alone, or two or more thereof may be used in combination. May be used.
脂環構造含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸t-ブチルシクロヘキシル、(メタ)アクリル酸シクロデシル及び(メタ)アクリル酸シクロドデシル等の脂肪族置換基を有していてもよい(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、並びに、シクロヘキサンジメタノールモノ(メタ)アクリレート及びシクロデカンジメタノールモノ(メタ)アクリレート等のシクロアルキルポリアルコールモノ(メタ)アクリレート等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましい。
Examples of the alicyclic structure-containing ethylenically unsaturated monomer include cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, and (meth ) A cycloalkyl ester of (meth)acrylic acid which may have an aliphatic substituent such as cyclodecyl acrylate and cyclododecyl (meth)acrylate; isomethanyl (meth)acrylate, adamantyl (meth)acrylate, (meth) ) Dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and cyclohexanedimethanol mono(meth)acrylate and cyclodecanedimethanol mono(meth)acrylate Examples thereof include cycloalkyl polyalcohol mono(meth)acrylate, and one of these may be used alone, or two or more thereof may be used in combination. Among the above, a compound having an acryloyl group as a polymerizable functional group is preferable in that a polymer having a long primary chain length can be obtained because of its high polymerization rate and the binding force of the binder is improved.
その他の非イオン性のエチレン性不飽和単量体としては、例えば(メタ)アクリル酸エステルを用いてもよい。(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル及び(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;
(メタ)アクリル酸フェニル、(メタ)アクリル酸フェニルメチル、(メタ)アクリル酸フェニルエチル等の芳香族(メタ)アクリル酸エステル化合物;
(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル化合物;等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
活物質との密着性及びサイクル特性の観点からは、芳香族(メタ)アクリル酸エステル化合物を好ましく用いることができる。また、リチウムイオン伝導性及びハイレート特性がより向上する観点からは、(メタ)アクリル酸アルコキシアルキルエステル化合物等のエーテル結合を有する化合物が好ましく、(メタ)アクリル酸2-メトキシエチルがより好ましい。 As the other nonionic ethylenically unsaturated monomer, for example, (meth)acrylic acid ester may be used. Examples of the (meth)acrylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. (Meth)acrylic acid alkyl ester compound;
Aromatic (meth)acrylate compounds such as phenyl (meth)acrylate, phenylmethyl (meth)acrylate, and phenylethyl (meth)acrylate;
(Meth)acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth)acrylic acid and 2-ethoxyethyl (meth)acrylic acid; and the like, and one of these may be used alone. However, two or more kinds may be used in combination.
From the viewpoint of adhesion to the active material and cycle characteristics, an aromatic (meth)acrylic acid ester compound can be preferably used. Further, from the viewpoint of further improving lithium ion conductivity and high rate characteristics, a compound having an ether bond such as a (meth)acrylic acid alkoxyalkyl ester compound is preferable, and 2-methoxyethyl (meth)acrylic acid is more preferable.
(メタ)アクリル酸フェニル、(メタ)アクリル酸フェニルメチル、(メタ)アクリル酸フェニルエチル等の芳香族(メタ)アクリル酸エステル化合物;
(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル化合物;等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
活物質との密着性及びサイクル特性の観点からは、芳香族(メタ)アクリル酸エステル化合物を好ましく用いることができる。また、リチウムイオン伝導性及びハイレート特性がより向上する観点からは、(メタ)アクリル酸アルコキシアルキルエステル化合物等のエーテル結合を有する化合物が好ましく、(メタ)アクリル酸2-メトキシエチルがより好ましい。 As the other nonionic ethylenically unsaturated monomer, for example, (meth)acrylic acid ester may be used. Examples of the (meth)acrylic acid ester include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. (Meth)acrylic acid alkyl ester compound;
Aromatic (meth)acrylate compounds such as phenyl (meth)acrylate, phenylmethyl (meth)acrylate, and phenylethyl (meth)acrylate;
(Meth)acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth)acrylic acid and 2-ethoxyethyl (meth)acrylic acid; and the like, and one of these may be used alone. However, two or more kinds may be used in combination.
From the viewpoint of adhesion to the active material and cycle characteristics, an aromatic (meth)acrylic acid ester compound can be preferably used. Further, from the viewpoint of further improving lithium ion conductivity and high rate characteristics, a compound having an ether bond such as a (meth)acrylic acid alkoxyalkyl ester compound is preferable, and 2-methoxyethyl (meth)acrylic acid is more preferable.
非イオン性のエチレン性不飽和単量体の中でも、重合速度が速いために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点でアクリロイル基を有する化合物が好ましい。また、非イオン性のエチレン性不飽和単量体としては、得られる電極の耐屈曲性が良好となる点でホモポリマーのガラス転移温度(Tg)が0℃以下の化合物が好ましい。
Among the nonionic ethylenically unsaturated monomers, a compound having an acryloyl group is preferable in that a polymer having a long primary chain length can be obtained because of its high polymerization rate and the binding force of the binder is good. As the nonionic ethylenically unsaturated monomer, a compound having a homopolymer glass transition temperature (Tg) of 0° C. or lower is preferable in that the obtained electrode has good bending resistance.
架橋重合体は塩であってもよい。塩の種類としては特に限定しないが、リチウム、ナトリウム、カリウム等のアルカリ金属塩;カルシウム塩及びバリウム塩等のアルカリ土類金属塩;マグネシウム塩、アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びマグネシウム塩が好ましく、アルカリ金属塩がより好ましい。
The cross-linked polymer may be a salt. The type of salt is not particularly limited, but alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as calcium salt and barium salt; other metal salts such as magnesium salt and aluminum salt; ammonium salt and organic salt Examples thereof include amine salts. Among these, alkali metal salts and magnesium salts are preferable, and alkali metal salts are more preferable, because they are unlikely to adversely affect battery characteristics.
<架橋重合体の態様>
本発明の架橋重合体における架橋方法は特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
重合体が架橋構造を有することにより、当該重合体又はその塩を含むバインダーは、優れた結着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。 <Aspect of Crosslinked Polymer>
The cross-linking method in the cross-linked polymer of the present invention is not particularly limited, and examples thereof include the following method.
1) Copolymerization of crosslinkable monomer 2) Utilizing chain transfer to polymer chain during radical polymerization 3) After synthesizing a polymer having a reactive functional group, postcrosslinking by adding a crosslinking agent if necessary Since the polymer has a crosslinked structure, the binder containing the polymer or a salt thereof can have excellent binding force. Among the above methods, the method of copolymerizing a crosslinkable monomer is preferable because the operation is simple and the degree of crosslinking can be easily controlled.
本発明の架橋重合体における架橋方法は特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
3)反応性官能基を有する重合体を合成後、必要に応じて架橋剤を添加して後架橋
重合体が架橋構造を有することにより、当該重合体又はその塩を含むバインダーは、優れた結着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。 <Aspect of Crosslinked Polymer>
The cross-linking method in the cross-linked polymer of the present invention is not particularly limited, and examples thereof include the following method.
1) Copolymerization of crosslinkable monomer 2) Utilizing chain transfer to polymer chain during radical polymerization 3) After synthesizing a polymer having a reactive functional group, postcrosslinking by adding a crosslinking agent if necessary Since the polymer has a crosslinked structure, the binder containing the polymer or a salt thereof can have excellent binding force. Among the above methods, the method of copolymerizing a crosslinkable monomer is preferable because the operation is simple and the degree of crosslinking can be easily controlled.
<架橋性単量体>
架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。 <Crosslinkable monomer>
Examples of the crosslinkable monomer include polyfunctional polymerizable monomers having two or more polymerizable unsaturated groups, and monomers having self-crosslinkable crosslinkable functional groups such as hydrolyzable silyl groups. Can be mentioned.
架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。 <Crosslinkable monomer>
Examples of the crosslinkable monomer include polyfunctional polymerizable monomers having two or more polymerizable unsaturated groups, and monomers having self-crosslinkable crosslinkable functional groups such as hydrolyzable silyl groups. Can be mentioned.
上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすい点で多官能アルケニル化合物が好ましく、分子内に2個以上のアリルエーテル基を有する多官能アリルエーテル化合物が特に好ましい。
The polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth)acryloyl group and an alkenyl group in the molecule, and is a polyfunctional (meth)acrylate compound, a polyfunctional alkenyl compound, ( Examples thereof include compounds having both a (meth)acryloyl group and an alkenyl group. These compounds may be used alone or in combination of two or more. Among these, a polyfunctional alkenyl compound is preferable in that a uniform crosslinked structure is easily obtained, and a polyfunctional allyl ether compound having two or more allyl ether groups in the molecule is particularly preferable.
多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類等を挙げることができる。
Examples of the polyfunctional (meth)acrylate compound include ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di( Di(meth)acrylates of dihydric alcohols such as (meth)acrylate; trimethylolpropane tri(meth)acrylate, trimethylolpropane ethylene oxide modified tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri( Poly(meth)acrylates such as tri(meth)acrylates of trihydric or higher polyhydric alcohols such as (meth)acrylates and pentaerythritol tetra(meth)acrylates; poly(meth)acrylates such as tetra(meth)acrylate; methylenebisacrylamide, hydroxyethylenebisacrylamide, etc. Examples thereof include bisamides.
多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。
Examples of the polyfunctional alkenyl compound include trimethylolpropane diallyl ether, trimethylolpropane triallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, polyallyl saccharose and the like; diallyl phthalate and the like. Examples of the polyfunctional allyl compound: a polyfunctional vinyl compound such as divinylbenzene.
(メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。
Examples of the compound having both a (meth)acryloyl group and an alkenyl group include allyl (meth)acrylate, isopropenyl (meth)acrylate, butenyl (meth)acrylate, pentenyl (meth)acrylate, and (meth)acrylic acid. 2-(2-vinyloxyethoxy)ethyl and the like can be mentioned.
上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メチロール(メタ)アクリルアミド、N-メトキシアルキル(メタ)アクリレート等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
Specific examples of the monomer having a crosslinkable functional group capable of self-crosslinking include hydrolyzable silyl group-containing vinyl monomer, N-methylol (meth)acrylamide, N-methoxyalkyl (meth)acrylate and the like. Is mentioned. These compounds may be used alone or in combination of two or more.
加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。
The hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group. For example, vinylsilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane and vinyldimethylmethoxysilane; silyl compounds such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate and methyldimethoxysilylpropyl acrylate. Group-containing acrylic acid ester; silyl group-containing methacrylic acid ester such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyldimethoxysilylpropyl methacrylate, dimethylmethoxysilylpropyl methacrylate; trimethoxysilylpropyl vinyl ether, etc. Examples of the silyl group-containing vinyl ethers include silyl group-containing vinyl esters such as trimethoxysilyl vinyl undecanoate.
架橋重合体が架橋性単量体により架橋されたものである場合、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100質量部に対して好ましくは0.1質量部以上2.0質量部以下であり、より好ましくは0.3質量部以上1.5質量部以下であり、さらに好ましくは0.5質量部以上1.5質量部以下である。架橋性単量体の使用量が0.1質量部以上であれば結着性及び電極スラリーの安定性がより良好となる点で好ましい。2.0質量部以下であれば、架橋重合体の安定性が高くなる傾向がある。
同様に、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量に対して0.02~0.7モル%であることが好ましく、0.03~0.4モル%であることがより好ましい。 When the cross-linked polymer is cross-linked with a cross-linkable monomer, the amount of the cross-linkable monomer used is 100 total amount of monomers other than the cross-linkable monomer (non-cross-linkable monomer). It is preferably 0.1 parts by mass or more and 2.0 parts by mass or less, more preferably 0.3 parts by mass or more and 1.5 parts by mass or less, further preferably 0.5 parts by mass or more and 1 part by mass with respect to parts by mass. It is 0.5 parts by mass or less. When the amount of the crosslinkable monomer used is 0.1 part by mass or more, the binding property and the stability of the electrode slurry are improved, which is preferable. If it is 2.0 parts by mass or less, the stability of the crosslinked polymer tends to be high.
Similarly, the amount of the crosslinkable monomer used is 0.02 to 0.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is more preferably 0.03 to 0.4 mol %.
同様に、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量に対して0.02~0.7モル%であることが好ましく、0.03~0.4モル%であることがより好ましい。 When the cross-linked polymer is cross-linked with a cross-linkable monomer, the amount of the cross-linkable monomer used is 100 total amount of monomers other than the cross-linkable monomer (non-cross-linkable monomer). It is preferably 0.1 parts by mass or more and 2.0 parts by mass or less, more preferably 0.3 parts by mass or more and 1.5 parts by mass or less, further preferably 0.5 parts by mass or more and 1 part by mass with respect to parts by mass. It is 0.5 parts by mass or less. When the amount of the crosslinkable monomer used is 0.1 part by mass or more, the binding property and the stability of the electrode slurry are improved, which is preferable. If it is 2.0 parts by mass or less, the stability of the crosslinked polymer tends to be high.
Similarly, the amount of the crosslinkable monomer used is 0.02 to 0.7 mol% with respect to the total amount of the monomers other than the crosslinkable monomer (non-crosslinkable monomer). It is more preferably 0.03 to 0.4 mol %.
<架橋重合体の粒子径>
電極合剤層用組成物において、架橋重合体が大粒径の塊(二次凝集体)として存在することなく、適度な粒径を有する水膨潤粒子として良好に分散している場合、当該架橋重合体を含むバインダーが良好な結着性能を発揮し得るため好ましい。 <Particle size of cross-linked polymer>
In the composition for electrode mixture layer, when the crosslinked polymer does not exist as a large-sized lump (secondary aggregate) and is well dispersed as water-swelling particles having an appropriate particle size, A binder containing a polymer is preferable because it can exhibit good binding performance.
電極合剤層用組成物において、架橋重合体が大粒径の塊(二次凝集体)として存在することなく、適度な粒径を有する水膨潤粒子として良好に分散している場合、当該架橋重合体を含むバインダーが良好な結着性能を発揮し得るため好ましい。 <Particle size of cross-linked polymer>
In the composition for electrode mixture layer, when the crosslinked polymer does not exist as a large-sized lump (secondary aggregate) and is well dispersed as water-swelling particles having an appropriate particle size, A binder containing a polymer is preferable because it can exhibit good binding performance.
本発明の架橋重合体又はその塩は、該架橋重合体が有するカルボキシル基に基づく中和度が80~100モル%であるものを水中に分散させた際の粒子径(水膨潤粒子径)が、体積基準メジアン径で0.1μm以上、10.0μm以下の範囲にあることが好ましい。粒子径が0.1μm以上、10.0μm以下の範囲であれば、電極合剤層用組成物中において好適な大きさで均一に存在するため、電極合剤層用組成物の安定性が高く、優れた結着性を発揮することが可能となる。粒子径が10.0μmを超えると、上記の通り結着性が不十分となる虞がある。また、平滑性な塗面が得られにくい点で、塗工性が不十分となる虞がある。一方、粒子径が0.1μm未満の場合には、安定製造性の観点において懸念される。上記粒子径の下限は、0.2μm以上であってもよく、0.3μm以上であってもよく、0.5μm以上であってもよい。粒子径の上限は9.0μm以下であってもよく、8.0μm以下であってもよく、7.0μm以下であってもよく、5.0μm以下であってもよく、3.0μm以下であってもよい。粒子径の範囲は、上記下限値および上限値を適宜組合わせて設定することができ、例えば、0.1μm以上、9.0μm以下であってもよく、0.2μm以上、8.0μm以下であってもよく、0.3μm以上、5.0μm以下であってもよい。
なお、上記水膨潤粒子径は、本明細書実施例に記載の方法により測定することができる。 The crosslinked polymer or a salt thereof of the present invention has a particle size (water-swelling particle size) when a polymer having a degree of neutralization based on a carboxyl group of the crosslinked polymer of 80 to 100 mol% is dispersed in water. The volume-based median diameter is preferably in the range of 0.1 μm or more and 10.0 μm or less. When the particle size is in the range of 0.1 μm or more and 10.0 μm or less, the electrode mixture layer composition has a high stability because the electrode mixture layer composition is uniformly present in a suitable size. It becomes possible to exhibit excellent binding properties. If the particle size exceeds 10.0 μm, the binding property may be insufficient as described above. In addition, since it is difficult to obtain a smooth coated surface, the coatability may be insufficient. On the other hand, when the particle size is less than 0.1 μm, there is concern from the viewpoint of stable manufacturability. The lower limit of the particle size may be 0.2 μm or more, 0.3 μm or more, or 0.5 μm or more. The upper limit of the particle diameter may be 9.0 μm or less, may be 8.0 μm or less, may be 7.0 μm or less, may be 5.0 μm or less, and may be 3.0 μm or less. It may be. The range of the particle diameter can be set by appropriately combining the lower limit value and the upper limit value described above, and may be, for example, 0.1 μm or more and 9.0 μm or less, or 0.2 μm or more and 8.0 μm or less. It may be present or may be 0.3 μm or more and 5.0 μm or less.
The water-swollen particle size can be measured by the method described in Examples of this specification.
なお、上記水膨潤粒子径は、本明細書実施例に記載の方法により測定することができる。 The crosslinked polymer or a salt thereof of the present invention has a particle size (water-swelling particle size) when a polymer having a degree of neutralization based on a carboxyl group of the crosslinked polymer of 80 to 100 mol% is dispersed in water. The volume-based median diameter is preferably in the range of 0.1 μm or more and 10.0 μm or less. When the particle size is in the range of 0.1 μm or more and 10.0 μm or less, the electrode mixture layer composition has a high stability because the electrode mixture layer composition is uniformly present in a suitable size. It becomes possible to exhibit excellent binding properties. If the particle size exceeds 10.0 μm, the binding property may be insufficient as described above. In addition, since it is difficult to obtain a smooth coated surface, the coatability may be insufficient. On the other hand, when the particle size is less than 0.1 μm, there is concern from the viewpoint of stable manufacturability. The lower limit of the particle size may be 0.2 μm or more, 0.3 μm or more, or 0.5 μm or more. The upper limit of the particle diameter may be 9.0 μm or less, may be 8.0 μm or less, may be 7.0 μm or less, may be 5.0 μm or less, and may be 3.0 μm or less. It may be. The range of the particle diameter can be set by appropriately combining the lower limit value and the upper limit value described above, and may be, for example, 0.1 μm or more and 9.0 μm or less, or 0.2 μm or more and 8.0 μm or less. It may be present or may be 0.3 μm or more and 5.0 μm or less.
The water-swollen particle size can be measured by the method described in Examples of this specification.
架橋重合体が未中和若しくは中和度80モル%未満の場合は、アルカリ金属水酸化物等により中和度80~100モル%に中和し、水中に分散させた際の粒子径を測定すればよい。一般に、架橋重合体又はその塩は、粉末または溶液(分散液)の状態では一次粒子が会合、凝集した塊状粒子として存在する場合が多い。上記の水分散させた際の粒子径が上記範囲である場合、当該架橋重合体又はその塩は極めて優れた分散性を有するものであり、中和度80~100モル%に中和して水分散することにより塊状粒子が解れ、ほぼ一次粒子の分散体、若しくは2次凝集体であっても、その粒子径が0.1~10.0μmの範囲内にある、安定な分散状態を形成するものである。
When the crosslinked polymer is unneutralized or has a degree of neutralization of less than 80 mol%, it is neutralized to a degree of neutralization of 80 to 100 mol% with an alkali metal hydroxide and the particle size when dispersed in water is measured. do it. In general, the cross-linked polymer or its salt often exists as aggregated particles in which primary particles are associated and aggregated in a powder or solution (dispersion) state. When the particle size when dispersed in water is within the above range, the crosslinked polymer or a salt thereof has extremely excellent dispersibility and is neutralized to a degree of neutralization of 80 to 100 mol% with water. Agglomerates are unraveled by dispersion, and even if it is a dispersion of almost primary particles or a secondary agglomerate, a stable dispersion state is formed in which the particle diameter is within the range of 0.1 to 10.0 μm. It is a thing.
水膨潤粒子径の体積平均粒子径を個数平均粒子径で除した値である粒子径分布は、結着性及び塗工性の観点から好ましくは10以下であり、より好ましくは5.0以下であり、さらに好ましくは3.0以下であり、一層好ましくは1.5以下である。上記粒子径分布の下限値は、通常は1.0である。
The particle size distribution, which is a value obtained by dividing the volume average particle size of the water swollen particle size by the number average particle size, is preferably 10 or less, more preferably 5.0 or less from the viewpoint of binding property and coatability. Yes, more preferably 3.0 or less, and even more preferably 1.5 or less. The lower limit of the particle size distribution is usually 1.0.
また、本発明の架橋重合体又はその塩の乾燥時における粒子径(乾燥粒子径)は、体積基準メジアン径で0.03μm以上、3μm以下の範囲にあることが好ましい。上記粒子径のより好ましい範囲は0.1μm以上、1μm以下であり、さらに好ましい範囲は0.3μm以上、0.8μm以下である。
The particle size (dry particle size) of the crosslinked polymer of the present invention or a salt thereof when dried is preferably in the range of 0.03 μm or more and 3 μm or less in terms of volume-based median diameter. A more preferable range of the particle diameter is 0.1 μm or more and 1 μm or less, and a further preferable range is 0.3 μm or more and 0.8 μm or less.
架橋重合体又はその塩は、電極合剤層用組成物中において、中和度が20~100モル%となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。上記中和度は50~100モル%であることがより好ましく、60~95モル%であることがさらに好ましい。中和度が20モル%以上の場合、水膨潤性が良好となり分散安定化効果が得やすいという点で好ましい。本明細書では、上記中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体又はその塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。
The crosslinked polymer or a salt thereof has an acid group such as a carboxyl group derived from an ethylenically unsaturated carboxylic acid monomer so that the degree of neutralization is 20 to 100 mol% in the composition for an electrode mixture layer. It is preferably neutralized and used as the salt form. The degree of neutralization is more preferably 50 to 100 mol%, further preferably 60 to 95 mol%. When the degree of neutralization is 20 mol% or more, the water swelling property is good and the dispersion stabilizing effect is easily obtained, which is preferable. In the present specification, the degree of neutralization can be calculated from the charged values of the monomer having an acid group such as a carboxyl group and the neutralizing agent used for neutralization. The degree of neutralization is determined by IR measurement of the powder obtained by drying the crosslinked polymer or a salt thereof at 80° C. for 3 hours under reduced pressure, and the peak derived from the C═O group of the carboxylic acid and the C= of the carboxylate. It can be confirmed from the intensity ratio of the peak derived from the O group.
<架橋重合体の分子量(一次鎖長)>
本発明の架橋重合体は、三次元架橋構造を有し、水などの媒体中でミクロゲルとして存在するものである。一般的に、このような三次元架橋重合体は溶媒に不溶であるため、その分子量を測定することはできない。同様に、架橋重合体の一次鎖長を測定し、定量することも、通常は困難である。 <Molecular weight of cross-linked polymer (primary chain length)>
The crosslinked polymer of the present invention has a three-dimensional crosslinked structure and exists as a microgel in a medium such as water. Generally, such a three-dimensional crosslinked polymer is insoluble in a solvent, and therefore its molecular weight cannot be measured. Similarly, it is usually difficult to measure and quantify the primary chain length of a crosslinked polymer.
本発明の架橋重合体は、三次元架橋構造を有し、水などの媒体中でミクロゲルとして存在するものである。一般的に、このような三次元架橋重合体は溶媒に不溶であるため、その分子量を測定することはできない。同様に、架橋重合体の一次鎖長を測定し、定量することも、通常は困難である。 <Molecular weight of cross-linked polymer (primary chain length)>
The crosslinked polymer of the present invention has a three-dimensional crosslinked structure and exists as a microgel in a medium such as water. Generally, such a three-dimensional crosslinked polymer is insoluble in a solvent, and therefore its molecular weight cannot be measured. Similarly, it is usually difficult to measure and quantify the primary chain length of a crosslinked polymer.
<架橋重合体の水膨潤度>
本明細書では、水膨潤度は架橋重合体又はその塩の乾燥時の重量「(WA)g」、及び当該架橋重合体又はその塩を水で飽和膨潤させた際に吸収される水の量「(WB)g」とから、以下の式(3)に基づいて算出される。
(水膨潤度)={(WA)+(WB)}/(WA) (3) <Water swelling degree of crosslinked polymer>
In the present specification, the degree of water swelling is the weight “(WA) g” of the crosslinked polymer or its salt when dried, and the amount of water absorbed when the crosslinked polymer or its salt is saturated and swollen with water. It is calculated from “(WB)g” based on the following equation (3).
(Water swelling degree)={(WA)+(WB)}/(WA) (3)
本明細書では、水膨潤度は架橋重合体又はその塩の乾燥時の重量「(WA)g」、及び当該架橋重合体又はその塩を水で飽和膨潤させた際に吸収される水の量「(WB)g」とから、以下の式(3)に基づいて算出される。
(水膨潤度)={(WA)+(WB)}/(WA) (3) <Water swelling degree of crosslinked polymer>
In the present specification, the degree of water swelling is the weight “(WA) g” of the crosslinked polymer or its salt when dried, and the amount of water absorbed when the crosslinked polymer or its salt is saturated and swollen with water. It is calculated from “(WB)g” based on the following equation (3).
(Water swelling degree)={(WA)+(WB)}/(WA) (3)
本発明の架橋重合体又はその塩は、pH8における水膨潤度が3.0以上、100以下であることが好ましい。水膨潤度が上記範囲であれば、架橋重合体又はその塩が水媒体中で適度に膨潤するため、電極合剤層を形成する際に、活物質及び集電体への十分な接着面積を確保することが可能となり、結着性が良好となる傾向がある。上記水膨潤度は、例えば4.0以上であってもよく、5.0以上であってもよく、7.0以上であってもよく、10以上であってもよく、15以上であってもよい。水膨潤度が3.0以上の場合、架橋重合体又はその塩が活物質や集電体の表面において広がり、十分な接着面積を確保することができるため、良好な結着性が得られる。pH8における水膨潤度の上限値は、95以下であってもよく、90以下であってもよく、80以下であってもよく、60以下であってもよく、50以下であってもよい。水膨潤度が100を超えると、架橋重合体又はその塩を含む電極合剤層用組成物(電極スラリー)の粘度が高くなる傾向が有り、合剤層の均一性が不足する結果、十分な結着力が得られないことがある。また、電極スラリーの塗工性が低下する虞がある。pH8における水膨潤度の範囲は、上記上限値及び下限値を適宜組合せることにより設定できるが、例えば、4.0以上、100以下であり、また例えば、5.0以上、100以下であり、また例えば、5.0以上、80以下である。
pH8における水膨潤度は、pH8の水中における架橋重合体又はその塩の膨潤度を測定することにより得ることができる。上記pH8の水としては、例えばイオン交換水を使用することができ、必要に応じて適当な酸若しくはアルカリ、又は緩衝液等を用いてpHの値を調整してもよい。測定時のpHは、例えば、8.0±0.5の範囲であり、好ましくは8.0±0.3の範囲であり、より好ましくは8.0±0.2の範囲であり、さらに好ましくは8.0±0.1の範囲である。 The crosslinked polymer or salt thereof of the present invention preferably has a water swelling degree atpH 8 of 3.0 or more and 100 or less. When the degree of water swelling is within the above range, the crosslinked polymer or a salt thereof swells appropriately in an aqueous medium, and therefore, when forming the electrode mixture layer, a sufficient adhesion area to the active material and the current collector is provided. It becomes possible to secure the same, and the binding property tends to be good. The water swelling degree may be, for example, 4.0 or more, 5.0 or more, 7.0 or more, 10 or more, 15 or more. Good. When the degree of water swelling is 3.0 or more, the crosslinked polymer or a salt thereof spreads on the surface of the active material or the current collector, and a sufficient adhesive area can be secured, so that good binding property is obtained. The upper limit of the degree of water swelling at pH 8 may be 95 or less, 90 or less, 80 or less, 60 or less, or 50 or less. When the degree of water swelling exceeds 100, the viscosity of the composition for electrode mixture layer (electrode slurry) containing the crosslinked polymer or a salt thereof tends to increase, resulting in insufficient uniformity of the mixture layer, resulting in sufficient The binding strength may not be obtained. In addition, the coatability of the electrode slurry may be reduced. The range of the degree of water swelling at pH 8 can be set by appropriately combining the upper limit value and the lower limit value, and is, for example, 4.0 or more and 100 or less, or, for example, 5.0 or more and 100 or less, Further, for example, it is 5.0 or more and 80 or less.
The water swelling degree atpH 8 can be obtained by measuring the swelling degree of the crosslinked polymer or its salt in water at pH 8. As the water having a pH of 8, for example, ion-exchanged water can be used, and the pH value may be adjusted by using a suitable acid or alkali, a buffer solution or the like, if necessary. The pH at the time of measurement is, for example, in the range of 8.0±0.5, preferably in the range of 8.0±0.3, and more preferably in the range of 8.0±0.2. The range is preferably 8.0±0.1.
pH8における水膨潤度は、pH8の水中における架橋重合体又はその塩の膨潤度を測定することにより得ることができる。上記pH8の水としては、例えばイオン交換水を使用することができ、必要に応じて適当な酸若しくはアルカリ、又は緩衝液等を用いてpHの値を調整してもよい。測定時のpHは、例えば、8.0±0.5の範囲であり、好ましくは8.0±0.3の範囲であり、より好ましくは8.0±0.2の範囲であり、さらに好ましくは8.0±0.1の範囲である。 The crosslinked polymer or salt thereof of the present invention preferably has a water swelling degree at
The water swelling degree at
尚、当業者であれば、架橋重合体又はその塩の組成及び構造等を制御することにより、その水膨潤度の調整を行うことができる。例えば、架橋重合体に酸性官能基、又は親水性の高い構造単位を導入することにより、水膨潤度を高くすることができる。また、架橋重合体の架橋度を低くすることによっても、通常その水膨潤度は高くなる。
Those skilled in the art can adjust the degree of water swelling by controlling the composition and structure of the crosslinked polymer or its salt. For example, the degree of water swelling can be increased by introducing an acidic functional group or a structural unit having high hydrophilicity into the crosslinked polymer. Further, even if the degree of crosslinking of the crosslinked polymer is lowered, the degree of swelling in water is usually increased.
<架橋重合体の水溶液粘度>
本発明の架橋重合体又はその塩は、3質量%濃度水溶液の粘度が10,000mPa・s以下であることが好ましい。上記3質量%濃度水溶液の粘度は、より好ましくは7,000mPa・s以下であり、さらに好ましくは5,000mPa・s以下であり、一層好ましくは3,000mPa・s以下である。3質量%濃度水溶液の粘度が10,000mPa・s以下であれば、取り扱い性の観点で好適である。3質量%濃度水溶液の粘度の下限値は特段限定されるものではない。下限値は、例えば10mPa・s以上であってもよく、20mPa・s以上であってもよく、50mPa・s以上であってもよく、100mPa・s以上であってもよい。
尚、本明細書では、上記3質量%濃度水溶液の粘度は、液温を25℃とし、B型粘度計を用いて、ローター速度12rpmにおける粘度を測定することにより得られる。 <Aqueous solution viscosity of cross-linked polymer>
The crosslinked polymer or salt thereof of the present invention preferably has a viscosity of a 3% by mass aqueous solution of 10,000 mPa·s or less. The viscosity of the 3% by mass aqueous solution is more preferably 7,000 mPa·s or less, further preferably 5,000 mPa·s or less, and further preferably 3,000 mPa·s or less. When the viscosity of the 3% by mass aqueous solution is 10,000 mPa·s or less, it is suitable from the viewpoint of handleability. The lower limit of the viscosity of the 3% by mass aqueous solution is not particularly limited. The lower limit value may be, for example, 10 mPa·s or more, 20 mPa·s or more, 50 mPa·s or more, and 100 mPa·s or more.
In this specification, the viscosity of the 3% by mass aqueous solution is obtained by measuring the viscosity at a rotor speed of 12 rpm using a B type viscometer at a liquid temperature of 25°C.
本発明の架橋重合体又はその塩は、3質量%濃度水溶液の粘度が10,000mPa・s以下であることが好ましい。上記3質量%濃度水溶液の粘度は、より好ましくは7,000mPa・s以下であり、さらに好ましくは5,000mPa・s以下であり、一層好ましくは3,000mPa・s以下である。3質量%濃度水溶液の粘度が10,000mPa・s以下であれば、取り扱い性の観点で好適である。3質量%濃度水溶液の粘度の下限値は特段限定されるものではない。下限値は、例えば10mPa・s以上であってもよく、20mPa・s以上であってもよく、50mPa・s以上であってもよく、100mPa・s以上であってもよい。
尚、本明細書では、上記3質量%濃度水溶液の粘度は、液温を25℃とし、B型粘度計を用いて、ローター速度12rpmにおける粘度を測定することにより得られる。 <Aqueous solution viscosity of cross-linked polymer>
The crosslinked polymer or salt thereof of the present invention preferably has a viscosity of a 3% by mass aqueous solution of 10,000 mPa·s or less. The viscosity of the 3% by mass aqueous solution is more preferably 7,000 mPa·s or less, further preferably 5,000 mPa·s or less, and further preferably 3,000 mPa·s or less. When the viscosity of the 3% by mass aqueous solution is 10,000 mPa·s or less, it is suitable from the viewpoint of handleability. The lower limit of the viscosity of the 3% by mass aqueous solution is not particularly limited. The lower limit value may be, for example, 10 mPa·s or more, 20 mPa·s or more, 50 mPa·s or more, and 100 mPa·s or more.
In this specification, the viscosity of the 3% by mass aqueous solution is obtained by measuring the viscosity at a rotor speed of 12 rpm using a B type viscometer at a liquid temperature of 25°C.
<架橋重合体又はその塩の製造方法>
架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であるが、生産性の点で沈殿重合及び懸濁重合(逆相懸濁重合)が好ましい。結着性等に関してより良好な性能が得られる点で、沈殿重合、懸濁重合、乳化重合等の不均一系の重合法が好ましく、中でも沈殿重合法がより好ましい。
沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。
尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。 <Method for producing crosslinked polymer or salt thereof>
For the cross-linked polymer, it is possible to use known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization and emulsion polymerization, but from the viewpoint of productivity, precipitation polymerization and suspension polymerization (reverse phase suspension polymerization) ) Is preferred. Heterogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and precipitation polymerization method is more preferable, from the viewpoint of obtaining better performance in terms of binding property and the like.
Precipitation polymerization is a method of producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer that is a raw material but does not substantially dissolve a produced polymer. As the polymerization progresses, the polymer particles become larger due to aggregation and growth, and a dispersion liquid of polymer particles in which primary particles of several tens nm to several hundreds nm are secondarily aggregated to several μm to several tens μm is obtained. Dispersion stabilizers can also be used to control the particle size of the polymer.
The secondary aggregation can be suppressed by selecting a dispersion stabilizer or a polymerization solvent. Generally, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であるが、生産性の点で沈殿重合及び懸濁重合(逆相懸濁重合)が好ましい。結着性等に関してより良好な性能が得られる点で、沈殿重合、懸濁重合、乳化重合等の不均一系の重合法が好ましく、中でも沈殿重合法がより好ましい。
沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。
尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。 <Method for producing crosslinked polymer or salt thereof>
For the cross-linked polymer, it is possible to use known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization and emulsion polymerization, but from the viewpoint of productivity, precipitation polymerization and suspension polymerization (reverse phase suspension polymerization) ) Is preferred. Heterogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferable, and precipitation polymerization method is more preferable, from the viewpoint of obtaining better performance in terms of binding property and the like.
Precipitation polymerization is a method of producing a polymer by carrying out a polymerization reaction in a solvent that dissolves an unsaturated monomer that is a raw material but does not substantially dissolve a produced polymer. As the polymerization progresses, the polymer particles become larger due to aggregation and growth, and a dispersion liquid of polymer particles in which primary particles of several tens nm to several hundreds nm are secondarily aggregated to several μm to several tens μm is obtained. Dispersion stabilizers can also be used to control the particle size of the polymer.
The secondary aggregation can be suppressed by selecting a dispersion stabilizer or a polymerization solvent. Generally, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
沈殿重合の場合、重合溶媒は、使用する単量体の種類等を考慮して水及び各種有機溶剤等から選択される溶媒を使用することができる。より一次鎖長の長い重合体を得るためには、連鎖移動定数の小さい溶媒を使用することが好ましい。
In the case of precipitation polymerization, a solvent selected from water, various organic solvents, etc. can be used as the polymerization solvent in consideration of the types of monomers used. In order to obtain a polymer having a longer primary chain length, it is preferable to use a solvent having a small chain transfer constant.
具体的な重合溶媒としては、メタノール、t-ブチルアルコール、アセトン、メチルエチルケトン、アセトニトリル及びテトラヒドロフラン等の水溶性溶剤の他、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。又は、これらと水との混合溶媒として用いてもよい。本発明において水溶性溶剤とは、20℃における水への溶解度が10g/100mlより大きいものを指す。
上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した重合体微粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、メチルエチルケトン及びアセトニトリルが好ましい。 Specific polymerization solvents include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. These can be used alone or in combination of two or more. Alternatively, they may be used as a mixed solvent of these and water. In the present invention, the water-soluble solvent refers to one having a solubility in water at 20° C. of more than 10 g/100 ml.
Among the above, the formation of coarse particles and the small adhesion to the reactor are good and the polymerization stability is good, and the precipitated polymer particles are difficult to secondary aggregate (or even if secondary aggregation occurs, it is unraveled in an aqueous medium). Methyl ethyl ketone and acetonitrile are preferable in that they are easy), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and that the operation is easy at the time of the step neutralization described later. ..
上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した重合体微粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、メチルエチルケトン及びアセトニトリルが好ましい。 Specific polymerization solvents include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane and n-heptane. These can be used alone or in combination of two or more. Alternatively, they may be used as a mixed solvent of these and water. In the present invention, the water-soluble solvent refers to one having a solubility in water at 20° C. of more than 10 g/100 ml.
Among the above, the formation of coarse particles and the small adhesion to the reactor are good and the polymerization stability is good, and the precipitated polymer particles are difficult to secondary aggregate (or even if secondary aggregation occurs, it is unraveled in an aqueous medium). Methyl ethyl ketone and acetonitrile are preferable in that they are easy), a polymer having a small chain transfer constant and a large degree of polymerization (primary chain length) can be obtained, and that the operation is easy at the time of the step neutralization described later. ..
また、同じく工程中和において中和反応を安定かつ速やかに進行させるため、重合溶媒中に高極性溶媒を少量加えておくことが好ましい。係る高極性溶媒としては、好ましくは水及びメタノールが挙げられる。高極性溶媒の使用量は、媒体の全質量に基づいて好ましくは0.05~20.0質量%であり、より好ましくは0.1~10.0質量%、さらに好ましくは0.1~5.0質量%であり、一層好ましくは0.1~1.0質量%である。高極性溶媒の割合が0.05質量%以上であれば、上記中和反応への効果が認められ、20.0質量%以下であれば重合反応への悪影響も見られない。また、アクリル酸等の親水性の高いエチレン性不飽和カルボン酸単量体の重合では、高極性溶媒を加えた場合には重合速度が向上し、一次鎖長の長い重合体を得やすくなる。高極性溶媒の中でも特に水は上記重合速度を向上させる効果が大きく好ましい。
Similarly, in the process neutralization, it is preferable to add a small amount of a highly polar solvent to the polymerization solvent so that the neutralization reaction proceeds stably and quickly. As such a highly polar solvent, water and methanol are preferably mentioned. The amount of the highly polar solvent used is preferably 0.05 to 20.0% by mass, more preferably 0.1 to 10.0% by mass, and still more preferably 0.1 to 5%, based on the total mass of the medium. It is 0.0% by mass, and more preferably 0.1 to 1.0% by mass. When the proportion of the highly polar solvent is 0.05% by mass or more, the effect on the neutralization reaction is recognized, and when it is 20.0% by mass or less, no adverse effect on the polymerization reaction is observed. In addition, in the polymerization of highly hydrophilic ethylenically unsaturated carboxylic acid monomer such as acrylic acid, when a highly polar solvent is added, the polymerization rate is improved, and a polymer having a long primary chain length is easily obtained. Among the highly polar solvents, water is particularly preferable because it has a large effect of improving the polymerization rate.
架橋重合体又はその塩の製造においては、エチレン性不飽和カルボン酸単量体を含む単量体成分を重合する重合工程を備えることが好ましい。例えば、(a)成分の由来となるエチレン性不飽和カルボン酸単量体を50質量%以上99.5質量%以下、(b)成分の由来となる水酸基を有する特定の単量体を0.5質量%以上50質量%以下、及び(c)成分の由来となる他のエチレン性不飽和単量体を0質量%以上49.5質量%以下含む単量体成分を重合する重合工程を備えることが好ましい。上記水酸基を有する特定の単量体としては、以下の式(1)及び式(2)で表される単量体からなる群より選ばれる1種以上の単量体、並びに、式量が200以下であって、(メタ)アクリロイル基及び水酸基を有する単量体が挙げられる。
CH2=C(R1)COOR2 (1)
[式中、R1は水素原子又はメチル基を表し、R2は水酸基を有する炭素原子数1~8の一価の有機基、(R3O)mH又はR4O[CO(CH2)5O]nHを表す。なお、R3は炭素原子数2~4のアルキレン基を表し、R4は炭素原子数1~8のアルキレン基を表し、mは2~15の整数を表し、nは1~15の整数を表す。]
CH2=C(R5)CONR6R7 (2)
[式中、R5は水素原子又はメチル基を表し、R6は水酸基又は炭素原子数1~8のヒドロキシアルキル基を表し、R7は水素原子又は1価の有機基を表す。] The production of the crosslinked polymer or a salt thereof preferably includes a polymerization step of polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer. For example, 50% by mass or more and 99.5% by mass or less of the ethylenically unsaturated carboxylic acid monomer from which the component (a) is derived, and 0. 5% by mass or more and 50% by mass or less, and a polymerization step of polymerizing a monomer component containing 0% by mass or more and 49.5% by mass or less of another ethylenically unsaturated monomer from which the component (c) is derived Preferably. As the specific monomer having a hydroxyl group, one or more kinds of monomers selected from the group consisting of monomers represented by the following formulas (1) and (2), and a formula weight of 200 The following are monomers having a (meth)acryloyl group and a hydroxyl group.
CH 2 =C(R 1 )COOR 2 (1)
[In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms, (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H. In addition, R 3 represents an alkylene group having 2 to 4 carbon atoms, R 4 represents an alkylene group having 1 to 8 carbon atoms, m represents an integer of 2 to 15, and n represents an integer of 1 to 15. Represent ]
CH 2 =C(R 5 )CONR 6 R 7 (2)
[In the formula, R 5 represents a hydrogen atom or a methyl group, R 6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms, and R 7 represents a hydrogen atom or a monovalent organic group. ]
CH2=C(R1)COOR2 (1)
[式中、R1は水素原子又はメチル基を表し、R2は水酸基を有する炭素原子数1~8の一価の有機基、(R3O)mH又はR4O[CO(CH2)5O]nHを表す。なお、R3は炭素原子数2~4のアルキレン基を表し、R4は炭素原子数1~8のアルキレン基を表し、mは2~15の整数を表し、nは1~15の整数を表す。]
CH2=C(R5)CONR6R7 (2)
[式中、R5は水素原子又はメチル基を表し、R6は水酸基又は炭素原子数1~8のヒドロキシアルキル基を表し、R7は水素原子又は1価の有機基を表す。] The production of the crosslinked polymer or a salt thereof preferably includes a polymerization step of polymerizing a monomer component containing an ethylenically unsaturated carboxylic acid monomer. For example, 50% by mass or more and 99.5% by mass or less of the ethylenically unsaturated carboxylic acid monomer from which the component (a) is derived, and 0. 5% by mass or more and 50% by mass or less, and a polymerization step of polymerizing a monomer component containing 0% by mass or more and 49.5% by mass or less of another ethylenically unsaturated monomer from which the component (c) is derived Preferably. As the specific monomer having a hydroxyl group, one or more kinds of monomers selected from the group consisting of monomers represented by the following formulas (1) and (2), and a formula weight of 200 The following are monomers having a (meth)acryloyl group and a hydroxyl group.
CH 2 =C(R 1 )COOR 2 (1)
[In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms, (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H. In addition, R 3 represents an alkylene group having 2 to 4 carbon atoms, R 4 represents an alkylene group having 1 to 8 carbon atoms, m represents an integer of 2 to 15, and n represents an integer of 1 to 15. Represent ]
CH 2 =C(R 5 )CONR 6 R 7 (2)
[In the formula, R 5 represents a hydrogen atom or a methyl group, R 6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms, and R 7 represents a hydrogen atom or a monovalent organic group. ]
上記重合工程により、架橋重合体には、エチレン性不飽和カルボン酸単量体に由来する構造単位(a成分)が50質量%以上99.5質量%以下導入され、水酸基を有する特定の単量体に由来する構造単位(b成分)が0.5質量%以上50質量%以下導入される。エチレン性不飽和カルボン酸単量体の使用量は、また例えば、30質量%以上、99.5質量%以下であり、また例えば、50質量%以上、99.5質量%以下であり、また例えば、50質量%以上、99質量%以下であり、また例えば、50質量%以上、98質量%以下であり、また例えば、50質量%以上、95質量%以下である。水酸基を有する特定の単量体の使用量は、また例えば、1.0質量%以上、50質量%以下であり、また例えば、1.0質量%以上、30質量%以下である。
By the polymerization step, a structural unit (component a) derived from an ethylenically unsaturated carboxylic acid monomer is introduced into the crosslinked polymer in an amount of 50% by mass or more and 99.5% by mass or less, and a specific unit amount having a hydroxyl group. A structural unit (component b) derived from the body is introduced in an amount of 0.5% by mass or more and 50% by mass or less. The amount of the ethylenically unsaturated carboxylic acid monomer used is, for example, 30% by mass or more and 99.5% by mass or less, and for example, 50% by mass or more and 99.5% by mass or less, and for example. , 50 mass% or more and 99 mass% or less, and, for example, 50 mass% or more and 98 mass% or less, and for example, 50 mass% or more and 95 mass% or less. The amount of the specific monomer having a hydroxyl group used is, for example, 1.0% by mass or more and 50% by mass or less, and for example, 1.0% by mass or more and 30% by mass or less.
上記他のエチレン性不飽和単量体としては、例えば、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、並びに、(b)成分以外の非イオン性のエチレン性不飽和単量体等が挙げられる。具体的な化合物としては、上述した(c)成分を導入可能な単量体化合物が挙げられる。上記他のエチレン性不飽和単量体は、単量体成分の全量に対して0質量%以上、49.5質量%以下含んでもよく、1質量%以上、40質量%以下であってもよく、2質量%以上、40質量%以下であってもよく、2質量%以上、30質量%以下であってもよく、5質量%以上、30質量%以下であってもよい。
Examples of the other ethylenically unsaturated monomer include, for example, an ethylenically unsaturated monomer compound having an anionic group other than a carboxyl group such as a sulfonic acid group and a phosphoric acid group, and other than the component (b). Examples thereof include nonionic ethylenically unsaturated monomers. Specific examples of the compound include monomer compounds into which the component (c) described above can be introduced. The other ethylenically unsaturated monomer may be contained in an amount of 0% by mass or more and 49.5% by mass or less, or 1% by mass or more and 40% by mass or less, based on the total amount of the monomer components. 2 mass% or more and 40 mass% or less, 2 mass% or more and 30 mass% or less, and 5 mass% or more and 30 mass% or less.
重合工程において重合される単量体成分は、架橋性単量体を含んでいてもよい。架橋性単量体としては、既述した通り、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。
架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100質量部に対して好ましくは0.1質量部以上2.0質量部以下であり、より好ましくは0.3質量部以上1.5質量部以下であり、さらに好ましくは0.5質量部以上1.5質量部以下である。 The monomer component polymerized in the polymerization step may contain a crosslinkable monomer. As described above, the crosslinkable monomer has a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, and a self-crosslinkable functional group such as a hydrolyzable silyl group. Examples thereof include monomers.
The amount of the crosslinkable monomer used is preferably 0.1 parts by mass or more and 2.0 parts by mass or less based on 100 parts by mass of the total amount of the monomers (non-crosslinking monomers) other than the crosslinking monomer. And more preferably 0.3 parts by mass or more and 1.5 parts by mass or less, and further preferably 0.5 parts by mass or more and 1.5 parts by mass or less.
架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100質量部に対して好ましくは0.1質量部以上2.0質量部以下であり、より好ましくは0.3質量部以上1.5質量部以下であり、さらに好ましくは0.5質量部以上1.5質量部以下である。 The monomer component polymerized in the polymerization step may contain a crosslinkable monomer. As described above, the crosslinkable monomer has a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups, and a self-crosslinkable functional group such as a hydrolyzable silyl group. Examples thereof include monomers.
The amount of the crosslinkable monomer used is preferably 0.1 parts by mass or more and 2.0 parts by mass or less based on 100 parts by mass of the total amount of the monomers (non-crosslinking monomers) other than the crosslinking monomer. And more preferably 0.3 parts by mass or more and 1.5 parts by mass or less, and further preferably 0.5 parts by mass or more and 1.5 parts by mass or less.
重合時の単量体濃度については、より一次鎖長の長い重合体を得る観点から高い方が好ましい。ただし、単量体濃度が高すぎると、重合体粒子の凝集が進行し易い他、重合熱の制御が困難となり重合反応が暴走する虞がある。このため、例えば沈殿重合法の場合、重合開始時の単量体濃度は、2~40質量%程度の範囲が一般的であり、好ましくは5~40質量%の範囲である。
なお、本明細書において「単量体濃度」とは、重合を開始する時点における反応液中の単量体濃度を示す。 The monomer concentration during polymerization is preferably higher from the viewpoint of obtaining a polymer having a longer primary chain length. However, if the monomer concentration is too high, aggregation of the polymer particles is likely to proceed, and it is difficult to control the heat of polymerization, and the polymerization reaction may run away. Therefore, for example, in the case of the precipitation polymerization method, the monomer concentration at the start of polymerization is generally in the range of about 2 to 40% by mass, preferably 5 to 40% by mass.
In the present specification, the “monomer concentration” refers to the monomer concentration in the reaction liquid at the time of starting the polymerization.
なお、本明細書において「単量体濃度」とは、重合を開始する時点における反応液中の単量体濃度を示す。 The monomer concentration during polymerization is preferably higher from the viewpoint of obtaining a polymer having a longer primary chain length. However, if the monomer concentration is too high, aggregation of the polymer particles is likely to proceed, and it is difficult to control the heat of polymerization, and the polymerization reaction may run away. Therefore, for example, in the case of the precipitation polymerization method, the monomer concentration at the start of polymerization is generally in the range of about 2 to 40% by mass, preferably 5 to 40% by mass.
In the present specification, the “monomer concentration” refers to the monomer concentration in the reaction liquid at the time of starting the polymerization.
架橋重合体は、塩基化合物の存在下に重合反応を行うことにより製造してもよい。塩基化合物存在下において重合反応を行うことにより、高い単量体濃度条件下であっても、重合反応を安定に実施することができる。単量体濃度は、13.0質量%以上であってもよく、好ましくは15.0質量%以上であり、より好ましくは17.0質量%以上であり、更に好ましくは19.0質量%以上であり、一層好ましくは20.0質量%以上である。単量体濃度はなお好ましくは22.0質量%以上であり、より一層好ましくは25.0質量%以上である。一般に、重合時の単量体濃度を高くするほど高分子量化が可能であり、一次鎖長の長い重合体を製造することができる。
The crosslinked polymer may be produced by carrying out a polymerization reaction in the presence of a basic compound. By carrying out the polymerization reaction in the presence of a base compound, the polymerization reaction can be stably carried out even under high monomer concentration conditions. The monomer concentration may be 13.0 mass% or more, preferably 15.0 mass% or more, more preferably 17.0 mass% or more, and further preferably 19.0 mass% or more. And more preferably 20.0 mass% or more. The monomer concentration is more preferably 22.0% by mass or more, and even more preferably 25.0% by mass or more. Generally, the higher the monomer concentration at the time of polymerization, the higher the molecular weight can be made, and the polymer having a long primary chain length can be produced.
単量体濃度の上限値は、使用する単量体及び溶媒の種類、並びに、重合方法及び各種重合条件等により異なるが、重合反応熱の除熱が可能であれば、沈殿重合では上記の通り概ね40%程度、懸濁重合では概ね50%程度、乳化重合では概ね70%程度である。
The upper limit of the monomer concentration varies depending on the type of the monomer and the solvent used, and the polymerization method and various polymerization conditions, but if the heat of the polymerization reaction can be removed, as described above in the precipitation polymerization. It is about 40%, about 50% for suspension polymerization, and about 70% for emulsion polymerization.
上記塩基化合物は、いわゆるアルカリ性化合物であり、無機塩基化合物及び有機塩基化合物の何れを用いてもよい。塩基化合物存在下において重合反応を行うことにより、例えば13.0質量%を超えるような高い単量体濃度条件下であっても、重合反応を安定に実施することができる。また、このような高い単量体濃度で重合して得られた重合体は、分子量が高いため(一次鎖長が長いため)結着性にも優れる。
無機塩基化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属水酸化物等が挙げられ、これらの内の1種又は2種以上を用いることができる。
有機塩基化合物としては、アンモニア及び有機アミン化合物が挙げられ、これらの内の1種又は2種以上を用いることができる。中でも、重合安定性及び得られる架橋重合体又はその塩を含むバインダーの結着性の観点から、有機アミン化合物が好ましい。 The basic compound is a so-called alkaline compound, and either an inorganic basic compound or an organic basic compound may be used. By carrying out the polymerization reaction in the presence of a base compound, the polymerization reaction can be stably carried out even under a high monomer concentration condition of, for example, more than 13.0 mass %. Further, the polymer obtained by polymerizing at such a high monomer concentration has a high molecular weight (because of its long primary chain length) and is therefore excellent in binding property.
Examples of the inorganic base compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and the like. One kind or two or more kinds can be used.
Examples of the organic base compound include ammonia and organic amine compounds, and one or more of them can be used. Among them, the organic amine compound is preferable from the viewpoint of polymerization stability and binding property of the binder containing the obtained crosslinked polymer or a salt thereof.
無機塩基化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属水酸化物等が挙げられ、これらの内の1種又は2種以上を用いることができる。
有機塩基化合物としては、アンモニア及び有機アミン化合物が挙げられ、これらの内の1種又は2種以上を用いることができる。中でも、重合安定性及び得られる架橋重合体又はその塩を含むバインダーの結着性の観点から、有機アミン化合物が好ましい。 The basic compound is a so-called alkaline compound, and either an inorganic basic compound or an organic basic compound may be used. By carrying out the polymerization reaction in the presence of a base compound, the polymerization reaction can be stably carried out even under a high monomer concentration condition of, for example, more than 13.0 mass %. Further, the polymer obtained by polymerizing at such a high monomer concentration has a high molecular weight (because of its long primary chain length) and is therefore excellent in binding property.
Examples of the inorganic base compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and the like. One kind or two or more kinds can be used.
Examples of the organic base compound include ammonia and organic amine compounds, and one or more of them can be used. Among them, the organic amine compound is preferable from the viewpoint of polymerization stability and binding property of the binder containing the obtained crosslinked polymer or a salt thereof.
有機アミン化合物としては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノブチルアミン、ジブチルアミン、トリブチルアミン、モノヘキシルアミン、ジヘキシルアミン、トリヘキシルアミン、トリオクチルアミン及びトリドデシルアミン等のN-アルキル置換アミン;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、プロパノールアミン、ジメチルエタノールアミン及びN,N-ジメチルエタノールアミン等の(アルキル)アルカノールアミン;ピリジン、ピペリジン、ピペラジン、1,8-ビス(ジメチルアミノ)ナフタレン、モルホリン及びジアザビシクロウンデセン(DBU)等の環状アミン;ジエチレントリアミン、N、N-ジメチルベンジルアミンが挙げられ、これらの内の1種又は2種以上を用いることができる。
これらの内でも、長鎖アルキル基を有する疎水性アミンを用いた場合、より大きな静電反発及び立体反発が得られることから、単量体濃度の高い場合であっても重合安定性を確保しやすい点で好ましい。具体的には、有機アミン化合物に存在する窒素原子数に対する炭素原子数の比で表される値(C/N)が高い程、立体反発効果による重合安定化効果が高い。上記C/Nの値は、好ましくは3以上であり、より好ましくは5以上であり、さらに好ましくは10以上であり、一層好ましくは20以上である。 Examples of the organic amine compound include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monobutylamine, dibutylamine, tributylamine, monohexylamine, dihexylamine, trihexylamine, trioctylamine and tridodecylamine. (Alkyl)alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, propanolamine, dimethylethanolamine and N,N-dimethylethanolamine; pyridine, piperidine, piperazine, 1,8- Cyclic amines such as bis(dimethylamino)naphthalene, morpholine and diazabicycloundecene (DBU); diethylenetriamine, N,N-dimethylbenzylamine and the like, and one or more of them can be used. ..
Among these, when a hydrophobic amine having a long-chain alkyl group is used, larger electrostatic repulsion and steric repulsion are obtained, so that the polymerization stability is secured even when the monomer concentration is high. It is preferable because it is easy. Specifically, the higher the value (C/N) represented by the ratio of the number of carbon atoms to the number of nitrogen atoms present in the organic amine compound, the higher the polymerization stabilization effect due to the steric repulsion effect. The value of C/N is preferably 3 or more, more preferably 5 or more, further preferably 10 or more, and further preferably 20 or more.
これらの内でも、長鎖アルキル基を有する疎水性アミンを用いた場合、より大きな静電反発及び立体反発が得られることから、単量体濃度の高い場合であっても重合安定性を確保しやすい点で好ましい。具体的には、有機アミン化合物に存在する窒素原子数に対する炭素原子数の比で表される値(C/N)が高い程、立体反発効果による重合安定化効果が高い。上記C/Nの値は、好ましくは3以上であり、より好ましくは5以上であり、さらに好ましくは10以上であり、一層好ましくは20以上である。 Examples of the organic amine compound include monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monobutylamine, dibutylamine, tributylamine, monohexylamine, dihexylamine, trihexylamine, trioctylamine and tridodecylamine. (Alkyl)alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, propanolamine, dimethylethanolamine and N,N-dimethylethanolamine; pyridine, piperidine, piperazine, 1,8- Cyclic amines such as bis(dimethylamino)naphthalene, morpholine and diazabicycloundecene (DBU); diethylenetriamine, N,N-dimethylbenzylamine and the like, and one or more of them can be used. ..
Among these, when a hydrophobic amine having a long-chain alkyl group is used, larger electrostatic repulsion and steric repulsion are obtained, so that the polymerization stability is secured even when the monomer concentration is high. It is preferable because it is easy. Specifically, the higher the value (C/N) represented by the ratio of the number of carbon atoms to the number of nitrogen atoms present in the organic amine compound, the higher the polymerization stabilization effect due to the steric repulsion effect. The value of C/N is preferably 3 or more, more preferably 5 or more, further preferably 10 or more, and further preferably 20 or more.
塩基化合物の使用量は、上記エチレン性不飽和カルボン酸単量体に対し、0.001モル%以上4.0モル%以下の範囲とすることが好ましい。塩基化合物の使用量がこの範囲であれば、重合反応を円滑に行うことができる。使用量は、0.05モル%以上4.0モル%以下であってもよく、0.1モル%以上4.0モル%以下であってもよく、0.1モル%以上3.0モル%以下であってもよく、0.1モル%以上2.0モル%以下であってもよい。
尚、本明細書では、塩基化合物の使用量は、エチレン性不飽和カルボン酸単量体に対して用いた塩基化合物のモル濃度を表したものであり、中和度を意味するものではない。すなわち、用いる塩基化合物の価数は考慮しない。 The amount of the base compound used is preferably 0.001 mol% or more and 4.0 mol% or less with respect to the ethylenically unsaturated carboxylic acid monomer. When the amount of the base compound used is within this range, the polymerization reaction can be smoothly carried out. The amount used may be 0.05 mol% or more and 4.0 mol% or less, 0.1 mol% or more and 4.0 mol% or less, and 0.1 mol% or more and 3.0 mol% or less. % Or less, or 0.1 mol% or more and 2.0 mol% or less.
In the present specification, the amount of the base compound used represents the molar concentration of the base compound used with respect to the ethylenically unsaturated carboxylic acid monomer, and does not mean the degree of neutralization. That is, the valence of the basic compound used is not considered.
尚、本明細書では、塩基化合物の使用量は、エチレン性不飽和カルボン酸単量体に対して用いた塩基化合物のモル濃度を表したものであり、中和度を意味するものではない。すなわち、用いる塩基化合物の価数は考慮しない。 The amount of the base compound used is preferably 0.001 mol% or more and 4.0 mol% or less with respect to the ethylenically unsaturated carboxylic acid monomer. When the amount of the base compound used is within this range, the polymerization reaction can be smoothly carried out. The amount used may be 0.05 mol% or more and 4.0 mol% or less, 0.1 mol% or more and 4.0 mol% or less, and 0.1 mol% or more and 3.0 mol% or less. % Or less, or 0.1 mol% or more and 2.0 mol% or less.
In the present specification, the amount of the base compound used represents the molar concentration of the base compound used with respect to the ethylenically unsaturated carboxylic acid monomer, and does not mean the degree of neutralization. That is, the valence of the basic compound used is not considered.
重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。一次鎖長の長い架橋重合体を得るためには、製造時間が許容される範囲内で、ラジカル発生量がより少なくなるように条件を設定することが好ましい。
As the polymerization initiator, known polymerization initiators such as azo compounds, organic peroxides and inorganic peroxides can be used, but are not particularly limited. The use conditions can be adjusted by a known method such as thermal initiation, redox initiation using a reducing agent in combination, UV initiation, etc., so that an appropriate amount of radicals is generated. In order to obtain a crosslinked polymer having a long primary chain length, it is preferable to set the conditions so that the radical generation amount is smaller within a range where the production time is allowed.
上記アゾ系化合物としては、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2-(tert-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)等が挙げられ、これらの内の1種又は2種以上を用いることができる。
Examples of the azo compounds include 2,2′-azobis(2,4-dimethylvaleronitrile), 2,2′-azobis(N-butyl-2-methylpropionamide), 2-(tert-butylazo)-2. -Cyanopropane, 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(2-methylpropane), etc., and one or more of them are used. be able to.
上記有機過酸化物としては、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン(日油社製、商品名「パーテトラA」)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン(同「パーヘキサHC」)、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン(同「パーヘキサC」)、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート(同「パーヘキサV」)、2,2-ジ(t-ブチルパーオキシ)ブタン(同「パーヘキサ22」)、t-ブチルハイドロパーオキサイド(同「パーブチルH」)、クメンハイドロパーオキサイド(日油社製、商品名「パークミルH」)、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(同「パーオクタH」)、t-ブチルクミルパーオキサイド(同「パーブチルC」)、ジ-t-ブチルパーオキサイド(同「パーブチルD」)、ジ-t-ヘキシルパーオキサイド(同「パーヘキシルD」)、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド(同「パーロイル355」)、ジラウロイルパーオキサイド(同「パーロイルL」)、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(同「パーロイルTCP」)、ジ-2-エチルヘキシルパーオキシジカーボネート(同「パーロイルOPP」)、ジ-sec-ブチルパーオキシジカーボネート(同「パーロイルSBP」)、クミルパーオキシネオデカノエート(同「パークミルND」)、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート(同「パーオクタND」)、t-ヘキシルパーオキシネオデカノエート(同「パーヘキシルND」)、t-ブチルパーオキシネオデカノエート(同「パーブチルND」)、t-ブチルパーオキシネオヘプタノエート(同「パーブチルNHP」)、t-ヘキシルパーオキシピバレート(同「パーヘキシルPV」)、t-ブチルパーオキシピバレート(同「パーブチルPV」)、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)ヘキサン(同「パーヘキサ250」)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(同「パーオクタO」)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(同「パーヘキシルO」)、t-ブチルパーオキシ-2-エチルヘキサノエート(同「パーブチルO」)、t-ブチルパーオキシラウレート(同「パーブチルL」)、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート(同「パーブチル355」)、t-ヘキシルパーオキシイソプロピルモノカーボネート(同「パーヘキシルI」)、t-ブチルパーオキシイソプロピルモノカーボネート(同「パーブチルI」)、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(同「パーブチルE」)、t-ブチルパーオキシアセテート(同「パーブチルA」)、t-ヘキシルパーオキシベンゾエート(同「パーヘキシルZ」)及びt-ブチルパーオキシベンゾエート(同「パーブチルZ」)等が挙げられ、これらの内の1種又は2種以上を用いることができる。
Examples of the organic peroxide include 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane (trade name “Pertetra A” manufactured by NOF CORPORATION), 1,1-di(t- Hexylperoxy)cyclohexane (the same “Perhexa HC”), 1,1-di(t-butylperoxy)cyclohexane (the same “Perhexa C”), n-butyl-4,4-di(t-butylperoxy) Valerate (the same "Perhexa V"), 2,2-di(t-butylperoxy)butane (the same "Perhexa 22"), t-butyl hydroperoxide (the same "Perbutyl H"), cumene hydroperoxide (Japan Oil company, trade name "Parkmill H"), 1,1,3,3-tetramethylbutyl hydroperoxide (the same "Perocta H"), t-butylcumyl peroxide (the same "Perbutyl C"), di- t-butyl peroxide (the same “perbutyl D”), di-t-hexyl peroxide (the same “perhexyl D”), di(3,5,5-trimethylhexanoyl) peroxide (the same “perloyl 355”), Dilauroyl peroxide (the same "Perloyl L"), bis(4-t-butylcyclohexyl) peroxydicarbonate (the same "Perloyl TCP"), di-2-ethylhexyl peroxydicarbonate (the same "Perloyl OPP"), Di-sec-butyl peroxydicarbonate (the same “Perloyl SBP”), cumyl peroxy neodecanoate (the same “Perkyl ND”), 1,1,3,3-tetramethylbutyl peroxy neodecanoate ( "Perocta ND"), t-hexylperoxy neodecanoate ("Perhexyl ND"), t-butylperoxy neodecanoate ("Perbutyl ND"), t-butylperoxy neoheptanoate (The same "perbutyl NHP"), t-hexyl peroxypivalate (the same "perhexyl PV"), t-butyl peroxypivalate (the same "perbutyl PV"), 2,5-dimethyl-2,5-di( 2-Ethylhexanoyl)hexane (the same "Perhexa 250"), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (the same "Perocta O"), t-hexylperoxy-2 -Ethyl hexanoate (the same "Perhexyl O"), t-butyl peroxy-2-ethyl hexanoate (the same "Perbutyl O"), t-butyl peroxylaurate (the same "Perbutyl L"), t- Bu Cylperoxy-3,5,5-trimethylhexanoate (the same "Perbutyl 355"), t-hexyl peroxyisopropyl monocarbonate (the same "Perhexyl I"), t-butyl peroxyisopropyl monocarbonate (the same "Perbutyl I") ), t-butylperoxy-2-ethylhexyl monocarbonate (the same “perbutyl E”), t-butyl peroxyacetate (the same “perbutyl A”), t-hexyl peroxybenzoate (the same “perhexyl Z”) and t -Butyl peroxybenzoate (the same "perbutyl Z") and the like, and one or more of them can be used.
上記無機過酸化物としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。
また、レドックス開始の場合、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルホキシレート、アスコルビン酸、亜硫酸ガス(SO2)、硫酸第一鉄等を還元剤として用いることができる。 Examples of the inorganic peroxide include potassium persulfate, sodium persulfate, ammonium persulfate and the like.
In the case of redox initiation, sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, sulfurous acid gas (SO 2 ), ferrous sulfate, etc. can be used as a reducing agent.
また、レドックス開始の場合、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルホキシレート、アスコルビン酸、亜硫酸ガス(SO2)、硫酸第一鉄等を還元剤として用いることができる。 Examples of the inorganic peroxide include potassium persulfate, sodium persulfate, ammonium persulfate and the like.
In the case of redox initiation, sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, sulfurous acid gas (SO 2 ), ferrous sulfate, etc. can be used as a reducing agent.
重合開始剤の好ましい使用量は、用いる単量体成分の総量を100質量部としたときに、例えば、0.001~2質量部であり、また例えば、0.005~1質量部であり、また例えば、0.01~0.1質量部である。重合開始剤の使用量が0.001質量部以上であれば重合反応を安定的に行うことができ、2質量部以下であれば一次鎖長の長い重合体を得やすい。
The preferred amount of the polymerization initiator used is, for example, 0.001 to 2 parts by mass, and for example, 0.005 to 1 part by mass, when the total amount of the monomer components used is 100 parts by mass. Further, for example, it is 0.01 to 0.1 part by mass. When the amount of the polymerization initiator used is 0.001 part by mass or more, the polymerization reaction can be stably carried out, and when it is 2 parts by mass or less, a polymer having a long primary chain length can be easily obtained.
重合温度は、使用する単量体の種類及び濃度等の条件にもよるが、0~100℃が好ましく、20~80℃がより好ましい。重合温度は一定であってもよいし、重合反応の期間において変化するものであってもよい。また、重合時間は1分間~20時間が好ましく、1時間~10時間がより好ましい。
The polymerization temperature is preferably 0 to 100°C, more preferably 20 to 80°C, although it depends on conditions such as the type and concentration of the monomer used. The polymerization temperature may be constant or may change during the period of the polymerization reaction. The polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 10 hours.
重合工程を経て得られた架橋重合体分散液は、乾燥工程において減圧及び/又は加熱処理等を行い溶媒留去することにより、目的とする架橋重合体を粉末状態で得ることができる。この際、上記乾燥工程の前に、未反応単量体(及びその塩)、開始剤由来の不純物等を除去する目的で、重合工程に引き続き、遠心分離及び濾過等の固液分離工程、水、メタノール又は重合溶媒と同一の溶媒等を用いた洗浄工程を備えることが好ましい。上記洗浄工程を備えた場合、架橋重合体が二次凝集した場合であっても使用時に解れやすく、さらに残存する未反応単量体が除去されることにより結着性や電池特性の点でも良好な性能を示す。
The crosslinked polymer dispersion obtained through the polymerization step can be subjected to reduced pressure and/or heat treatment in the drying step to distill off the solvent to obtain the desired crosslinked polymer in a powder state. At this time, prior to the drying step, in order to remove unreacted monomers (and salts thereof), impurities derived from the initiator, etc., following the polymerization step, a solid-liquid separation step such as centrifugation and filtration, water, etc. It is preferable to include a washing step using methanol, the same solvent as the polymerization solvent, or the like. When the above-mentioned washing step is provided, even if the cross-linked polymer is secondarily aggregated, it is easy to be understood at the time of use, and the remaining unreacted monomer is removed, which is good in terms of binding property and battery characteristics. Shows excellent performance.
本製造方法では、塩基化合物存在下にエチレン性不飽和カルボン酸単量体を含む単量体組成物の重合反応を行うが、重合工程により得られた重合体分散液にアルカリ化合物を添加して重合体を中和(以下、「工程中和」ともいう)した後、乾燥工程で溶媒を除去してもよい。また、上記工程中和の処理を行わずに架橋重合体の粉末を得た後、電極スラリーを調製する際にアルカリ化合物を添加して、重合体を中和(以下、「後中和」ともいう)してもよい。上記の内、工程中和の方が、二次凝集体が解れやすい傾向にあり好ましい。
In the present production method, a polymerization reaction of a monomer composition containing an ethylenically unsaturated carboxylic acid monomer is performed in the presence of a basic compound, but an alkali compound is added to the polymer dispersion obtained by the polymerization step. After neutralizing the polymer (hereinafter, also referred to as “step neutralization”), the solvent may be removed in the drying step. Further, after obtaining the powder of the crosslinked polymer without performing the treatment of the step neutralization, an alkali compound is added when preparing the electrode slurry to neutralize the polymer (hereinafter, also referred to as “post-neutralization”). You may say). Of the above, the step neutralization is preferable because the secondary aggregate tends to be easily loosened.
<二次電池電極合剤層用組成物>
本発明の二次電池電極合剤層用組成物は、上記架橋重合体又はその塩を含有するバインダー、活物質及び水を含む。
本発明の電極合剤層用組成物における架橋重合体又はその塩の使用量は、活物質の全量100質量部に対して、例えば、0.1質量部以上20質量部以下である。上記使用量は、また例えば、0.2質量部以上10質量部以下であり、また例えば0.3質量部以上8質量部以下であり、また例えば0.4質量部以上5質量部以下である。架橋重合体及びその塩の使用量が0.1質量部未満の場合、十分な結着性が得られないことがある。また、活物質等の分散安定性が不十分となり、形成される合剤層の均一性が低下する場合がある。一方、架橋重合体及びその塩の使用量が20質量部を超える場合、電極合剤層用組成物が高粘度となり集電体への塗工性が低下することがある。その結果、得られた合剤層にブツや凹凸が生じて電極特性に悪影響を及ぼす虞がある。 <Composition for secondary battery electrode mixture layer>
The composition for a secondary battery electrode mixture layer of the present invention contains a binder containing the above crosslinked polymer or a salt thereof, an active material, and water.
The amount of the crosslinked polymer or salt thereof used in the composition for an electrode mixture layer of the present invention is, for example, 0.1 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the total amount of the active material. The amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. .. When the amount of the crosslinked polymer and its salt used is less than 0.1 part by mass, sufficient binding properties may not be obtained. In addition, the dispersion stability of the active material and the like becomes insufficient, which may reduce the uniformity of the formed mixture layer. On the other hand, when the amount of the crosslinked polymer and its salt used exceeds 20 parts by mass, the composition for electrode mixture layer may have a high viscosity and the coatability on the current collector may be deteriorated. As a result, the obtained mixture layer may have bumps or irregularities, which may adversely affect the electrode characteristics.
本発明の二次電池電極合剤層用組成物は、上記架橋重合体又はその塩を含有するバインダー、活物質及び水を含む。
本発明の電極合剤層用組成物における架橋重合体又はその塩の使用量は、活物質の全量100質量部に対して、例えば、0.1質量部以上20質量部以下である。上記使用量は、また例えば、0.2質量部以上10質量部以下であり、また例えば0.3質量部以上8質量部以下であり、また例えば0.4質量部以上5質量部以下である。架橋重合体及びその塩の使用量が0.1質量部未満の場合、十分な結着性が得られないことがある。また、活物質等の分散安定性が不十分となり、形成される合剤層の均一性が低下する場合がある。一方、架橋重合体及びその塩の使用量が20質量部を超える場合、電極合剤層用組成物が高粘度となり集電体への塗工性が低下することがある。その結果、得られた合剤層にブツや凹凸が生じて電極特性に悪影響を及ぼす虞がある。 <Composition for secondary battery electrode mixture layer>
The composition for a secondary battery electrode mixture layer of the present invention contains a binder containing the above crosslinked polymer or a salt thereof, an active material, and water.
The amount of the crosslinked polymer or salt thereof used in the composition for an electrode mixture layer of the present invention is, for example, 0.1 parts by mass or more and 20 parts by mass or less based on 100 parts by mass of the total amount of the active material. The amount used is, for example, 0.2 parts by mass or more and 10 parts by mass or less, for example 0.3 parts by mass or more and 8 parts by mass or less, and for example, 0.4 parts by mass or more and 5 parts by mass or less. .. When the amount of the crosslinked polymer and its salt used is less than 0.1 part by mass, sufficient binding properties may not be obtained. In addition, the dispersion stability of the active material and the like becomes insufficient, which may reduce the uniformity of the formed mixture layer. On the other hand, when the amount of the crosslinked polymer and its salt used exceeds 20 parts by mass, the composition for electrode mixture layer may have a high viscosity and the coatability on the current collector may be deteriorated. As a result, the obtained mixture layer may have bumps or irregularities, which may adversely affect the electrode characteristics.
架橋重合体及びその塩の使用量が上記範囲内であれば、分散安定性に優れた組成物が得られるとともに、集電体への密着性が極めて高い合剤層を得ることができ、結果として電池の耐久性が向上する。さらに、上記架橋重合体及びその塩は、活物質に対して少量(例えば5質量%以下)でも十分高い結着性を示し、かつ、カルボキシアニオンを有することから、界面抵抗が小さく、ハイレート特性に優れた電極が得られる。
When the amount of the crosslinked polymer and its salt used is within the above range, a composition having excellent dispersion stability can be obtained, and a mixture layer having extremely high adhesion to the current collector can be obtained. As a result, the durability of the battery is improved. Further, the above-mentioned crosslinked polymer and its salt exhibit a sufficiently high binding property with respect to the active material even in a small amount (for example, 5% by mass or less), and since they have a carboxy anion, they have a low interfacial resistance and high rate characteristics. An excellent electrode can be obtained.
上記活物質の内、正極活物質としては遷移金属酸化物のリチウム塩を用いることができ、例えば、層状岩塩型及びスピネル型のリチウム含有金属酸化物を使用することができる。層状岩塩型の正極活物質の具体的な化合物としては、コバルト酸リチウム、ニッケル酸リチウム、並びに、三元系と呼ばれるNCM{Li(Nix,Coy,Mnz)、x+y+z=1}及びNCA{Li(Ni1-a-bCoaAlb)}等が挙げられる。また、スピネル型の正極活物質としてはマンガン酸リチウム等が挙げられる。酸化物以外にもリン酸塩、ケイ酸塩及び硫黄等が使用され、リン酸塩としては、オリビン型のリン酸鉄リチウム等が挙げられる。正極活物質としては、上記のうちの1種を単独で使用してもよく、2種以上を組み合わせて混合物又は複合物として使用してもよい。
Among the above active materials, a lithium salt of a transition metal oxide can be used as the positive electrode active material, and for example, layered rock salt type and spinel type lithium-containing metal oxides can be used. Specific examples of the layered rock salt-type positive electrode active material include lithium cobalt oxide, lithium nickel oxide, and NCM {Li(Ni x , Co y , M n z ), x+y+z=1} and NCA called ternary system. Examples include {Li(Ni 1-ab Co a Al b )}. Examples of the spinel-type positive electrode active material include lithium manganate. In addition to oxides, phosphates, silicates, sulfur, and the like are used. Examples of phosphates include olivine-type lithium iron phosphate. As the positive electrode active material, one of the above may be used alone, or two or more of them may be used in combination as a mixture or composite.
尚、層状岩塩型のリチウム含有金属酸化物を含む正極活物質を水に分散させた場合、活物質表面のリチウムイオンと水中の水素イオンとが交換されることにより、分散液がアルカリ性を示す。このため、一般的な正極用集電体材料であるアルミ箔(Al)等が腐食される虞がある。このような場合には、バインダーとして未中和又は部分中和された架橋重合体を用いることにより、活物質から溶出するアルカリ分を中和することが好ましい。また、未中和又は部分中和された架橋重合体の使用量は、架橋重合体の中和されていないカルボキシル基量が活物質から溶出するアルカリ量に対して当量以上となるように用いることが好ましい。
Note that when a positive electrode active material containing a layered rock salt type lithium-containing metal oxide is dispersed in water, the lithium ions on the surface of the active material and hydrogen ions in the water are exchanged, so that the dispersion liquid shows alkaline. Therefore, aluminum foil (Al), which is a general positive electrode current collector material, may be corroded. In such a case, it is preferable to neutralize the alkali content eluted from the active material by using an unneutralized or partially neutralized crosslinked polymer as the binder. Further, the amount of the unneutralized or partially neutralized crosslinked polymer used is such that the amount of unneutralized carboxyl groups of the crosslinked polymer is equivalent to or more than the amount of alkali eluted from the active material. Is preferred.
正極活物質はいずれも電気伝導性が低いため、導電助剤を添加して使用されるのが一般的である。導電助剤としては、カーボンブラック、カーボンナノチューブ、カーボンファイバー、黒鉛微粉、炭素繊維等の炭素系材料が挙げられ、これらの内、優れた導電性を得やすい点からカーボンブラック、カーボンナノチューブ及びカーボンファイバー、が好ましい。また、カーボンブラックとしては、ケッチェンブラック及びアセチレンブラックが好ましい。導電助剤は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。導電助剤の使用量は、導電性とエネルギー密度を両立するという観点から活物質の全量100質量部に対して、例えば、0.2~20質量部とすることができ、また例えば、0.2~10質量部とすることができる。また正極活物質は導電性を有する炭素系材料で表面コーティングしたものを使用してもよい。
Since all positive electrode active materials have low electrical conductivity, they are generally used with a conductive additive added. Examples of the conductive aid include carbon-based materials such as carbon black, carbon nanotubes, carbon fibers, graphite fine powder, and carbon fibers. Among them, carbon black, carbon nanotubes, and carbon fibers are easy to obtain excellent conductivity. , Are preferred. Moreover, as the carbon black, Ketjen black and acetylene black are preferable. As the conductive auxiliary agent, one type described above may be used alone, or two or more types may be used in combination. The amount of the conductive auxiliary agent used can be, for example, 0.2 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active material from the viewpoint of achieving both conductivity and energy density. It can be 2 to 10 parts by mass. Further, as the positive electrode active material, a surface-coated carbon-based material having conductivity may be used.
一方、負極活物質としては、例えば炭素系材料、リチウム金属、リチウム合金及び金属酸化物等が挙げられ、これらの内の1種又は2種以上を組み合わせて用いることができる。これらの内でも、天然黒鉛、人造黒鉛、ハードカーボン及びソフトカーボン等の炭素系材料からなる活物質(以下、「炭素系活物質」ともいう)が好ましく、天然黒鉛及び人造黒鉛等の黒鉛、並びにハードカーボンがより好ましい。また、黒鉛の場合、電池性能の面から球形化黒鉛が好適に用いられ、その粒子サイズの好ましい範囲は、例えば、1~20μmであり、また例えば、5~15μmである。また、エネルギー密度を高くするために、ケイ素やスズなどのリチウムを吸蔵できる金属又は金属酸化物等を負極活物質として使用することもできる。その中でも、ケイ素は黒鉛に比べて高容量であり、ケイ素、ケイ素合金及び一酸化ケイ素(SiO)等のケイ素酸化物のようなケイ素系材料からなる活物質(以下、「ケイ素系活物質」ともいう)を用いることができる。しかし、上記ケイ素系活物質は高容量である反面充放電に伴う体積変化が大きい。このため、上記炭素系活物質と併用するのが好ましい。この場合、ケイ素活物質の使用量は、炭素系活物質及びケイ素系活物質の総量に対し、好ましくは2~80質量%である。ケイ素系活物質の使用量は、5~70質量%であってもよく、8~60質量%であってもよく、10~50質量%であってもよい。
On the other hand, examples of the negative electrode active material include carbon-based materials, lithium metals, lithium alloys, metal oxides, and the like, and one or more of these may be used in combination. Among these, active materials composed of carbon-based materials such as natural graphite, artificial graphite, hard carbon and soft carbon (hereinafter, also referred to as “carbon-based active material”) are preferable, and graphite such as natural graphite and artificial graphite, and Hard carbon is more preferred. In the case of graphite, spheroidized graphite is preferably used from the viewpoint of battery performance, and the preferable particle size range is, for example, 1 to 20 μm and, for example, 5 to 15 μm. Further, in order to increase the energy density, a metal or metal oxide capable of occluding lithium such as silicon or tin can be used as the negative electrode active material. Among them, silicon has a higher capacity than graphite, and active materials made of silicon-based materials such as silicon, silicon alloys and silicon oxides such as silicon monoxide (SiO) (hereinafter, also referred to as “silicon-based active material”). Can be used. However, the above silicon-based active material has a high capacity, but on the other hand, the volume change due to charge and discharge is large. Therefore, it is preferable to use the carbon-based active material together. In this case, the amount of the silicon active material used is preferably 2 to 80 mass% with respect to the total amount of the carbon-based active material and the silicon-based active material. The amount of the silicon-based active material used may be 5 to 70% by mass, 8 to 60% by mass, or 10 to 50% by mass.
本発明の架橋重合体を含むバインダーは、当該架橋重合体がエチレン性不飽和カルボン酸単量体に由来する構造単位((a)成分)を有する。ここで、(a)成分はケイ素系活物質に対する親和性が高く、良好な結着性を示す。このため、本発明のバインダーはケイ素系活物質を含む高容量タイプの活物質を用いた場合にも優れた結着性を示すことから、得られる電極の耐久性向上に対しても有効であるものと考えられる。
The binder containing the crosslinked polymer of the present invention has a structural unit (component (a)) in which the crosslinked polymer is derived from an ethylenically unsaturated carboxylic acid monomer. Here, the component (a) has a high affinity for the silicon-based active material and exhibits a good binding property. Therefore, the binder of the present invention exhibits excellent binding properties even when a high-capacity type active material containing a silicon-based active material is used, and is therefore effective for improving the durability of the obtained electrode. Thought to be a thing.
また、本発明の架橋重合体は、水酸基を有する特定の単量体に由来する構造単位((b)成分)を有する。架橋重合体が(b)成分を有する場合、電極合剤層用組成物のスラリー粘度の上昇を抑制又は低減することができる。かかる効果が得られる理由は明確ではないが、架橋重合体が当該重合体の側鎖に比較的フレキシブルな水酸基を有するため、重合体中のカルボキシル基と相互作用する結果、水中における架橋重合体の膨らみが抑制されたことによるものと推察している。ただし、上記推察は、本発明の範囲を制限するものではない。
Further, the crosslinked polymer of the present invention has a structural unit (component (b)) derived from a specific monomer having a hydroxyl group. When the crosslinked polymer has the component (b), it is possible to suppress or reduce an increase in the slurry viscosity of the composition for electrode mixture layer. Although the reason why such an effect is obtained is not clear, since the cross-linked polymer has a relatively flexible hydroxyl group in the side chain of the polymer, as a result of interacting with the carboxyl group in the polymer, the cross-linked polymer in water. It is speculated that the bulge was suppressed. However, the above speculation does not limit the scope of the present invention.
炭素系活物質は、それ自身が良好な電気伝導性を有するため、必ずしも導電助剤を添加する必要はない。抵抗をより低減する等の目的で導電助剤を添加する場合、エネルギー密度の観点からその使用量は活物質の総量に対して、例えば、10質量%以下であり、また例えば、5重量%以下である。
Since the carbon-based active material itself has good electrical conductivity, it is not always necessary to add a conductive auxiliary agent. When a conductive auxiliary agent is added for the purpose of further reducing resistance, the amount used is, for example, 10% by mass or less and 5% by weight or less, based on the total amount of the active material, from the viewpoint of energy density. Is.
二次電池電極合剤層用組成物がスラリー状態の場合、活物質の使用量は、組成物全量に対して、例えば、10~75質量%の範囲である。活物質の使用量が10質量%以上であればバインダー等のマイグレーションが抑えられる。また、媒体の乾燥コストの面でも有利となることから、活物質の使用量は、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、さらに好ましくは50質量%以上である。一方、75質量%以下であれば組成物の流動性及び塗工性を確保することができ、均一な合剤層を形成することができる。
When the composition for the secondary battery electrode mixture layer is in a slurry state, the amount of the active material used is, for example, in the range of 10 to 75 mass% with respect to the total amount of the composition. When the amount of the active material used is 10% by mass or more, migration of the binder and the like can be suppressed. In addition, the amount of the active material used is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more because it is advantageous in terms of the cost of drying the medium. .. On the other hand, if it is 75 mass% or less, the fluidity and coatability of the composition can be secured, and a uniform mixture layer can be formed.
二次電池電極合剤層用組成物は、媒体として水を使用する。また、組成物の性状及び乾燥性等を調整する目的で、メタノール及びエタノール等の低級アルコール類、エチレンカーボネート等のカーボネート類、アセトン等のケトン類、テトラヒドロフラン、N-メチルピロリドン等の水溶性有機溶剤との混合溶媒としてもよい。混合媒体中の水の割合は、例えば、50質量%以上であり、また例えば、70質量%以上である。
The water for the medium for the secondary battery electrode mixture layer composition is used. Further, for the purpose of adjusting the properties and drying properties of the composition, lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, water-soluble organic solvents such as tetrahydrofuran and N-methylpyrrolidone. It may be a mixed solvent with. The proportion of water in the mixed medium is, for example, 50% by mass or more and, for example, 70% by mass or more.
電極合剤層用組成物を塗工可能なスラリー状態とする場合、組成物全体に占める水を含む媒体の含有量は、スラリーの塗工性、および乾燥に必要なエネルギーコスト、生産性の観点から、例えば、25~90質量%の範囲とすることができ、また例えば、35~70質量%とすることができる。
When the composition for electrode mixture layer is made into a coatable slurry state, the content of the medium containing water in the entire composition is the coatability of the slurry, and the energy cost required for drying, and the viewpoint of productivity. Therefore, it may be in the range of, for example, 25 to 90% by mass, and may be in the range of 35 to 70% by mass.
本発明のバインダーは、上記架橋重合体又はその塩のみからなるものであってもよいが、これ以外にもスチレン/ブタジエン系ラテックス(SBR)、アクリル系ラテックス及びポリフッ化ビニリデン系ラテックス等の他のバインダー成分を併用してもよい。他のバインダー成分を併用する場合、その使用量は、活物質に対して、例えば、0.1~5質量%以下とすることができ、また例えば、0.1~2質量%以下とすることができ、また例えば、0.1~1質量%以下とすることができる。他のバインダー成分の使用量が5質量%を超えると抵抗が増大し、ハイレート特性が不十分なものとなる場合がある。上記の中でも、結着性及び耐屈曲性のバランスに優れる点で、スチレン/ブタジエン系ラテックスが好ましい。
The binder of the present invention may be composed only of the above-mentioned crosslinked polymer or a salt thereof, but in addition to this, other binders such as styrene/butadiene latex (SBR), acrylic latex and polyvinylidene fluoride latex can be used. You may use a binder component together. When the other binder component is used in combination, the amount thereof can be, for example, 0.1 to 5% by mass or less, and for example, 0.1 to 2% by mass or less, based on the active material. And can be, for example, 0.1 to 1% by mass or less. If the amount of the other binder component used exceeds 5% by mass, the resistance may increase and the high rate property may become insufficient. Among the above, a styrene/butadiene-based latex is preferable because it has an excellent balance of binding property and flex resistance.
上記スチレン/ブタジエン系ラテックスとは、スチレン等の芳香族ビニル単量体に由来する構造単位及び1,3-ブタジエン等の脂肪族共役ジエン系単量体に由来する構造単位を有する共重合体の水系分散体を示す。上記芳香族ビニル単量体としては、スチレンの他にα-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記芳香族ビニル単量体に由来する構造単位は、主に結着性の観点から、例えば、20~60質量%の範囲とすることができ、また例えば、30~50質量%の範囲とすることができる。
The styrene/butadiene latex is a copolymer having a structural unit derived from an aromatic vinyl monomer such as styrene and a structural unit derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. An aqueous dispersion is shown. Examples of the aromatic vinyl monomer include α-methylstyrene, vinyltoluene, divinylbenzene and the like in addition to styrene, and one or more of these can be used. The structural unit derived from the aromatic vinyl monomer in the copolymer can be in the range of, for example, 20 to 60% by mass mainly from the viewpoint of binding property, and is, for example, 30 to 50% by mass. It can be in the range of mass%.
上記脂肪族共役ジエン系単量体としては、1,3-ブタジエンの他に2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記脂肪族共役ジエン系単量体に由来する構造単位は、バインダーの結着性及び得られる電極の柔軟性が良好なものとなる点で、例えば、30~70質量%の範囲とすることができ、また例えば、40~60質量%の範囲とすることができる。
Examples of the aliphatic conjugated diene-based monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- Butadiene etc. are mentioned and 1 type or 2 types or more of these can be used. The structural unit derived from the aliphatic conjugated diene-based monomer in the copolymer is, for example, 30 to 70% by mass in that the binding property of the binder and the flexibility of the obtained electrode are good. The range can be, for example, 40 to 60% by mass.
スチレン/ブタジエン系ラテックスは、上記の単量体以外にも、結着性等の性能をさらに向上させるために、その他の単量体として(メタ)アクリロニトリル等のニトリル基含有単量体、(メタ)アクリル酸、イタンコン酸、マレイン酸等のカルボキシル基含有単量体を共重合単量体として用いてもよい。
上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。 In addition to the above-mentioned monomers, the styrene/butadiene latex is a nitrile group-containing monomer such as (meth)acrylonitrile, (meth), in order to further improve the performance such as binding property. ) A carboxyl group-containing monomer such as acrylic acid, itanconic acid or maleic acid may be used as a copolymerization monomer.
The structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, and can be in the range of, for example, 0 to 20% by mass.
上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。 In addition to the above-mentioned monomers, the styrene/butadiene latex is a nitrile group-containing monomer such as (meth)acrylonitrile, (meth), in order to further improve the performance such as binding property. ) A carboxyl group-containing monomer such as acrylic acid, itanconic acid or maleic acid may be used as a copolymerization monomer.
The structural unit derived from the other monomer in the copolymer can be, for example, in the range of 0 to 30% by mass, and can be in the range of, for example, 0 to 20% by mass.
本発明の二次電池電極合剤層用組成物は、上記の活物質、水及びバインダーを必須の構成成分とするものであり、公知の手段を用いて各成分を混合することにより得られる。各成分の混合方法は特段制限されるものではなく、公知の方法を採用することができるが、活物質、導電助剤及びバインダーである架橋重合体粒子等の粉末成分をドライブレンドした後、水等の分散媒と混合し、分散混練する方法が好ましい。電極合剤層用組成物をスラリー状態で得る場合、分散不良や凝集のないスラリーに仕上げることが好ましい。混合手段としては、プラネタリーミキサー、薄膜旋回式ミキサー及び自公転式ミキサー等の公知のミキサーを使用することができるが、短時間で良好な分散状態が得られる点で薄膜旋回式ミキサーを使用して行うことが好ましい。また、薄膜旋回式ミキサーを用いる場合は、予めディスパー等の攪拌機で予備分散を行うことが好ましい。また、上記スラリーの粘度は、例えば、500~100,000mPa・sの範囲とすることができる。スラリーの塗工性の観点から、粘度の上限は、好ましくは20,000mPa・s以下であり、より好ましくは10,000mPa・s以下であり、さらに好ましくは6,000mPa・s以下であり、一層好ましくは5,000mPa・s以下であり、より一層好ましくは4,000mPa・s以下であり、なお一層好ましくは3,000mPa・s以下である。尚、スラリー粘度は、液温25℃の条件下、実施例に記載の方法により測定することができる。
The composition for a secondary battery electrode mixture layer of the present invention contains the above active material, water and a binder as essential constituent components, and can be obtained by mixing the components using a known means. The mixing method of each component is not particularly limited, and a known method can be adopted, but after dry blending the powder components such as the active material, the conductive auxiliary agent and the crosslinked polymer particles that are the binder, water is added. A method of mixing and dispersing with a dispersion medium such as, for example, is preferable. When the composition for electrode mixture layer is obtained in the form of a slurry, it is preferable to finish the slurry with no dispersion failure or aggregation. As the mixing means, a known mixer such as a planetary mixer, a thin film swirling mixer and a revolving mixer can be used, but a thin film swirling mixer is used in that a good dispersion state can be obtained in a short time. It is preferable to carry out. When a thin film swirling mixer is used, it is preferable to carry out preliminary dispersion with a stirrer such as a disper in advance. The viscosity of the slurry can be set in the range of 500 to 100,000 mPa·s, for example. From the viewpoint of the coatability of the slurry, the upper limit of the viscosity is preferably 20,000 mPa·s or less, more preferably 10,000 mPa·s or less, and further preferably 6,000 mPa·s or less, It is preferably 5,000 mPa·s or less, more preferably 4,000 mPa·s or less, still more preferably 3,000 mPa·s or less. The slurry viscosity can be measured by the method described in Examples under the condition that the liquid temperature is 25°C.
一方、電極合剤層用組成物を湿粉状態で得る場合、ヘンシェルミキサー、ブレンダ―、プラネタリーミキサー及び2軸混練機等を用いて、濃度ムラのない均一な状態まで混練することが好ましい。
On the other hand, when the composition for electrode mixture layer is obtained in a wet powder state, it is preferable to use a Henschel mixer, a blender, a planetary mixer, a twin-screw kneader, or the like to knead the mixture to a uniform state without uneven density.
<二次電池用電極>
本発明の二次電池用電極は、銅又はアルミニウム等の集電体表面に上記電極合剤層用組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本発明の電極合剤層用組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。電極合剤層用組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。 <Secondary battery electrode>
The secondary battery electrode of the present invention comprises a mixture layer formed of the above composition for an electrode mixture layer on the surface of a current collector such as copper or aluminum. The mixture layer is formed by coating the surface of the current collector with the composition for an electrode mixture layer of the present invention, and then drying and removing a medium such as water. The method for applying the composition for electrode mixture layer is not particularly limited, and known methods such as a doctor blade method, a dipping method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method are used. Can be adopted. Further, the drying can be performed by a known method such as blowing hot air, reducing pressure, (far) infrared rays, or microwave irradiation.
Usually, the mixture layer obtained after drying is subjected to compression treatment by a die press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact, and the strength of the mixture layer and the adhesion to the current collector can be improved. The thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 μm.
本発明の二次電池用電極は、銅又はアルミニウム等の集電体表面に上記電極合剤層用組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本発明の電極合剤層用組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。電極合剤層用組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。 <Secondary battery electrode>
The secondary battery electrode of the present invention comprises a mixture layer formed of the above composition for an electrode mixture layer on the surface of a current collector such as copper or aluminum. The mixture layer is formed by coating the surface of the current collector with the composition for an electrode mixture layer of the present invention, and then drying and removing a medium such as water. The method for applying the composition for electrode mixture layer is not particularly limited, and known methods such as a doctor blade method, a dipping method, a roll coating method, a comma coating method, a curtain coating method, a gravure coating method and an extrusion method are used. Can be adopted. Further, the drying can be performed by a known method such as blowing hot air, reducing pressure, (far) infrared rays, or microwave irradiation.
Usually, the mixture layer obtained after drying is subjected to compression treatment by a die press, a roll press or the like. By compressing, the active material and the binder can be brought into close contact, and the strength of the mixture layer and the adhesion to the current collector can be improved. The thickness of the mixture layer can be adjusted to, for example, about 30 to 80% before compression by compression, and the thickness of the mixture layer after compression is generally about 4 to 200 μm.
本発明の二次電池用電極にセパレータ及び電解液を備えることにより、二次電池を作製することができる。電解液は液状であってもよく、ゲル状であってもよい。
セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。 By providing the secondary battery electrode of the present invention with the separator and the electrolytic solution, a secondary battery can be manufactured. The electrolytic solution may be liquid or gel.
The separator is disposed between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between both electrodes and holding an electrolytic solution to ensure ionic conductivity. The separator is preferably a film-like insulating microporous film having good ion permeability and mechanical strength. As a specific material, polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene, or the like can be used.
セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。 By providing the secondary battery electrode of the present invention with the separator and the electrolytic solution, a secondary battery can be manufactured. The electrolytic solution may be liquid or gel.
The separator is disposed between the positive electrode and the negative electrode of the battery, and plays a role of preventing a short circuit due to contact between both electrodes and holding an electrolytic solution to ensure ionic conductivity. The separator is preferably a film-like insulating microporous film having good ion permeability and mechanical strength. As a specific material, polyolefin such as polyethylene and polypropylene, polytetrafluoroethylene, or the like can be used.
電解液は、活物質の種類に応じて一般的に使用される公知のものを用いることができる。リチウムイオン二次電池では、具体的な溶媒として、プロピレンカーボネート及びエチレンカーボネート等の高誘電率で電解質の溶解能力の高い環状カーボネート、並びに、エチルメチルカーボネート、ジメチルカーボネート及びジエチルカーボネート等の粘性の低い鎖状カーボネート等が挙げられ、これらを単独で又は混合溶媒として使用することができる。電解液は、これらの溶媒にLiPF6、LiSbF6、LiBF4、LiClO4、LiAlO4等のリチウム塩を溶解して使用される。ニッケル水素二次電池では、電解液として水酸化カリウム水溶液を使用することができる。二次電池は、セパレータで仕切られた正極板及び負極板を渦巻き状又は積層構造にしてケース等に収納することにより得られる。
As the electrolytic solution, a commonly used known electrolytic solution can be used depending on the type of active material. In a lithium ion secondary battery, as a specific solvent, a cyclic carbonate having a high dielectric constant and a high electrolyte dissolving ability such as propylene carbonate and ethylene carbonate, and a chain having a low viscosity such as ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate. Carbonates and the like, and these can be used alone or as a mixed solvent. The electrolytic solution is used by dissolving a lithium salt such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 , and LiAlO 4 in these solvents. In the nickel-hydrogen secondary battery, an aqueous solution of potassium hydroxide can be used as the electrolytic solution. The secondary battery is obtained by accommodating a positive electrode plate and a negative electrode plate, which are partitioned by a separator, in a spiral or laminated structure in a case or the like.
以上説明したように、本明細書に開示される二次電池電極用バインダーは、合剤層において電極材料との優れた結着性と集電体との優れた接着性とを示すこのため、上記バインダーを使用して得られた電極を備えた二次電池は、良好な一体性を確保でき、充放電を繰り返しても良好な耐久性(サイクル特性)を示すと予想され、車載用二次電池等に好適である。
As described above, the binder for secondary battery electrodes disclosed in the present specification exhibits excellent binding properties with the electrode material in the mixture layer and excellent adhesion with the current collector. The secondary battery equipped with the electrode obtained by using the above binder is expected to be able to ensure good integrity and to show good durability (cycle characteristics) even after repeated charging and discharging. Suitable for batteries and the like.
以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。
以下の例において、架橋重合体(塩)についての評価は、以下の方法により実施した。 Hereinafter, the present invention will be specifically described based on Examples. The present invention is not limited to these examples. In the following, "part" and "%" mean "part by mass" and "% by mass" unless otherwise specified.
In the following examples, the crosslinked polymer (salt) was evaluated by the following methods.
以下の例において、架橋重合体(塩)についての評価は、以下の方法により実施した。 Hereinafter, the present invention will be specifically described based on Examples. The present invention is not limited to these examples. In the following, "part" and "%" mean "part by mass" and "% by mass" unless otherwise specified.
In the following examples, the crosslinked polymer (salt) was evaluated by the following methods.
(1)水媒体中での粒子径(水膨潤粒子径)の測定
架橋重合体塩の粉末0.25g、及びイオン交換水49.75gを100ccの容器に量りとり、自転/公転式攪拌機(シンキー社製、あわとり錬太郎AR-250)にセットした。次いで、撹拌(自転速度2000rpm/公転速度800rpm、7分)、さらに脱泡(自転速度2200rpm/公転速度60rpm、1分)処理を行い架橋重合体塩が水に膨潤した状態のハイドロゲルを作成した。
次に、イオン交換水を分散媒とするレーザー回折/散乱式粒度分布計(マイクロトラックベル社製、マイクロトラックMT-3300EXII)にて上記ハイドロゲルの粒度分布測定を行った。ハイドロゲルに対し、過剰量の分散媒を循環しているところに、適切な散乱光強度が得られる量のハイドロゲルを投入したところ、数分後に測定される粒度分布形状が安定した。安定を確認次第、粒度分布測定を行い、粒子径の代表値としての体積基準メジアン径(D50)、及び、(体積基準平均粒子径)/(個数基準平均粒子径)で表される粒子径分布を得た。 (1) Measurement of particle size (water swelling particle size) in an aqueous medium 0.25 g of a powder of a cross-linked polymer salt and 49.75 g of ion-exchanged water were weighed into a 100 cc container, and a rotation/revolution agitator (Sinkey) was used. Awatori Rentaro AR-250) manufactured by the company. Next, stirring (rotation speed 2000 rpm/revolution speed 800 rpm, 7 minutes) and defoaming (rotation speed 2200 rpm/revolution speed 60 rpm, 1 minute) were performed to prepare a hydrogel in which the crosslinked polymer salt was swollen in water. ..
Next, the particle size distribution of the hydrogel was measured with a laser diffraction/scattering type particle size distribution analyzer (Microtrack MT-3300EXII, manufactured by Microtrack Bell) using ion exchanged water as a dispersion medium. When an excessive amount of the dispersion medium was circulated with respect to the hydrogel, and an amount of the hydrogel capable of obtaining an appropriate scattered light intensity was added, the particle size distribution shape measured after several minutes became stable. As soon as the stability is confirmed, the particle size distribution is measured, and the volume-based median diameter (D50) as a representative value of the particle diameter and the particle diameter distribution represented by (volume-based average particle diameter)/(number-based average particle diameter) Got
架橋重合体塩の粉末0.25g、及びイオン交換水49.75gを100ccの容器に量りとり、自転/公転式攪拌機(シンキー社製、あわとり錬太郎AR-250)にセットした。次いで、撹拌(自転速度2000rpm/公転速度800rpm、7分)、さらに脱泡(自転速度2200rpm/公転速度60rpm、1分)処理を行い架橋重合体塩が水に膨潤した状態のハイドロゲルを作成した。
次に、イオン交換水を分散媒とするレーザー回折/散乱式粒度分布計(マイクロトラックベル社製、マイクロトラックMT-3300EXII)にて上記ハイドロゲルの粒度分布測定を行った。ハイドロゲルに対し、過剰量の分散媒を循環しているところに、適切な散乱光強度が得られる量のハイドロゲルを投入したところ、数分後に測定される粒度分布形状が安定した。安定を確認次第、粒度分布測定を行い、粒子径の代表値としての体積基準メジアン径(D50)、及び、(体積基準平均粒子径)/(個数基準平均粒子径)で表される粒子径分布を得た。 (1) Measurement of particle size (water swelling particle size) in an aqueous medium 0.25 g of a powder of a cross-linked polymer salt and 49.75 g of ion-exchanged water were weighed into a 100 cc container, and a rotation/revolution agitator (Sinkey) was used. Awatori Rentaro AR-250) manufactured by the company. Next, stirring (rotation speed 2000 rpm/revolution speed 800 rpm, 7 minutes) and defoaming (rotation speed 2200 rpm/revolution speed 60 rpm, 1 minute) were performed to prepare a hydrogel in which the crosslinked polymer salt was swollen in water. ..
Next, the particle size distribution of the hydrogel was measured with a laser diffraction/scattering type particle size distribution analyzer (Microtrack MT-3300EXII, manufactured by Microtrack Bell) using ion exchanged water as a dispersion medium. When an excessive amount of the dispersion medium was circulated with respect to the hydrogel, and an amount of the hydrogel capable of obtaining an appropriate scattered light intensity was added, the particle size distribution shape measured after several minutes became stable. As soon as the stability is confirmed, the particle size distribution is measured, and the volume-based median diameter (D50) as a representative value of the particle diameter and the particle diameter distribution represented by (volume-based average particle diameter)/(number-based average particle diameter) Got
(2)pH8における水膨潤度
pH8における水膨潤度は、以下の方法によって測定した。測定装置を図1に示す。
測定装置は図1における<1>~<3>から構成される。
<1> 空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3およびポリテトラフルオロエチレンチューブ4から成る。
<2> ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<3> 架橋重合体又はその塩の試料6(測定試料)は2枚の試料固定用濾紙7に挟まれ、試料固定用濾紙は粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2、内径55mmである。
<1>と<2>とはシリコンチューブ3によって繋がれる。
また、ロート5および支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図1中の点線)。 (2) Water swelling degree atpH 8 The water swelling degree at pH 8 was measured by the following method. The measuring device is shown in FIG.
The measuring device is composed of <1> to <3> in FIG.
<1> A buret 1 provided with a branch pipe for venting air, apinch cock 2, a silicon tube 3 and a polytetrafluoroethylene tube 4.
<2> Asupport cylinder 8 having a large number of holes on its bottom is provided on the funnel 5, and a filter paper 10 for the apparatus is further provided thereon.
<3> A sample 6 (measurement sample) of a crosslinked polymer or a salt thereof is sandwiched between two pieces of sample fixing filter paper 7, and the sample fixing filter paper is fixed by an adhesive tape 9. All the filter papers used were ADVANTEC No. 2. The inner diameter is 55 mm.
<1> and <2> are connected by thesilicon tube 3.
Further, the height of the funnel 5 and thesupport cylinder 8 is fixed with respect to the buret 1, and the lower end of the polytetrafluoroethylene tube 4 installed inside the buret branch pipe and the bottom surface of the support cylinder 8 are at the same height. It is set as follows (dotted line in FIG. 1).
pH8における水膨潤度は、以下の方法によって測定した。測定装置を図1に示す。
測定装置は図1における<1>~<3>から構成される。
<1> 空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3およびポリテトラフルオロエチレンチューブ4から成る。
<2> ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<3> 架橋重合体又はその塩の試料6(測定試料)は2枚の試料固定用濾紙7に挟まれ、試料固定用濾紙は粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2、内径55mmである。
<1>と<2>とはシリコンチューブ3によって繋がれる。
また、ロート5および支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図1中の点線)。 (2) Water swelling degree at
The measuring device is composed of <1> to <3> in FIG.
<1> A buret 1 provided with a branch pipe for venting air, a
<2> A
<3> A sample 6 (measurement sample) of a crosslinked polymer or a salt thereof is sandwiched between two pieces of sample fixing filter paper 7, and the sample fixing filter paper is fixed by an adhesive tape 9. All the filter papers used were ADVANTEC No. 2. The inner diameter is 55 mm.
<1> and <2> are connected by the
Further, the height of the funnel 5 and the
測定方法について以下に説明する。
<1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
測定試料の乾燥粉末0.1~0.2gを秤量し、<3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<2>に示される装置用濾紙10上に載置する。
次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a-b)で求められる。同様の操作により、架橋重合体又はその塩の試料を含まない、2枚の濾紙7のみの吸水量を測定する(d)。
上記操作を行い、水膨潤度を以下の式より計算した。なお、計算に使用する固形分は、後述する方法により測定した値を使用した。
水膨潤度={測定試料の乾燥重量(g)+(c-d)}/{測定試料の乾燥重量(g)}
ただし、測定試料の乾燥重量(g)=測定試料の重量(g)×(固形分%÷100) The measuring method will be described below.
Thepinch cock 2 in <1> is removed, ion-exchanged water is introduced from the upper part of the buret 1 through the silicon tube 3, and the buret 1 and the filter paper 10 for the apparatus are filled with the ion-exchanged water 12. Next, the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the buret branch pipe with a rubber stopper. Thus, the ion-exchanged water 12 is continuously supplied from the buret 1 to the device filter paper 10.
Next, after removing the excess ion-exchangedwater 12 oozing out from the device filter paper 10, the scale reading (a) of the buret 1 is recorded.
0.1 to 0.2 g of the dry powder of the measurement sample is weighed and uniformly placed on the center portion of the sample fixing filter paper 7 as shown in <3>. The sample is sandwiched with another filter paper, and the two filter papers are fixed with the adhesive tape 9 to fix the sample. The filter paper on which the sample is fixed is placed on the device filter paper 10 shown in <2>.
Next, the reading (b) of the scale of the buret 1 after 30 minutes has elapsed from the time when thelid 11 was placed on the filter paper 10 for an apparatus is recorded.
The sum (c) of the water absorption amount of the measurement sample and the water absorption amount of the two sample fixing filter papers 7 is obtained by (ab). By the same operation, the water absorption amount of only the two filter papers 7 containing no sample of the crosslinked polymer or its salt is measured (d).
The above operation was performed and the water swelling degree was calculated from the following formula. In addition, the solid content used for the calculation used the value measured by the method mentioned later.
Water swelling degree={dry weight of measurement sample (g)+(cd)}/{dry weight of measurement sample (g)}
However, the dry weight of the measurement sample (g) = the weight of the measurement sample (g) x (solid content% / 100)
<1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
測定試料の乾燥粉末0.1~0.2gを秤量し、<3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<2>に示される装置用濾紙10上に載置する。
次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a-b)で求められる。同様の操作により、架橋重合体又はその塩の試料を含まない、2枚の濾紙7のみの吸水量を測定する(d)。
上記操作を行い、水膨潤度を以下の式より計算した。なお、計算に使用する固形分は、後述する方法により測定した値を使用した。
水膨潤度={測定試料の乾燥重量(g)+(c-d)}/{測定試料の乾燥重量(g)}
ただし、測定試料の乾燥重量(g)=測定試料の重量(g)×(固形分%÷100) The measuring method will be described below.
The
Next, after removing the excess ion-exchanged
0.1 to 0.2 g of the dry powder of the measurement sample is weighed and uniformly placed on the center portion of the sample fixing filter paper 7 as shown in <3>. The sample is sandwiched with another filter paper, and the two filter papers are fixed with the adhesive tape 9 to fix the sample. The filter paper on which the sample is fixed is placed on the device filter paper 10 shown in <2>.
Next, the reading (b) of the scale of the buret 1 after 30 minutes has elapsed from the time when the
The sum (c) of the water absorption amount of the measurement sample and the water absorption amount of the two sample fixing filter papers 7 is obtained by (ab). By the same operation, the water absorption amount of only the two filter papers 7 containing no sample of the crosslinked polymer or its salt is measured (d).
The above operation was performed and the water swelling degree was calculated from the following formula. In addition, the solid content used for the calculation used the value measured by the method mentioned later.
Water swelling degree={dry weight of measurement sample (g)+(cd)}/{dry weight of measurement sample (g)}
However, the dry weight of the measurement sample (g) = the weight of the measurement sample (g) x (solid content% / 100)
ここで、固形分の測定方法について以下に記載する。
試料約0.5gを、予め重さを測定しておいた秤量瓶[秤量瓶の重さ=B(g)]に採取して、秤量瓶ごと正確に秤量した後[W0(g)]、その試料を秤量瓶ごと無風乾燥機内に収容して155℃で45分間乾燥してその時の重さを秤量瓶ごと測定し[W1(g)]、以下の式により固形分%を求めた。
固形分(%)=(W1-B)/(W0-B)×100 Here, the method for measuring the solid content will be described below.
Approximately 0.5 g of the sample is sampled in a weighing bottle whose weight has been measured in advance [Weighting bottle weight=B (g)], and the weighing bottle is accurately weighed [W 0 (g)] The sample was placed in an airless dryer together with the weighing bottle and dried at 155° C. for 45 minutes, and the weight at that time was measured for each weighing bottle [W 1 (g)], and the solid content% was calculated by the following formula. ..
Solid content (%)=(W 1 -B)/(W 0 -B)×100
試料約0.5gを、予め重さを測定しておいた秤量瓶[秤量瓶の重さ=B(g)]に採取して、秤量瓶ごと正確に秤量した後[W0(g)]、その試料を秤量瓶ごと無風乾燥機内に収容して155℃で45分間乾燥してその時の重さを秤量瓶ごと測定し[W1(g)]、以下の式により固形分%を求めた。
固形分(%)=(W1-B)/(W0-B)×100 Here, the method for measuring the solid content will be described below.
Approximately 0.5 g of the sample is sampled in a weighing bottle whose weight has been measured in advance [Weighting bottle weight=B (g)], and the weighing bottle is accurately weighed [W 0 (g)] The sample was placed in an airless dryer together with the weighing bottle and dried at 155° C. for 45 minutes, and the weight at that time was measured for each weighing bottle [W 1 (g)], and the solid content% was calculated by the following formula. ..
Solid content (%)=(W 1 -B)/(W 0 -B)×100
(3)3質量%濃度水溶液の粘度測定
架橋重合体塩の粉末3.0部、及びイオン交換水97部を容器に秤量し、自転/公転式撹拌機(シンキー社製、あわとり錬太郎AR-250)にセットした。次いで撹拌(自転速度2000rpm/公転速度800rpm、7分)、さらに脱泡(自転速度2200rpm/公転速度60rpm、1分)処理を未膨潤粉末状部がなくなるまで繰り返し、架橋重合体塩が水に膨潤した状態のハイドロゲル微粒子分散液を調製した。得られた各ハイドロゲル微粒子分散液を25℃±1℃に調整した後、B型粘度計(東機産業社製、TVB-10)を用いて、ローター速度12rpmにおける粘度を測定した。 (3) Viscosity measurement of 3 mass% concentration aqueous solution 3.0 parts of powder of cross-linked polymer salt and 97 parts of ion-exchanged water were weighed in a container, and a rotation/revolution stirrer (Awatori Rentaro AR manufactured by Shinky Co., Ltd.) -250). Next, stirring (rotation speed 2000 rpm/revolution speed 800 rpm, 7 minutes) and defoaming (rotation speed 2200 rpm/revolution speed 60 rpm, 1 minute) are repeated until the unswollen powdery parts disappear, and the crosslinked polymer salt swells in water. A hydrogel fine particle dispersion in this state was prepared. After adjusting each of the obtained hydrogel fine particle dispersions to 25° C.±1° C., the viscosity at a rotor speed of 12 rpm was measured using a B-type viscometer (TVB-10 manufactured by Toki Sangyo Co., Ltd.).
架橋重合体塩の粉末3.0部、及びイオン交換水97部を容器に秤量し、自転/公転式撹拌機(シンキー社製、あわとり錬太郎AR-250)にセットした。次いで撹拌(自転速度2000rpm/公転速度800rpm、7分)、さらに脱泡(自転速度2200rpm/公転速度60rpm、1分)処理を未膨潤粉末状部がなくなるまで繰り返し、架橋重合体塩が水に膨潤した状態のハイドロゲル微粒子分散液を調製した。得られた各ハイドロゲル微粒子分散液を25℃±1℃に調整した後、B型粘度計(東機産業社製、TVB-10)を用いて、ローター速度12rpmにおける粘度を測定した。 (3) Viscosity measurement of 3 mass% concentration aqueous solution 3.0 parts of powder of cross-linked polymer salt and 97 parts of ion-exchanged water were weighed in a container, and a rotation/revolution stirrer (Awatori Rentaro AR manufactured by Shinky Co., Ltd.) -250). Next, stirring (rotation speed 2000 rpm/revolution speed 800 rpm, 7 minutes) and defoaming (rotation speed 2200 rpm/revolution speed 60 rpm, 1 minute) are repeated until the unswollen powdery parts disappear, and the crosslinked polymer salt swells in water. A hydrogel fine particle dispersion in this state was prepared. After adjusting each of the obtained hydrogel fine particle dispersions to 25° C.±1° C., the viscosity at a rotor speed of 12 rpm was measured using a B-type viscometer (TVB-10 manufactured by Toki Sangyo Co., Ltd.).
≪架橋重合体塩の製造≫
(製造例1:架橋重合体塩R-1の製造)
重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
反応器内にアセトニトリル567部、イオン交換水2.20部、アクリル酸(以下、「AA」という)80部、アクリル酸2-ヒドロキシエチル(以下、「HEA」という)20部、トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)2.0部及び上記AAに対して1.0モル%に相当するトリエチルアミンを仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。単量体濃度は15.0%と算出された。外温(水バス温度)を調整して内温を55℃に維持しながら重合反応を継続し、重合開始点から6時間経過した時点で内温を65℃まで昇温した。内温を65℃で維持し、重合開始点から12時間経過した時点で反応液の冷却を開始し、内温が25℃まで低下した後、水酸化リチウム・一水和物(以下、「LiOH・H2O」という)の粉末41.9部を添加した。添加後室温下12時間撹拌を継続して、架橋重合体塩R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。 <<Production of crosslinked polymer salt>>
(Production Example 1: Production of crosslinked polymer salt R-1)
For the polymerization, a reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used.
In the reactor, 567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 80 parts of acrylic acid (hereinafter referred to as “AA”), 20 parts of 2-hydroxyethyl acrylate (hereinafter referred to as “HEA”), trimethylolpropane diallyl. 2.0 parts of ether (manufactured by Daiso Co., Ltd., trade name "Neoallyl T-20") and triethylamine corresponding to 1.0 mol% based on the above AA were charged. After sufficiently replacing the inside of the reactor with nitrogen, it was heated to raise the internal temperature to 55°C. After confirming that the internal temperature was stable at 55° C., 2,2′-azobis(2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name “V-65”) was used as a polymerization initiator. When 0.040 part was added, white turbidity was observed in the reaction solution, and this point was used as the polymerization initiation point. The monomer concentration was calculated to be 15.0%. The polymerization reaction was continued while adjusting the external temperature (water bath temperature) to maintain the internal temperature at 55°C, and the internal temperature was raised to 65°C when 6 hours passed from the polymerization initiation point. The internal temperature was maintained at 65°C, cooling of the reaction solution was started 12 hours after the initiation point of polymerization, and the internal temperature was lowered to 25°C. Then, lithium hydroxide monohydrate (hereinafter, referred to as "LiOH - 41.9 parts powder of H 2 O "hereinafter) was added. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction liquid in which particles of the crosslinked polymer salt R-1 (Li salt, neutralization degree: 90 mol %) were dispersed in a medium.
(製造例1:架橋重合体塩R-1の製造)
重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
反応器内にアセトニトリル567部、イオン交換水2.20部、アクリル酸(以下、「AA」という)80部、アクリル酸2-ヒドロキシエチル(以下、「HEA」という)20部、トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)2.0部及び上記AAに対して1.0モル%に相当するトリエチルアミンを仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。単量体濃度は15.0%と算出された。外温(水バス温度)を調整して内温を55℃に維持しながら重合反応を継続し、重合開始点から6時間経過した時点で内温を65℃まで昇温した。内温を65℃で維持し、重合開始点から12時間経過した時点で反応液の冷却を開始し、内温が25℃まで低下した後、水酸化リチウム・一水和物(以下、「LiOH・H2O」という)の粉末41.9部を添加した。添加後室温下12時間撹拌を継続して、架橋重合体塩R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。 <<Production of crosslinked polymer salt>>
(Production Example 1: Production of crosslinked polymer salt R-1)
For the polymerization, a reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used.
In the reactor, 567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 80 parts of acrylic acid (hereinafter referred to as “AA”), 20 parts of 2-hydroxyethyl acrylate (hereinafter referred to as “HEA”), trimethylolpropane diallyl. 2.0 parts of ether (manufactured by Daiso Co., Ltd., trade name "Neoallyl T-20") and triethylamine corresponding to 1.0 mol% based on the above AA were charged. After sufficiently replacing the inside of the reactor with nitrogen, it was heated to raise the internal temperature to 55°C. After confirming that the internal temperature was stable at 55° C., 2,2′-azobis(2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name “V-65”) was used as a polymerization initiator. When 0.040 part was added, white turbidity was observed in the reaction solution, and this point was used as the polymerization initiation point. The monomer concentration was calculated to be 15.0%. The polymerization reaction was continued while adjusting the external temperature (water bath temperature) to maintain the internal temperature at 55°C, and the internal temperature was raised to 65°C when 6 hours passed from the polymerization initiation point. The internal temperature was maintained at 65°C, cooling of the reaction solution was started 12 hours after the initiation point of polymerization, and the internal temperature was lowered to 25°C. Then, lithium hydroxide monohydrate (hereinafter, referred to as "LiOH - 41.9 parts powder of H 2 O "hereinafter) was added. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction liquid in which particles of the crosslinked polymer salt R-1 (Li salt, neutralization degree: 90 mol %) were dispersed in a medium.
得られた重合反応液を遠心分離して重合体粒子を沈降させた後、上澄みを除去した。その後、重合反応液と同重量のアセトニトリルに沈降物を再分散させた後、遠心分離により重合体粒子を沈降させて上澄みを除去する洗浄操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、架橋重合体塩R-1の粉末を得た。架橋重合体塩R-1は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、架橋重合体塩R-1の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、仕込みからの計算値に等しく90モル%であった。
上記で得られた架橋重合体塩R-1について水媒体中での粒子径(水膨潤粒子径)を測定したところ、0.88μmであり、粒子径分布は1.8と算出された。また、水膨潤度は4.1であり、3質量%濃度水溶液の粘度は15mPa・s未満であった。 The obtained polymerization reaction liquid was centrifuged to precipitate polymer particles, and then the supernatant was removed. Then, a washing operation of redispersing the precipitate in acetonitrile having the same weight as that of the polymerization reaction solution and then allowing the polymer particles to settle by centrifugation and removing the supernatant was repeated twice. The precipitate was recovered and dried under reduced pressure at 80° C. for 3 hours to remove volatile matter, thereby obtaining a powder of crosslinked polymer salt R-1. Since the cross-linked polymer salt R-1 has a hygroscopic property, it was sealed and stored in a container having a water vapor barrier property. The powder of the crosslinked polymer salt R-1 was subjected to IR measurement, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C═O group of the carboxylic acid and the peak derived from the C═O of the carboxylic acid Li. 90 mol% equal to the value calculated from
The particle diameter (water-swelling particle diameter) of the crosslinked polymer salt R-1 obtained above in an aqueous medium was measured and found to be 0.88 μm, and the particle diameter distribution was calculated to be 1.8. The degree of water swelling was 4.1, and the viscosity of the 3% by mass aqueous solution was less than 15 mPa·s.
上記で得られた架橋重合体塩R-1について水媒体中での粒子径(水膨潤粒子径)を測定したところ、0.88μmであり、粒子径分布は1.8と算出された。また、水膨潤度は4.1であり、3質量%濃度水溶液の粘度は15mPa・s未満であった。 The obtained polymerization reaction liquid was centrifuged to precipitate polymer particles, and then the supernatant was removed. Then, a washing operation of redispersing the precipitate in acetonitrile having the same weight as that of the polymerization reaction solution and then allowing the polymer particles to settle by centrifugation and removing the supernatant was repeated twice. The precipitate was recovered and dried under reduced pressure at 80° C. for 3 hours to remove volatile matter, thereby obtaining a powder of crosslinked polymer salt R-1. Since the cross-linked polymer salt R-1 has a hygroscopic property, it was sealed and stored in a container having a water vapor barrier property. The powder of the crosslinked polymer salt R-1 was subjected to IR measurement, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C═O group of the carboxylic acid and the peak derived from the C═O of the carboxylic acid Li. 90 mol% equal to the value calculated from
The particle diameter (water-swelling particle diameter) of the crosslinked polymer salt R-1 obtained above in an aqueous medium was measured and found to be 0.88 μm, and the particle diameter distribution was calculated to be 1.8. The degree of water swelling was 4.1, and the viscosity of the 3% by mass aqueous solution was less than 15 mPa·s.
(製造例2~18及び比較製造例1:架橋重合体塩R-2~R-19の製造)
各原料の仕込み量を表1~表3に記載の通りとした以外は製造例1と同様の操作を行い、架橋重合体塩R-2~R-19を含む重合反応液を得た。
次いで、各重合反応液について製造例1と同様の操作を行い、粉末状の架橋重合体塩R-2~R-19を得た。各架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。
得られた各重合体塩について、製造例1と同様に物性値を測定し、結果を表1~表3に示した。 (Production Examples 2 to 18 and Comparative Production Example 1: Production of crosslinked polymer salts R-2 to R-19)
The same operations as in Production Example 1 were carried out except that the amounts of the respective raw materials charged were as shown in Tables 1 to 3 to obtain polymerization reaction liquids containing the crosslinked polymer salts R-2 to R-19.
Then, the same operation as in Production Example 1 was carried out for each polymerization reaction liquid to obtain powdery crosslinked polymer salts R-2 to R-19. Each crosslinked polymer salt was sealed and stored in a container having a water vapor barrier property.
The physical properties of each of the obtained polymer salts were measured in the same manner as in Production Example 1, and the results are shown in Tables 1 to 3.
各原料の仕込み量を表1~表3に記載の通りとした以外は製造例1と同様の操作を行い、架橋重合体塩R-2~R-19を含む重合反応液を得た。
次いで、各重合反応液について製造例1と同様の操作を行い、粉末状の架橋重合体塩R-2~R-19を得た。各架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。
得られた各重合体塩について、製造例1と同様に物性値を測定し、結果を表1~表3に示した。 (Production Examples 2 to 18 and Comparative Production Example 1: Production of crosslinked polymer salts R-2 to R-19)
The same operations as in Production Example 1 were carried out except that the amounts of the respective raw materials charged were as shown in Tables 1 to 3 to obtain polymerization reaction liquids containing the crosslinked polymer salts R-2 to R-19.
Then, the same operation as in Production Example 1 was carried out for each polymerization reaction liquid to obtain powdery crosslinked polymer salts R-2 to R-19. Each crosslinked polymer salt was sealed and stored in a container having a water vapor barrier property.
The physical properties of each of the obtained polymer salts were measured in the same manner as in Production Example 1, and the results are shown in Tables 1 to 3.
(比較製造例2:架橋重合体塩R-20の製造)
重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
反応器内にメタノール300部、AA80部、HEA20部、ネオアリルT-20を0.75部、及びメタクリル酸アリル(三菱ガス化学社製、以下「AMA」という)0.20部を仕込んだ。次いで、撹拌下、初期中和用のLiOH・H2O粉末25.6部、及びイオン交換水1.40部を内温が40℃以下に維持されるようゆっくりと添加した。
反応器内を十分に窒素置換した後、加温して内温を68℃まで昇温した。内温が68℃で安定したことを確認した後、重合開始剤として4,4’-アゾビスシアノ吉草酸(大塚化学社製、商品名「ACVA」)0.020部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。溶媒が穏やかに還流するように外温(水バス温度)を調整しながら重合反応を継続し、重合開始点から3時間経過した時点でACVA0.020部、重合開始点から6時間経過した時点でACVA0.035部を追加で添加するとともに、引き続き溶媒の還流を維持した。重合開始点から9時間を経過したところで反応液の冷却を開始し、内温が30℃まで低下した後、LiOH・H2O粉末16.3部を内温が50℃を超えないようにゆっくりと添加した。LiOH・H2O粉末の添加後、3時間撹拌を継続して架橋重合体塩R-20(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。 (Comparative Production Example 2: Production of crosslinked polymer salt R-20)
For the polymerization, a reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used.
300 parts of methanol, 80 parts of AA, 20 parts of HEA, 0.75 part of neoallyl T-20, and 0.20 part of allyl methacrylate (manufactured by Mitsubishi Gas Chemical Co., Inc., hereinafter referred to as "AMA") were charged into the reactor. Then, with stirring, 25.6 parts of LiOH.H 2 O powder for initial neutralization and 1.40 parts of ion-exchanged water were slowly added so that the internal temperature was maintained at 40°C or lower.
After sufficiently replacing the inside of the reactor with nitrogen, it was heated to raise the internal temperature to 68°C. After confirming that the internal temperature was stable at 68° C., 0.020 part of 4,4′-azobiscyanovaleric acid (trade name “ACVA” manufactured by Otsuka Chemical Co., Ltd.) was added as a polymerization initiator to the reaction solution. Since white turbidity was observed, this point was set as a polymerization initiation point. The polymerization reaction was continued while adjusting the external temperature (water bath temperature) so that the solvent was gently refluxed, and ACVA was 0.020 part after 3 hours from the polymerization start point and 6 hours after the polymerization start point. An additional 0.035 parts of ACVA was added while continuing to reflux the solvent. After 9 hours from the polymerization start point, cooling of the reaction solution was started, and after the internal temperature dropped to 30°C, slowly add 16.3 parts of LiOH·H 2 O powder so that the internal temperature does not exceed 50°C. Was added. After the addition of the LiOH.H 2 O powder, stirring was continued for 3 hours to obtain a slurry-like polymerization reaction liquid in which particles of the crosslinked polymer salt R-20 (Li salt, neutralization degree 90 mol%) were dispersed in a medium. It was
重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
反応器内にメタノール300部、AA80部、HEA20部、ネオアリルT-20を0.75部、及びメタクリル酸アリル(三菱ガス化学社製、以下「AMA」という)0.20部を仕込んだ。次いで、撹拌下、初期中和用のLiOH・H2O粉末25.6部、及びイオン交換水1.40部を内温が40℃以下に維持されるようゆっくりと添加した。
反応器内を十分に窒素置換した後、加温して内温を68℃まで昇温した。内温が68℃で安定したことを確認した後、重合開始剤として4,4’-アゾビスシアノ吉草酸(大塚化学社製、商品名「ACVA」)0.020部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。溶媒が穏やかに還流するように外温(水バス温度)を調整しながら重合反応を継続し、重合開始点から3時間経過した時点でACVA0.020部、重合開始点から6時間経過した時点でACVA0.035部を追加で添加するとともに、引き続き溶媒の還流を維持した。重合開始点から9時間を経過したところで反応液の冷却を開始し、内温が30℃まで低下した後、LiOH・H2O粉末16.3部を内温が50℃を超えないようにゆっくりと添加した。LiOH・H2O粉末の添加後、3時間撹拌を継続して架橋重合体塩R-20(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。 (Comparative Production Example 2: Production of crosslinked polymer salt R-20)
For the polymerization, a reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen introduction tube was used.
300 parts of methanol, 80 parts of AA, 20 parts of HEA, 0.75 part of neoallyl T-20, and 0.20 part of allyl methacrylate (manufactured by Mitsubishi Gas Chemical Co., Inc., hereinafter referred to as "AMA") were charged into the reactor. Then, with stirring, 25.6 parts of LiOH.H 2 O powder for initial neutralization and 1.40 parts of ion-exchanged water were slowly added so that the internal temperature was maintained at 40°C or lower.
After sufficiently replacing the inside of the reactor with nitrogen, it was heated to raise the internal temperature to 68°C. After confirming that the internal temperature was stable at 68° C., 0.020 part of 4,4′-azobiscyanovaleric acid (trade name “ACVA” manufactured by Otsuka Chemical Co., Ltd.) was added as a polymerization initiator to the reaction solution. Since white turbidity was observed, this point was set as a polymerization initiation point. The polymerization reaction was continued while adjusting the external temperature (water bath temperature) so that the solvent was gently refluxed, and ACVA was 0.020 part after 3 hours from the polymerization start point and 6 hours after the polymerization start point. An additional 0.035 parts of ACVA was added while continuing to reflux the solvent. After 9 hours from the polymerization start point, cooling of the reaction solution was started, and after the internal temperature dropped to 30°C, slowly add 16.3 parts of LiOH·H 2 O powder so that the internal temperature does not exceed 50°C. Was added. After the addition of the LiOH.H 2 O powder, stirring was continued for 3 hours to obtain a slurry-like polymerization reaction liquid in which particles of the crosslinked polymer salt R-20 (Li salt, neutralization degree 90 mol%) were dispersed in a medium. It was
得られた重合反応液を遠心分離して重合体粒子を沈降させた後、上澄みを除去した。その後、重合反応液と同重量のメタノールに沈降物を再分散させた後、遠心分離により重合体粒子を沈降させて上澄みを除去する操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、架橋重合体塩R-20の粉末を得た。架橋重合体塩R-20は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、架橋重合体塩R-20の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、仕込みからの計算値に等しく90モル%であった。
得られた架橋重合体塩R-20について、製造例1と同様に物性値を測定し、結果を表3に示した。 The obtained polymerization reaction liquid was centrifuged to precipitate polymer particles, and then the supernatant was removed. After that, the procedure of redispersing the precipitate in the same amount of methanol as the polymerization reaction liquid and then precipitating the polymer particles by centrifugation and removing the supernatant was repeated twice. The precipitate was recovered and dried under reduced pressure at 80° C. for 3 hours to remove volatile matter, thereby obtaining a powder of crosslinked polymer salt R-20. Since the crosslinked polymer salt R-20 has a hygroscopic property, it was sealed and stored in a container having a water vapor barrier property. The powder of the crosslinked polymer salt R-20 was subjected to IR measurement, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C═O group of carboxylic acid and the peak derived from C═O of Li carboxylic acid. 90 mol% equal to the value calculated from
Physical properties of the obtained crosslinked polymer salt R-20 were measured in the same manner as in Production Example 1, and the results are shown in Table 3.
得られた架橋重合体塩R-20について、製造例1と同様に物性値を測定し、結果を表3に示した。 The obtained polymerization reaction liquid was centrifuged to precipitate polymer particles, and then the supernatant was removed. After that, the procedure of redispersing the precipitate in the same amount of methanol as the polymerization reaction liquid and then precipitating the polymer particles by centrifugation and removing the supernatant was repeated twice. The precipitate was recovered and dried under reduced pressure at 80° C. for 3 hours to remove volatile matter, thereby obtaining a powder of crosslinked polymer salt R-20. Since the crosslinked polymer salt R-20 has a hygroscopic property, it was sealed and stored in a container having a water vapor barrier property. The powder of the crosslinked polymer salt R-20 was subjected to IR measurement, and the degree of neutralization was determined from the intensity ratio of the peak derived from the C═O group of carboxylic acid and the peak derived from C═O of Li carboxylic acid. 90 mol% equal to the value calculated from
Physical properties of the obtained crosslinked polymer salt R-20 were measured in the same manner as in Production Example 1, and the results are shown in Table 3.
表1~表3において用いた化合物の詳細を以下に示す。
AA:アクリル酸
HEA:アクリル酸2-ヒドロキシエチル
4HBA:アクリル酸4-ヒドロキシブチル
HEAAm:ヒドロキシエチルアクリルアミド
MEA:アクリル酸2-メトキシエチル
AN:アクリロニトリル
T-20:トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)
AMA:メタクリル酸アリル
TEA:トリエチルアミン
AcN:アセトニトリル
MeOH:メタノール
V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製)
ACVA:4,4’-アゾビスシアノ吉草酸(大塚化学社製、商品名「ACVA」)
LiOH・H2O:水酸化リチウム・一水和物
NaOH・H2O:水酸化ナトリウム・一水和物
K2CO3:炭酸カリウム Details of the compounds used in Tables 1 to 3 are shown below.
AA: acrylic acid HEA: 2-hydroxyethyl acrylate 4HBA: 4-hydroxybutyl acrylate HEAAm: hydroxyethyl acrylamide MEA: 2-methoxyethyl acrylate AN: acrylonitrile T-20: trimethylolpropane diallyl ether (manufactured by Daiso) (Product name "Neoallyl T-20")
AMA: Allyl Methacrylate TEA: Triethylamine AcN: Acetonitrile MeOH: Methanol V-65: 2,2'-Azobis(2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)
ACVA: 4,4'-azobiscyanovaleric acid (Otsuka Chemical Co., Ltd., trade name "ACVA")
LiOH/H 2 O: lithium hydroxide/monohydrate NaOH/H 2 O: sodium hydroxide/monohydrate K 2 CO 3 : potassium carbonate
AA:アクリル酸
HEA:アクリル酸2-ヒドロキシエチル
4HBA:アクリル酸4-ヒドロキシブチル
HEAAm:ヒドロキシエチルアクリルアミド
MEA:アクリル酸2-メトキシエチル
AN:アクリロニトリル
T-20:トリメチロールプロパンジアリルエーテル(ダイソー社製、商品名「ネオアリルT-20」)
AMA:メタクリル酸アリル
TEA:トリエチルアミン
AcN:アセトニトリル
MeOH:メタノール
V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製)
ACVA:4,4’-アゾビスシアノ吉草酸(大塚化学社製、商品名「ACVA」)
LiOH・H2O:水酸化リチウム・一水和物
NaOH・H2O:水酸化ナトリウム・一水和物
K2CO3:炭酸カリウム Details of the compounds used in Tables 1 to 3 are shown below.
AA: acrylic acid HEA: 2-hydroxyethyl acrylate 4HBA: 4-hydroxybutyl acrylate HEAAm: hydroxyethyl acrylamide MEA: 2-methoxyethyl acrylate AN: acrylonitrile T-20: trimethylolpropane diallyl ether (manufactured by Daiso) (Product name "Neoallyl T-20")
AMA: Allyl Methacrylate TEA: Triethylamine AcN: Acetonitrile MeOH: Methanol V-65: 2,2'-Azobis(2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)
ACVA: 4,4'-azobiscyanovaleric acid (Otsuka Chemical Co., Ltd., trade name "ACVA")
LiOH/H 2 O: lithium hydroxide/monohydrate NaOH/H 2 O: sodium hydroxide/monohydrate K 2 CO 3 : potassium carbonate
≪実施例≫
活物質として、負極用活物質である黒鉛、又は、黒鉛及びケイ素粒子を用い、各架橋重合体塩をバインダーとして用いた電極合剤層用組成物について、そのスラリー粘度及び形成された合剤層/集電体間の剥離強度(すなわちバインダーの結着性)を測定した。黒鉛としては天然黒鉛(日本黒鉛社製、商品名「CGB-10」)、ケイ素粒子としてはSiナノパウダー(Sigma-Aldrich社製、粒子径<100nm)を使用した。 <<Example>>
As the active material, graphite which is an active material for a negative electrode, or graphite and silicon particles, and an electrode mixture layer composition using each cross-linked polymer salt as a binder, its slurry viscosity and the formed mixture layer / The peel strength between the current collectors (that is, the binding property of the binder) was measured. Natural graphite (manufactured by Nippon Graphite Co., Ltd., trade name “CGB-10”) was used as graphite, and Si nanopowder (manufactured by Sigma-Aldrich, particle diameter <100 nm) was used as silicon particles.
活物質として、負極用活物質である黒鉛、又は、黒鉛及びケイ素粒子を用い、各架橋重合体塩をバインダーとして用いた電極合剤層用組成物について、そのスラリー粘度及び形成された合剤層/集電体間の剥離強度(すなわちバインダーの結着性)を測定した。黒鉛としては天然黒鉛(日本黒鉛社製、商品名「CGB-10」)、ケイ素粒子としてはSiナノパウダー(Sigma-Aldrich社製、粒子径<100nm)を使用した。 <<Example>>
As the active material, graphite which is an active material for a negative electrode, or graphite and silicon particles, and an electrode mixture layer composition using each cross-linked polymer salt as a binder, its slurry viscosity and the formed mixture layer / The peel strength between the current collectors (that is, the binding property of the binder) was measured. Natural graphite (manufactured by Nippon Graphite Co., Ltd., trade name “CGB-10”) was used as graphite, and Si nanopowder (manufactured by Sigma-Aldrich, particle diameter <100 nm) was used as silicon particles.
実施例1
天然黒鉛100部に粉末状の架橋重合体Li塩R-1を2.4部秤量し、予めよく混合した後、イオン交換水90部を加えてディスパーで予備分散を行った後、薄膜旋回式ミキサー(プライミクス社製、FM-56-30)を用いて周速度20m/秒の条件で本分散を15秒間行うことにより、スラリー状の電極合剤層用組成物(電極スラリー)を得た。電極スラリー中の活物質濃度は52.0%、また、電極スラリーの固形分濃度は53.2%と算出された。 Example 1
2.4 parts of powdered cross-linked polymer Li salt R-1 was weighed in 100 parts of natural graphite, mixed well in advance, 90 parts of ion-exchanged water was added and predispersed with a disper, and then thin film rotation type The main dispersion was performed for 15 seconds at a peripheral speed of 20 m/sec using a mixer (FM-56-30, manufactured by Primix Co., Ltd.) to obtain a slurry composition for electrode mixture layer (electrode slurry). The active material concentration in the electrode slurry was calculated to be 52.0%, and the solid content concentration in the electrode slurry was calculated to be 53.2%.
天然黒鉛100部に粉末状の架橋重合体Li塩R-1を2.4部秤量し、予めよく混合した後、イオン交換水90部を加えてディスパーで予備分散を行った後、薄膜旋回式ミキサー(プライミクス社製、FM-56-30)を用いて周速度20m/秒の条件で本分散を15秒間行うことにより、スラリー状の電極合剤層用組成物(電極スラリー)を得た。電極スラリー中の活物質濃度は52.0%、また、電極スラリーの固形分濃度は53.2%と算出された。 Example 1
2.4 parts of powdered cross-linked polymer Li salt R-1 was weighed in 100 parts of natural graphite, mixed well in advance, 90 parts of ion-exchanged water was added and predispersed with a disper, and then thin film rotation type The main dispersion was performed for 15 seconds at a peripheral speed of 20 m/sec using a mixer (FM-56-30, manufactured by Primix Co., Ltd.) to obtain a slurry composition for electrode mixture layer (electrode slurry). The active material concentration in the electrode slurry was calculated to be 52.0%, and the solid content concentration in the electrode slurry was calculated to be 53.2%.
<電極スラリーの粘度測定>
上記で得られた電極スラリーについて、アントンパール社製レオメーター(Physica MCR301)を用い、CP25-5のコーンプレート(直径25mm、コーン角度5°)にて、25℃におけるせん断速度60s-1のスラリー粘度を測定したところ、1,500mPa・sであった。 <Viscosity measurement of electrode slurry>
About the electrode slurry obtained above, using a rheometer (Physica MCR301) manufactured by Anton Paar, using a cone plate of CP25-5 (diameter 25 mm, cone angle 5°), a slurry having a shear rate of 60 s -1 at 25° C. When the viscosity was measured, it was 1,500 mPa·s.
上記で得られた電極スラリーについて、アントンパール社製レオメーター(Physica MCR301)を用い、CP25-5のコーンプレート(直径25mm、コーン角度5°)にて、25℃におけるせん断速度60s-1のスラリー粘度を測定したところ、1,500mPa・sであった。 <Viscosity measurement of electrode slurry>
About the electrode slurry obtained above, using a rheometer (Physica MCR301) manufactured by Anton Paar, using a cone plate of CP25-5 (diameter 25 mm, cone angle 5°), a slurry having a shear rate of 60 s -1 at 25° C. When the viscosity was measured, it was 1,500 mPa·s.
次いで、可変式アプリケーターを用いて、厚さ20μmの銅箔(日本製箔社製)上に上記電極スラリーを塗布し、通風乾燥機内で100℃×15分間の乾燥を行うことにより合剤層を形成した。その後、合剤層の厚みが50±5μm、充填密度が1.70±0.20g/cm3になるよう圧延し、負極電極を得た。
Then, using a variable applicator, the above electrode slurry was applied onto a copper foil (manufactured by Japan Foil Co., Ltd.) having a thickness of 20 μm, and dried at 100° C. for 15 minutes in a ventilation dryer to form a mixture layer. Formed. Then, the mixture layer was rolled to a thickness of 50±5 μm and a packing density of 1.70±0.20 g/cm 3 to obtain a negative electrode.
<90°剥離強度(結着性)>
上記で得られた負極電極を25mm幅の短冊状に裁断した後、水平面に固定された両面テープに当該負極電極の合剤層面を貼付け、剥離試験用試料を作成した。試験用試料を60℃、1晩減圧条件下で乾燥させた後、引張速度50mm/分における90°剥離(測定温度23℃)を行い、合剤層と銅箔間の剥離強度を測定した。剥離強度は11.4N/mと高く、良好であった。 <90° peel strength (binding property)>
The negative electrode obtained above was cut into a strip having a width of 25 mm, and the mixture layer surface of the negative electrode was attached to a double-sided tape fixed on a horizontal surface to prepare a sample for peel test. After the test sample was dried at 60° C. under reduced pressure overnight, 90° peeling (measurement temperature: 23° C.) at a pulling speed of 50 mm/min was performed to measure the peel strength between the mixture layer and the copper foil. The peel strength was as high as 11.4 N/m, which was good.
上記で得られた負極電極を25mm幅の短冊状に裁断した後、水平面に固定された両面テープに当該負極電極の合剤層面を貼付け、剥離試験用試料を作成した。試験用試料を60℃、1晩減圧条件下で乾燥させた後、引張速度50mm/分における90°剥離(測定温度23℃)を行い、合剤層と銅箔間の剥離強度を測定した。剥離強度は11.4N/mと高く、良好であった。 <90° peel strength (binding property)>
The negative electrode obtained above was cut into a strip having a width of 25 mm, and the mixture layer surface of the negative electrode was attached to a double-sided tape fixed on a horizontal surface to prepare a sample for peel test. After the test sample was dried at 60° C. under reduced pressure overnight, 90° peeling (measurement temperature: 23° C.) at a pulling speed of 50 mm/min was performed to measure the peel strength between the mixture layer and the copper foil. The peel strength was as high as 11.4 N/m, which was good.
実施例2~20、及び比較例1~3
活物質、バインダーとして使用する架橋重合体塩及びイオン交換水を表4~表6の通り用いた以外は実施例1と同様の操作を行うことにより、電極スラリーを調製した。なお、実施例3及び4では、天然黒鉛及びケイ素粒子を、遊星ボールミル(FRITSCH社製、P-5)を用いて400rpmで1時間撹拌し、得られた混合物に粉末状の架橋重合体Li塩R-2を2.4部秤量し、予めよく混合した後、実施例1と同様の操作を行うことにより、電極スラリーを調製した。各電極スラリーについて塗工性及び90°剥離強度を評価した。結果を表4~表6に示す。 Examples 2 to 20 and Comparative Examples 1 to 3
An electrode slurry was prepared by performing the same operations as in Example 1 except that the active material, the crosslinked polymer salt used as the binder, and the ion-exchanged water were used as shown in Tables 4 to 6. In Examples 3 and 4, natural graphite and silicon particles were stirred at 400 rpm for 1 hour using a planetary ball mill (P-5, manufactured by FRITSCH), and the obtained mixture was mixed with a powdered crosslinked polymer Li salt. 2.4 parts of R-2 was weighed, mixed well in advance, and then the same operation as in Example 1 was performed to prepare an electrode slurry. The coatability and 90° peel strength of each electrode slurry were evaluated. The results are shown in Tables 4 to 6.
活物質、バインダーとして使用する架橋重合体塩及びイオン交換水を表4~表6の通り用いた以外は実施例1と同様の操作を行うことにより、電極スラリーを調製した。なお、実施例3及び4では、天然黒鉛及びケイ素粒子を、遊星ボールミル(FRITSCH社製、P-5)を用いて400rpmで1時間撹拌し、得られた混合物に粉末状の架橋重合体Li塩R-2を2.4部秤量し、予めよく混合した後、実施例1と同様の操作を行うことにより、電極スラリーを調製した。各電極スラリーについて塗工性及び90°剥離強度を評価した。結果を表4~表6に示す。 Examples 2 to 20 and Comparative Examples 1 to 3
An electrode slurry was prepared by performing the same operations as in Example 1 except that the active material, the crosslinked polymer salt used as the binder, and the ion-exchanged water were used as shown in Tables 4 to 6. In Examples 3 and 4, natural graphite and silicon particles were stirred at 400 rpm for 1 hour using a planetary ball mill (P-5, manufactured by FRITSCH), and the obtained mixture was mixed with a powdered crosslinked polymer Li salt. 2.4 parts of R-2 was weighed, mixed well in advance, and then the same operation as in Example 1 was performed to prepare an electrode slurry. The coatability and 90° peel strength of each electrode slurry were evaluated. The results are shown in Tables 4 to 6.
各実施例は、本発明に属する二次電池電極用バインダーを含む電極合剤層用組成物及びこれを用いて電極を作製したものである。各電極合剤層用組成物(電極スラリー)は、活物質濃度が50質量%を超えるような高濃度条件であっても十分低い値であり、良好な塗工性を確保することができた。また、乾燥時に除去される媒体(水)の量を低減することができるため、生産性の向上に寄与し得るものであった。さらに、得られた電極の合剤層と集電体との剥離強度はいずれも高い値が得られており、優れた結着性を示すものであった。
水酸基を有する特定の単量体に由来する第二の構造単位に着目すると、アクリルアミド誘導体に由来する構造単位を有する架橋重合体塩R-14を用いた実施例16のスラリー粘度(5,200mPa・s)に比較して、ヒドロキシアルキル(メタ)アクリレートに由来する構造単位を有する架橋重合体塩R-2又はR-13を用いた場合のスラリー粘度は、各々2,200mPa・s(実施例2)及び2,100mPa・s(実施例15)であり、より高いスラリー粘度低減効果を示した。 Each example is a composition for an electrode mixture layer containing a binder for a secondary battery electrode according to the present invention, and an electrode prepared by using the composition. The composition for each electrode mixture layer (electrode slurry) had a sufficiently low value even under a high concentration condition such that the active material concentration exceeded 50% by mass, and good coatability could be ensured. .. Further, the amount of the medium (water) removed during drying can be reduced, which can contribute to the improvement of productivity. Further, the peel strength between the mixture layer of the obtained electrode and the current collector was high, and the binding strength was excellent.
Focusing on the second structural unit derived from a specific monomer having a hydroxyl group, the slurry viscosity (5,200 mPa·s) of Example 16 using the crosslinked polymer salt R-14 having a structural unit derived from an acrylamide derivative was used. Compared with s), the slurry viscosity when using the cross-linked polymer salt R-2 or R-13 having a structural unit derived from hydroxyalkyl (meth)acrylate was 2,200 mPa·s (Example 2 ) And 2,100 mPa·s (Example 15), showing a higher slurry viscosity reducing effect.
水酸基を有する特定の単量体に由来する第二の構造単位に着目すると、アクリルアミド誘導体に由来する構造単位を有する架橋重合体塩R-14を用いた実施例16のスラリー粘度(5,200mPa・s)に比較して、ヒドロキシアルキル(メタ)アクリレートに由来する構造単位を有する架橋重合体塩R-2又はR-13を用いた場合のスラリー粘度は、各々2,200mPa・s(実施例2)及び2,100mPa・s(実施例15)であり、より高いスラリー粘度低減効果を示した。 Each example is a composition for an electrode mixture layer containing a binder for a secondary battery electrode according to the present invention, and an electrode prepared by using the composition. The composition for each electrode mixture layer (electrode slurry) had a sufficiently low value even under a high concentration condition such that the active material concentration exceeded 50% by mass, and good coatability could be ensured. .. Further, the amount of the medium (water) removed during drying can be reduced, which can contribute to the improvement of productivity. Further, the peel strength between the mixture layer of the obtained electrode and the current collector was high, and the binding strength was excellent.
Focusing on the second structural unit derived from a specific monomer having a hydroxyl group, the slurry viscosity (5,200 mPa·s) of Example 16 using the crosslinked polymer salt R-14 having a structural unit derived from an acrylamide derivative was used. Compared with s), the slurry viscosity when using the cross-linked polymer salt R-2 or R-13 having a structural unit derived from hydroxyalkyl (meth)acrylate was 2,200 mPa·s (Example 2 ) And 2,100 mPa·s (Example 15), showing a higher slurry viscosity reducing effect.
一方、水酸基を有する特定の単量体に由来する第二の構造単位を有しない架橋重合体塩R-19では、スラリー粘度は18,600mPa・sと著しく高く(比較例1)、塗工性を考慮して濃度を薄めた場合であっても、結着性が不十分な結果であった(比較例2)。また、本発明で規定する粒子径範囲の上限を超える架橋重合体塩R-20では、スラリー粘度は高く、剥離強度も非常に低いものであった(比較例3)。
On the other hand, in the case of the crosslinked polymer salt R-19 having no second structural unit derived from the specific monomer having a hydroxyl group, the slurry viscosity was remarkably high at 18,600 mPa·s (Comparative Example 1), and the coatability was high. Even when the concentration was reduced in consideration of the above, the result was that the binding property was insufficient (Comparative Example 2). Further, with the crosslinked polymer salt R-20 exceeding the upper limit of the particle size range specified in the present invention, the slurry viscosity was high and the peel strength was also very low (Comparative Example 3).
本発明の二次電池電極用バインダーは、合剤層において優れた結着性を示すこのため、上記バインダーを使用して得られた電極を備えた二次電池は、良好な耐久性(サイクル特性)を示すと予想され、車載用二次電池への適用が期待される。また、シリコンを含む活物質の使用にも有用であり、電池の高容量化への寄与が期待される。さらに、活物質濃度が高い条件下であっても、電極合剤層用組成物(電極スラリー)の粘度を低減することができる。よって、合剤層形成時の乾燥エネルギー低減、生産性向上の点で有利である。
本発明の二次電池電極用バインダーは、特に非水電解質二次電池電極に好適に用いることができ、中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。 The secondary battery electrode binder of the present invention exhibits excellent binding properties in the mixture layer. Therefore, the secondary battery including the electrode obtained by using the binder has good durability (cycle characteristics). ) Is expected to be applied to in-vehicle secondary batteries. It is also useful for using an active material containing silicon, and is expected to contribute to increasing the capacity of the battery. Furthermore, the viscosity of the composition for electrode mixture layer (electrode slurry) can be reduced even under conditions where the active material concentration is high. Therefore, it is advantageous in reducing the drying energy and improving the productivity when forming the mixture layer.
The binder for a secondary battery electrode of the present invention can be suitably used particularly for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.
本発明の二次電池電極用バインダーは、特に非水電解質二次電池電極に好適に用いることができ、中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。 The secondary battery electrode binder of the present invention exhibits excellent binding properties in the mixture layer. Therefore, the secondary battery including the electrode obtained by using the binder has good durability (cycle characteristics). ) Is expected to be applied to in-vehicle secondary batteries. It is also useful for using an active material containing silicon, and is expected to contribute to increasing the capacity of the battery. Furthermore, the viscosity of the composition for electrode mixture layer (electrode slurry) can be reduced even under conditions where the active material concentration is high. Therefore, it is advantageous in reducing the drying energy and improving the productivity when forming the mixture layer.
The binder for a secondary battery electrode of the present invention can be suitably used particularly for a non-aqueous electrolyte secondary battery electrode, and is particularly useful for a non-aqueous electrolyte lithium ion secondary battery having a high energy density.
Claims (7)
- 架橋重合体又はその塩を含有する二次電池電極用バインダーであって、
前記架橋重合体又はその塩は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位を50質量%以上99.5質量%以下、並びに、式(1)及び式(2)で表される単量体からなる群より選ばれる1種以上の単量体に由来する第二の構造単位を0.5質量%以上50質量%以下含み、
かつ、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上10μm以下である、二次電池電極用バインダー。
CH2=C(R1)COOR2 (1)
[式中、R1は水素原子又はメチル基を表し、R2は水酸基を有する炭素原子数1~8の一価の有機基、(R3O)mH又はR4O[CO(CH2)5O]nHを表す。なお、R3は炭素原子数2~4のアルキレン基を表し、R4は炭素原子数1~8のアルキレン基を表し、mは2~15の整数を表し、nは1~15の整数を表す。]
CH2=C(R5)CONR6R7 (2)
[式中、R5は水素原子又はメチル基を表し、R6は水酸基又は炭素原子数1~8のヒドロキシアルキル基を表し、R7は水素原子又は1価の有機基を表す。] A binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof,
The crosslinked polymer or a salt thereof has 50% by mass or more and 99.5% by mass or less of the first structural unit derived from an ethylenically unsaturated carboxylic acid monomer, and the formula (1 ) And a second structural unit derived from one or more kinds of monomers selected from the group consisting of the monomers represented by the formula (2) is contained in an amount of 0.5% by mass or more and 50% by mass or less,
A binder for a secondary battery electrode, which has a volume-based median diameter of 0.1 μm or more and 10 μm or less after being neutralized to a degree of neutralization of 80 to 100 mol %.
CH 2 =C(R 1 )COOR 2 (1)
[In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 is a monovalent organic group having a hydroxyl group and having 1 to 8 carbon atoms, (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H. In addition, R 3 represents an alkylene group having 2 to 4 carbon atoms, R 4 represents an alkylene group having 1 to 8 carbon atoms, m represents an integer of 2 to 15, and n represents an integer of 1 to 15. Represent ]
CH 2 =C(R 5 )CONR 6 R 7 (2)
[In the formula, R 5 represents a hydrogen atom or a methyl group, R 6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms, and R 7 represents a hydrogen atom or a monovalent organic group. ] - 架橋重合体又はその塩を含有する二次電池電極用バインダーであって、
前記架橋重合体又はその塩は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する第一の構造単位を50質量%以上99.5質量%以下、並びに、式量が200以下であって、(メタ)アクリロイル基及び水酸基を有する単量体に由来する第二の構造単位を0.5質量%以上50質量%以下含み、
かつ、中和度80~100モル%に中和された後、水媒体中で測定した粒子径が、体積基準メジアン径で0.1μm以上10μm以下である、二次電池電極用バインダー。 A binder for a secondary battery electrode containing a crosslinked polymer or a salt thereof,
The cross-linked polymer or a salt thereof has a first structural unit derived from an ethylenically unsaturated carboxylic acid monomer of 50% by mass or more and 99.5% by mass or less, and a formula weight, based on all structural units thereof. 200 or less, containing 0.5% by mass or more and 50% by mass or less of the second structural unit derived from a monomer having a (meth)acryloyl group and a hydroxyl group,
A binder for a secondary battery electrode, which has a volume-based median diameter of 0.1 μm or more and 10 μm or less after being neutralized to a degree of neutralization of 80 to 100 mol %. - 前記第二の構造単位は、ヒドロキシアルキル(メタ)アクリレートに由来する構造単位である請求項1又は2に記載の二次電池電極用バインダー。 The binder for a secondary battery electrode according to claim 1 or 2, wherein the second structural unit is a structural unit derived from hydroxyalkyl (meth)acrylate.
- 前記架橋重合体又はその塩は、3質量%濃度水溶液の粘度が10,000mPa・s以下である請求項1~3のいずれか1項に記載の二次電池電極用バインダー。 The binder for a secondary battery electrode according to any one of claims 1 to 3, wherein the crosslinked polymer or a salt thereof has a viscosity of an aqueous 3% by mass solution of 10,000 mPa·s or less.
- 前記架橋重合体又はその塩は、pH8における水膨潤度が3.0以上、100以下である請求項1~4のいずれか1項に記載の二次電池電極用バインダー。 The binder for a secondary battery electrode according to any one of claims 1 to 4, wherein the crosslinked polymer or a salt thereof has a water swelling degree at pH 8 of 3.0 or more and 100 or less.
- 請求項1~5のいずれか1項に記載の二次電池電極用バインダー、活物質及び水を含む、二次電池電極合剤層用組成物。 A composition for a secondary battery electrode mixture layer, comprising the secondary battery electrode binder according to any one of claims 1 to 5, an active material and water.
- 集電体表面に、請求項1~5のいずれか1項に記載の二次電池電極用バインダーを含有する電極合剤層を備える、二次電池電極。 A secondary battery electrode, which comprises an electrode mixture layer containing the binder for a secondary battery electrode according to any one of claims 1 to 5 on the surface of the current collector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020557578A JPWO2020110847A1 (en) | 2018-11-27 | 2019-11-20 | Binder for secondary battery electrode, composition for secondary battery electrode mixture layer and secondary battery electrode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018220810 | 2018-11-27 | ||
JP2018-220810 | 2018-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020110847A1 true WO2020110847A1 (en) | 2020-06-04 |
Family
ID=70853408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045360 WO2020110847A1 (en) | 2018-11-27 | 2019-11-20 | Binder for secondary battery electrode, composition for secondary battery electrode mixture layer, and secondary battery electrode |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020110847A1 (en) |
WO (1) | WO2020110847A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085233A1 (en) * | 2021-11-09 | 2023-05-19 | 株式会社日本触媒 | Lithium-ion secondary battery negative electrode composition |
WO2024024772A1 (en) * | 2022-07-27 | 2024-02-01 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary battery electrodes |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015033827A1 (en) * | 2013-09-03 | 2015-03-12 | 日本ゼオン株式会社 | Slurry composition for negative electrode for lithium ion secondary battery, manufacturing method for negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2015163302A1 (en) * | 2014-04-21 | 2015-10-29 | 和光純薬工業株式会社 | Binder for lithium cell |
WO2016158939A1 (en) * | 2015-03-30 | 2016-10-06 | 東亞合成株式会社 | Composition for electrode mixture layer of nonaqueous electrolyte secondary battery, production method for said composition, and use of said composition |
WO2016158964A1 (en) * | 2015-03-30 | 2016-10-06 | 東亞合成株式会社 | Composition for electrode mixture layer of nonaqueous electrolyte secondary battery, production method for said composition, and use of said composition |
WO2017073589A1 (en) * | 2015-10-30 | 2017-05-04 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary cell electrode, method for producing binder, and use thereof |
WO2017130940A1 (en) * | 2016-01-29 | 2017-08-03 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary battery electrodes, method for producing same and use of same |
WO2018043484A1 (en) * | 2016-08-31 | 2018-03-08 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary battery electrodes and use of same |
WO2018198644A1 (en) * | 2017-04-26 | 2018-11-01 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary battery electrode, method for producing same, and use thereof |
JP2018174044A (en) * | 2017-03-31 | 2018-11-08 | 株式会社大阪ソーダ | Binder for electrode, electrode, and power storage device |
-
2019
- 2019-11-20 JP JP2020557578A patent/JPWO2020110847A1/en active Pending
- 2019-11-20 WO PCT/JP2019/045360 patent/WO2020110847A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015033827A1 (en) * | 2013-09-03 | 2015-03-12 | 日本ゼオン株式会社 | Slurry composition for negative electrode for lithium ion secondary battery, manufacturing method for negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2015163302A1 (en) * | 2014-04-21 | 2015-10-29 | 和光純薬工業株式会社 | Binder for lithium cell |
WO2016158939A1 (en) * | 2015-03-30 | 2016-10-06 | 東亞合成株式会社 | Composition for electrode mixture layer of nonaqueous electrolyte secondary battery, production method for said composition, and use of said composition |
WO2016158964A1 (en) * | 2015-03-30 | 2016-10-06 | 東亞合成株式会社 | Composition for electrode mixture layer of nonaqueous electrolyte secondary battery, production method for said composition, and use of said composition |
WO2017073589A1 (en) * | 2015-10-30 | 2017-05-04 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary cell electrode, method for producing binder, and use thereof |
WO2017130940A1 (en) * | 2016-01-29 | 2017-08-03 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary battery electrodes, method for producing same and use of same |
WO2018043484A1 (en) * | 2016-08-31 | 2018-03-08 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary battery electrodes and use of same |
JP2018174044A (en) * | 2017-03-31 | 2018-11-08 | 株式会社大阪ソーダ | Binder for electrode, electrode, and power storage device |
WO2018198644A1 (en) * | 2017-04-26 | 2018-11-01 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary battery electrode, method for producing same, and use thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085233A1 (en) * | 2021-11-09 | 2023-05-19 | 株式会社日本触媒 | Lithium-ion secondary battery negative electrode composition |
WO2024024772A1 (en) * | 2022-07-27 | 2024-02-01 | 東亞合成株式会社 | Binder for nonaqueous electrolyte secondary battery electrodes |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020110847A1 (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6729603B2 (en) | Binder for non-aqueous electrolyte secondary battery electrode, method for producing the same, and use thereof | |
JP6638747B2 (en) | Binder for secondary battery electrode and its use | |
JP6354929B1 (en) | Nonaqueous electrolyte secondary battery electrode binder and use thereof | |
WO2021070738A1 (en) | Secondary battery electrode binder, secondary battery electrode mixture layer composition, secondary battery electrode, and secondary battery | |
JP7372602B2 (en) | Binder for secondary battery electrodes and its use | |
JP7234934B2 (en) | Binder for secondary battery electrode and its use | |
WO2021241404A1 (en) | Non-aqueous electrolyte secondary battery electrode binder and use therefor | |
WO2020110847A1 (en) | Binder for secondary battery electrode, composition for secondary battery electrode mixture layer, and secondary battery electrode | |
WO2020218049A1 (en) | Secondary battery electrode binder and use therefor | |
JP7226442B2 (en) | Binder for secondary battery electrode and its use | |
JP7160222B2 (en) | Method for producing binder for non-aqueous electrolyte secondary battery electrode | |
JP6988888B2 (en) | Binder for non-aqueous electrolyte secondary battery electrode, its manufacturing method, and its application | |
WO2019017315A1 (en) | Binder for non-aqueous-electrolyte secondary battery electrode and use for same | |
JP7211418B2 (en) | Binder for secondary battery electrode and its use | |
WO2024024772A1 (en) | Binder for nonaqueous electrolyte secondary battery electrodes | |
JP7322882B2 (en) | Binder for secondary battery electrode and its use | |
WO2024024773A1 (en) | Method for producing crosslinked polymer or salt thereof | |
WO2020090695A1 (en) | Binder for secondary battery electrodes, and use thereof | |
WO2021100582A1 (en) | Secondary battery electrode compound layer composition, secondary battery electrode, and secondary battery | |
WO2022130989A1 (en) | Binder for lithium-sulfur secondary battery electrode, and use thereof | |
JP2024038023A (en) | Composition for secondary battery electrode mixture layer and secondary battery electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19890559 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020557578 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19890559 Country of ref document: EP Kind code of ref document: A1 |