Nothing Special   »   [go: up one dir, main page]

JP5222640B2 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP5222640B2
JP5222640B2 JP2008179220A JP2008179220A JP5222640B2 JP 5222640 B2 JP5222640 B2 JP 5222640B2 JP 2008179220 A JP2008179220 A JP 2008179220A JP 2008179220 A JP2008179220 A JP 2008179220A JP 5222640 B2 JP5222640 B2 JP 5222640B2
Authority
JP
Japan
Prior art keywords
axis current
command value
value
current command
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008179220A
Other languages
English (en)
Other versions
JP2010022111A (ja
Inventor
佳明 栗田
達夫 安藤
邦明 高塚
孝 大石
励 笠原
健 木下
健太郎 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008179220A priority Critical patent/JP5222640B2/ja
Priority to CN200910150979XA priority patent/CN101625172B/zh
Publication of JP2010022111A publication Critical patent/JP2010022111A/ja
Application granted granted Critical
Publication of JP5222640B2 publication Critical patent/JP5222640B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、例えば空気調和機や冷凍機などの冷凍装置に係り、特に、冷凍サイクルの圧縮機を駆動する永久磁石同期型のモータの回転数をインバータ装置によって可変制御する冷凍装置に関する。
例えば空気調和機や冷凍機などの冷凍装置においては、高効率な運転を実現するため、インバータ装置にベクトル制御を採用することが知られている。ベクトル制御はモータ定数(詳細には、抵抗、誘起電圧、及びインダクタンス)を用いるため、このモータ定数を予め設定する必要がある。しかし、モータ定数は、モータ製造時のバラツキや運転条件によって変動し、予め設定した設定値と実際値との間にずれが生じる恐れがある。そこで、実運転の直前や実運転中にモータ定数を同定して、モータ定数設定値を自動的に修正するベクトル制御装置が提唱されている(例えば、特許文献1参照)。
特許文献1に記載のベクトル制御装置は、3相交流電流を検出する電流検出器と、3相交流電流の検出値をd軸電流検出値及びq軸電流検出値に変換する座標変換部と、第1のd軸電流指令値とd軸電流検出値との偏差に応じて第2のd軸電流指令値を生成するd軸電流指令演算部と、第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第2のq軸電流指令値を生成するq軸電流指令演算部と、モータ定数を同定して、モータ定数設定値を修正するモータ定数同定部と、モータ定数の設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算するベクトル制御演算部(電圧指令演算部)と、d軸電圧指令値及びq軸電圧指令値を3相交流の電圧指令値に変換する座標変換部と、3相交流の電圧指令値に比例した電圧を永久磁石同期モータに印加する電力変換器とを備えている。そして、高速域では、d軸電流を「零」と「零以外の所定値」とに制御し、それら2つの制御状態における第2のd軸電流指令値の差分とd軸電流検出値の差分(若しくは第1のd軸電流指令値の差分)をそれぞれ演算し、それらd軸電流指令値の差分とd軸電流検出値の差分(若しくは第1のd軸電流指令値の差分)との比をd軸インダクタンスの設定値に乗じて、d軸インダクタンスの設定値を修正するようになっている。また、高速域では、q軸電流が「所定値以上」であれば、第2のq軸電流指令値とq軸電流検出値(若しくは第1のq軸電流指令値)との比をq軸インダクタンスの設定値に乗じて、q軸インダクタンスの設定値を修正するようになっている。
特開2007−49843号公報
モータ定数の同定精度は、モータの制御性能(詳細には、駆動効率、応答速度、安定性など)に影響を与えるが、特に、インダクタンスの同定精度は、モータ最大トルク制御に係わるので、モータ電流や駆動効率に大きな影響を与える。上記制御装置では、d軸電流指令値を「零」と「零以外の所定値」に制御し、それら2つの制御状態における第2のd軸電流指令値の差分とd軸電流検出値の差分に基づいてd軸インダクタンスを同定するようになっている。そのため、電流のリップルや位相のバラツキの影響を受けやすく、インダクタンスの同定精度の点で改善の余地があった。
また、冷凍装置においては、運転開始時に冷媒の循環が安定せず負荷変動などが起きて冷凍サイクルが安定しない状態があり、圧縮機用モータの電流が安定しない領域がある。したがって、インダクタンスの同定精度を高めるためには、冷凍サイクルが比較的安定した状態にて同定を行う必要があった。
本発明の目的は、インダクタンスの同定精度を高めることができ、運転効率の向上を図ることができる冷凍装置を提供することにある。
(1)上記目的を達成するために、本発明は、圧縮機、凝縮器、膨張弁、及び蒸発器で構成された冷凍サイクルと、前記圧縮機を駆動する永久磁石同期型のモータと、ベクトル制御によって前記モータの回転数を可変制御するインバータ装置とを備えた冷凍装置において、前記インバータ装置は、直流電力から交流電力を生成して前記モータに供給するインバータ回路と、前記インバータ回路の入力直流電流又は出力交流電流を検出する電流検出手段と、前記電流検出手段で検出された電流からd軸電流検出値及びq軸電流検出値を演算する電流検出演算手段と、第1のd軸電流指令値とd軸電流検出値との偏差に基づいて第1のd軸電流指令値を補正して第2のd軸電流指令値を生成するd軸電流指令演算手段と、第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第1のq軸電流指令値を補正して第2のq軸電流指令値を生成するq軸電流指令演算手段と、インダクタンス設定値を含むモータ定数設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算する電圧指令演算手段と、d軸電圧指令値及びq軸電圧指令値に基づいて前記インバータ回路を制御するインバータ制御手段と、同定モードとして、所定時間、回転数指令値を固定しつつ、第1のd軸電流指令値を所定の設定値に固定する同定モード制御手段と、同定モードの場合における第2のd軸電流指令値と第1のd軸電流指令値との差分を積分して平均値を演算し、これに基づいてインダクタンス設定値の補正量を演算し、その補正量を加算したインダクタンス設定値を前記電圧指令演算手段の演算に用いるようにしたインダクタンス同定手段とを備え、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、予め設定された所定の回転数に固定して所定時間運転する第1始動モードの終了後、同定モードを実行する。
(2)上記(1)において、好ましくは、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記第1始動モードの後に外気温度に応じて選択した回転数に固定して所定時間運転する第2始動モードの終了後、同定モードを実行する。
(3)上記目的を達成するために、本発明は、圧縮機、凝縮器、膨張弁、及び蒸発器で構成された冷凍サイクルと、前記圧縮機を駆動する永久磁石同期型のモータと、ベクトル制御によって前記モータの回転数を可変制御するインバータ装置とを備えた冷凍装置において、前記凝縮器及び前記蒸発器のうちの少なくとも一方における熱交換を促進するための送風機と、前記モータの始動に合わせて前記送風機を始動する際、前記送風機を予め設定された所定の回転数に固定して所定時間運転する第1始動モードを実行する送風機制御装手段とをさらに備えており、前記インバータ装置は、直流電力から交流電力を生成して前記モータに供給するインバータ回路と、前記インバータ回路の入力直流電流又は出力交流電流を検出する電流検出手段と、前記電流検出手段で検出された電流からd軸電流検出値及びq軸電流検出値を演算する電流検出演算手段と、第1のd軸電流指令値とd軸電流検出値との偏差に基づいて第1のd軸電流指令値を補正して第2のd軸電流指令値を生成するd軸電流指令演算手段と、第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第1のq軸電流指令値を補正して第2のq軸電流指令値を生成するq軸電流指令演算手段と、インダクタンス設定値を含むモータ定数設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算する電圧指令演算手段と、d軸電圧指令値及びq軸電圧指令値に基づいて前記インバータ回路を制御するインバータ制御手段と、同定モードとして、所定時間、回転数指令値を固定しつつ、第1のd軸電流指令値を所定の設定値に固定する同定モード制御手段と、同定モードの場合における第2のd軸電流指令値と第1のd軸電流指令値との差分を積分して平均値を演算し、これに基づいてインダクタンス設定値の補正量を演算し、その補正量を加算したインダクタンス設定値を前記電圧指令演算手段の演算に用いるようにしたインダクタンス同定手段とを備え、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記送風機制御手段の第1始動モードの終了後、同定モードを実行する。
(4)上記(3)において、好ましくは、前記送風機制御手段は、前記送風機を始動する際、前記第1始動モードの後に前記送風機を外気温度に応じて選択した回転数に固定して所定時間運転する第2始動モードを実行し、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記送風機制御手段の第2始動モードの終了後、同定モードを実行する。
(5)上記(3)において、好ましくは、前記送風機制御手段は、前記送風機を始動する際、前記第1始動モードの後に前記送風機を外気温度及び前記圧縮機の吐出温度に応じて選択した回転数に固定して所定時間運転する第2始動モードを実行し、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記送風機制御手段の第2始動モードの終了後、同定モードを実行する。
(6)上記目的を達成するために、本発明は、圧縮機、凝縮器、膨張弁、及び蒸発器で構成された冷凍サイクルと、前記圧縮機を駆動する永久磁石同期型のモータと、ベクトル制御によって前記モータの回転数を可変制御するインバータ装置とを備えた冷凍装置において、前記圧縮機の始動に合わせて、前記膨張弁を外気温度に応じて選択した開度に所定時間固定する始動モードを実行する膨張弁制御装手段をさらに備え、前記インバータ装置は、直流電力から交流電力を生成して前記モータに供給するインバータ回路と、前記インバータ回路の入力直流電流又は出力交流電流を検出する電流検出手段と、前記電流検出手段で検出された電流からd軸電流検出値及びq軸電流検出値を演算する電流検出演算手段と、第1のd軸電流指令値とd軸電流検出値との偏差に基づいて第1のd軸電流指令値を補正して第2のd軸電流指令値を生成するd軸電流指令演算手段と、第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第1のq軸電流指令値を補正して第2のq軸電流指令値を生成するq軸電流指令演算手段と、インダクタンス設定値を含むモータ定数設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算する電圧指令演算手段と、d軸電圧指令値及びq軸電圧指令値に基づいて前記インバータ回路を制御するインバータ制御手段と、同定モードとして、所定時間、回転数指令値を固定しつつ、第1のd軸電流指令値を所定の設定値に固定する同定モード制御手段と、同定モードの場合における第2のd軸電流指令値と第1のd軸電流指令値との差分を積分して平均値を演算し、これに基づいてインダクタンス設定値の補正量を演算し、その補正量を加算したインダクタンス設定値を前記電圧指令演算手段の演算に用いるようにしたインダクタンス同定手段とを備え、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記膨張弁制御手段の始動モードの終了後、同定モードを実行する。
(7)上記(1)〜(6)のいずれか1つにおいて、好ましくは、前記同定モード制御手段は、予め設定された所定の回数繰り返すように同定モードを実行する。
(8)上記(7)において、好ましくは、前記同定モード制御手段は、第1のd軸電流指令値を、同定モードの繰り返し回数に応じて異なる所定の設定値に固定する。
本発明によれば、インダクタンスの同定精度を高めることができ、運転効率の向上を図ることができる。
以下、本発明の第1の実施形態を、図面を参照しつつ説明する。
図1は、本実施形態における空気調和機の構成を表す概略図である。
この図1において、空気調和機100は、圧縮機101、四方弁102、室外熱交換器103、室外膨張弁104、室内膨張弁105、室内熱交換器106、アキュームレータ107を順次連結した冷凍サイクルを有している。圧縮機101、四方弁102、室外熱交換器103、室外膨張弁104、及びアキュームレータ107等は室外機108に備えられ、室内膨張弁105及び室内熱交換器106等は室内機109に備えられている。室外機108には熱交換を促進するための室外送風機110が設けられており、室外送風機110はモータ111によって駆動される。また、室内機109には熱交換を促進するための室内送風機112が設けられており、室内送風機112はモータ113によって駆動される。
そして、例えば室内を冷房する場合は、四方弁102が図中実線で示す連通状態(詳細には、圧縮機101と室外熱交換器103を連通し、アキュームレータ107と室内熱交換器106を連通した状態)に切り換えられる。これにより、圧縮機101で圧縮された冷媒は室外熱交換器103に流入し、室外熱交換器103で空気と熱交換されて凝縮する。その後、室内膨張弁105で減圧されて室内熱交換器106に流入し、室内熱交換器106で空気と熱交換されて蒸発し、アキュームレータ107を経由して圧縮機101に戻るようになっている。一方、例えば室内を暖房する場合は、四方弁102が図中破線で示す連通状態(詳細には、圧縮機101と室内熱交換器106を連通し、アキュームレータ107と室外熱交換器103を連通した状態)に切り換えられる。これにより、圧縮機101で圧縮された冷媒は室内熱交換器106に流入し、室内熱交換器106で空気と熱交換されて凝縮する。その後、室外膨張弁104で減圧されて室外熱交換器103に流入し、室外熱交換器103で空気と熱交換されて蒸発し、アキュームレータ107を経由して圧縮機101に戻るようになっている。
圧縮機101は永久磁石同期型のモータ114によって駆動され、この圧縮機用モータ114の回転数(運転周波数)がインバータ装置210によって可変制御されている。これにより、冷凍サイクルに必要な能力に対応するようになっている。また、室外送風機用モータ111の回転数、室外膨張弁104の開度、及び四方弁102の切り換え等もインバータ装置210によって制御されている。なお、室内送風機用モータ113の回転数及び室内膨張弁105の開度等は図示しない制御装置によって制御されており、この制御装置とインバータ装置210は互いに連携するようになっている。
図2は、上記インバータ装置210の構成を表す概略図である。
この図2において、インバータ装置210は、交流電源251からの交流電力を直流電力に変換するコンバータ回路225と、このコンバータ回路225で生成された直流電力から交流電力を生成して圧縮機用モータ114に供給するインバータ回路221と、シャント抵抗224を用いてインバータ回路221の入力直流電流を検出する電流検出回路233と、室外送風機用モータ111を駆動する送風機駆動回路281と、室外膨張弁104を駆動する膨張弁駆動回路282と、マイコン231と、コンバータ回路225で生成された高電圧を例えば5V又は15V程度の制御電源に調整してマイコン231、ドライバ回路232、送風機駆動回路281、及び膨張弁駆動回路282等に供給する電源回路235と、コンバータ回路225の出力直流電圧を検出する電圧検出回路234とを備えている。
コンバータ回路225は、複数の整流素子226がブリッジ結線された回路であり、交流電源251からの交流電力を直流電力に変換するようになっている。インバータ回路221は、複数のスイッチング素子222が三相ブリッジ結線された回路である。また、スイッチング素子222がスイッチング時に発生する逆起電力を回生するため、スイッチング素子222と併設してフライホイール素子223が設けられている。ドライバ回路232は、マイコン231からの微弱な信号(後述するPWM信号)を増幅して、スイッチング素子222のスイッチング動作を制御するようになっている。これにより、インバータ回路221で交流電力が生成されるとともにその周波数が制御されるようになっている。
コンバータ回路225の出力側には、電磁接触器253、力率改善用リアクトル252、及び平滑コンデンサ270が接続されている。また、電源投入時等に閉路する電磁接触器253が平滑コンデンサ270に流れる過大な突入電流で溶着しないように、電磁接触器253と並列して突入電流制限抵抗器254が設けられている。
マイコン231は、室外送風機用モータ111の制御機能を有し、送風機駆動回路281を介して室外送風機用モータ111の回転数を制御するようになっている。また、マイコン231は、室外膨張弁104の制御機能を有し、膨張弁駆動回路282を介して室外膨張弁104の開度を制御するようになっている。
また、マイコン231は、圧縮機用モータ114の制御機能(センサレスタイプのベクトル制御機能)を有しており、ドライバ回路232を介してインバータ回路221を制御し、これによって圧縮機用モータ114の回転数を制御するようになっている。詳細には、電流検出回路233で検出されたインバータ回路221の入力直流電流等に基づいて圧縮機用モータ114の駆動電流(言い換えれば、インバータ回路221の出力交流電流)を再現するようになっており、交流電流を検出する電流センサを不要としている。また、圧縮機用モータ114の回転速度や位相(磁極位置)を推定するようになっており、速度センサや磁極位置センサを不要としている。このようなベクトル制御機能の詳細を以下説明する。
図3は、マイコン231の圧縮機用モータ114の制御に係わる機能的構成を表すブロック図である。図4は、図3で示された速度・位相推定部の機能的構成を表すブロック図であり、図5は、図3で示されたモータ定数同定部及びベクトル制御演算部の機能的構成を表すブロック図である。
これら図3〜図5において、マイコン231は、モータ114の回転速度検出値ω及び位相検出値θdcを推定する速度・位相推定部18と、電流検出回路233で検出された直流電流Ish等からモータ114の駆動電流(3相交流の電流検出値)Iu,Iv,Iwを推定する電流再現部19と、位相検出値θdcに基づいて3相交流の電流検出値Iu,Iv,Iwをdc軸電流検出値Idc及びqc軸電流検出値Iqcに変換する3相/2軸変換部20と、モード指令(詳細には、後述する始動モード、同定モード、又は通常モードの指令)を出力する圧縮機運転指令部9と、圧縮機運転指令部9からのモード指令に応じて回転速度指令値ωを生成する速度指令生成部10と、減算部11で演算された回転速度指令値ωと回転速度検出値ωとの偏差が零となるように、第1のqc軸電流指令値Iqcを生成するq軸電流指令生成部12と、圧縮機運転指令部9からのモード指令に応じて第1のdc軸電流指令値Idcを生成するd軸電流指令生成部13と、モータ定数設定値(詳細には、抵抗設定値r、誘起電圧設定値Ke、及び仮想インダクタンス設定値L)を出力するモータ定数同定部14と、第1のdc軸電流指令値Idc、第1のqc軸電流指令値Iqc、モータ定数設定値、及び回転速度指令値ω等に基づいてdc軸電圧指令値Vdc及びqc軸電圧指令値Vqcを演算するベクトル制御演算部15と、位相検出値θdcに基づいてdc軸電圧指令値Vdc及びqc軸電圧指令値Vqcを3相交流の電圧指令値Vu,Vv,Vwに変換する2軸/3相変換部16と、3相交流の電圧指令値Vu,Vv,Vwにそれぞれ比例したPWM信号(パルス幅変調信号)を生成してドライバ回路232に出力するPWM出力部17とを有している。
電流再現部19は、電流検出回路233で検出された直流電流Ishと2軸/3相変換部16で演算された3相交流の電圧指令値Vu,Vv,Vwに基づき、モータ114の3相交流の電流検出値Iu,Iv,Iwを推定する。3相/2軸変換部20は、速度・位相推定部18で推定された位相検出値θdcに基づき、3相交流の電流検出値Iu,Iv,Iwをdc軸電流検出値Idc及びqc軸電流検出値Iqcに変換する(下記の数式1参照)。なお、図6に示すように、d−q軸はモータ回転子軸、do−qo軸はモータ最大トルク軸、dc−qc軸は制御系の推定軸であり、do−qo軸とdc−qc軸との軸誤差をΔθcと定義する。
Figure 0005222640
速度・位相推定部18は、軸誤差Δθcを演算する軸誤差演算部21と、軸誤差Δθcに零指令を与える零発生部22と、回転速度検出値ωを推定する速度演算部23と、位相検出値θcを推定する位相演算部24とを有している。軸誤差演算部21は、dc軸電圧指令値Vdc、qc軸電圧指令値Vqc、dc軸電流検出値Idc、qc軸電流検出値Iqc、モータ定数設定値r,Ke,L、及び回転速度指令値ωに基づいて軸誤差Δθcを演算する(下記の数式2参照)。
Figure 0005222640
速度演算部23は、軸誤差演算部21で演算された軸誤差Δθcが零となるように、回転速度検出値ωを推定している。言い換えれば、零発生部22及び回転速度演算部23は、PLL制御回路を構成している。速度演算部23は、例えば軸誤差Δθcが正の場合、制御系のdc−qc軸がモータ最大トルクのdo−qo軸より進んでいるため、回転速度検出値ωを増加させるように推定する。一方、例えば軸誤差Δθcが負の場合、制御系のdc−qc軸がモータ最大トルクのdo−qo軸より遅れているため、回転速度検出値ωを減少させるように推定する。そして、q軸電流指令生成部12は、速度演算部23で推定された回転速度検出値ωと速度指令生成部10で生成された回転速度指令値ωとの偏差が零となるように、第1のqc軸電流指令値を生成する。
位相演算部24は、速度演算部23で推定された回転速度検出値ωを積分して、制御系の位相θdcを演算する。
ベクトル制御演算部15は、q軸電流指令演算部31と、d軸電流指令演算部33と、電圧指令演算部34とを有している。q軸電流指令演算部31は、減算部30で演算された第1のqc軸電流指令値Iqcとqc軸電流検出値Iqcとの差分に基づいて第1のqc軸電流指令値Iqcを補正して第2のqc軸電流指令値Iqc**を生成する。同様に、d軸電流指令演算部33は、減算部32で演算された第1のdc軸電流指令値Idcとdc軸電流検出値Idcとの差分に基づいて第1のdc軸電流指令値Idcを補正して第2のdc軸電流指令値Idc**を生成する。
電圧指令演算部34は、第2のqc軸電流指令値Iqc**、第2のdc軸電流指令値Idc**、モータ定数設定値r,Ke,L、及び回転速度指令値ωに基づいて、dc軸電圧指令値Vdc及びqc軸電圧指令値Vqcを演算する(下記の数式3参照)。なお、本実施形態では、d軸インダクタンス設定値Ldとq軸インダクタンス設定値Lqとがほぼ等しい場合を想定し、これを仮想インダクタンスL(=Ld=Lq)として設定している。
Figure 0005222640
2軸/3相変換部16は、速度・位相推定部18で推定された位相検出値θdcに基づき、dc軸電圧指令値Vdc及びqc軸電流検出値Vqcを3相交流の電圧指令値Vu,Vv,Vwに変換する(下記の数式4参照)。
Figure 0005222640
ここで本実施形態の最も大きな特徴である仮想インダクタンスLの同定方法の原理について説明する。
定常状態において、モータ定数設定値(r,Ke,L)と実際のモータ定数(r,Ke,L)とが一致している場合は、電流検出値Idc,Iqc(若しくは第1の電流指令値Idc,Iqc)と電圧指令演算部34の入力である第2の電流指令値Idc**,Iqc**とがほぼ等しくなる。しかし、モータ定数設定値(r,Ke,L)と実際のモータ定数(r,Ke,L)とがずれている場合は、電流検出値Idc,Iqc(若しくは第1の電流指令値Idc,Iqc)と第2の電流指令値Idc**,Iqc**との間に偏差が生じる。その詳細を、以下説明する。
定常状態において、電流検出値Idc,Iqcと電圧指令値Vdc,Vqcとの関係は下記の数式5で近似的に表される。
Figure 0005222640
定常状態において、回転速度指令値ωと回転速度検出値ωはほぼ等しく、第1のdc軸電流指令値Idcとdc軸電流検出値Idcはほぼ等しい。また、モータ114が中高速で回転している場合若しくは抵抗設定値rの誤差が少ない場合(r=r)を想定すれば、数式3と数式5より、下記の数式6を導き出すことができる。この数式6を変形すれば、下記の数式7が得られる。
Figure 0005222640
Figure 0005222640
さらに、誘起電圧の同定が完了した後(Ke=Ke)、第1のdc軸電流指令値として所定の設定値Idc_atを与えるとすれば、数式7を用いて、仮想インダクタンス設定値Lの誤差ΔLを求める式を導き出すことができる(下記の数式8参照)。
Figure 0005222640
モータ定数同定部14は、上述した仮想インダクタンスLの同定を行うため、入力切替部36、積算部37、保存部38、及び加算部39を有している。圧縮機運転指令部9は、ベクトル制御運転における始動モードの終了後(後述の図参照)、速度指令生成部10及びd軸電流指令生成部13に同定モードの指令を出力するとともに、入力切替部36を接続状態に切り替える。
速度指令生成部10は、同定モードの指令に応じて、回転速度指令値ωを固定する。d軸電流指令生成部13は、同定モードの指令に応じて、第1のd軸電流指令値Idcを所定の設定値Idc_atに固定する。なお、所定の設定値Idc_atは、インバータ渦電流及びモータ磁気飽和の影響を避けるため、比較的小さく設定したほうが好ましく、制御装置の電流検出分解能や演算誤差を考慮するとともに同定精度を確保するため、例えばモータの定格電流の約1/10〜1/2の範囲に設定すればよい。
積算部37は、減算部35で演算された第2のd軸電流指令値Idc**と第1のd軸電流指令値Idc(=Idc_at)の差分を入力切替部36を介して入力し、同定モード期間中における差分を積分して平均値を算出する。そして、上記の数式8を用いて、仮想インダクタンス設定値Lの誤差ΔLを演算する。なお、電流リップルや位相バラツキの影響を抑えるため、積分部37の応答はベクトル制御演算部15の制御応答より遅くなるように、時定数を設定することが好ましい。そして、同定モードがn回行われて誤差ΔL_1,…,ΔL_nが得られた場合は、それらの総和ΔL_all(=ΔL_1+…+ΔL_n)を保存部38で記憶する。加算部39は、保存部38で記憶された誤差ΔL_allと仮想インダクタンス初期設定値L_0とを加算し、これを仮想インダクタンス設定値Lとしてベクトル制御演算部15の電圧指令演算部34及び速度・位相推定部18に出力する。
次に、本実施形態の動作及び作用効果を、図7を参照しつつ説明する。
インバータ装置210は、センサレスタイプのベクトル制御によってモータ114を駆動しており、上記の数式2を用いて軸誤差Δθcを演算し、位相θdcを推定している。しかし、位相θdcの精度を精度よく演算するにはモータ114の回転速度ω(すなわち、圧縮機101の回転数Nc)が定格の5〜10%程度以上が必要である。そのため、3つの運転制御(位置決め、同期運転、及びベクトル制御運転)でモータ114を起動する。まず、位置決めで、qc軸電流Iを零としつつdc軸電流を増加させて、モータ114の回転子磁極の位置決めを行う。その後、同期運転で、dc軸電流を固定したまま、モータ114の回転速度ωを上昇させる。そして、モータ114の回転速度ωが定格の5〜10%程度に達したら、ベクトル制御運転に移行し、qc軸電流を増加させる。
ベクトル制御運転に移行すると、まず、圧縮機101の液戻りを防止するための始動モードを実行する。すなわち、前述の図3で示した圧縮機運転指令部9は、始動モードの指令を速度指令生成部10及びd軸電流指令生成部13に出力する。始動モードでは、圧縮機101の回転数Ncを予め設定された所定の回転数Nc1(例えば定格の30〜50%程度)まで上昇させ、所定の回転数Nc1に固定して所定時間(例えば、T2=1分程度)運転させる。
始動モードの終了後、同定モードを実行する。すなわち、圧縮機運転指令部9は、同定モードの指令を速度指令生成部10及びd軸電流指令生成部13に出力するとともに、入力切替部36を接続状態に切り替える。同定モードでは、所定時間(例えば、T1=2〜5秒程度)、回転速度指令値ωを固定しつつ(すなわち、圧縮機101の回転数Ncを所定の回転数Nc1に固定しつつ)、第1のd軸電流指令値Idを所定の設定値Idc_atに固定する。なお、本実施形態では、例えば3回繰り返して同定モードを実行する。そして、モータ定数同定部14は、同定モードにおける第2のd軸電流指令値Id**と第1の電流指令値Id(=Idc_at)との差分を積分して平均値を演算し、これに基づいて仮想インダクタンス設定値Lの補正量ΔLを演算する。その後、補正量ΔLを加算したインダクタンス設定値Lを用いてベクトル制御運転を行う。
全ての同定モードの終了後(例えば、始動モードが終了してから10〜20秒程度経過後)、通常モードに移行する。すなわち、圧縮機運転指令部9は、通常モードの指令を速度指令生成部10及びd軸電流指令生成部13に出力する。通常モードでは、検出器(図示せず)で検出された室内吸込温度と設定器(図示せず)で設定された室内設定温度に応じて圧縮機101の回転数Ncを制御する。
このような本実施形態においては、上述した仮想インダクタンスの同定方法とすることにより、電流のリップルや位相のバラツキの影響を抑えつつ、同定精度を高めることができる。また、本実施形態においては、圧縮機の始動モードの終了後に同定モードを実行するので、冷凍サイクルが比較的安定した状態で同定を行うことができ、同定精度を高めることができる。また、同定モードを複数回繰り返し行うので、同定精度を高めることができる。その結果、運転効率の向上を図ることができる。
なお、上記第1の実施形態においては、同定モードとして、第1のdc軸電流指令値Idcを同じ所定値Idc_atで固定する場合を例にとって説明したが、これに限られない。すなわち、例えば図8に示す変形例のように、同定モードの繰り返し回数(例えば1回目、2回目、3回目)に応じて異なる所定の設定値(Idc_at1,Idc_at2,Idc_at3)に固定してもよい。このような変形例においても、上記第1の実施形態と同様の効果を得ることができる。
また、上記第1の実施形態においては、圧縮機の始動モードとして、圧縮機101を予め設定された所定の回転数Nc1に固定して所定時間運転し、この始動モードの終了後に同定モードを実行する場合を例にとって説明したが、これに限られない。すなわち、例えば図9に示す変形例のように、第1始動モードとして、圧縮機101を予め設定された所定の回転数Nc1(例えば定格の30〜50%程度)に固定して所定時間(例えば、T2=1分程度)運転し、その後、第2始動モードとして、検出器(図示せず)で検出された外気温度に応じて選択した回転数Nc2(例えば定格の30〜50%の範囲内)に固定して所定時間(例えば、T3=2〜5分程度)運転し、この第2始動モードの終了後に同定モードを実行するようにしてもよい。このような変形例においても、上記第1の実施形態と同様の効果を得ることができる。
本発明の第2の実施形態を説明する。本実施形態は、送風機の始動モードの終了後に同定モードを実行する実施形態である。なお、本実施形態において、上記第1の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。
図10は、本実施形態におけるマイコン231の圧縮機用モータ114の制御及び室外送風機用モータ111の制御に係わる機能的構成を表すブロック図である。図11は、本実施形態における空気調和機100の動作を説明するためのタイムチャートである。
インバータ装置210のマイコン231は送風機運転指令部40を有しており、送風機運転指令部40は、送風機駆動回路281に駆動指令を出力して、例えば圧縮機用モータ114の始動とほぼ同時に室外送風機用モータ111を始動する。このとき、室外送風機用モータ111を予め設定された所定の回転数Nf1(例えば最大回転数)まで上昇させ、所定の回転数Nf1に固定して所定時間運転する始動モードを実行する。始動モードが終了すると(例えば、室外送風機用モータ111が起動してから10秒程度経過後であり、圧縮機用モータ114がベクトル制御運転中となるように設定されている。)、通常モードに移行する。通常モードでは、例えば、室内冷房の場合、検出器(図示せず)で検出された室外熱交換器103の出口温度に応じて室外送風機用モータ111の回転数Nfを制御し、室内暖房の場合、室外熱交換器103の出口温度と検出器(図示せず)で検出された圧縮機101の吐出温度に応じて室外送風機用モータ111の回転数Nfを制御する。
圧縮機運転指令部9は、送風機運転指令部40から送風機の始動モードの終了情報が入力されると、同定モードの指令を速度指令生成部10及びd軸電流指令生成部13に出力するとともに、入力切替部36を接続状態に切り替える(なお、本実施形態では、圧縮機運転指令部9は圧縮機の始動モードの指令を出力しないものとして説明する)。これに応じて、速度指令生成部10は回転速度指令値ωを現在値に固定し、d軸電流指令生成部13は第1のd軸電流指令値Idを所定の設定値Idc_atに固定する。モータ定数同定部14は、同定モードにおける第2のd軸電流指令値Id**と第1の電流指令値Id(=Idc_at)との差分を積分して平均値を演算し、これに基づいて仮想インダクタンス設定値Lの補正量ΔLを演算する。その後、補正量ΔLを加算した仮想インダクタンス設定値Lを用いてベクトル制御を行う。
このような本実施形態においても、上記第1の実施形態と同様の仮想インダクタンスの同定方法とするので、電流のリップルや位相のバラツキの影響を抑えつつ、同定精度を高めることができる。また、本実施形態においては、送風機の始動モードの終了後に同定モードを実行するので、冷凍サイクルが比較的安定した状態で同定を行うことができ、同定精度を高めることができる。その結果、運転効率の向上を図ることができる。
なお、上記第2の実施形態においては、同定モードとして、第1のdc軸電流指令値Idcを同じ所定値Idc_atで固定する場合を例にとって説明したが、これに限られず、同定モードの繰り返し回数に応じて異なる所定の設定値に固定してもよい。このような変形例においても、上記第2の実施形態と同様の効果を得ることができる。
また、上記第2の実施形態においては、送風機の始動モードとして、室外送風機110を予め設定された所定の回転数Nf1に固定して所定時間運転し、この始動モードの終了後に同定モードを実行する場合を例にとって説明したが、これに限られない。すなわち、例えば図12に示す変形例のように、第1始動モードとして、室外送風機110を予め設定された所定の回転数Nf1(例えば最大回転数)に固定して所定時間運転し、その後、第2始動モードとして、外気温度(又は外気温度及び室内吸込温度)に応じて選択した回転数Nf2(例えば最大回転数の15〜80%の範囲内)に固定して所定時間(例えば3〜5分程度)運転し、この第2始動モードの終了後に同定モードを実行するようにしてもよい。このような変形例においても、上記第2の実施形態と同様の効果を得ることができる。
本発明の第3の実施形態を説明する。本実施形態は、膨張弁の始動モードの終了後に同定モードを実行する実施形態である。なお、本実施形態において、上記第1及び第2の実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。
図13は、本実施形態におけるマイコン231の圧縮機用モータ114の制御及び室外膨張弁104の制御に係わる機能的構成を表すブロック図である。図14は、本実施形態における空気調和機100の動作を説明するためのタイムチャートである。
インバータ装置210のマイコン231は膨張弁運転指令部41を有しており、膨張弁運転指令部41は、膨張弁駆動回路282に駆動指令を出力して、例えば圧縮機用モータ114の始動とほぼ同時に室外膨張弁104を始動する。このとき、室外膨張弁104を予め設定された所定の開度V(例えば10〜50%程度)に所定時間固定する始動モードを実行する。始動モードが終了すると(例えば、室外膨張弁104が始動してから2〜10分程度経過後であり、圧縮機用モータ114がベクトル制御運転中となるように設定されている。)、通常モードに移行する。通常モードでは、例えば、圧縮機101の吐出温度に応じて室外膨張弁104の開度Vを制御する。
圧縮機運転指令部9は、膨張弁運転指令部41から膨張弁の始動モードの終了情報が入力されると、同定モードの指令を速度指令生成部10及びd軸電流指令生成部13に出力するとともに、入力切替部36を接続状態に切り替える(なお、本実施形態では、圧縮機運転指令部9は圧縮機の始動モードの指令を出力しないものとして説明する)。これに応じて、速度指令生成部10は回転速度指令値ωを現在値に固定し、d軸電流指令生成部13は第1のd軸電流指令値Idを所定の設定値Idc_atに固定する。モータ定数同定部14は、同定モードにおける第2のd軸電流指令値Id**と第1の電流指令値Id(=Idc_at)との差分を積分して平均値を演算し、これに基づいて仮想インダクタンス設定値Lの補正量ΔLを演算する。その後、補正量ΔLを加算した仮想インダクタンス設定値Lを用いてベクトル制御を行う。
このような本実施形態においても、上記第1及び第2の実施形態と同様の仮想インダクタンスの同定方法とするので、電流のリップルや位相のバラツキの影響を抑えつつ、同定精度を高めることができる。また、本実施形態においては、膨張弁の始動モードの終了後に同定モードを実行するので、冷凍サイクルが比較的安定した状態で同定を行うことができ、同定精度を高めることができる。その結果、運転効率の向上を図ることができる。
なお、上記第3の実施形態においては、同定モードとして、第1のdc軸電流指令値Idcを同じ所定値Idc_atで固定する場合を例にとって説明したが、これに限られず、同定モードの繰り返し回数に応じて異なる所定の設定値に固定してもよい。このような変形例においても、上記第3の実施形態と同様の効果を得ることができる。
なお、以上においては、特に説明しなかったが、d軸電流指令演算部33及びq軸電流指令演算部31は、モータ定数同定部14で同定されたインダクタンス設定値Lを入力し、これに基づいて制御ゲインを調整するようにしてもよい(下記の数式9参照)。この場合も、上記同様の効果を得ることができる。
Figure 0005222640
また、インバータ装置210は、送風機制御手段としての送風機駆動回路281及びマイコン231の送風機制御機能を有し、膨張弁制御手段としての膨張弁駆動回路282及びマイコン231の膨張弁制御機能を有する構成を例にとって説明したが、これに限られない。すなわち、例えば、送風機制御手段としての制御装置をインバータ装置とは別体にして設け、互いに連携するようにしてもよい。また、例えば膨張弁制御手段としての制御装置をインバータ装置とは別体にして設け、互いに連携するようにしてもよい。これらの場合も、上記同様の効果を得ることができる。
本発明の第1の実施形態における空気調和機の構成を表す概略図である。 本発明の第1の実施形態におけるインバータ装置の構成を表す概略図である。 本発明の第1の実施形態におけるインバータ装置のマイコンの圧縮機用モータ制御に係わる機能的構成を表すブロック図である。 図3で示された速度・位相推定部の機能的構成を表すブロック図である。 図3で示されたモータ定数同定部の及びベクトル制御演算部の機能的構成を表すブロック図である。 モータ回転子軸、モータ最大トルク軸、及び制御系の推定軸を表す図である。 本発明の第1の実施形態における空気調和機の動作を説明するためのタイムチャートである。 本発明の第1の変形例における空気調和機の動作を説明するためのタイムチャートである。 本発明の第2の変形例における空気調和機の動作を説明するためのタイムチャートである。 本発明の第2の実施形態におけるインバータ装置のマイコンの圧縮機用モータ制御及び室外送風機用モータ制御に係わる機能的構成を表すブロック図である。 本発明の第2の実施形態における空気調和機の動作を説明するためのタイムチャートである。 本発明の第3の変形例における空気調和機の動作を説明するためのタイムチャートである。 本発明の第3の実施形態におけるインバータ装置のマイコンの圧縮機用モータ制御及び室外膨張弁制御に係わる機能的構成を表すブロック図である。 本発明の第3の実施形態における空気調和機の動作を説明するためのタイムチャートである。
符号の説明
9 圧縮機運転指令部(同定モード制御手段)
14 モータ定数同定部
15 ベクトル制御演算部
16 2軸/3相変換部(インバータ制御手段)
17 PWM出力部(インバータ制御手段)
19 電流再現部(電流検出演算手段)
20 3相/2軸変換部(電流検出演算手段)
31 q軸電流指令演算部(q軸電流指令演算手段)
33 d軸電流指令演算部(d軸電流指令演算手段)
34 電圧指令演算部(電圧指令演算手段)
35 減算部(インダクタンス同定手段)
36 入力切替部(インダクタンス同定手段)
37 積算部(インダクタンス同定手段)
38 保存部(インダクタンス同定手段)
39 加算部(インダクタンス同定手段)
40 送風機運転指令部(送風機制御手段)
41 膨張弁運転指令部(膨張弁制御手段)
100 空気調和機
101 圧縮機
103 室外熱交換器(凝縮器、蒸発器)
104 室外膨張弁
106 室内熱交換器(凝縮器、蒸発器)
110 室外送風機
114 圧縮機用モータ
210 インバータ装置
221 インバータ回路
224 シャント抵抗(電流検出手段)
231 マイコン
233 電流検出回路(電流検出手段)
281 送風機駆動回路(送風機制御手段)
282 膨張弁駆動回路(膨張弁制御手段)
Idc dc軸電流検出値
Idc 第1のdc軸電流指令値
Idc** 第2のdc軸電流指令値
Iqc qc軸電流検出値
Iqc 第1のqc軸電流指令値
Iqc** 第2のqc軸電流指令値
Ish 直流電流
Ke 誘起電圧設定値
仮想インダクタンス設定値
抵抗設定値
Vdc dc軸電圧指令値
Vqc qc軸電圧指令値
ω 回転速度指令値

Claims (8)

  1. 圧縮機、凝縮器、膨張弁、及び蒸発器で構成された冷凍サイクルと、前記圧縮機を駆動する永久磁石同期型のモータと、ベクトル制御によって前記モータの回転数を可変制御するインバータ装置とを備えた冷凍装置において、
    前記インバータ装置は、
    直流電力から交流電力を生成して前記モータに供給するインバータ回路と、
    前記インバータ回路の入力直流電流又は出力交流電流を検出する電流検出手段と、
    前記電流検出手段で検出された電流からd軸電流検出値及びq軸電流検出値を演算する電流検出演算手段と、
    第1のd軸電流指令値とd軸電流検出値との偏差に基づいて第1のd軸電流指令値を補正して第2のd軸電流指令値を生成するd軸電流指令演算手段と、
    第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第1のq軸電流指令値を補正して第2のq軸電流指令値を生成するq軸電流指令演算手段と、
    インダクタンス設定値を含むモータ定数設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算する電圧指令演算手段と、
    d軸電圧指令値及びq軸電圧指令値に基づいて前記インバータ回路を制御するインバータ制御手段と、
    同定モードとして、所定時間、回転数指令値を固定しつつ、第1のd軸電流指令値を所定の設定値に固定する同定モード制御手段と、
    同定モードの場合における第2のd軸電流指令値と第1のd軸電流指令値との差分を積分して平均値を演算し、これに基づいてインダクタンス設定値の補正量を演算し、その補正量を加算したインダクタンス設定値を前記電圧指令演算手段の演算に用いるようにしたインダクタンス同定手段とを備え、
    前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、予め設定された所定の回転数に固定して所定時間運転する第1始動モードの終了後、同定モードを実行することを特徴とする冷凍装置。
  2. 請求項1に記載の冷凍装置において、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記第1始動モードの後に外気温度に応じて選択した回転数に固定して所定時間運転する第2始動モードの終了後、同定モードを実行することを特徴とする冷凍装置。
  3. 圧縮機、凝縮器、膨張弁、及び蒸発器で構成された冷凍サイクルと、前記圧縮機を駆動する永久磁石同期型のモータと、ベクトル制御によって前記モータの回転数を可変制御するインバータ装置とを備えた冷凍装置において、
    前記凝縮器及び前記蒸発器のうちの少なくとも一方における熱交換を促進するための送風機と、
    前記モータの始動に合わせて前記送風機を始動する際、前記送風機を予め設定された所定の回転数に固定して所定時間運転する第1始動モードを実行する送風機制御装手段とをさらに備えており、
    前記インバータ装置は、
    直流電力から交流電力を生成して前記モータに供給するインバータ回路と、
    前記インバータ回路の入力直流電流又は出力交流電流を検出する電流検出手段と、
    前記電流検出手段で検出された電流からd軸電流検出値及びq軸電流検出値を演算する電流検出演算手段と、
    第1のd軸電流指令値とd軸電流検出値との偏差に基づいて第1のd軸電流指令値を補正して第2のd軸電流指令値を生成するd軸電流指令演算手段と、
    第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第1のq軸電流指令値を補正して第2のq軸電流指令値を生成するq軸電流指令演算手段と、
    インダクタンス設定値を含むモータ定数設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算する電圧指令演算手段と、
    d軸電圧指令値及びq軸電圧指令値に基づいて前記インバータ回路を制御するインバータ制御手段と、
    同定モードとして、所定時間、回転数指令値を固定しつつ、第1のd軸電流指令値を所定の設定値に固定する同定モード制御手段と、
    同定モードの場合における第2のd軸電流指令値と第1のd軸電流指令値との差分を積分して平均値を演算し、これに基づいてインダクタンス設定値の補正量を演算し、その補正量を加算したインダクタンス設定値を前記電圧指令演算手段の演算に用いるようにしたインダクタンス同定手段とを備え、
    前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記送風機制御手段の第1始動モードの終了後、同定モードを実行することを特徴とする冷凍装置。
  4. 請求項3記載の冷凍装置において、前記送風機制御手段は、前記送風機を始動する際、前記第1始動モードの後に前記送風機を外気温度に応じて選択した回転数に固定して所定時間運転する第2始動モードを実行し、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記送風機制御手段の第2始動モードの終了後、同定モードを実行することを特徴とする冷凍装置。
  5. 請求項3記載の冷凍装置において、前記送風機制御手段は、前記送風機を始動する際、前記第1始動モードの後に前記送風機を外気温度及び前記圧縮機の吐出温度に応じて選択した回転数に固定して所定時間運転する第2始動モードを実行し、前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記送風機制御手段の第2始動モードの終了後、同定モードを実行することを特徴とする冷凍装置。
  6. 圧縮機、凝縮器、膨張弁、及び蒸発器で構成された冷凍サイクルと、前記圧縮機を駆動する永久磁石同期型のモータと、ベクトル制御によって前記モータの回転数を可変制御するインバータ装置とを備えた冷凍装置において、
    前記圧縮機の始動に合わせて、前記膨張弁を外気温度に応じて選択した開度に所定時間固定する始動モードを実行する膨張弁制御装手段をさらに備え、
    前記インバータ装置は、
    直流電力から交流電力を生成して前記モータに供給するインバータ回路と、
    前記インバータ回路の入力直流電流又は出力交流電流を検出する電流検出手段と、
    前記電流検出手段で検出された電流からd軸電流検出値及びq軸電流検出値を演算する電流検出演算手段と、
    第1のd軸電流指令値とd軸電流検出値との偏差に基づいて第1のd軸電流指令値を補正して第2のd軸電流指令値を生成するd軸電流指令演算手段と、
    第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第1のq軸電流指令値を補正して第2のq軸電流指令値を生成するq軸電流指令演算手段と、
    インダクタンス設定値を含むモータ定数設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算する電圧指令演算手段と、
    d軸電圧指令値及びq軸電圧指令値に基づいて前記インバータ回路を制御するインバータ制御手段と、
    同定モードとして、所定時間、回転数指令値を固定しつつ、第1のd軸電流指令値を所定の設定値に固定する同定モード制御手段と、
    同定モードの場合における第2のd軸電流指令値と第1のd軸電流指令値との差分を積分して平均値を演算し、これに基づいてインダクタンス設定値の補正量を演算し、その補正量を加算したインダクタンス設定値を前記電圧指令演算手段の演算に用いるようにしたインダクタンス同定手段とを備え、
    前記同定モード制御手段は、前記モータの始動の際に、第1のq軸電流指令値を零以外の値とするベクトル制御運転中であって、前記膨張弁制御手段の始動モードの終了後、同定モードを実行することを特徴とする冷凍装置。
  7. 請求項1〜6のいずれか1項記載の冷凍装置において、前記同定モード制御手段は、予め設定された所定の回数繰り返すように同定モードを実行することを特徴とする冷凍装置。
  8. 請求項7記載の冷凍装置において、前記同定モード制御手段は、第1のd軸電流指令値を、同定モードの繰り返し回数に応じて異なる所定の設定値に固定することを特徴とする冷凍装置。
JP2008179220A 2008-07-09 2008-07-09 冷凍装置 Active JP5222640B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008179220A JP5222640B2 (ja) 2008-07-09 2008-07-09 冷凍装置
CN200910150979XA CN101625172B (zh) 2008-07-09 2009-07-01 制冷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179220A JP5222640B2 (ja) 2008-07-09 2008-07-09 冷凍装置

Publications (2)

Publication Number Publication Date
JP2010022111A JP2010022111A (ja) 2010-01-28
JP5222640B2 true JP5222640B2 (ja) 2013-06-26

Family

ID=41521099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179220A Active JP5222640B2 (ja) 2008-07-09 2008-07-09 冷凍装置

Country Status (2)

Country Link
JP (1) JP5222640B2 (ja)
CN (1) CN101625172B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737093B2 (ja) * 2011-09-12 2015-06-17 株式会社デンソー 回転機の制御装置
JP5991577B2 (ja) * 2012-06-11 2016-09-14 有限会社シー・アンド・エス国際研究所 永久磁石同期電動機の駆動制御方法
JP5978161B2 (ja) * 2013-03-26 2016-08-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド モータ駆動装置
JP6133827B2 (ja) * 2014-09-10 2017-05-24 ファナック株式会社 電磁接触器の溶着検出機能を有するモータ駆動装置
CN104374055B (zh) * 2014-11-26 2017-02-22 珠海格力电器股份有限公司 空调机组的控制方法和系统
CN104566837B (zh) * 2015-02-02 2018-01-02 珠海格力电器股份有限公司 一种空调机组加载控制方法及系统
JP6516885B2 (ja) * 2016-02-04 2019-05-22 株式会社ミツバ モータ駆動装置及びモータ駆動方法
JP6562881B2 (ja) * 2016-08-01 2019-08-21 株式会社東芝 永久磁石同期モータの定数同定装置及び定数同定方法
CN107919822A (zh) * 2017-11-29 2018-04-17 陕西航空电气有限责任公司 一种基于双有源桥的起动发电系统
CN110165956B (zh) * 2019-05-14 2021-03-23 北京理工大学 一种开绕组永磁同步电机零序电感在线辨识方法
US12061029B2 (en) * 2019-10-01 2024-08-13 Electrolux Appliances Aktiebolag Refrigerator appliance with high freezer capacity
CN111193442A (zh) * 2020-04-09 2020-05-22 南京美均电子科技有限公司 一种基于无感foc算法的pmsm电机开环切换闭环控制方法
CN114265449B (zh) * 2021-12-24 2023-02-10 天津瑞源电气有限公司 一种用于模拟变流器低温启动温度异常的保温装置及方法
CN115143595B (zh) * 2022-06-29 2024-05-24 北京小米移动软件有限公司 空调压缩机电感值修正方法、装置、设备、空调、介质
CN115143594B (zh) * 2022-06-29 2024-05-24 北京小米移动软件有限公司 空调压缩机电感值修正方法、装置、设备、空调、介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531428B2 (ja) * 1997-07-07 2004-05-31 アイシン・エィ・ダブリュ株式会社 モータの制御装置及び制御方法
JP4208228B2 (ja) * 2002-04-18 2009-01-14 東芝キヤリア株式会社 空気調和機のファン用ブラシレスモータの駆動装置
JP4233303B2 (ja) * 2002-10-21 2009-03-04 東芝キヤリア株式会社 空気調和機の室外ファンモータ駆動制御装置
JP2005039912A (ja) * 2003-07-18 2005-02-10 Hitachi Ltd 交流電動機の制御装置
TWI280341B (en) * 2003-07-28 2007-05-01 Toshiba Corp Motor driving device and cooling fan driving device for a refrigerator
JP4677852B2 (ja) * 2005-08-11 2011-04-27 株式会社日立製作所 永久磁石同期モータのベクトル制御装置
JP2008086129A (ja) * 2006-09-28 2008-04-10 Hitachi Ltd 交流電動機の制御装置および定数測定装置
JP4932636B2 (ja) * 2007-08-10 2012-05-16 ダイキン工業株式会社 圧縮機内部状態推定装置及び空気調和装置
JP4194645B1 (ja) * 2008-03-28 2008-12-10 日立アプライアンス株式会社 冷凍装置
JP4927052B2 (ja) * 2008-09-22 2012-05-09 日立アプライアンス株式会社 冷凍装置

Also Published As

Publication number Publication date
CN101625172B (zh) 2011-04-13
CN101625172A (zh) 2010-01-13
JP2010022111A (ja) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5222640B2 (ja) 冷凍装置
JP4053968B2 (ja) 同期電動機駆動装置及び冷凍冷蔵庫及び空気調和機
JP4194645B1 (ja) 冷凍装置
KR101678323B1 (ko) 모터 구동 제어 장치
JP2012100369A (ja) 冷凍装置および永久磁石同期モータの制御装置
JP4964209B2 (ja) 電動機の駆動装置並びに冷凍空調装置
JP2010206874A (ja) 冷凍装置
JP2002247876A (ja) インバータ装置、圧縮機制御装置、冷凍・空調装置の制御装置、モータの制御方法、圧縮機、冷凍・空調装置
JP5978161B2 (ja) モータ駆動装置
KR20090067732A (ko) 공기조화기의 전동기 제어방법
JP4927052B2 (ja) 冷凍装置
JP4744505B2 (ja) モータ駆動制御装置、モータ駆動制御方法及び座標変換方法、並びに換気扇、液体用ポンプ、送風機、冷媒圧縮機、空気調和機及び冷蔵庫
JP2004343993A (ja) モータ制御装置、圧縮機、空気調和機、及び冷蔵庫
JP5470098B2 (ja) インバータ制御装置、および、それを用いた空気調和機
JP4791319B2 (ja) インバータ装置、圧縮機駆動装置および冷凍・空調装置
KR101770425B1 (ko) 냉장고 및 냉장고의 제어방법
JP6007461B2 (ja) 空気調和機、及びコンプレッサ制御装置
JP4804100B2 (ja) モータ駆動装置及びその制御方法、空気調和装置
JP2014007916A (ja) モータ制御装置
JP5385557B2 (ja) モータ制御装置、圧縮機駆動装置、及び冷凍・空調装置
JP2014187802A (ja) モータ駆動装置
JP2005171843A (ja) ファン制御装置
WO2024069704A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP2006136167A (ja) 電力変換装置、電力変換装置の制御方法及び空気調和装置
JP7330401B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5222640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250