Nothing Special   »   [go: up one dir, main page]

JP5291568B2 - Evaluation method of delayed fracture resistance of steel sheet molded products - Google Patents

Evaluation method of delayed fracture resistance of steel sheet molded products Download PDF

Info

Publication number
JP5291568B2
JP5291568B2 JP2009183122A JP2009183122A JP5291568B2 JP 5291568 B2 JP5291568 B2 JP 5291568B2 JP 2009183122 A JP2009183122 A JP 2009183122A JP 2009183122 A JP2009183122 A JP 2009183122A JP 5291568 B2 JP5291568 B2 JP 5291568B2
Authority
JP
Japan
Prior art keywords
delayed fracture
hydrogen
test piece
amount
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009183122A
Other languages
Japanese (ja)
Other versions
JP2011033600A (en
Inventor
潤一郎 衣笠
文雄 湯瀬
亮介 大友
道高 経澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009183122A priority Critical patent/JP5291568B2/en
Publication of JP2011033600A publication Critical patent/JP2011033600A/en
Application granted granted Critical
Publication of JP5291568B2 publication Critical patent/JP5291568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method that can properly and accurately determine the resistance to delayed fracture of various processed locations in a high-strength steel plate molding for which complicate press working is performed. <P>SOLUTION: The method for evaluating the resistance to delayed fracture of the steel plate molding includes the delayed fracture hydrogen amount estimation step, wherein the corresponding relationship between the amount of hydrogen contained in the steel in the event of generation of the delayed fracture and the strain of the crystal grain in a structure of the steel, in the event of generation of the delayed fracture is used to determine the amount of hydrogen, corresponding to the strain of the crystal grain in a structure of the locations to be evaluated in the steel plate molding, thereby estimating the amount of hydrogen to generate the delayed fracture at the locations to be evaluated. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、高強度鋼板にプレス加工を施した鋼板成形品の耐遅れ破壊性の評価方法に関する。   The present invention relates to a method for evaluating delayed fracture resistance of a steel sheet formed by pressing a high-strength steel sheet.

近年、地球環境を保護する観点から自動車の低燃費化が求められており、これを実現するための方法の一つとして、車体重量の軽量化が求められている。また同時に、自動車の衝突安全性の向上も求められているが、従来の鋼板を用いた場合は車体重量の増加が懸念される。そこで、この二つの相反する課題を解決するために、薄肉化が可能で高強度な鋼板が開発されており、近年では、自動車部品用鋼板の分野にも引張強度が1180MPaを超えるような超高強度鋼板が適用されはじめている。   In recent years, from the viewpoint of protecting the global environment, there has been a demand for lower fuel consumption of automobiles, and as one of the methods for realizing this, a reduction in the weight of the vehicle body is required. At the same time, improvement in automobile crash safety is also demanded, but there is a concern that the weight of the vehicle body may increase when conventional steel plates are used. Therefore, in order to solve these two conflicting problems, a thin steel plate that can be thinned and has high strength has been developed. In recent years, in the field of automotive parts steel plate, an ultra-high strength such that the tensile strength exceeds 1180 MPa. Strength steel plates are starting to be applied.

このような高強度鋼板は、自動車部品の分野においては、曲げ加工や、絞り加工等の複雑なプレス加工が施され、自動車用のバンパーやインパクトビームを構成する部品等として用いられているが、近年では成形性の向上に対する要求も強くなっている。すなわち、高強度かつ、それぞれの用途に応じて適切な成形性を兼ね備えた高強度鋼板の提供が切望されている。   Such a high-strength steel sheet is subjected to complicated press work such as bending and drawing in the field of automobile parts, and is used as a part that constitutes bumpers and impact beams for automobiles. In recent years, the demand for improved formability has also increased. That is, there is an urgent need to provide a high-strength steel sheet having high strength and suitable formability according to each application.

一方、鋼板の高強度化に伴い、鋼板成形品の遅れ破壊の問題が懸念されている。遅れ破壊とは、鋼板成形品の使用環境において内部に水素が侵入することにより、使用開始から一定期間を経た後に、塑性変形を伴うことなく突然脆性的に破壊される現象のことをいう。従って、実際の使用環境において鋼板成形品に遅れ破壊が発生しにくいこと(耐遅れ破壊性)を評価する方法が求められてきた。   On the other hand, with the increase in strength of steel sheets, there is concern about the problem of delayed fracture of steel sheet molded products. Delayed fracture refers to a phenomenon of sudden brittle fracture without plastic deformation after a certain period of time has passed since the start of use due to hydrogen entering the interior of the steel sheet molded product in the usage environment. Therefore, there has been a demand for a method for evaluating that delayed fracture is less likely to occur in a steel sheet molded article in an actual use environment (delayed fracture resistance).

そこで、従来から高強度化が進められてきたボルト、PC鋼線、ラインパイプといった部品分野では、特許文献1や非特許文献1に記載されたような、鋼材に人為的に水素を導入して当該鋼材を水素脆化させる耐遅れ破壊性の評価方法が用いられてきた。例えば、特許文献1に係る評価方法では、ボルト、PC鋼線用鋼の耐遅れ破壊性評価に用いられる代表的な手法が開示されている。これら手法は、水溶液環境中にて引張試験片に張力を加え、鋼中に水素を導入することによって引張試験片を人為的に水素脆化させ、引張試験片に付与した応力や引張試験片中の水素濃度を分析し、遅れ破壊が起こる条件の目安として評価するものであった。   Therefore, in the field of components such as bolts, PC steel wires, and line pipes that have been increased in strength from the past, hydrogen has been artificially introduced into steel materials as described in Patent Document 1 and Non-Patent Document 1. A delayed fracture resistance evaluation method for embrittlement of the steel material has been used. For example, the evaluation method according to Patent Document 1 discloses a representative method used for evaluating delayed fracture resistance of bolts and PC steel wire steel. These methods apply tension to a tensile test piece in an aqueous solution environment, artificially embrittle the tensile test piece by introducing hydrogen into the steel, and stress applied to the tensile test piece. The hydrogen concentration was analyzed and evaluated as a measure of the conditions under which delayed fracture occurs.

しかし、鋼板(特に薄鋼板)の分野における耐遅れ破壊性の評価方法と、前記ボルト等の部品での評価方法とは異なる。すなわち、ボルト等の部品は完成品として使用されるため、評価に際し加工度、付加応力、残留応力及び端面状態等の影響を考慮する必要がない。これに対し鋼板は、プレス加工等を行ってから部品として使用されるため、加工度、付加応力、残留応力及び端面状態等の影響も加味しなければ正確な評価とはならない。   However, the method for evaluating delayed fracture resistance in the field of steel plates (particularly thin steel plates) is different from the method for evaluating parts such as bolts. That is, since components such as bolts are used as finished products, it is not necessary to consider the influence of the degree of processing, additional stress, residual stress, end face condition, etc. in the evaluation. On the other hand, since a steel plate is used as a part after being subjected to press working or the like, an accurate evaluation is not possible unless effects such as degree of work, additional stress, residual stress, and end face state are taken into consideration.

そこで、特許文献2には、鋼板を切り出してU字型に曲げ加工した後、両端をボルト及びナットで締め付けることで応力を付加して試験片として評価する方法が記載されている。この試験片を酸性溶液中で電解チャージすることにより水素脆化させ、その際の試験片中の水素量を測定して、遅れ破壊が起こる条件の目安として評価する構成とするものであった。特許文献2に係る評価装置及び評価方法は、このような構成とすることにより、鋼板成形品の使用環境、加工度、付加応力、残留応力、端面状態及び曲げ半径等の影響を考慮して耐遅れ破壊性を評価することができた。   Therefore, Patent Document 2 describes a method in which a steel sheet is cut out and bent into a U-shape, and then stressed by tightening both ends with bolts and nuts to evaluate as a test piece. The test piece was subjected to electrolytic emulsification in an acidic solution to cause hydrogen embrittlement, and the amount of hydrogen in the test piece at that time was measured to evaluate as a measure of conditions under which delayed fracture occurred. By adopting such a configuration, the evaluation apparatus and the evaluation method according to Patent Document 2 are resistant to the influence of the environment in which the steel sheet molded product is used, the degree of processing, the additional stress, the residual stress, the end face state, the bending radius, and the like. The delayed fracture property could be evaluated.

また、特許文献3には、鋼板を短冊状に切り出して長手方向両端部付近に穴を開け、U字型に曲げ加工して試験片として評価する方法が記載されている。そして、この試験片の加工部位表面に歪ゲージを貼り、当該穴にボルトを通し、歪ゲージで歪を観察しながら当該ボルトを締めて所望の応力を付加し、試験片を希硫酸中に浸漬させた。そして、当該試験片に負の電圧を付与して希硫酸を電解して水素を発生させ、該歪ゲージの値に変化が現れるまでの時間(遅れ破壊発生までの時間)を測定する構成とするものであった。   Patent Document 3 describes a method in which a steel sheet is cut into a strip shape, holes are formed near both ends in the longitudinal direction, bent into a U shape, and evaluated as a test piece. Then, a strain gauge is attached to the surface of the processed part of the test piece, a bolt is passed through the hole, the desired stress is applied by tightening the bolt while observing the strain with the strain gauge, and the test piece is immersed in dilute sulfuric acid. I let you. Then, a negative voltage is applied to the test piece to generate hydrogen by electrolyzing dilute sulfuric acid, and the time until the change of the strain gauge value appears (time until delayed fracture occurs) is measured. It was a thing.

また、非特許文献2では、遅れ破壊が懸念される強度レベルである1180MPa級鋼板の実部品について、部品の加工部位における曲げ半径、残留応力、遅れ破壊水素量を用いた耐遅れ破壊性評価マップが提案されている。この耐遅れ破壊性評価マップは、遅れ破壊が生じた際の曲げ半径、残留応力、遅れ破壊が生じた際の水素量を3次元グラフにプロットしてマップ化することにより、遅れ破壊が生じる条件を視覚的に表したものである。   Further, in Non-Patent Document 2, a delayed fracture resistance evaluation map using bending radius, residual stress, and delayed fracture hydrogen amount in the processed part of the actual part of the 1180 MPa class steel plate that is a strength level at which delayed fracture is a concern. Has been proposed. This delayed fracture resistance evaluation map is a condition in which delayed fracture occurs by plotting and mapping the bending radius, residual stress, and hydrogen amount when delayed fracture occurs in a three-dimensional graph. Is a visual representation.

特開2004−309197号公報JP 2004-309197 A 特開2005−134152号公報JP-A-2005-134152 特開平7−146225号公報JP-A-7-146225

松山晋作著 「遅れ破壊」日刊工業新聞社 1989年8月31日発行 P159−161Matsuyama Atsushi "Delayed Destruction" Nikkan Kogyo Shimbun, August 31, 1989 P159-161 自動車技術論文集Vol.39,No.5 「1180MPa級鋼板の冷間プレスによる一体型ドアインパクトビームの開発」 2008年9月 P133−138Automotive Technical Papers Vol. 39, no. 5 “Development of integrated door impact beam by cold pressing of 1180 MPa class steel plate” September 2008 P133-138

昨今の急速な車体軽量化・衝突安全性向上のニーズの高まりから、複雑なプレス加工・曲げ加工が施される鋼板成形品にも、1180MPa以上の超高強度鋼板が適用され始めている。これらの鋼板成形品は、従来のような単純な丸棒形状への加工や単純な曲げ加工以外にも、プレス加工によって深絞り加工、張出し加工、伸びフランジ加工等が施されており、鋼材組織自体に結晶レベルの変化が生じている。すなわち、鋼材組織には、加工に伴って結晶粒の歪み、転位、欠陥の増加、結晶粒及び組織形態の崩壊等が生じている。そのため、材料流入(深絞り加工)や材料流出(伸びフランジ加工、張出し加工)が生じる縦壁部や、打ち抜き加工を施した打ち抜き孔近傍、複数回の曲げ−曲げ戻し加工を受けた部位では、従来の単純な曲げ加工以上に遅れ破壊の発生が懸念されることになる。   Due to the recent rapid increase in the weight of vehicles and the improvement in collision safety, ultra high strength steel plates of 1180 MPa or more are beginning to be applied to steel plate molded products subjected to complicated press working and bending. These steel plate products are processed by deep drawing, overhanging, stretch flange processing, etc. by pressing, in addition to the conventional processing of simple round bar shapes and simple bending. There is a change in the crystal level itself. That is, in the steel material structure, distortion of crystal grains, dislocations, increase of defects, collapse of crystal grains and structure form, and the like are caused with processing. Therefore, in the vertical wall part where material inflow (deep drawing process) and material outflow (stretch flange process, overhang process) occur, in the vicinity of the punched hole subjected to punching, and in the part subjected to multiple times of bending-bending. There is concern over the occurrence of delayed fracture over conventional simple bending.

しかし、前記した従来の評価方法は、評価可能な部位が単純な曲げ加工を施した部位のみであるため、プレス加工が施された実際の鋼板成形品において遅れ破壊が生じやすい縦壁部、打ち抜き孔近傍、複数回の曲げ−曲げ戻し加工を受けた部位については、評価することができなかった。また、特許文献2、非特許文献2に記載された評価方法のように、耐遅れ破壊性の評価を「曲げ半径−残留応力−水素量」の関係で行なおうとすると、仮に評価結果が良好と判定された鋼板成形品であっても、実際には遅れ破壊が生じる場合があり、評価の正確性に欠けていた。   However, in the conventional evaluation method described above, since the portion that can be evaluated is only a portion subjected to simple bending, the vertical wall portion, which is likely to cause delayed fracture in a pressed steel sheet product, It was not possible to evaluate the vicinity of the hole and the part subjected to a plurality of bending-bending processes. In addition, as in the evaluation methods described in Patent Document 2 and Non-Patent Document 2, if the evaluation of delayed fracture resistance is performed in the relationship of “bending radius−residual stress−hydrogen amount”, the evaluation result is temporarily good. Even in the case of a steel sheet molded product determined as “delayed”, delayed fracture might actually occur and the accuracy of evaluation was lacking.

また、特許文献3に係る評価方法では、曲げ半径15mm、負荷応力1000MPaで曲げ加工を施した鋼板成形品のみしか評価することができず、これ以外の条件で加工された鋼板成形品の耐遅れ破壊性を評価することが困難であった。さらに、特許文献3に係る評価方法も、評価可能な部位が単純な曲げ加工を施した部位のみであるため、プレス加工が施された実際の鋼板成形品において遅れ破壊が生じやすい縦壁部、打ち抜き孔近傍、複数回の曲げ−曲げ戻し加工を受けた部位については、評価することができなかった。   In addition, in the evaluation method according to Patent Document 3, only a steel sheet formed by bending with a bending radius of 15 mm and a load stress of 1000 MPa can be evaluated, and the delay resistance of the steel sheet formed by processing under other conditions is not possible. It was difficult to evaluate destructibility. Furthermore, since the evaluation method according to Patent Document 3 is only a portion where the evaluable portion is subjected to a simple bending process, the vertical wall portion that is likely to cause delayed fracture in the actual steel sheet formed by pressing, It was not possible to evaluate the vicinity of the punched hole and the part subjected to a plurality of bending-bending processes.

本発明は係る問題点に鑑みてなされたものであって、複雑なプレス加工が施された高強度鋼板成形品において、種々の加工部位の耐遅れ破壊性を適切かつ正確に判定することができる評価方法を提供することを目的とする。   The present invention has been made in view of such problems, and in high-strength steel sheet molded products subjected to complicated press work, it is possible to appropriately and accurately determine delayed fracture resistance of various processed parts. The purpose is to provide an evaluation method.

本発明者は、前記した課題を解決するため、高強度鋼板を用いた鋼板成形品における耐遅れ破壊性の評価方法について、鋭意研究を行なった。高強度鋼板の分野では、耐遅れ破壊性評価の方法はいまだ確立されておらず、前記したようなボルトに張力を付加して行なう方法や、プレス成形品を模して単純な曲げ加工を施した試験片に応力を付加して行なう方法が用いられている。しかし、プレス成形品には、主な加工方法として例えば、曲げ加工の他にも深絞り加工、張出し加工、伸びフランジ加工等があり、従来の方法ではこれらの加工方法に対応することができなかった。すなわち、従来は、遅れ破壊に影響を及ぼす鋼板成形品の加工度の指標として、「曲げ半径」のみを用いてきた。   In order to solve the above-described problems, the present inventor has intensively studied a method for evaluating delayed fracture resistance in steel sheet molded products using high-strength steel sheets. In the field of high-strength steel sheets, a method for evaluating delayed fracture resistance has not yet been established, and a method of applying tension to the bolt as described above, or a simple bending process that simulates a press-formed product. A method in which stress is applied to the test piece is used. However, for press-molded products, there are, for example, deep drawing, overhanging, stretch flange processing, etc. in addition to bending, and conventional methods cannot cope with these processing methods. It was. That is, conventionally, only the “bending radius” has been used as an index of the degree of processing of a steel sheet molded product that affects delayed fracture.

一方、本発明では、プレス加工によって生じた鋼材組織の変化に着目し、鋼板成形品の加工度の指標として「結晶粒の歪み」を用いることで、従来は評価できなかった複雑なプレス加工が施された鋼板成形品についても、正確に耐遅れ破壊性を評価することができることを見出した。すなわち、鋼板成形品の加工度を表す指標として、鋼板成形品の形状のみに着目した「曲げ半径」ではなく、鋼板成形品の加工度をより本質的に示す「結晶粒の歪み」を用いることで、単純な曲げ加工以外のあらゆる加工方法、すなわち、鋼板成形品の縦壁部、打ち抜き孔近傍、複数回の曲げ−曲げ戻し加工を受けた部位等についても、評価が可能であることを見出した。   On the other hand, in the present invention, by focusing on the change in the steel material structure caused by the press work, and using “crystal grain distortion” as an index of the degree of work of the steel sheet molded product, complicated press work that could not be evaluated conventionally is performed. It was also found that delayed fracture resistance can be accurately evaluated for the formed steel sheet product. In other words, as an index indicating the degree of processing of a steel sheet molded article, not “bending radius” focusing only on the shape of the steel sheet molded article but “crystal grain distortion” which more essentially indicates the degree of processing of the steel sheet molded article. Thus, it has been found that it is possible to evaluate all processing methods other than simple bending processing, that is, a vertical wall portion of a steel sheet molded product, the vicinity of a punched hole, a portion subjected to a plurality of bending-bending processes, etc. It was.

すなわち、本発明に係る鋼板成形品の耐遅れ破壊性の評価方法は、鋼板成形品の耐遅れ破壊性の評価方法であって、遅れ破壊が発生する際の鋼材に含有される水素量と、前記遅れ破壊が発生する際の鋼材の組織内における結晶粒の歪みと、を対応付けた関係を用いて、前記鋼板成形品の評価部位の組織内における結晶粒の歪みに対応した水素量を求めることで、前記評価部位に前記遅れ破壊を発生させる水素量を推定する遅れ破壊水素量推定工程を行なう構成とする。   That is, the evaluation method of delayed fracture resistance of the steel sheet molded article according to the present invention is an evaluation method of delayed fracture resistance of the steel sheet molded article, and the amount of hydrogen contained in the steel material when delayed fracture occurs, The amount of hydrogen corresponding to the distortion of the crystal grains in the structure of the evaluation part of the steel sheet molded product is obtained using the relationship in which the distortion of the crystal grains in the structure of the steel material when the delayed fracture occurs is correlated. Thus, a delayed fracture hydrogen amount estimation step for estimating a hydrogen amount causing the delayed fracture at the evaluation site is performed.

このような構成を備える耐遅れ破壊性の評価方法は、遅れ破壊が発生する際における試験片中の水素量及び結晶粒の歪みを対応付けた関係に、鋼板成形品の加工部位(評価部位)における結晶粒の歪みを照らし合わせることで、その結晶粒の歪みに対応した水素量を迅速かつ簡易に求めることができ、遅れ破壊水素量を正確に推定することができる。なお、遅れ破壊水素量とは、鋼板成形品に遅れ破壊が生じる際の鋼板成形品中の水素量のことを指す。   The method for evaluating delayed fracture resistance having such a configuration is a processing part (evaluation part) of a steel sheet molded article in a relationship in which the amount of hydrogen in a test piece and the distortion of crystal grains are associated with each other when delayed fracture occurs. The amount of hydrogen corresponding to the distortion of the crystal grain can be obtained quickly and easily by comparing the distortion of the crystal grain in, and the amount of delayed fracture hydrogen can be accurately estimated. The delayed fracture hydrogen amount refers to the amount of hydrogen in the steel sheet molded product when delayed fracture occurs in the steel sheet molded product.

さらに、本発明に係る鋼板成形品の耐遅れ破壊性の評価方法は、鋼板成形品の耐遅れ破壊性の評価方法であって、遅れ破壊が発生する際の鋼材に含有される水素量と、前記遅れ破壊が発生する際の鋼材の組織内における結晶粒の歪みと、を対応付けた関係を用いて、前記鋼板成形品の評価部位に含有される水素量に対応した結晶粒の歪みを求めることで、前記評価部位に前記遅れ破壊を発生させる結晶粒の歪みを推定する遅れ破壊結晶粒歪み推定工程を行なう構成とする。   Furthermore, the evaluation method of delayed fracture resistance of the steel sheet molded article according to the present invention is an evaluation method of delayed fracture resistance of the steel sheet molded article, and the amount of hydrogen contained in the steel material when delayed fracture occurs, Using the relationship that correlates the crystal grain distortion in the structure of the steel material when the delayed fracture occurs, the crystal grain distortion corresponding to the amount of hydrogen contained in the evaluation part of the steel sheet molded product is obtained. Thus, a delayed fracture crystal grain strain estimation step for estimating the strain of crystal grains causing the delayed fracture at the evaluation site is performed.

このような構成を備える耐遅れ破壊性の評価方法は、遅れ破壊が発生する際における試験片中の水素量及び結晶粒の歪みを対応付けた条件に、鋼板成形品の加工部位における水素量を照らし合わせることで、その水素量に対応した結晶粒の歪みを迅速かつ簡易に求めることができ、遅れ破壊結晶粒歪みを正確に推定することができる。なお、遅れ破壊結晶粒歪みとは、鋼板成形品に遅れ破壊が生じる際の鋼板成形品の組織内における結晶粒の歪みのことを指す。   The method for evaluating delayed fracture resistance having such a configuration is based on the conditions in which the amount of hydrogen in the test piece and the distortion of the crystal grains when delayed fracture occurs are correlated with the amount of hydrogen in the processed part of the steel sheet molded product. By comparing, the distortion of the crystal grain corresponding to the amount of hydrogen can be obtained quickly and easily, and the delayed fracture crystal grain distortion can be accurately estimated. The delayed fracture crystal grain distortion refers to the distortion of crystal grains in the structure of the steel sheet molded article when delayed fracture occurs in the steel sheet molded article.

また、本発明に係る鋼板成形品の耐遅れ破壊性の評価方法は、前記遅れ破壊水素量推定工程において、前記遅れ破壊が発生する際の鋼材に含有される水素量と、前記遅れ破壊が発生する際の鋼材の組織内における結晶粒の歪みと、前記遅れ破壊が発生する際の鋼材の残留応力と、を対応付けた関係を用いて、前記鋼板成形品の評価部位の組織内における結晶粒の歪み及び当該評価部位の残留応力に対応した水素量を求めることが好ましい。   Further, in the method for evaluating delayed fracture resistance of a steel sheet molded article according to the present invention, in the delayed fracture hydrogen amount estimation step, the amount of hydrogen contained in the steel material when the delayed fracture occurs, and the delayed fracture occurs. Crystal grains in the structure of the evaluation part of the steel sheet molded article using a relationship in which the distortion of the crystal grains in the structure of the steel material when performing the residual stress of the steel material when the delayed fracture occurs It is preferable to obtain the amount of hydrogen corresponding to the strain of and the residual stress of the evaluation site.

このような構成を備える耐遅れ破壊性の評価方法は、鋼板成形品の水素量または結晶粒の歪みを求めるための条件に、さらに残留応力のデータを加えることにより、試験片に遅れ破壊が発生するより正確な関係を導出することができる。そして、鋼板成形品の加工部位における結晶粒の歪み及び残留応力をこの関係に照らし合わせることで、これらに対応する遅れ破壊水素量をより正確に求めることができる。   The delayed fracture resistance evaluation method with such a configuration is that delayed fracture occurs in the test piece by adding residual stress data to the conditions for obtaining the hydrogen content or crystal grain distortion of the steel sheet molded product. A more accurate relationship can be derived. And the amount of delayed fracture hydrogen corresponding to these can be calculated | required more correctly by collating the distortion and residual stress of the crystal grain in the process site | part of a steel plate molded product with this relationship.

また、本発明に係る鋼板成形品の耐遅れ破壊性の評価方法は、前記遅れ破壊結晶粒歪み推定工程において、前記遅れ破壊が発生する際の鋼材に含有される水素量と、前記遅れ破壊が発生する際の鋼材の組織内における結晶粒の歪みと、前記遅れ破壊が発生する際の鋼材の残留応力と、を対応付けた関係を用いて、前記鋼板成形品の評価部位に含有される水素量及び当該評価部位の残留応力に対応した結晶粒の歪みを求めることが好ましい。   Further, the method for evaluating delayed fracture resistance of a steel sheet molded article according to the present invention includes the amount of hydrogen contained in the steel material when the delayed fracture occurs in the delayed fracture crystal strain estimation step, and the delayed fracture. Hydrogen contained in the evaluation part of the steel sheet molded article using a relationship in which the distortion of crystal grains in the structure of the steel material when generated and the residual stress of the steel material when the delayed fracture occurs are associated with each other It is preferable to obtain the distortion of the crystal grains corresponding to the amount and the residual stress of the evaluation site.

このような構成を備える耐遅れ破壊性の評価方法は、鋼板成形品の水素量または結晶粒の歪みを求めるための条件に、さらに残留応力のデータを加えることにより、試験片に遅れ破壊が発生するより正確な関係を導出することができる。そして、鋼板成形品の加工部位に含有される水素量及び残留応力をこの関係に照らし合わせることで、これらに対応する結晶粒の歪みをより正確に求めることができる。   The delayed fracture resistance evaluation method with such a configuration is that delayed fracture occurs in the test piece by adding residual stress data to the conditions for obtaining the hydrogen content or crystal grain distortion of the steel sheet molded product. A more accurate relationship can be derived. And the distortion of the crystal grain corresponding to these can be calculated | required more correctly by comparing the hydrogen content and residual stress contained in the process site | part of a steel plate molded product with this relationship.

また、本発明に係る鋼板成形品の耐遅れ破壊性の評価方法は、前記遅れ破壊水素量推定工程または前記遅れ破壊結晶粒歪み推定工程の前に、成形加工を施した試験片を作成し、当該試験片に遅れ破壊が発生するまで、その内部に水素を導入する試験片水素導入工程と、前記遅れ破壊が発生する際における前記試験片の水素量及び結晶粒の歪みを測定する試験片測定工程と、前記試験片測定工程で測定した前記試験片の水素量及び結晶粒の歪みを対応付けて、前記関係を導出する遅れ破壊条件導出工程と、を行なうことが好ましい。   Further, in the method for evaluating delayed fracture resistance of a steel sheet molded article according to the present invention, before the delayed fracture hydrogen amount estimation step or the delayed fracture crystal grain strain estimation step, create a test piece subjected to forming, A test piece hydrogen introduction step for introducing hydrogen into the test piece until delayed fracture occurs, and a test piece measurement for measuring the hydrogen content of the test piece and the distortion of crystal grains when the delayed fracture occurs. It is preferable to perform a step and a delayed fracture condition deriving step of deriving the relationship by associating the hydrogen amount of the test piece measured in the test piece measuring step and the distortion of crystal grains.

このような構成を備える耐遅れ破壊性の評価方法は、様々な成形加工が施された試験片を用いて、予め遅れ破壊発生時における水素量及び結晶粒の歪みを測定し、これらのデータを対応付けた関係を導出する。そして、鋼板成形品の加工部位における結晶粒の歪みまたは水素量を測定してこの関係に照らし合わせることで、これらに対応する遅れ破壊水素量または結晶粒の歪みをより正確に求めることができる。   The evaluation method for delayed fracture resistance having such a configuration is to measure the amount of hydrogen and strain of crystal grains at the time of delayed fracture occurrence using test pieces subjected to various forming processes, and obtain these data. The associated relationship is derived. Then, by measuring the distortion of crystal grains or the amount of hydrogen in the processed part of the steel sheet molded article and comparing this with the relationship, the amount of delayed fracture hydrogen or the distortion of crystal grains corresponding thereto can be obtained more accurately.

また、本発明に係る鋼板成形品の耐遅れ破壊性の評価方法は、前記遅れ破壊水素量推定工程または前記遅れ破壊結晶粒歪み推定工程の前に、成形加工を施した試験片を作成し、当該試験片に残留応力を付与するとともに、当該試験片に遅れ破壊が発生するまで、その内部に水素を導入する試験片水素導入工程と、前記遅れ破壊が発生する際における前記試験片の水素量及び結晶粒の歪みを測定する試験片測定工程と、前記試験片測定工程で測定した前記試験片の水素量及び結晶粒の歪み並びに前記試験片に付与された残留応力を対応付けて、前記関係を導出する遅れ破壊条件導出工程とを行なうことが好ましい。   Further, in the method for evaluating delayed fracture resistance of a steel sheet molded article according to the present invention, before the delayed fracture hydrogen amount estimation step or the delayed fracture crystal grain strain estimation step, create a test piece subjected to forming, A test piece hydrogen introduction step for applying hydrogen into the test piece until residual stress is applied to the test piece and delayed fracture occurs in the test piece, and the amount of hydrogen in the test piece when the delayed fracture occurs And the test piece measurement step for measuring the strain of the crystal grains, the hydrogen amount of the test piece measured in the test piece measurement step, the strain of the crystal grains, and the residual stress applied to the test piece, and the relationship It is preferable to perform a delayed fracture condition deriving step for deriving.

このような構成を備える耐遅れ破壊性の評価方法は、様々な成形加工が施された試験片を用いて、予め遅れ破壊発生時における水素量及び結晶粒の歪みを測定し、これらのデータ及び残留応力を対応付けた関係を導出する。そして、鋼板成形品の加工部位における結晶粒の歪みまたは水素量を測定してこの関係に照らし合わせることで、これらに対応する遅れ破壊水素量または結晶粒の歪みをより正確に求めることができる。   The evaluation method of delayed fracture resistance having such a configuration uses a test piece subjected to various molding processes to measure the amount of hydrogen and the distortion of crystal grains when delayed fracture occurs in advance. A relationship in which the residual stress is associated is derived. Then, by measuring the distortion of crystal grains or the amount of hydrogen in the processed part of the steel sheet molded article and comparing this with the relationship, the amount of delayed fracture hydrogen or the distortion of crystal grains corresponding thereto can be obtained more accurately.

そして、本発明に係る鋼板成形品の耐遅れ破壊性の評価方法は、前記加工歪みが、EBSPにおける方位決定のCI(Confidence Index)が0.1以下となる面積率、EBSPにおける方位決定のIQ(Image Quality)、EBSPにおける方位決定のKAM(Kernel Average Misorientation)、XRD(X-ray diffraction)によって測定される歪み、のいずれかによって表されたものであることが好ましい。   And the evaluation method of the delayed fracture resistance of the steel sheet molded product according to the present invention is such that the processing strain is an area ratio at which the CI (Confidence Index) for azimuth determination in EBSP is 0.1 or less, and IQ for azimuth determination in EBSP. (Image Quality), KAM (Kernel Average Misorientation) for azimuth determination in EBSP, or distortion measured by XRD (X-ray diffraction) is preferable.

このような構成を備える耐遅れ破壊性の評価方法は、EBSPまたはXRDを用いることで、鋼板成形品における鋼組織の結晶構造、すなわち結晶粒の歪みの大きさを迅速かつ正確に測定することができる。   The evaluation method of delayed fracture resistance having such a configuration can quickly and accurately measure the crystal structure of the steel structure in the steel sheet molded article, that is, the size of the crystal grain distortion, by using EBSP or XRD. it can.

本発明に係る鋼板成形品の耐遅れ破壊性の評価方法によれば、従来の耐遅れ破壊性の評価指標である「曲げ半径」の代わりに「結晶粒の歪み」を評価指標とすることにより、「結晶粒の歪み−残留応力−水素量」の関係において、鋼板成形品の耐遅れ破壊性をより正確に評価することができる。すなわち、鋼板成形品の結晶粒の歪みを測定することで、加工に伴う結晶粒の歪み、転位、欠陥の増加、結晶粒及び組織形態の崩壊等を加味した、緻密な耐遅れ破壊性の評価を行なうことができる。従って、単純な丸棒形状への加工や単純な曲げ加工以外にも、材料流入(深絞り加工)や材料流出(伸びフランジ加工、張出し加工)が生じる縦壁部や、打ち抜き加工を施した打ち抜き孔近傍、複数回の曲げ−曲げ戻し加工を受けた部位の耐遅れ破壊性を正確に評価することができる。また、EBSP・XRDによって結晶方位を測定・解析することで、従来の「曲げ半径」を用いた評価方法よりも迅速に耐遅れ破壊性の評価を行なうことができる。   According to the method for evaluating delayed fracture resistance of a steel sheet molded article according to the present invention, by using “crystal strain” as an evaluation index instead of “bending radius” which is a conventional evaluation index of delayed fracture resistance. The delayed fracture resistance of the steel sheet molded product can be more accurately evaluated in the relationship of “crystal grain distortion−residual stress−hydrogen content”. In other words, by measuring the distortion of the crystal grains of the steel sheet molded product, the evaluation of dense delayed fracture resistance taking into account the distortion of the crystal grains, dislocations, increase in defects, collapse of the crystal grains and structure morphology, etc. accompanying the processing. Can be performed. Therefore, in addition to simple round bar shape processing and simple bending processing, vertical wall parts that cause material inflow (deep drawing processing) and material outflow (stretch flange processing, overhang processing), and punching with punching processing It is possible to accurately evaluate the delayed fracture resistance of the portion in the vicinity of the hole and subjected to a plurality of bending-bending processes. Further, by measuring and analyzing the crystal orientation by EBSP / XRD, the delayed fracture resistance can be evaluated more quickly than the conventional evaluation method using “bending radius”.

本発明の一実施形態に係る評価方法を示すフローチャートである。It is a flowchart which shows the evaluation method which concerns on one Embodiment of this invention. プレス加工の代表的な加工方法を示す図であり、(a)は、深絞り加工を示す図、(b)は、張出し加工を示す図、(c)は、伸びフランジ加工を示す図、(d)は、曲げ加工を示す図、である。It is a figure which shows the typical processing method of press work, (a) is a figure which shows deep drawing, (b) is a figure which shows overhanging, (c) is a figure which shows stretch flange processing, d) is a diagram showing bending. 加工による鋼材の組織内における結晶粒の歪みを示す図であり、(a)は、加工前の結晶粒の状態を示す図、(b)は、加工後の結晶粒の状態を示す図、である。It is a figure which shows the distortion of the crystal grain in the structure | tissue of the steel materials by processing, (a) is a figure which shows the state of the crystal grain before a process, (b) is a figure which shows the state of the crystal grain after a process, is there. EBSPの測定部位を示す図であり、(a)は、平坦部におけるEBSPの測定部位を示す図、(b)は、曲げ加工部におけるEBSPの測定部位を示す図である。It is a figure which shows the measurement site | part of EBSP, (a) is a figure which shows the measurement site | part of EBSP in a flat part, (b) is a figure which shows the measurement site | part of EBSP in a bending process part. 耐遅れ破壊性の作成工程を示す図であり、(a)は、遅れ破壊発生境界領域を作成する工程を示す図、(b)は、遅れ破壊推定境界領域を作成する工程を示す図、(c)は、実際の鋼板成形品の測定値をプロットする工程を示す図である。It is a figure which shows the creation process of delayed fracture resistance, (a) is a figure which shows the process of creating a delayed fracture occurrence boundary area, (b) is a figure which shows the process of creating a delayed fracture estimated boundary area, c) is a figure which shows the process of plotting the measured value of an actual steel plate molded article. 本発明に係る評価方法に用いたプレス成形品を示す図であり、(a)は、A鋼を用いた形状イのプレス成形品を示す図、(b)は、B鋼を用いた形状ロのプレス成形品を示す図、(c)は、C鋼を用いた形状ハのプレス成形品を示す図、である。It is a figure which shows the press-molded article used for the evaluation method which concerns on this invention, (a) is a figure which shows the press-formed article of the shape i using A steel, (b) is the figure ro which used B steel. (C) is a figure which shows the press-formed product of the shape C using C steel. 従来の評価方法において、「曲げ半径」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップを示す図である。In the conventional evaluation method, it is a figure which shows the delayed fracture resistance evaluation map created based on the evaluation result which used "bending radius" as the parameter | index of delayed fracture resistance. 本発明に係る評価方法において、「CI≦0.1となる面積率」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップを示す図である。In the evaluation method which concerns on this invention, it is a figure which shows the delayed fracture resistance evaluation map created based on the evaluation result which used "the area ratio which becomes CI <= 0.1" as the parameter | index of delayed fracture resistance. 本発明に係る評価方法において、「IQ」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップを示す図である。In the evaluation method which concerns on this invention, it is a figure which shows the delayed fracture resistance evaluation map produced based on the evaluation result which used "IQ" as the parameter | index of delayed fracture resistance. 本発明に係る評価方法において、「KAM」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップを示す図である。In the evaluation method which concerns on this invention, it is a figure which shows the delayed fracture resistance evaluation map produced based on the evaluation result which used "KAM" as the parameter | index of delayed fracture resistance. 本発明に係る評価方法において、「XRDによる歪み測定」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップを示す図である。In the evaluation method which concerns on this invention, it is a figure which shows the delayed fracture resistance evaluation map created based on the evaluation result which used "strain measurement by XRD" as the parameter | index of delayed fracture resistance.

<第1の実施形態>
本発明の第1の実施形態に係る評価方法について説明する。本実施形態に係る評価方法は、図1に示すように、遅れ破壊を発生させるために試験片に水素を導入する試験片水素導入工程(ステップS1)と、試験片中の水素量を測定する試験片水素量測定工程(ステップS2)と、試験片の結晶粒の歪みを測定する試験片結晶粒歪み測定工程(ステップS3)と、試験片中の水素量及び結晶粒の歪みの対応関係を求めて遅れ破壊が発生する条件を抽出する遅れ破壊条件導出工程(ステップS4)と、鋼板成形品の結晶粒の歪みを測定する成形品結晶粒歪み測定工程(ステップS5)と、遅れ破壊が発生する条件に基づいて遅れ破壊が発生する水素量を推定する遅れ破壊水素量推定工程(ステップS6)と、を主な構成として有している。
<First Embodiment>
An evaluation method according to the first embodiment of the present invention will be described. In the evaluation method according to the present embodiment, as shown in FIG. 1, a test piece hydrogen introduction step (step S1) for introducing hydrogen into the test piece in order to cause delayed fracture, and the amount of hydrogen in the test piece are measured. The test piece hydrogen amount measurement step (step S2), the test piece crystal strain measurement step (step S3) for measuring the strain of crystal grains of the test piece, and the correspondence relationship between the hydrogen amount in the test piece and the strain of crystal grains. A delayed fracture condition derivation step (step S4) for extracting the conditions for the occurrence of delayed fracture and the molded product crystal grain strain measurement step (step S5) for measuring the crystal grain strain of the steel plate molded product, and delayed fracture occurs. A delayed fracture hydrogen amount estimation step (step S6) for estimating the amount of hydrogen at which delayed fracture occurs based on the conditions to be performed.

ここで、試験片水素量測定工程(ステップS2)と試験片結晶粒歪み測定工程(ステップS3)は、どちらを先に行なってもよい。また、ステップS1からステップS4は、後記するように、遅れ破壊が発生する際の見本・基準となるデータを測定する工程であるため、一度データを測定すれば、以後はステップS5以降のみを行なってもよい。以下、各工程について、詳細に説明する。   Here, either the test piece hydrogen amount measurement step (step S2) or the test piece crystal grain strain measurement step (step S3) may be performed first. Steps S1 to S4 are steps for measuring sample / reference data when delayed fracture occurs as will be described later. Once the data is measured, only step S5 and subsequent steps are performed. May be. Hereinafter, each step will be described in detail.

(1)試験片水素導入工程
本工程は、様々な成形加工が施された複数の試験片に水素を導入し、当該試験片に人為的に遅れ破壊を発生させる工程である。このように、予め複数の試験片を用いて遅れ破壊性を調査することで、遅れ破壊が発生する際の鋼材中の水素量、鋼材組織内における結晶粒の歪み等の見本・基準となるデータを得ることができる。本工程をより詳細に説明すると、以下の通りである。
(1) Test piece hydrogen introduction process This process is a process in which hydrogen is introduced into a plurality of test pieces that have been subjected to various forming processes, and the test piece is artificially delayed. In this way, by investigating delayed fracture properties using a plurality of test pieces in advance, sample and reference data such as the amount of hydrogen in steel when delayed fracture occurs, the distortion of crystal grains in the steel structure, etc. Can be obtained. This process will be described in detail as follows.

(1−1)試験片の作成
試験片は、前記したように耐遅れ破壊性を評価するための見本・基準となるデータを得るためのものであるため、多様な条件で成形加工して作成することが好ましい。本実施形態に係る評価方法では、例として、3種の組成及び、プレス加工における4種の代表的な加工区分からなる試験片を作成するが、これ以上の組成・加工区分を用いることももちろん可能である。
(1-1) Preparation of test piece As mentioned above, the test piece is for obtaining sample and reference data for evaluating delayed fracture resistance. It is preferable to do. In the evaluation method according to the present embodiment, as an example, a specimen having three types of compositions and four types of representative processing sections in press working is created, but it is of course possible to use more composition / processing sections. Is possible.

本実施形態に係る評価方法は、どのような引張強度を有する鋼板であっても評価が可能である。従って、高強度な鋼板成形品を模して、1180MPa以上の引張強度を有する高強度鋼板から試験片を切り出して、評価の見本・基準とすることもできる。   The evaluation method according to the present embodiment can be evaluated with any steel sheet having any tensile strength. Therefore, a specimen can be cut out from a high-strength steel sheet having a tensile strength of 1180 MPa or more to simulate a high-strength steel sheet molded product, and can be used as a sample / reference for evaluation.

本実施形態において、試験片の組成は、評価を行なう鋼板成形品と同じ組成とする。ここで、試験片と鋼板成形品の組成を一致させるのは、鋼材の組成も遅れ破壊水素量に影響を及ぼすため、正確な評価を行なうためにこれらを一致させることが好ましいからである。ただし、本発明はこれに限定されず、試験片の組成が鋼板成形品の組成と同じ遅れ破壊特性を示すことが予め分かっている場合は、試験片の組成と鋼板成形品の組成とが異なっていても問題はない。また、鋼板成形品と試験片の組成及び遅れ破壊特性は完全に一致している必要はなく、評価結果に悪影響を及ぼさない程度の差異は許容される。なお、試験片の製造方法については、従来公知の方法を用い、加工度等の製造条件については、評価を行なう鋼板成形品の部位や母材鋼板の変形限界曲線等を参考にして設定することができる。   In this embodiment, the composition of the test piece is the same as that of the steel sheet molded product to be evaluated. Here, the reason why the compositions of the test piece and the steel sheet molded product are matched is that the composition of the steel material also affects the amount of delayed fracture hydrogen, and therefore it is preferable to match these for accurate evaluation. However, the present invention is not limited to this, and when it is known in advance that the composition of the test piece exhibits the same delayed fracture characteristics as the composition of the steel sheet molded product, the composition of the test piece is different from the composition of the steel plate molded product. There is no problem. Further, the composition and delayed fracture characteristics of the steel sheet molded product and the test piece do not need to be completely matched, and a difference that does not adversely affect the evaluation result is allowed. In addition, about the manufacturing method of a test piece, a conventionally well-known method is used, and manufacturing conditions, such as a workability, should be set with reference to the part of the steel sheet product to be evaluated and the deformation limit curve of the base steel sheet. Can do.

試験片は、例えば図2に示すように、様々な加工区分で作成することができる。図2において、(a)は、実際の鋼板成形品における縦壁部(深絞り加工)を模擬するための、絞り比を変化させた深絞り加工試験片である。また、(b)は、実際の鋼板成形品における絞り加工部(張出し加工)を模擬するための、エリクセン試験片である。また、(c)は、実際の鋼板成形品における打ち抜き加工孔近傍(伸びフランジ加工)を模擬するための、伸びフランジ試験片である。また、(d)は、実際の鋼板成形品における曲げ加工を模擬するための、曲げ半径及び曲げ加工部位に対する付加応力を変化させたU曲げ試験片である。本実施形態に係る評価方法では、結晶粒の歪みに基づいて遅れ破壊特性を評価するため、試験片の加工区分と、鋼板成形品における評価部位の加工区分とを一致させる必要はない。従って、深絞り加工を施した試験片から得た測定データに基づいて、鋼板成形品の曲げ加工部位の遅れ破壊特性を評価するようなことももちろん可能である。   For example, as shown in FIG. 2, the test piece can be prepared in various processing sections. In FIG. 2, (a) is a deep drawing test piece with a different drawing ratio for simulating a vertical wall portion (deep drawing) in an actual steel sheet molded product. Moreover, (b) is an Erichsen test piece for simulating a drawn portion (overhang processing) in an actual steel sheet molded product. Moreover, (c) is a stretch flange test piece for simulating the vicinity of a punched hole (stretch flange processing) in an actual steel sheet molded product. Further, (d) is a U-bending specimen in which the bending stress and the applied stress to the bending portion are changed in order to simulate bending in an actual steel sheet molded product. In the evaluation method according to the present embodiment, since the delayed fracture characteristics are evaluated based on the distortion of the crystal grains, it is not necessary to match the processing category of the test piece and the processing category of the evaluation site in the steel sheet molded product. Accordingly, it is of course possible to evaluate the delayed fracture characteristics of the bent portion of the steel sheet molded product based on the measurement data obtained from the test piece subjected to deep drawing.

本実施形態に係る評価方法は、このような試験片を用いることにより、深絞り性、張出し性、伸びフランジ性及び曲げ性によって鋼材組織に生じる歪みを考慮した測定データを予め得ることができる。すなわち、後記するように、これらの測定データを対応付けてその関係を導出することで、同じ特性を有する実際の鋼板成形品の耐遅れ破壊性を評価することができる。   By using such a test piece, the evaluation method according to the present embodiment can obtain in advance measurement data that takes into account the strain that occurs in the steel structure due to deep drawability, overhangability, stretch flangeability, and bendability. That is, as described later, by correlating these measurement data and deriving the relationship, it is possible to evaluate the delayed fracture resistance of an actual steel sheet molded product having the same characteristics.

(1−2)試験片に対する水素の導入
次に、水素導入手段によって各試験片を構成する鋼材中に人為的に水素を導入する。この際、遅れ破壊特性は鋼材の残留応力の影響も受けるため、残留応力が互いに異なる複数の試験片を使用する。なお、試験片に与える残留応力と、鋼板成形品の評価部位の残留応力とを一致させる必要はなく、耐遅れ破壊性の評価は可能である。
(1-2) Introduction of hydrogen into the test piece Next, hydrogen is artificially introduced into the steel material constituting each test piece by the hydrogen introduction means. At this time, since the delayed fracture characteristics are also affected by the residual stress of the steel material, a plurality of test pieces having different residual stresses are used. In addition, it is not necessary to make the residual stress given to a test piece and the residual stress of the evaluation site | part of a steel plate molded product correspond, and evaluation of delayed fracture resistance is possible.

水素導入手段としては、試験片を塩酸等の酸溶液に浸漬する酸浸漬法、電解液中で試験片を陰極に、白金を陽極とし、陰極と陽極間に電流を流すことにより溶液を電気分解し、その際に発生した水素を鋼材中に導入する陰極チャージ法、中性塩化物水溶液の散布と温度湿度を制御した環境を繰り返すことによって鋼材中に腐食を発生させ、腐食反応に起因して発生する水素を鋼材中に導入する複合サイクル法、試験片を実際の大気環境下に設置し、自然環境下で生じる腐食反応に起因して発生する水素を鋼材中に導入する大気暴露法等、の手段を用いることができる。   As a means for introducing hydrogen, an acid dipping method in which a test piece is immersed in an acid solution such as hydrochloric acid, an electrolytic solution is electrolyzed by passing a current between the cathode and the anode, using the test piece as a cathode and platinum as an anode in an electrolytic solution. However, the cathodic charging method in which hydrogen generated at that time is introduced into the steel material, the corrosion of the steel material is generated by repeating the environment in which the neutral chloride aqueous solution is sprayed and the temperature and humidity are controlled. Combined cycle method that introduces the generated hydrogen into the steel material, air exposure method that installs the test piece in the actual atmospheric environment and introduces the hydrogen generated due to the corrosion reaction occurring in the natural environment into the steel material, etc. The following means can be used.

但し、複合サイクル法と大気暴露法は、導入に要する時間が長期間にわたるとともに、腐食反応によって鋼材中に侵入する水素量が0.数ppm程度と微量であるため、試験片に割れ(遅れ破壊)が生じない場合がある。従って、試験片に対する水素の導入方法としては、試験時間の短縮及び鋼材中の水素量を制御する観点から、酸浸漬法または陰極チャージを用いることが好ましい。   However, the combined cycle method and the atmospheric exposure method require a long time for introduction, and the amount of hydrogen that penetrates into the steel material due to the corrosion reaction is 0.1. Since the amount is as small as several ppm, the test piece may not crack (delayed fracture). Therefore, as a method for introducing hydrogen into the test piece, it is preferable to use an acid immersion method or a cathodic charge from the viewpoint of shortening the test time and controlling the amount of hydrogen in the steel material.

酸浸漬法で用いる溶液としては、例えば塩酸水溶液が挙げられる。ここで、塩酸水溶液の濃度は、0.01〜10%の範囲内であることが好ましい。塩酸水溶液の濃度が10%を超えると、塩酸水溶液中での試験片の溶解反応、水素発生反応が活発となりすぎ、鋼材中に急激かつ多量に水素が導入されてしまう。一方、塩酸水溶液の濃度が0.01%未満の場合は、試験片の溶解反応は抑制されるものの、同時に水素発生反応も抑制されてしまうため、鋼材中への水素侵入がほとんど生じず、試験片に割れが生じないことがある。   Examples of the solution used in the acid dipping method include an aqueous hydrochloric acid solution. Here, the concentration of the aqueous hydrochloric acid solution is preferably in the range of 0.01 to 10%. If the concentration of the hydrochloric acid aqueous solution exceeds 10%, the dissolution reaction of the test piece and the hydrogen generation reaction in the hydrochloric acid aqueous solution become too active, and hydrogen is introduced rapidly and in large quantities into the steel material. On the other hand, when the concentration of the aqueous hydrochloric acid solution is less than 0.01%, the dissolution reaction of the test piece is suppressed, but at the same time, the hydrogen generation reaction is also suppressed, so that almost no hydrogen intrusion into the steel material occurs. The piece may not crack.

陰極チャージ法は、電解質を含む溶液濃度を制御し、印加する負の電流密度及び時間を制御することで、鋼材中に導入する水素量をコントロールすることができる。従って、鋼材中の水素量との相関がある耐遅れ破壊現象を評価する手法として簡便であり、かつ、前記したように鋼材中の水素量を任意にコントロールできるという利点を有している。なお、印加する電流の制御には、既存のポテンショスタット等の電流制御装置を用いれば良い。   In the cathode charging method, the amount of hydrogen introduced into the steel material can be controlled by controlling the concentration of the solution containing the electrolyte and controlling the negative current density and time to be applied. Therefore, it is simple as a method for evaluating the delayed fracture resistance having a correlation with the amount of hydrogen in the steel material, and has the advantage that the amount of hydrogen in the steel material can be arbitrarily controlled as described above. In addition, what is necessary is just to use current control apparatuses, such as the existing potentiostat, for control of the electric current to apply.

陰極チャージ法では、鋼材中に水素を効率的に導入するために、電解質を含む溶液のpHを6以下とすることが好ましい。pHが6を超えると、鋼材中に水素を効率的に導入することができない場合がある。さらに、電解質を含む溶液としては、鋼材中への水素導入の触媒作用があることが知られているチオシアン酸塩(チオシアン酸カリウム、チオシアン酸ナトリウム等)を含む弱酸性から酸性の水溶液を使用することが好ましい。   In the cathodic charging method, the pH of the solution containing the electrolyte is preferably 6 or less in order to efficiently introduce hydrogen into the steel material. If the pH exceeds 6, hydrogen may not be efficiently introduced into the steel material. Further, as the solution containing the electrolyte, a weakly acidic to acidic aqueous solution containing thiocyanate (potassium thiocyanate, sodium thiocyanate, etc.) known to have a catalytic action for introducing hydrogen into the steel material is used. It is preferable.

(2)試験片測定工程
本工程は、遅れ破壊が発生する際の試験片に含有される水素量と、結晶粒の歪み(加工歪み)を測定する工程である。本工程は、試験片水素量測定工程と、試験片結晶粒歪み測定工程と、試験片残留応力測定工程とに分けることができ、どちらの工程を先に行なっても構わない。またこれらの工程では、試験片測定手段として、試験片水素量測定工程では水素量測定手段を、試験片結晶粒歪み測定工程では加工歪み測定手段を、試験片残留応力測定工程では、残留応力測定手段を用いる。以下、各工程について説明する。
(2) Test piece measuring step This step is a step of measuring the amount of hydrogen contained in the test piece when delayed fracture occurs and the distortion (working strain) of crystal grains. This step can be divided into a test piece hydrogen amount measurement step, a test piece crystal grain strain measurement step, and a test piece residual stress measurement step, and either step may be performed first. Also, in these steps, as a test piece measuring means, a hydrogen amount measuring means in the test piece hydrogen amount measuring step, a processing strain measuring means in the test piece crystal grain strain measuring step, and a residual stress measurement in the test piece residual stress measuring step. Use means. Hereinafter, each step will be described.

(2−1)試験片水素量測定工程
本工程は、水素量測定手段によって試験片中の水素量を測定する工程である。すなわち、前記したいずれかの方法で、試験片に割れ(遅れ破壊)が発生するまで水素を導入し、割れが発生したことが確認できた時点で水素の導入を中止する。なお、割れの有無の判断は、試験片の割れが線として目視で確認できるか否かによって行なうが、その他にも、割れ部近傍に歪みゲージを貼り、その値の変化で割れを判定する方法や、割れ発生時に生じる電位変化によって割れを判定する方法等を用いても良い。
(2-1) Test piece hydrogen amount measuring step This step is a step of measuring the hydrogen amount in the test piece by the hydrogen amount measuring means. That is, hydrogen is introduced by any of the methods described above until cracks (delayed fracture) occur in the test piece, and the introduction of hydrogen is stopped when it is confirmed that the cracks have occurred. In addition, the judgment of the presence or absence of a crack is made by whether or not the crack of the test piece can be visually confirmed as a line. In addition, a strain gauge is attached in the vicinity of the cracked part, and a crack is judged by a change in its value. Alternatively, a method of determining a crack based on a potential change that occurs when a crack occurs may be used.

そして、導入した水素が飛散しないように、試験片から迅速に水素量分析用試験片を切り出す。水素量分析用試験片の切り出しに際しては、切り出し時に生じた熱で鋼材中に導入した水素が飛散しないように、冷却水を散布しながら回転砥石により切り出す方法を用いることが好ましい。   And the test piece for hydrogen amount analysis is rapidly cut out from a test piece so that the introduced hydrogen may not scatter. When cutting out the test piece for hydrogen amount analysis, it is preferable to use a method of cutting out with a rotating grindstone while spraying cooling water so that the hydrogen introduced into the steel material is not scattered by the heat generated at the time of cutting.

なお、このような方法で切り出した試験片中に含有される水素のうちで、遅れ破壊に影響を与えるのは、比較的低温であっても鋼材内を自由に移動することができる拡散性水素と呼ばれるものである。本工程では、割れが発生した水素量分析用試験片から測定したこの拡散性水素の量(以下、単に水素量という)を測定の対象としている。   Of the hydrogen contained in the test piece cut out by such a method, the delayed fracture is affected by diffusible hydrogen that can move freely in steel even at relatively low temperatures. It is called. In this step, the amount of diffusible hydrogen measured from the test piece for analyzing the amount of hydrogen in which cracking has occurred (hereinafter simply referred to as the amount of hydrogen) is the object of measurement.

水素量測定手段としては、例えば、大気圧イオン化質量分析計(API−MS)による測定が挙げられる。測定条件としては、測定の際の昇温速度を1℃/min以上20℃/min以下とすることが好ましい。これは、昇温速度が1℃/min未満だと拡散性水素の測定に非常に時間がかかって効率が悪化するため好ましくなく、昇温速度が20℃/minを超える場合は、鋼板からの水素放出効率が低下するとともに、温度制御が困難となって拡散性水素を正確に測定することができなくなるからである。なお、測定効率の観点から、昇温速度は5℃/min以上15℃/min以下とすることがより好ましい。また、拡散性水素の定量は、室温〜300℃までの温度範囲で放出される水素の全量(積分値)とすることが好ましい。   Examples of the hydrogen amount measuring means include measurement using an atmospheric pressure ionization mass spectrometer (API-MS). As measurement conditions, it is preferable that the temperature increase rate during the measurement is 1 ° C./min to 20 ° C./min. This is not preferable if the rate of temperature increase is less than 1 ° C./min, because it takes a very long time to measure diffusible hydrogen and the efficiency deteriorates. When the rate of temperature increase exceeds 20 ° C./min, This is because the hydrogen release efficiency is lowered and the temperature control becomes difficult, and the diffusible hydrogen cannot be accurately measured. In addition, from the viewpoint of measurement efficiency, it is more preferable that the rate of temperature rise is 5 ° C./min or more and 15 ° C./min or less. Moreover, it is preferable to determine the amount of diffusible hydrogen to be the total amount (integrated value) of hydrogen released in the temperature range from room temperature to 300 ° C.

(2−2)試験片結晶粒歪み測定工程
本工程は、試験片の組織内における結晶粒の加工歪みを、加工歪み測定手段によって測定する工程である。このように、試験片の組織内における結晶粒の歪みを測定することで、加工に伴う結晶粒の歪み、転位、欠陥の増加、結晶粒及び組織形態の崩壊等を加味した、より緻密な耐遅れ破壊性の評価が可能となる。従って、単純な丸棒形状への加工や単純な曲げ加工以外にも、材料流入(深絞り加工)や材料流出(伸びフランジ加工、張出し加工)が生じる縦壁部や、打ち抜き加工を施した打ち抜き孔近傍、複数回の曲げ−曲げ戻し加工を受けた部位の耐遅れ破壊性を正確に評価することができる。
(2-2) Test Piece Crystal Strain Measurement Step This step is a step of measuring the processing strain of crystal grains in the structure of the test piece by means of processing strain measurement means. In this way, by measuring the strain of the crystal grains in the structure of the test piece, it is possible to obtain a more precise resistance that takes into account the distortion of the crystal grains, dislocations, an increase in defects, the collapse of the crystal grains and the structure morphology, etc. Evaluation of delayed fracture is possible. Therefore, in addition to simple round bar shape processing and simple bending processing, vertical wall parts that cause material inflow (deep drawing processing) and material outflow (stretch flange processing, overhang processing), and punching with punching processing It is possible to accurately evaluate the delayed fracture resistance of the portion in the vicinity of the hole and subjected to a plurality of bending-bending processes.

図3を参照しながら試験片を構成する鋼材の結晶粒の歪みについて説明する。図3(a)に示すように、プレス加工等が施されていない鋼材の結晶粒は、結晶粒の方位が一方向に揃っている状態である。従って、結晶粒において水素が侵入する要因が少なく、遅れ破壊も発生しにくい。   With reference to FIG. 3, the distortion of the crystal grains of the steel material constituting the test piece will be described. As shown to Fig.3 (a), the crystal grain of the steel material which has not been pressed is the state in which the orientation of the crystal grain is aligned in one direction. Therefore, there are few factors for hydrogen to enter the crystal grains, and delayed fracture is less likely to occur.

一方、図3(b)に示すように、プレス加工等が施された鋼材の結晶粒は、結晶粒の方位が乱れた状態である。また、結晶粒に歪みAが生じるとともに、結晶粒にボイド(空孔)Bが発生している。さらに、結晶粒界には、結晶粒の転位によるセル壁Cも形成されている。従って、歪みAやボイドBに水素が侵入する可能性が高くなり、遅れ破壊が発生しやすくなる。本実施形態に係る評価方法は、このように、鋼材の加工に伴う結晶粒の歪みが遅れ破壊に影響を与える点に着目し、結晶粒の歪みを耐遅れ破壊性の指標として用いる点を特徴としている。   On the other hand, as shown in FIG. 3B, the crystal grains of the steel material subjected to press working or the like are in a state in which the orientation of the crystal grains is disturbed. In addition, distortion A occurs in the crystal grains, and voids (voids) B occur in the crystal grains. Furthermore, cell walls C are also formed at the crystal grain boundaries due to the dislocation of crystal grains. Therefore, there is a high possibility that hydrogen enters the strain A and the void B, and delayed fracture is likely to occur. As described above, the evaluation method according to the present embodiment is characterized in that the distortion of the crystal grains accompanying the processing of the steel material affects the delayed fracture and uses the distortion of the crystal grains as an index of the delayed fracture resistance. It is said.

各試験片の結晶粒の歪みを測定する加工歪み測定手段としては、EBSP(電子後方散乱パターン:Electron Back Scatter diffraction Pattern)による評価、あるいは、XRD(X線回折:X-ray diffraction)による測定があり、これらいずれかの手法を用いて結晶粒の歪みを測定することが好ましい。以下、各測定手段について詳細に説明する。   As processing distortion measuring means for measuring the distortion of crystal grains of each test piece, evaluation by EBSP (Electron Back Scatter Diffraction Pattern) or measurement by XRD (X-ray diffraction) is possible. It is preferable to measure the distortion of crystal grains using any of these methods. Hereinafter, each measuring means will be described in detail.

(2−2−1)EBSPによる結晶粒の加工歪みの測定
EBSPとは、試験片表面に電子線を入射させたときに発生する反射電子から得られた菊池パターン(菊池線)のことであり、このパターンを解析することにより、電子線入射位置の結晶方位を決定することができるものである。また、菊池パターンとは、結晶に当たった電子線が散乱して回折された際に、白黒一対の平行線や帯状もしくはアレイ状に電子回折像の背後に現れるパターンのことを指す。
(2-2-1) Measurement of processing strain of crystal grains by EBSP EBSP is a Kikuchi pattern (Kikuchi line) obtained from reflected electrons generated when an electron beam is incident on the surface of a test piece. By analyzing this pattern, the crystal orientation of the electron beam incident position can be determined. The Kikuchi pattern refers to a pattern that appears behind the electron diffraction image in a pair of black and white parallel lines, strips or arrays when the electron beam hitting the crystal is scattered and diffracted.

EBSPによる結晶方位の決定は、通常の顕微鏡観察では同一と判断される組織であって結晶方位差の異なる板厚方向の鋼材組織を、色調差によって識別できる、TEM(透過型電子顕微鏡:Transmission Electron Microscope)では難しいバルク(塊状)試料の測定が可能である、観察用の薄膜試料の作成が不要であること、測定・解析時間を飛躍的に短縮することが可能である、等の利点がある。   The determination of crystal orientation by EBSP is a TEM (Transmission Electron Microscope) that can identify steel structures in the thickness direction, which are determined to be the same in ordinary microscopic observations but have different crystal orientation differences, by color difference. There are advantages such as the ability to measure bulk (bulk) samples, which is difficult with Microscope), the need to create a thin film sample for observation, and a dramatic reduction in measurement and analysis time. .

EBSPによる結晶粒の歪みの測定は、EBSP検出器を備えたFE−SEM(電界放射型 走査型電子顕微鏡:Field Emission-Scanning Electron Microscope)を用いた組織評価によって行なうことが好ましい。FE−SEMによって試験片の表面に電子線を2次元で走査し、所定のピッチごとに結晶方位を測定することで、試験片表面における結晶の方位分布(結晶粒の歪み)を解析することができる。なお、測定に用いるEBSP検出器を備えたFE−SEMとしては、例えば、「日本電子社製 電界放出型走査電子顕微鏡 JSM−6500F」を用いることができる。   The measurement of crystal grain distortion by EBSP is preferably performed by structural evaluation using an FE-SEM (Field Emission-Scanning Electron Microscope) equipped with an EBSP detector. It is possible to analyze the crystal orientation distribution (crystal grain distortion) on the surface of the test piece by scanning the surface of the test piece in two dimensions with the FE-SEM and measuring the crystal orientation at every predetermined pitch. it can. In addition, as FE-SEM provided with the EBSP detector used for a measurement, "JEOL Co., Ltd. field emission scanning electron microscope JSM-6500F" can be used, for example.

測定部位としては、図4に示すように、試験片100の板厚の1/4の位置を中心とした測定面積(約150μm×150μm、測定間隔は0.1μm)を対象とし、測定部位まで研磨する研磨法によってEBSP測定用試料を作成する。但し、測定部位まで研磨する際には、研磨による組織変化の影響を防ぐため電解研磨を行なうことが好ましい。なお、試験片の平坦部を測定する場合は、図4(a)に示すように、表面から板厚方向に1/4進んだ位置における任意の面積を測定する。また、試験片の加工部位(例えば曲げ加工部)を測定する場合は、図4(b)に示すように、表面から板厚方向に1/4進んだ位置における加工部位を測定する。   As shown in FIG. 4, the measurement site is a measurement area (about 150 μm × 150 μm, measurement interval is 0.1 μm) centering on the position of 1/4 of the thickness of the test piece 100, up to the measurement site. A sample for EBSP measurement is prepared by a polishing method for polishing. However, when polishing to the measurement site, it is preferable to perform electrolytic polishing in order to prevent the influence of the structure change due to polishing. In addition, when measuring the flat part of a test piece, as shown to Fig.4 (a), the arbitrary areas in the position advanced 1/4 in the plate | board thickness direction from the surface are measured. Moreover, when measuring the process site | part (for example, bending process part) of a test piece, as shown in FIG.4 (b), the process site | part in the position advanced 1/4 in the plate | board thickness direction from the surface is measured.

次に、FE−SEMの鏡筒内に試験片をセットして測定部位に電子線を照射し、スクリーン上にEBSPを投影する。これを高感度カメラで撮影してコンピュータに画像データとして取り込む。そして、EBSPの画像解析を行ない、既知の結晶系(FCC:面心立方格子、BCC:体心立方格子)を用いたシミュレーションによるパターンとの比較によって、認識した結晶系の方位決定を行なう。なお、解析には電子計算機を用い、解析に用いるソフトウェアとしては、例えば、「EDAX−TSL社製 OIM(Orientation Imaging Microscooy)Analysis5.2」を用いることができる。   Next, a test piece is set in the lens barrel of the FE-SEM, the measurement site is irradiated with an electron beam, and EBSP is projected on the screen. This is photographed with a high-sensitivity camera and captured as image data into a computer. Then, EBSP image analysis is performed, and the orientation of the recognized crystal system is determined by comparison with a simulation pattern using a known crystal system (FCC: face-centered cubic lattice, BCC: body-centered cubic lattice). An electronic computer is used for the analysis, and as software used for the analysis, for example, “OIM (Orientation Imaging Microscooy) Analysis 5.2 manufactured by EDAX-TSL” can be used.

EBSPによる結晶粒の歪みの測定では、鋼板に加えた加工による鋼材組織の変化を定量的に評価する指標(パラメータ)として、CI(信頼性評価指数:Confidence Index)、IQ(Image Quality)、KAM(Kernel Average Misorientation)を用いることが好ましい。なおIQ以外の解析に関しては、粒界等を含む方位角決定の信頼性が著しく低いCI=0.1以下のデータを除外して解析することが好ましい。以下、各指標について詳細に説明する。   In the measurement of distortion of crystal grains by EBSP, CI (Confidence Index), IQ (Image Quality), KAM are used as indexes (parameters) for quantitatively evaluating changes in steel structure due to processing applied to a steel plate. It is preferable to use (Kernel Average Misorientation). For analysis other than IQ, it is preferable to exclude data with CI = 0.1 or less, which has extremely low reliability in determining the azimuth angle including grain boundaries and the like. Hereinafter, each index will be described in detail.

[EBSP指標:CI≦0.1となる面積率の評価]
CIは、信頼性評価指数と呼ばれるパラメータであり、解析領域における結晶方位決定確度を示した数値である。結晶の方位決定は、与えられた結晶系の回折パターンと比較して最も一致する場合の方位を算出する。従って、方位決定の確度を信頼性評価指数(CI)として数値化(1〜0)することで、データの信頼性を統計的に評価することが可能となる。なお、CI値は、1に近いほど結晶方位決定確度が高く、0に近いほど結晶方位決定確度が低い。
[EBSP index: evaluation of area ratio with CI ≦ 0.1]
CI is a parameter called a reliability evaluation index, and is a numerical value indicating the crystal orientation determination accuracy in the analysis region. In determining the orientation of a crystal, the orientation in the case of the best match is calculated by comparison with the diffraction pattern of a given crystal system. Therefore, the reliability of data can be statistically evaluated by quantifying (1 to 0) the accuracy of azimuth determination as a reliability evaluation index (CI). The CI value is closer to 1 and the crystal orientation determination accuracy is higher, and the CI value is closer to 0 and the crystal orientation determination accuracy is lower.

EBSPによる結晶粒の歪みの測定では、ビーム状態や試験片状態によって、実際とは異なった結晶方位を算出することがあるため、限られた回折パターン、重畳した回折パターン、不明瞭なパターンの場合でも、その中で最も可能性の高い方位付けを自動的に行ってしまう。例えば、高強度鋼板に対して曲げや絞り等の加工を加えた場合、加工に起因して結晶粒の転位や歪みが増加し、結晶粒の方位が崩れたりすることが考えられる。これらの部分はOIMで結晶方位を決定することは困難であり、方位決定されず、CI値が低くなる(前記したIQとの関連については、一般的にIQ値が低い場合は方位決定が困難である事が多い)。従って、測定部位において、このような方位決定ができなかった(CI値が0.1以下となる)箇所の面積率を算出して「CI≦0.1となる面積率」とし、加工により鋼材組織に生じた変化の指標とした。   In the measurement of crystal grain distortion by EBSP, the crystal orientation may differ from the actual one depending on the beam state or test piece state. Therefore, in the case of limited diffraction pattern, superimposed diffraction pattern, or unclear pattern However, the most likely orientation is automatically performed. For example, when processing such as bending or drawing is applied to a high-strength steel plate, dislocations and distortion of crystal grains increase due to the processing, and the orientation of crystal grains may collapse. In these parts, it is difficult to determine the crystal orientation by OIM, the orientation is not determined, and the CI value becomes low (in relation to the above-mentioned IQ, it is generally difficult to determine the orientation when the IQ value is low) Often). Therefore, in the measurement site, the area ratio of the location where the orientation could not be determined (CI value is 0.1 or less) is calculated to be “area ratio where CI ≦ 0.1”, and the steel material is processed by processing. It was used as an indicator of changes that occurred in the organization.

[EBSP指標:IQの評価]
IQは、EBSPの画像処理(ハフ変換)後の菊池パターンの強度に関する値で、測定部位における結晶の完全性をパラメータ化した数値である。結晶の完全性が高ければIQ値は高く、完全性が低ければIQ値は低くなる。IQ値の劣化は、解析領域におけるすべり線や転位セル境界における欠陥、弾性歪み場による結晶の完全性の低下等加工による因子に影響を受ける。なおIQは、EBSPにおける回折パターンの鮮明度を数値化したものであり、結果を示すマップではこの数値に対応して白(高)〜黒(低)のグラデーションで表示している。IQ分布はこの数値の分布状態を示しており、測定視野全体のIQ平均値を、加工によって組織に生じた変化の指標とした。
[EBSP index: IQ evaluation]
IQ is a value related to the intensity of the Kikuchi pattern after EBSP image processing (Hough transform), and is a numerical value obtained by parameterizing the completeness of the crystal at the measurement site. The IQ value is high when the integrity of the crystal is high, and the IQ value is low when the integrity is low. The deterioration of the IQ value is affected by factors due to processing such as slip lines in the analysis region, defects at the boundary of dislocation cells, and a decrease in crystal integrity due to an elastic strain field. IQ is a numerical value of the definition of the diffraction pattern in EBSP, and the map showing the result is displayed in a gradation of white (high) to black (low) corresponding to this numerical value. The IQ distribution shows the distribution state of this numerical value, and the IQ average value of the entire measurement visual field is used as an index of the change caused in the tissue by processing.

[EBSP指標:KAMの評価]
KAMは、局所的な方位変化に基づく歪分布を示すものであり、結果を示すマップにおいて、隣り合う6つのピクセル間の方位差の平均値によって表されるものである。前記した解析ソフトのOIMでは、ピクセル間の方位差を基準として、測定試験片の加工状況や内部の残留歪等に関連した特性を表現できないかを模索している。そして、ピクセル間に微小な角度変化がある場合は、結晶がその部分で加工による変形を受けており、残留歪に関連している、という仮定に基づいてマップを作図している。そこで、このマップにおけるピクセル間の方位差の平均を計算し、その平均値をKAM値として局所的な方位変化に基づく歪分布を表している。
[EBSP index: KAM evaluation]
KAM indicates a strain distribution based on local azimuth change, and is represented by an average value of azimuth differences between six adjacent pixels in a map showing the results. In the OIM of the analysis software described above, whether or not characteristics related to the processing state of the measurement specimen, the internal residual strain, and the like can be expressed based on the orientation difference between pixels. When there is a minute angle change between the pixels, the map is drawn based on the assumption that the crystal is deformed by processing in that portion and is related to the residual strain. Therefore, the average of the azimuth differences between the pixels in this map is calculated, and the average value is used as the KAM value to represent the strain distribution based on the local azimuth change.

ここで、隣接する測定点間で5°以上の方位差があった場合は、その方位差は亜粒界やセル壁と考えてKAMの計算から除いている。従って、5°以下の方位差のみを結晶粒内の方位揺らぎと考えて解析を行ない、測定視野全体のKAM平均値を、加工によって鋼材組織に生じた変化の指標とした。   Here, when there is an orientation difference of 5 ° or more between adjacent measurement points, the orientation difference is considered as a subgrain boundary or cell wall and excluded from the calculation of KAM. Therefore, the analysis was performed considering only the orientation difference of 5 ° or less as the orientation fluctuation in the crystal grains, and the KAM average value of the entire measurement visual field was used as an index of the change caused in the steel structure by the processing.

(2−2−2)XRDによる結晶粒の歪みの測定
本実施形態に係る評価方法では、前記したEBSPの他に、XRD(X線回折)によって鋼材中の結晶粒の歪みを直接測定することもできる。XRDは、X線が結晶格子によって回折される現象を利用して物質の結晶構造を解析する手法である。各試験片における歪みの測定部位としては、深絞り加工試験片(図2(a))は、縦壁部先端から10mm下の部分における鋼板表層部10、エリクセン試験片(同図(b))は、球形状頭頂部20、伸びフランジ試験片(同図(c))は、打ち抜き加工孔近傍30、U曲げ試験片(同図(d))は、曲げ加工の頭頂部40、である。
(2-2-2) Measurement of crystal grain distortion by XRD In the evaluation method according to the present embodiment, in addition to the above-described EBSP, the crystal grain distortion in the steel material is directly measured by XRD (X-ray diffraction). You can also. XRD is a technique for analyzing a crystal structure of a substance by utilizing a phenomenon in which X-rays are diffracted by a crystal lattice. As a measurement site of strain in each test piece, a deep drawing test piece (FIG. 2A) is a steel plate surface layer portion 10 in a portion 10 mm below the tip of the vertical wall portion, an Erichsen test piece (FIG. 2B). Is a spherical top 20, an elongated flange test piece (FIG. (C)) is a punched hole vicinity 30, and a U-bend test piece (FIG. (D)) is a bent top 40.

XRDによる結晶粒の歪み測定に用いる分析装置としては、例えば、「理学電気製 X線回折装置 RAD−RU330」を用いることができる。また、測定条件としては、例えば、θ/2θ走査連続測定とし、ターゲットにCo、単色化にモノクロメーター(Kα線)を使用し、走査速度:2°/min、サンプリング幅:0.02°、測定角度(2θ):30〜130°とすることが好ましい。   As an analyzer used for measurement of crystal grain distortion by XRD, for example, “X-ray diffractometer RAD-RU330 manufactured by Rigaku Denki” can be used. Moreover, as measurement conditions, for example, θ / 2θ scanning continuous measurement is performed, Co is used as a target, a monochromator (Kα line) is used for monochromatization, scanning speed: 2 ° / min, sampling width: 0.02 °, Measurement angle (2θ): 30 to 130 ° is preferable.

そして、これらの条件によって得られた測定データからピーク分離(フィッティング)によって半価幅を計算し、Hall−Williamson法(ρ=(14.4×ε2)/b2、ρ:転位密度、b:バーガースベクトル)によって鋼板の加工部位の歪みを算出することができる。このようなXRDによる結晶粒の歪み測定は、簡便で迅速な方法であるため、多量のサンプルを評価する場合に好適な測定手法である。   Then, the half-value width is calculated by peak separation (fitting) from the measurement data obtained under these conditions, and the Hall-Williamson method (ρ = (14.4 × ε2) / b2, ρ: dislocation density, b: Burgers The distortion of the processed part of the steel sheet can be calculated from the vector). Since crystal grain strain measurement by XRD is a simple and rapid method, it is a suitable measurement method for evaluating a large number of samples.

(2−3)試験片残留応力測定工程
本実施形態に係る評価方法では、試験片残留応力測定工程をさらに行なうこともできる。試験片残留応力測定工程は、残留応力測定手段により、遅れ破壊が発生した試験片の残留応力を測定する工程である。ここで、残留応力とは、加工後の金属内部に残留する応力のことをいう。試験片の残留応力測定手段としては、XRDや歪みゲージを用いることができる。
(2-3) Specimen Residual Stress Measurement Step In the evaluation method according to this embodiment, the test piece residual stress measurement step can be further performed. The test piece residual stress measurement step is a step of measuring the residual stress of the test piece in which the delayed fracture has occurred by the residual stress measurement means. Here, the residual stress means the stress remaining inside the metal after processing. XRD or a strain gauge can be used as a means for measuring the residual stress of the test piece.

このように、本実施形態に係る評価方法では、様々な成形加工が施された試験片の残留応力を測定することにより、評価に用いる鋼板成形品の残留応力がどのような値であっても、耐遅れ破壊性を正確に評価することができる。すなわち、「結晶粒の歪み−残留応力−水素量」の関係において、鋼板成形品の耐遅れ破壊性をより正確に評価することができる。   As described above, in the evaluation method according to the present embodiment, the residual stress of the steel sheet molded product used for the evaluation can be any value by measuring the residual stress of the test pieces subjected to various forming processes. The delayed fracture resistance can be accurately evaluated. That is, the delayed fracture resistance of the steel sheet molded product can be more accurately evaluated in the relationship of “crystal grain strain−residual stress−hydrogen content”.

(3)遅れ破壊条件導出工程
本工程は、これまでの工程で測定した試験片中の水素量と、試験片の組織内における結晶粒の歪みと、試験片に付与された残留応力と、を対応付けた関係を用いて、試験片に遅れ破壊が発生すると推定される条件を導出する工程である。ここでは、遅れ破壊特性の評価対象となる鋼板成形品と同様に様々な成形加工が施された試験片から採取した測定データ、すなわち遅れ破壊が発生する際の水素量、結晶粒の歪み及び残留応力の関係を公知の算出手段を用いて関数化して対応関係を導出する。この工程により、遅れ破壊が発生する際の水素量と結晶粒の歪みと残留応力との対応関係を、水素量、結晶粒の歪み及び残留応力の3つの因子を変数として含む関数として得ることができる。
(3) Delayed fracture condition derivation process This process consists of the amount of hydrogen in the test piece measured in the previous steps, the distortion of crystal grains in the structure of the test piece, and the residual stress applied to the test piece. This is a step of deriving a condition estimated that delayed fracture occurs in the test piece using the associated relationship. Here, measurement data collected from test pieces that have been subjected to various forming processes in the same way as steel sheet molded products that are subject to evaluation of delayed fracture characteristics, that is, the amount of hydrogen when delayed fracture occurs, distortion of crystal grains, and residual Corresponding relationships are derived by converting stress relationships into functions using known calculation means. By this step, the correspondence relationship between the amount of hydrogen when the delayed fracture occurs, the strain of the crystal grains, and the residual stress can be obtained as a function including the three factors of the hydrogen amount, the strain of the crystal grains, and the residual stress as variables. it can.

(4)成形品測定工程
(4−1)成形品結晶粒歪み測定工程
本工程は、遅れ破壊特性の評価対象となる鋼板成形品において、評価部位の組織内における結晶粒の歪みを測定する工程である。鋼板成形品の結晶粒の歪みの測定は、前記試験片と同じ加工歪み測定手段(EBSP、XRD)を用いて行なう。
(4) Molded product measuring step (4-1) Molded product crystal grain strain measuring step This step is a step of measuring the strain of crystal grains in the structure of the evaluation site in the steel sheet molded product to be evaluated for delayed fracture characteristics. It is. The measurement of the distortion of the crystal grain of the steel sheet molded product is performed using the same processing strain measuring means (EBSP, XRD) as the test piece.

(4−2)成形品残留応力測定工程
本工程は、遅れ破壊特性の評価対象となる鋼板成形品において、評価部位の組織内における残留応力を測定する工程である。鋼板成形品の残留応力の測定は、前記試験片と同じ加工歪み測定手段(XRD、歪みゲージ)を用いて行なう。
(4-2) Molded Product Residual Stress Measurement Step This step is a step of measuring the residual stress in the structure of the evaluation site in the steel plate molded product that is the object of evaluation of delayed fracture characteristics. The measurement of the residual stress of the steel sheet molded product is performed using the same processing strain measuring means (XRD, strain gauge) as that of the test piece.

(5)遅れ破壊水素量推定工程
本工程は、遅れ破壊条件導出工程で導出した関係を用いて、成形品結晶粒歪み測定工程で測定した鋼板成形品の結晶粒の加工歪みまたは、それに加えて、成形品残留応力測定工程で測定した鋼板成形品の残留応力に対応した水素量を求め、遅れ破壊を発生させる水素量(鋼板成形品に蓄積することが予想される水素量)を推定する工程である。
(5) Delayed fracture hydrogen amount estimation step This step uses the relationship derived in the delayed fracture condition derivation step, and in addition to the processing strain of the crystal grain of the steel sheet molded product measured in the molded product crystal grain strain measurement step. The process of obtaining the hydrogen amount corresponding to the residual stress of the steel sheet molded product measured in the molded product residual stress measurement process and estimating the hydrogen amount that causes delayed fracture (the hydrogen amount expected to accumulate in the steel sheet molded product) It is.

遅れ破壊水素量の推定値は、遅れ破壊条件導出工程で導出した関係、すなわち、試験片の水素量、結晶粒の歪み及び残留応力の3つの因子を変数とする関数(関係)に、鋼板成形品の評価部位における残留応力及び結晶粒の歪みの値を入れることにより、算出することができる。遅れ破壊が発生する水素量は、後記する遅れ破壊性評価マップを用いることで、より視覚的に容易に推定することができる。遅れ破壊性評価マップによる推定方法については、後記する。   Estimated amount of delayed fracture hydrogen is calculated by the relationship derived in the delayed fracture condition derivation process, that is, a function (relation) with three factors as variables: hydrogen content of specimen, crystal grain distortion and residual stress. It can be calculated by putting the values of residual stress and crystal grain distortion at the evaluation site of the product. The amount of hydrogen at which delayed fracture occurs can be more easily estimated visually by using a delayed fracture evaluation map described later. The estimation method using the delayed fracture property evaluation map will be described later.

本実施形態に係る評価方法は、前記したように、まず様々な成形加工が施された試験片を用いて遅れ破壊が発生する際の水素量、結晶粒の歪み、残留応力を測定し、これらを対応付けた関係を導出する。そして、評価の対象となる鋼板成形品の結晶粒の歪み及び残留応力を測定し、予め求めた関係と照らし合わせることにより、当該鋼板成形品の遅れ破壊水素量(当該鋼板成形品に蓄積すると予想される水素量)を簡易に推定することができる。ここで、遅れ破壊水素量が大きければ大きいほど、その鋼材の耐遅れ破壊特性が優れていることが分かる。   As described above, the evaluation method according to the present embodiment first measures the hydrogen amount, crystal grain distortion, and residual stress when delayed fracture occurs using test pieces subjected to various forming processes. The relationship which matched is derived | led-out. Then, by measuring the distortion and residual stress of the crystal grains of the steel sheet molded product to be evaluated and comparing with the previously determined relationship, the amount of delayed fracture hydrogen of the steel sheet molded product (expected to accumulate in the steel sheet molded product) The amount of hydrogen produced) can be easily estimated. Here, it can be seen that the larger the amount of delayed fracture hydrogen, the better the delayed fracture resistance of the steel material.

前記したように、遅れ破壊水素量に対しては、鋼板成形品の組成や残留応力、加工条件(加工度)が影響を与える。従って、評価の対象となる鋼板成形品に蓄積すると予想される水素量が、上記の方法で推定した遅れ破壊水素量に達する(超える)場合には、鋼板の組成や加工条件、鋼板成形品の形状などの見直しを検討する。また、組成の異なる複数の鋼材について、遅れ破壊条件導出工程によって遅れ破壊が発生する際の水素量、結晶粒の歪み及び残留応力の対応関係を求め、それらを比較することで、鋼板成形品に使用する組成として、どの組成が好ましいかを評価することもできる。   As described above, the delayed fracture hydrogen amount is affected by the composition, residual stress, and processing conditions (working degree) of the steel sheet molded product. Therefore, if the amount of hydrogen expected to accumulate in the steel sheet molded product to be evaluated reaches (exceeds) the amount of delayed fracture hydrogen estimated by the above method, the composition and processing conditions of the steel sheet, Consider reviewing the shape. In addition, for a plurality of steel materials with different compositions, the corresponding relationship between the amount of hydrogen, crystal grain distortion and residual stress when delayed fracture occurs in the delayed fracture condition derivation process, and comparing them, it is possible to It is possible to evaluate which composition is preferable as the composition to be used.

なお、本実施形態に係る評価方法では、鋼板成形品に蓄積する水素量を予測することが困難な場合は、前記した成形品結晶粒歪み測定工程及び遅れ破壊水素量推定工程の代わりに、成形品水素量測定工程及び遅れ破壊結晶粒歪み推定工程を行なうことができる。ここで、成形品水素量測定工程は、試験片と同じ水素量測定手段により実際の鋼板成形品に含有される水素量を実測する工程である。また、遅れ破壊結晶粒歪み推定工程は、遅れ破壊条件導出工程で導出した関係を用いて、成形品水素量測定工程で測定した鋼板成形品の水素量または、それに加えて、成形品残留応力測定工程で測定した鋼板成形品の残留応力に対応した結晶粒の歪みを求め、遅れ破壊を発生させる結晶粒の歪みを推定する工程である。   In the evaluation method according to the present embodiment, when it is difficult to predict the amount of hydrogen accumulated in the steel sheet molded product, instead of the above-described molded product crystal grain strain measurement step and delayed fracture hydrogen amount estimation step, forming is performed. The product hydrogen amount measuring step and the delayed fracture crystal grain strain estimating step can be performed. Here, the molded product hydrogen amount measuring step is a step of actually measuring the amount of hydrogen contained in the actual steel sheet molded product by the same hydrogen amount measuring means as that of the test piece. The delayed fracture crystal grain distortion estimation process uses the relationship derived in the delayed fracture condition derivation process to measure the hydrogen content of the steel sheet molded product measured in the molded product hydrogen content measurement process, or in addition to the molded product residual stress measurement. In this step, the distortion of the crystal grains corresponding to the residual stress of the steel sheet molded article measured in the process is obtained, and the distortion of the crystal grains causing delayed fracture is estimated.

(耐遅れ破壊性評価マップの作成)
本実施形態に係る評価方法では、各工程で求めた値、関係を元に、耐遅れ破壊性評価マップを作成することもできる。耐遅れ破壊性評価マップを作成することにより、耐遅れ破壊性をより視覚的に評価することができる。
(Creation of delayed fracture resistance evaluation map)
In the evaluation method according to the present embodiment, a delayed fracture resistance evaluation map can be created based on values and relationships obtained in each step. By creating a delayed fracture resistance evaluation map, delayed fracture resistance can be more visually evaluated.

耐遅れ破壊性評価マップは、結晶粒の歪み、残留応力、水素量をそれぞれX軸、Y軸、Z軸とする3次元グラフを用いて作成する。以下では、3次元グラフを用いた耐遅れ破壊性評価マップについて、簡単に説明する。   The delayed fracture resistance evaluation map is created using a three-dimensional graph in which the crystal grain distortion, residual stress, and hydrogen amount are X-axis, Y-axis, and Z-axis, respectively. Hereinafter, a delayed fracture resistance evaluation map using a three-dimensional graph will be briefly described.

[試験片中の水素量、結晶粒の歪み、残留応力のプロット及びマップ化]
まず、図5(a)に示すように、試験片測定工程で測定した遅れ破壊が発生する際における試験片中の水素量、結晶粒の歪み及び残留応力を3次元グラフに▲でプロットし、各点を結び、図に濃い色で示された遅れ破壊発生境界領域8を作成する。ここで、遅れ破壊発生境界領域8とは、遅れ破壊が発生する条件を視覚的に示したものであり、鋼板成形品中の水素量がこの領域内にあるか、あるいは、この領域よりZ軸方向における上方にあれば(水素量が多ければ)、遅れ破壊が発生すると考えることができる。なお、図5(a)では測定した試験片を9個とし、9点を▲でプロットしているが、より多くの測定値をプロットしても構わない。
[Plotting and mapping of hydrogen content, crystal grain strain, residual stress in the specimen]
First, as shown in FIG. 5 (a), the amount of hydrogen in the test piece when the delayed fracture measured in the test piece measurement step occurs, the distortion of the crystal grains and the residual stress are plotted on a three-dimensional graph with ▲. Each point is connected to create a delayed fracture occurrence boundary region 8 indicated by a dark color in the drawing. Here, the delayed fracture occurrence boundary region 8 is a visual indication of the conditions under which delayed fracture occurs, and the amount of hydrogen in the steel sheet molded product is within this region, or from this region the Z axis If it is above the direction (if the amount of hydrogen is large), it can be considered that delayed fracture occurs. In FIG. 5A, nine test pieces are measured and nine points are plotted with ▲, but more measurement values may be plotted.

次に、図5(b)に示すように、遅れ破壊発生境界領域8の外側に、図に薄い色で示した遅れ破壊推定境界領域9を作成する。ここで、遅れ破壊推定境界領域9とは、第2、第3工程等で測定した試験片中の水素量、結晶粒の歪み、残留応力から求めた関数を元に、遅れ破壊が発生すると推定される条件を視覚的に示したものであり、鋼板成形品中の水素量がこの領域内にあるか、あるいは、この領域よりZ軸方向における上方にあれば(水素量が多ければ)、遅れ破壊が発生すると推定することができる。   Next, as shown in FIG. 5B, a delayed fracture estimation boundary region 9 shown in a light color in the drawing is created outside the delayed fracture occurrence boundary region 8. Here, the delayed fracture estimated boundary region 9 is estimated that delayed fracture occurs based on a function obtained from the amount of hydrogen in the test piece, crystal grain distortion, and residual stress measured in the second and third steps. If the amount of hydrogen in the steel sheet molded product is within this region, or if it is above this region in the Z-axis direction (if the amount of hydrogen is large), it will be delayed. It can be estimated that destruction occurs.

このように、遅れ破壊推定境界領域9は、同じ関数を元にして遅れ破壊発生境界領域8を拡張することにより形成する。また、好ましくは、遅れ破壊発生境界領域8を作成するために使用したプロット点と同じ結晶粒の歪みを有し、かつ、残留応力を変化させたサンプルをさらに用意して遅れ破壊水素量を測定して同様にプロットした後、最小自乗法によるフィッティングを行って、遅れ破壊推定境界領域9を作成する。   Thus, the delayed fracture estimated boundary region 9 is formed by extending the delayed fracture occurrence boundary region 8 based on the same function. Preferably, a sample having the same crystal grain distortion as the plot point used for creating the delayed fracture occurrence boundary region 8 and changing the residual stress is prepared to measure the delayed fracture hydrogen amount. Then, after plotting similarly, fitting by the least square method is performed to create the delayed fracture estimated boundary region 9.

[鋼板成形品中の水素量、結晶粒の歪み、残留応力のプロット]
次に、図5(c)に示すように、成形品測定工程で測定した鋼板成形品中の評価部位における結晶粒の歪み及び残留応力、ならびに、鋼板成形品に蓄積することが予想される水素量に対応する点を3次元グラフにプロットする。ここで、○のプロット点は、鋼板成形品の測定値が、遅れ破壊発生境界領域8及び遅れ破壊推定境界領域9の内部に含まれず、かつ、これらの領域のZ軸方向における下方に位置することを示している。すなわち、遅れ破壊が発生しない鋼板成形品の測定値を示している。なお、○のプロット点は、図上において遅れ破壊発生境界領域8または遅れ破壊推定境界領域9に含まれるように見える場合であっても、実際にはこれらの領域の下に位置している。
[Plots of hydrogen content, crystal grain distortion, and residual stress in steel sheet molded products]
Next, as shown in FIG. 5 (c), crystal grain distortion and residual stress at the evaluation site in the steel sheet molded product measured in the molded product measurement step, and hydrogen expected to accumulate in the steel sheet molded product. The points corresponding to the quantities are plotted on a three-dimensional graph. Here, the plot points of ◯ are not included in the delayed fracture occurrence boundary region 8 and the delayed fracture estimated boundary region 9 and the measured values of the steel sheet molded product are located below these regions in the Z-axis direction. It is shown that. That is, the measured value of the steel sheet molded product in which delayed fracture does not occur is shown. Note that the plot points marked with ○ are actually located below these regions even if they appear to be included in the delayed fracture occurrence boundary region 8 or the delayed fracture estimated boundary region 9 in the figure.

また、×のプロット点は、鋼板成形品の測定値は、遅れ破壊発生境界領域8または遅れ破壊推定境界領域9の内部に含まれるか、これらの領域のZ軸方向における上方に位置することを示している。すなわち、遅れ破壊が発生すると推定される鋼板成形品の測定値を示している。なお、×のプロット点は、図上において遅れ破壊発生境界領域8または遅れ破壊推定境界領域9に含まれないように見える場合であっても、実際にはこれらの領域の内部に位置している。   In addition, the plot point of x indicates that the measured value of the steel sheet molded product is included in the delayed fracture occurrence boundary region 8 or the delayed fracture estimated boundary region 9 or located above these regions in the Z-axis direction. Show. That is, the measured value of the steel sheet molded product estimated to cause delayed fracture is shown. In addition, even if it is a case where it appears that it is not included in the delayed fracture occurrence boundary region 8 or the delayed fracture estimated boundary region 9 in the figure, the x plotted points are actually located inside these regions. .

図5(c)において、測定値a,bは、遅れ破壊発生境界領域8及び遅れ破壊推定境界領域9のZ軸方向における下方にプロットされている。従って、測定値a,bに対応する鋼板成形品の加工部位は、遅れ破壊が生じないと推定される。また、測定値cは、遅れ破壊発生境界領域8内にプロットされ、測定値dは、遅れ破壊推定境界領域9内にプロットされ、測定値e,fは、遅れ破壊発生境界領域8及び遅れ破壊推定境界領域9のZ軸方向における上方にプロットされている。従って、測定値c,d,e,fに対応する鋼板成形品の加工部位は、遅れ破壊が生じると推定することができる。   In FIG. 5C, the measured values a and b are plotted below the delayed fracture occurrence boundary region 8 and the delayed fracture estimated boundary region 9 in the Z-axis direction. Therefore, it is presumed that delayed fracture does not occur in the processed part of the steel sheet molded product corresponding to the measured values a and b. The measured value c is plotted in the delayed fracture occurrence boundary region 8, the measured value d is plotted in the delayed fracture estimated boundary region 9, and the measured values e and f are the delayed fracture occurrence boundary region 8 and the delayed fracture occurrence. Plotted above the estimated boundary region 9 in the Z-axis direction. Therefore, it can be estimated that delayed fracture occurs in the processed portion of the steel sheet molded product corresponding to the measured values c, d, e, and f.

耐遅れ破壊性評価マップは、遅れ破壊が発生するための条件を視覚的に表したものであるため、実際の鋼板成形品の加工部位における結晶粒の歪みを測定し、遅れ破壊発生境界領域8及び遅れ破壊推定境界領域9に照らし合わせることで、その加工部位に遅れ破壊を発生させるための遅れ破壊水素量を推定することができる。あるいは、実際の鋼板成形品の加工部位における水素量を測定し、遅れ破壊発生境界領域8及び遅れ破壊推定境界領域9に照らし合わせることで、その加工部位に遅れ破壊を発生させるための結晶粒の歪みを推定することができる。   Since the delayed fracture resistance evaluation map is a visual representation of the conditions under which delayed fracture occurs, the strain of crystal grains in the actual processed part of the steel sheet molded article is measured, and the delayed fracture occurrence boundary region 8 In addition, the amount of delayed fracture hydrogen for causing delayed fracture at the machining site can be estimated by comparing with the estimated fracture region 9. Alternatively, by measuring the amount of hydrogen in the processing site of the actual steel sheet molded product and comparing it with the delayed fracture occurrence boundary region 8 and the delayed fracture estimation boundary region 9, the crystal grains for causing delayed fracture in the processing site Distortion can be estimated.

なお、本実施形態では、好ましい実施の形態として、遅れ破壊条件導出工程おいて、遅れ破壊が発生する水素量、結晶粒の歪み及び残留応力の3つの要因の対応関係を求めているが、本発明はこれに限定されない。例えば、試験片測定工程において、鋼板成形品の評価部位に付与される残留応力と同じ残留応力を各試験片に付与し、遅れ破壊が発生した時点での試験片の水素量及び結晶粒の歪みを測定する。そして、遅れ破壊条件導出工程おいて、遅れ破壊が発生する水素量及び結晶粒の歪みの2つの因子の対応関係を求めることができる。   In the present embodiment, as a preferred embodiment, in the delayed fracture condition derivation step, the correspondence between the three factors of the amount of hydrogen causing delayed fracture, crystal grain distortion, and residual stress is obtained. The invention is not limited to this. For example, in the test piece measurement process, the same residual stress as that applied to the evaluation part of the steel sheet molded article is applied to each test piece, and the amount of hydrogen in the test piece and crystal grain distortion at the time when delayed fracture occurs. Measure. Then, in the delayed fracture condition deriving step, it is possible to obtain the correspondence between the two factors of the amount of hydrogen that causes delayed fracture and the distortion of crystal grains.

この変形例の場合、遅れ破壊条件導出工程によって得られる関数は、水素量及び結晶粒の歪みを変数とするものとなる。また、耐遅れ破壊性評価マップは、水素量及び結晶粒の歪みをそれぞれ軸とする2次元のものであり、境界条件が面ではなく線によって規定されることになる。そして、遅れ破壊水素量推定工程では、遅れ破壊条件導出工程で導出した関係、すなわち水素量及び結晶粒の歪みを変数とする関数に、鋼板成形品の評価部位の組織内における結晶粒の歪みの値を入れることにより、遅れ破壊水素量の推定値を算出する。なお、試験片に付与される残留応力は、鋼板成形品の評価部位に付与される残留応力と必ずしも完全に一致させる必要はなく、評価結果に悪影響を及ぼさない程度の差異は許容される。   In the case of this modification, the function obtained by the delayed fracture condition deriving step has the amount of hydrogen and the distortion of crystal grains as variables. Further, the delayed fracture resistance evaluation map is a two-dimensional map with the amount of hydrogen and the distortion of crystal grains as axes, and the boundary conditions are defined by lines rather than planes. In the delayed fracture hydrogen amount estimation step, the relationship derived in the delayed fracture condition derivation step, i.e., the function having the hydrogen amount and the crystal grain strain as variables, is used as a function of the distortion of the crystal grain in the structure of the evaluation part of the steel sheet molded product. By entering a value, an estimated value of the delayed fracture hydrogen amount is calculated. It should be noted that the residual stress applied to the test piece does not necessarily need to be completely matched with the residual stress applied to the evaluation part of the steel sheet molded product, and a difference that does not adversely affect the evaluation result is allowed.

また、本実施形態では、試験片水素導入工程、試験片測定工程、遅れ破壊条件導出工程を実際に行うことによって、遅れ破壊が発生する際の水素量、結晶粒の歪み及び残留応力の対応関係を求めたが、本発明はこれに限定されず、各種の文献から上記の対応関係を求めてもよい。さらに、本実施形態では、耐遅れ破壊性評価マップを作成して耐遅れ破壊性の評価を行なったが、耐遅れ破壊性評価マップは遅れ破壊の有無を視覚的に容易に把握するために用いるものであるため、耐遅れ破壊性評価マップを用いずに、耐遅れ破壊性を評価することもできる。なお、これらの変形例は、以下に示す第2の実施形態についても同様に適用することができる。   Further, in the present embodiment, by actually performing the test piece hydrogen introduction step, the test piece measurement step, and the delayed fracture condition derivation step, the correspondence between the hydrogen amount when the delayed fracture occurs, the distortion of the crystal grains, and the residual stress However, the present invention is not limited to this, and the above correspondence may be obtained from various documents. Furthermore, in this embodiment, the delayed fracture resistance evaluation map was created and the delayed fracture resistance evaluation was performed. The delayed fracture resistance evaluation map is used to visually grasp the presence or absence of delayed fracture. Therefore, the delayed fracture resistance can be evaluated without using the delayed fracture resistance evaluation map. Note that these modifications can be similarly applied to the second embodiment described below.

<第2の実施形態>
本発明の第2の実施形態に係る評価方法について説明する。本実施形態に係る評価方法は、図1のステップS1〜S4については前記した第1の実施形態と同じである。従って、ステップS4以降について説明する。
<Second Embodiment>
An evaluation method according to the second embodiment of the present invention will be described. The evaluation method according to the present embodiment is the same as that of the first embodiment described above with respect to steps S1 to S4 in FIG. Therefore, step S4 and subsequent steps will be described.

本実施形態では、ステップS4の遅れ破壊条件導出工程によって、遅れ破壊が発生する際の水素量、結晶粒の歪み及び残留応力の対応関係を求めた後、鋼板成形品に対する蓄積が許容される水素量に基づいて、限界加工歪みを求める(ステップS5’(図示せず))。具体的には、水素量、結晶粒の歪み及び残留応力を変数とする関数に、鋼板成形品の評価部位に対する蓄積が許容される水素量の値を代入して、結晶粒の歪みを算出することにより、限界加工歪みの推定値を得ることができる。   In this embodiment, after obtaining the correspondence relationship between the amount of hydrogen, the distortion of crystal grains, and the residual stress when delayed fracture occurs in the delayed fracture condition deriving step of step S4, hydrogen that is allowed to accumulate in the steel sheet molded product is allowed. Based on the amount, a critical machining strain is obtained (step S5 ′ (not shown)). Specifically, the distortion of the crystal grain is calculated by substituting the value of the hydrogen quantity that is allowed to accumulate in the evaluation part of the steel sheet molded product into the function having the hydrogen amount, the distortion of the crystal grain, and the residual stress as variables. As a result, an estimated value of the critical machining strain can be obtained.

ここで、結晶粒の歪みを示す指標が加工量に応じて増加する性質のものである場合、限界加工歪みの推定値が大きければ大きいほど、その鋼材の耐遅れ破壊特性が優れていることが分かる。また、限界加工歪みに対しては、鋼板成形品の組成や残留応力が影響を与える。従って、実際の鋼板成形品に適用される加工量に対応する結晶粒の歪みが、上記の方法で推定した限界加工歪みに達する(超える)場合には、鋼板の組成や加工条件、鋼板成形品の形状の見直しを検討する。   Here, when the index indicating the distortion of crystal grains is a property that increases according to the processing amount, the larger the estimated value of the critical processing strain, the better the delayed fracture resistance of the steel material. I understand. Further, the composition and residual stress of the steel sheet molded product affect the critical working strain. Therefore, when the distortion of the crystal grains corresponding to the amount of processing applied to the actual steel sheet molded product reaches (exceeds) the limit processing strain estimated by the above method, the composition and processing conditions of the steel plate, the steel plate molded product Consider review of the shape.

以下、実施例を挙げて、本発明をより具体的に説明する。なお、本発明は下記実施例によって制限されず、本発明の趣旨に適合しうる範囲で適切に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described more specifically with reference to examples. It should be noted that the present invention is not limited by the following examples, and can be implemented with appropriate modifications within a range that can be adapted to the spirit of the present invention, all of which are included in the technical scope of the present invention. .

(供試材)
本実施例で用いる試験片及び鋼板成形品を構成する鋼板としては、表1に示す1180〜1470MPa級の強度レベルを有する3種類の鋼板(A〜C鋼)を用いた。なお3種の鋼板は、従来公知の方法を用いて製造した。
(Sample material)
Three types of steel plates (A to C steels) having a strength level of 1180 to 1470 MPa class shown in Table 1 were used as the steel plates constituting the test pieces and steel plate molded products used in this example. The three types of steel plates were produced using a conventionally known method.

(試験片の作成)
A〜C鋼をプレス加工した鋼板成形品(以下、プレス成形品という)において、加工によって鋼板が受ける材料組織の変化を模擬するため、前記した図2(a),(b),(d)に示す試験片を作成した。すなわち、A〜C鋼ごとに(a)深絞り加工試験片、(b)エリクセン試験片、(d)U曲げ試験片、の3種類を作成した。ここで、後記する比較例1では、従来の評価方法(曲げ半径に着目した評価方法)との比較のために、(d)の試験片のみを使用した。一方、後記する実施例1〜4では、本発明に係る評価方法の効果を示すために、(a),(b),(d)の3種類の試験片を使用した。各試験片の詳細な作成方法は以下の通りである。
(Creation of specimen)
2A, 2B, and 2D described above in order to simulate the change in the material structure that the steel sheet undergoes by machining in a steel sheet molded product obtained by pressing A to C steel (hereinafter referred to as a press molded product). The test piece shown in was produced. That is, three types of (a) deep drawing test piece, (b) Erichsen test piece, and (d) U-bending test piece were prepared for each of steels A to C. Here, in Comparative Example 1 described later, only the test piece of (d) was used for comparison with the conventional evaluation method (an evaluation method focusing on the bending radius). On the other hand, in Examples 1 to 4 described later, three types of test pieces (a), (b), and (d) were used to show the effects of the evaluation method according to the present invention. The detailed preparation method of each test piece is as follows.

(a)深絞り加工試験片については、表1に記載の鋼板A〜Cからφ90の試験片を切り出し、ダイスとしわ抑え(しわ抑え圧:10kN)で当該試験片を拘束し、ポンチ肩:R10、ポンチ径:φ60/φ45、成形速度:5mm/minで、絞り比が1.5及び2となるように、2種類の試験片を作成した(計6種)。なお、潤滑剤としてプレス油を用いた。   (A) About the deep drawing processed test piece, a test piece of φ90 is cut out from the steel plates A to C shown in Table 1, and the test piece is restrained with dies and wrinkle restraint (wrinkle restraining pressure: 10 kN). Two types of test pieces were prepared so that the drawing ratio was 1.5 and 2 at R10, punch diameter: φ60 / φ45, molding speed: 5 mm / min (total 6 types). Note that press oil was used as the lubricant.

(b)エリクセン試験片については、表1に記載の鋼板A〜Cから90mm×90mmの試験片を切り出し、ダイスとしわ抑え(しわ抑え圧:10kN)で当該試験片を拘束し、穴径:27mmのダイス穴内に、球径:20mmのポンチを5mm/minの速度で5mm押し込むことによって作成した(計3種)。なお、潤滑剤としてプレス油を用いた。   (B) For the Erichsen test piece, a 90 mm × 90 mm test piece was cut out from the steel plates A to C shown in Table 1, and the test piece was restrained with dies and wrinkle suppression (wrinkle suppression pressure: 10 kN). A punch having a sphere diameter of 20 mm was pushed into a 27 mm die hole by 5 mm at a speed of 5 mm / min (total 3 types). Note that press oil was used as the lubricant.

(d)U曲げ試験片は、1180MPaを超える高強度鋼板を用いた数種類のプレス成形品の調査結果から、曲げ半径を5mm、10mm、15mmの3通りとし、それぞれの曲げ加工部への付加応力(プレス成形品における残留応力を模擬)は、500MPa、1000MPa、1500MPaの3通りとした。そして、曲げ半径5mm−付加応力1500MPa、曲げ半径10mm−付加応力1000MPa、曲げ半径15mm−付加応力500MPaの条件で、表1に記載の鋼板A〜Cを用いて3種類のU曲げ試験片を作成した(計9種)。   (D) The U-bending test pieces are three types of bending radii of 5 mm, 10 mm, and 15 mm from the investigation results of several types of press-formed products using high-strength steel plates exceeding 1180 MPa, and the applied stress to each bending part. (Residual stress in a press-formed product was simulated) was set to three types of 500 MPa, 1000 MPa, and 1500 MPa. Then, three types of U-bending specimens were prepared using the steel plates A to C shown in Table 1 under the conditions of a bending radius of 5 mm-addition stress of 1500 MPa, a bending radius of 10 mm-addition stress of 1000 MPa, and a bending radius of 15 mm-addition stress of 500 MPa. (9 types in total).

(d)U曲げ試験片については、表1に記載の鋼板A〜Cから、圧延方向を長手として30mm×150mmの試験片を切り出した。そして、切り出した試験片の長手方向の両端部からそれぞれ45mmの位置にφ12の穴を加工し、前記した3通りの曲げ半径で曲げ加工を行なった後、φ12の穴にボルトを通し、ナットによる締め付けにより曲げ加工部に前記した3通りの応力を付加した。ここで、曲げ加工部への付加応力値は、歪みゲージの歪量とヤング率から計算した値とした。   (D) About U bending test piece, the test piece of 30 mm x 150 mm was cut out from the steel plates AC of Table 1 by making the rolling direction into the length. Then, a φ12 hole is machined at a position of 45 mm from both ends in the longitudinal direction of the cut-out test piece, and after bending with the above-described three bending radii, a bolt is passed through the φ12 hole, and a nut is used. The above-mentioned three kinds of stress were applied to the bent portion by tightening. Here, the applied stress value to the bent portion was a value calculated from the strain amount of the strain gauge and the Young's modulus.

(試験片に対する水素の導入)
各試験片に対する水素の導入法については、試験時間及び鋼材中水素量を容易に制御することができるという観点から、陰極チャージを用いた。陰極チャージの条件については、試験溶液を0.5M−HSO+0.01M−KSCNとし、0.1mA/mmの電流密度で試験片に割れ(遅れ破壊)が発生するまで電流を印加した。
(Introduction of hydrogen into the specimen)
As for the method of introducing hydrogen into each test piece, cathodic charging was used from the viewpoint that the test time and the amount of hydrogen in the steel material can be easily controlled. Regarding the conditions for cathodic charging, the test solution was 0.5 M-H 2 SO 4 +0.01 M-KSCN, and current was applied until cracking (delayed fracture) occurred in the test piece at a current density of 0.1 mA / mm 2. did.

(試験片中の水素量の測定)
割れ部分を含むように試験片を切り出した後、大気圧イオン化質量分析計(API−MS)で鋼材中の水素量を測定した。大気圧イオン化質量分析計の昇温速度は、12℃/minとした。
(Measurement of the amount of hydrogen in the specimen)
After cutting out a test piece so that a crack part might be included, the hydrogen amount in steel materials was measured with the atmospheric pressure ionization mass spectrometer (API-MS). The heating rate of the atmospheric pressure ionization mass spectrometer was 12 ° C./min.

(試験片の残留応力及び結晶粒の歪みの測定)
(a),(b),(d)の各試験片について、XRDによって残留応力を測定した。また、割れ(遅れ破壊)が発生した各試験片に対して、EBSPによる結晶粒の歪みの組織解析(CI≦0.1となる面積率の評価、IQ、KAM)及び、XRDによる結晶粒の歪みの測定を行なった。なお、(d)U曲げ試験片については、加工後組織の解析例として、前記したように曲げ半径5mm−付加応力1500MPa、曲げ半径10mm−付加応力1000MPa、曲げ半径15mm−付加応力500MPaの3種類について解析を実施した。
(Measurement of residual stress and distortion of crystal grains)
For each of the test pieces (a), (b), and (d), the residual stress was measured by XRD. In addition, for each test piece in which cracking (delayed fracture) occurred, the microstructure analysis of crystal grain distortion by EBSP (evaluation of area ratio satisfying CI ≦ 0.1, IQ, KAM) and the crystal grain analysis by XRD Strain measurements were taken. Note that (d) U-bending specimens are three types of analysis examples of post-processed structures: bending radius 5 mm—additional stress 1500 MPa, bending radius 10 mm—additional stress 1000 MPa, bending radius 15 mm—additional stress 500 MPa, as described above. The analysis was conducted.

EBSPによる結晶粒の歪みの測定は、「日本電子社製 電界放出型走査電子顕微鏡 JSM−6500F」で行ない、解析ソフトウェアは、「EDAX−TSL社製 OIM」を用いた。また、測定に際しては、図4(a)、(b)に示す測定部位まで、電界研磨による研磨を行なった。   The measurement of the distortion of the crystal grains by EBSP was performed with “JEM-6500F, a field emission scanning electron microscope manufactured by JEOL Ltd.”, and “OIM manufactured by EDAX-TSL” was used as analysis software. In the measurement, polishing by electropolishing was performed up to the measurement sites shown in FIGS. 4 (a) and 4 (b).

XRDによる結晶粒の歪みの測定は、「理学電気製 X線回折装置 RAD−RU330」を用いて行なった。測定は、θ/2θ走査連続測定とし、ターゲットにCo、単色化にモノクロメーター(Kα線)を使用し、走査速度:2°/min、サンプリング幅0.02°、測定角度(2θ):30〜130°で行なった。測定部位としては、深絞り加工試験片は、図2(a)に示すように縦壁部先端から10mm下の部分における鋼板表層部10、エリクセン試験片は、同図(b)に示すように球形状頭頂部20、伸びフランジ試験片は、同図(c)に示すように打ち抜き加工孔近傍30、U曲げ試験片は、同図(d)に示すように曲げ加工の頭頂部40とした。   Measurement of crystal grain distortion by XRD was performed using “X-ray diffractometer RAD-RU330 manufactured by Rigaku Corporation”. The measurement is θ / 2θ scanning continuous measurement, using Co as a target and a monochromator (Kα ray) for monochromatization, scanning speed: 2 ° / min, sampling width 0.02 °, measurement angle (2θ): 30 Performed at ~ 130 °. As the measurement site, the deep-drawn test piece is as shown in FIG. 2 (a), and the steel sheet surface layer portion 10 and the Erichsen test piece are 10mm below the tip of the vertical wall as shown in FIG. 2 (b). The spherical top 20, the stretch flange test piece is a punched hole vicinity 30 as shown in FIG. 4C, and the U-bend test piece is a bent top 40 as shown in FIG. .

表2に、試験片の水素量、残留応力、結晶粒の歪み(CI≦0.1となる面積率、IQ、KAM)、XRD歪みをそれぞれ示す。   Table 2 shows the amount of hydrogen, residual stress, crystal grain strain (area ratio where CI ≦ 0.1, IQ, KAM), and XRD strain, respectively.

(プレス成形品の作成)
次に、従来公知の製造方法を用いて、表1に記載の鋼板A〜Cから図6に示すような実際のプレス成形品101,102,103を作成した。図6(a)のプレス成形品101は、表1のA鋼を形状イにプレス加工したものである。また、図6(b)のプレス成形品102は、表1のB鋼を形状ロにプレス加工したものである。また、図6(c)のプレス成形品103は、表1のC鋼を形状ハにプレス加工したものである。
(Creation of press-molded products)
Next, actual press-formed products 101, 102, and 103 as shown in FIG. 6 were prepared from the steel plates A to C shown in Table 1 using a conventionally known manufacturing method. A press-formed product 101 in FIG. 6A is obtained by pressing the steel A in Table 1 into a shape A. Moreover, the press-formed product 102 in FIG. 6B is obtained by pressing the B steel in Table 1 into a shape B. Moreover, the press-formed product 103 in FIG. 6C is obtained by pressing the C steel in Table 1 into a shape C.

プレス成形品101,102,103は、代表的なプレス加工が施された7つの部位(破線○で囲った部位1〜7)を選定し、後記する水素量、結晶粒の歪み、残留応力の測定部位とした。ここで、図6に示す部位1,2は曲げ加工部、部位3,4は絞り加工部、部位5は打抜き加工部、部位6は縦壁部、部位7は平坦部である。   For the press-formed products 101, 102, and 103, seven parts (parts 1 to 7 surrounded by a broken line ○) subjected to typical press processing are selected, and the amount of hydrogen, distortion of crystal grains, and residual stress described later are selected. The measurement site was used. Here, the parts 1 and 2 shown in FIG. 6 are bending parts, the parts 3 and 4 are drawing parts, the part 5 is a punching part, the part 6 is a vertical wall part, and the part 7 is a flat part.

(プレス成形品に対する水素の導入、水素量の測定及び割れの有無の確認)
プレス成形品101,102,103は、その大きさから陰極チャージによる水素導入が困難なため、3%HCl溶液に100時間浸漬し、鋼材組織内に水素を導入した。そして、割れの有無を目視にて確認し、割れが確認された時点でプレス成形品101,102,103を3%HCl溶液から取り出し、大気圧イオン化質量分析計(API−MS)で部位1〜7中の水素量を測定した。その際の大気圧イオン化質量分析計の昇温速度は、12℃/minとした。
(Introduction of hydrogen into press-molded products, measurement of hydrogen content, and confirmation of cracks)
Since it was difficult to introduce hydrogen by cathodic charging, the press-formed products 101, 102, and 103 were immersed in a 3% HCl solution for 100 hours to introduce hydrogen into the steel structure. And the presence or absence of a crack is confirmed visually, and when the crack is confirmed, the press-molded products 101, 102, 103 are taken out from the 3% HCl solution, and the sites 1 to 1 are detected with an atmospheric pressure ionization mass spectrometer (API-MS). The amount of hydrogen in 7 was measured. The temperature increase rate of the atmospheric pressure ionization mass spectrometer at that time was set to 12 ° C./min.

(プレス成形品の残留応力及び曲げ半径の測定)
プレス成形品101,102,103の部位1〜7について、XRDによって残留応力を測定した。また、従来技術と本願発明との比較のために、従来公知の方法により、プレス成形品101,102,103の部位1〜7の曲げ半径を測定した。表3の「測定結果」の欄に、プレス成形品101,102,103の部位1〜7の水素量、割れの有無、残留応力、曲げ半径を測定した実測値を示す。なお、「割れの有無」の項目では、○は当該部位に割れが生じていないことを、×は当該部位に割れが生じていることを示している。
(Measurement of residual stress and bending radius of press-formed products)
Residual stress was measured by XRD for portions 1 to 7 of the press-formed products 101, 102, and 103. Further, for comparison between the prior art and the present invention, the bending radii of the parts 1 to 7 of the press-formed products 101, 102, 103 were measured by a conventionally known method. The column of “Measurement results” in Table 3 shows actual measurement values obtained by measuring the hydrogen amount, presence / absence of cracks, residual stress, and bending radius of the parts 1 to 7 of the press-formed products 101, 102, and 103. In the item of “presence / absence of crack”, “◯” indicates that no crack is generated in the part, and “X” indicates that the part is cracked.

表3に示すように、プレス成形品101,102,103の部位1〜7に含有される水素量は、0.49〜0.66ppmの範囲内であった。また、プレス成形品101(鋼材A−形状イ)では、部位6(縦壁部)に割れが発生した。プレス成形品102(鋼材B−形状ロ)では、部位7(平坦部)以外の全ての部位に割れが発生した。プレス成形品103(鋼材C−形状ハ)では、部位3(絞り加工部)、部位6(縦壁部)に割れが発生した。   As shown in Table 3, the amount of hydrogen contained in the portions 1 to 7 of the press-formed products 101, 102, and 103 was in the range of 0.49 to 0.66 ppm. Further, in the press-formed product 101 (steel material A-shape A), a crack occurred in the portion 6 (vertical wall portion). In the press-formed product 102 (steel material B—shape B), cracks occurred in all the parts other than the part 7 (flat portion). In the press-formed product 103 (steel material C-shape C), cracks occurred in the part 3 (drawing part) and the part 6 (vertical wall part).

プレス成形品101,102,103の部位1〜7の残留応力は、300〜1200MPaの範囲内であった。また、プレス成形品101,102,103の部位1〜7の曲げ半径は、7〜20mmの範囲内であった。但し、曲げ加工を行なった部位1,2、絞り加工を行なった部位3以外の部位4〜7については、プレス成形品の形状の都合上、曲げ半径の測定ができなかった。   The residual stresses of the parts 1 to 7 of the press-formed products 101, 102, and 103 were in the range of 300 to 1200 MPa. Moreover, the bending radii of the parts 1 to 7 of the press-formed products 101, 102, and 103 were in the range of 7 to 20 mm. However, for the parts 4 to 7 other than the parts 1 and 2 where the bending process was performed and the part 3 where the drawing process was performed, the bending radius could not be measured due to the shape of the press-formed product.

(プレス成形品の結晶粒の歪みの測定)
プレス成形品101,102,103の部位1〜7について、EBSPによる結晶粒の歪みの組織解析(CI≦0.1となる面積率の評価、IQ、KAM)及び、XRDによる結晶粒の歪みの測定を行なった。ここで、測定機器、測定方法、測定条件は、前記した試験片の場合と同様である。表3に測定結果を示す。
(Measurement of crystal grain distortion of press-molded products)
For the parts 1 to 7 of the press-formed products 101, 102, 103, the structure analysis of crystal grain distortion by EBSP (evaluation of area ratio satisfying CI ≦ 0.1, IQ, KAM) and the distortion of crystal grains by XRD Measurements were made. Here, the measurement equipment, the measurement method, and the measurement conditions are the same as in the case of the test piece described above. Table 3 shows the measurement results.

(耐遅れ破壊性評価マップの作成)
前記測定結果に基づいて、耐遅れ破壊性評価マップを作成した。具体的には、各試験片中の水素量、曲げ半径または結晶粒の歪み、残留応力を3次元グラフにプロットし、マトリクス状に各点を結び、遅れ破壊発生境界領域8を作成した。また、試験片中の水素量、曲げ半径または結晶粒の歪み、残留応力から求めた関数を元に、遅れ破壊発生境界領域8の外側に、遅れ破壊推定境界領域9を作成した。そして、鋼板成形品中の水素量、曲げ半径または結晶粒の歪み、残留応力を3次元グラフにプロットした。
(Creation of delayed fracture resistance evaluation map)
Based on the measurement results, a delayed fracture resistance evaluation map was prepared. Specifically, the amount of hydrogen, the bending radius or crystal grain distortion, and the residual stress in each test piece were plotted on a three-dimensional graph, and each point was connected in a matrix to create a delayed fracture occurrence boundary region 8. Further, a delayed fracture estimated boundary region 9 was created outside the delayed fracture occurrence boundary region 8 based on a function obtained from the amount of hydrogen in the test piece, bending radius or crystal grain distortion, and residual stress. Then, the amount of hydrogen, bending radius, crystal grain distortion, and residual stress in the steel sheet molded product were plotted on a three-dimensional graph.

耐遅れ破壊性評価マップの作成結果を図7〜11に示す。ここで、本実施例における耐遅れ破壊性評価マップは、比較例1(「曲げ半径」を耐遅れ破壊性の指標に用いた評価方法)、実施例1(「CI≦0.1となる面積率」を耐遅れ破壊性の指標に用いた評価方法)、実施例2(「IQ」を耐遅れ破壊性の指標に用いた評価方法)、実施例3(「KAM」を耐遅れ破壊性の指標に用いた評価方法)実施例4(「XRD歪み」耐遅れ破壊性の指標に用いた評価方法)の5通り作成した。なお、比較例1は、従来の「曲げ半径」を指標に用いた評価方法であり、実施例1〜4は、本発明に係る評価方法である。   The results of creating a delayed fracture resistance evaluation map are shown in FIGS. Here, the delayed fracture resistance evaluation map in this example is Comparative Example 1 (an evaluation method using “bending radius” as an index of delayed fracture resistance) and Example 1 (an area where “CI ≦ 0.1”). Rate "as an index for delayed fracture resistance), Example 2 (an evaluation method using" IQ "as an index for delayed fracture resistance), and Example 3 (" KAM "for delayed fracture resistance) Evaluation method used as index) Five methods were prepared in Example 4 (an evaluation method used as an index of "XRD strain" delayed fracture resistance). Comparative Example 1 is an evaluation method using a conventional “bending radius” as an index, and Examples 1 to 4 are evaluation methods according to the present invention.

図7〜11において、▲でプロットされたものは各試験片の測定値、○あるいは×でプロットされたものは、プレス成形品101,102,103の部位1〜7の測定値である。そして、○は、割れが生じないと推定される部位の測定値を、×は、割れが生じると推定される部位の測定値を示している。   7 to 11, those plotted with ▲ are measured values of each test piece, and those plotted with ◯ or × are measured values of the parts 1 to 7 of the press-formed products 101, 102, and 103. And ◯ indicates a measured value of a site where cracks are estimated not to occur, and x indicates a measured value of sites where cracks are estimated to occur.

○のプロット点は、図上において遅れ破壊発生境界領域8または遅れ破壊推定境界領域9に含まれるように見える場合であっても、実際にはこれらの領域の下に位置しており、×のプロット点は、図上において遅れ破壊発生境界領域8または遅れ破壊推定境界領域9に含まれないように見える場合であっても、実際にはこれらの領域の内部に位置している。なお、図7〜11では図示を省略したが、図5と同様の軸をX軸、Y軸、Z軸とする。以下、個々の評価結果について説明する。   Even when the plot points of ○ appear to be included in the delayed fracture occurrence boundary region 8 or the delayed fracture estimated boundary region 9 in the figure, they are actually located below these regions. Even if the plot points do not appear to be included in the delayed fracture occurrence boundary region 8 or the delayed fracture estimated boundary region 9 in the figure, they are actually located inside these regions. Although not shown in FIGS. 7 to 11, the same axes as those in FIG. 5 are the X axis, the Y axis, and the Z axis. Hereinafter, individual evaluation results will be described.

(比較例1)
図7は、従来の評価方法において、「曲げ半径」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップである。図7(a)、(b)、(c)において、X軸は曲げ半径、Y軸は残留応力、Z軸は水素量(拡散性水素量)である。ここで、図7(a)、(b)、(c)を参照すると、いずれのマップにおいても、○及び×の測定点の合計が、6つ以下であることが分かる。ここで、マップにおける○及び×の測定点は、プレス成形品101,102,103の部位1〜7に対応している。従って、「曲げ半径」を耐遅れ破壊性の指標として用いると、プレス成形品101,102,103の部位1〜7の一部の部位について、耐遅れ破壊性を適切に評価できないことがわかる。
(Comparative Example 1)
FIG. 7 is a delayed fracture resistance evaluation map created based on an evaluation result using “bending radius” as an index of delayed fracture resistance in the conventional evaluation method. 7A, 7 </ b> B, and 7 </ b> C, the X axis is a bending radius, the Y axis is a residual stress, and the Z axis is a hydrogen amount (diffusible hydrogen amount). Here, referring to FIGS. 7A, 7 </ b> B, and 7 </ b> C, it can be seen that the sum of the measurement points of ◯ and X is 6 or less in any map. Here, the measurement points of ◯ and X in the map correspond to the parts 1 to 7 of the press-formed products 101, 102, 103. Therefore, it can be seen that when the “bending radius” is used as an index of delayed fracture resistance, the delayed fracture resistance cannot be properly evaluated for some of the parts 1 to 7 of the press-formed products 101, 102, 103.

表3の「評価結果」の欄の「比較例1」の列に、比較例1に係る評価方法によって推定したプレス成形品101,102,103の割れの評価結果を示す。ここで、表3の「測定結果」の欄に示した「割れの有無」は、プレス成形品101,102,103に実際に割れが生じているかどうかを示したものである。従って、仮に耐遅れ破壊性の評価が正確であれば、表3の「測定結果」の欄と「評価結果」の欄は、完全に一致していなければならない。なお、表3において、測定結果と評価結果が一致しない箇所は太枠で示している。   In the column of “Comparative Example 1” in the “Evaluation Result” column of Table 3, the evaluation results of cracks of the press-formed products 101, 102, 103 estimated by the evaluation method according to Comparative Example 1 are shown. Here, the “presence / absence of cracks” shown in the column “Measurement results” in Table 3 indicates whether or not the press-formed products 101, 102, 103 are actually cracked. Therefore, if the delayed fracture resistance evaluation is accurate, the “Measurement Result” column and the “Evaluation Result” column in Table 3 must be completely the same. In Table 3, the portions where the measurement results and the evaluation results do not match are indicated by thick frames.

表3を参照すると、プレス成形品101,102,103のいずれにおいても、部位5(打抜き部)、部位6(縦壁部)、部位7(平坦部)の耐遅れ破壊性を評価することができなかった。すなわち、部位5と部位6は、加工に伴う曲げ半径がいずれも非常に大きく、曲げ加工が加えられていないと判定される形状であったため、前記した図7のマップにプロットできなかった。また、部位7は、曲げ加工自体が加えられていないため、前記した図7のマップにプロットできなかった。さらに、C鋼−形状ハ(プレス成形品103)の部位3については、実際には割れが生じているものの、割れなし「○」と誤って評価されている。従って、「曲げ半径」を耐遅れ破壊性の指標として用いると、プレス成形品101,102,103の部位1〜7の一部の部位について、耐遅れ破壊性を評価できないことがわかる。   Referring to Table 3, in any of the press-formed products 101, 102, 103, it is possible to evaluate delayed fracture resistance of the part 5 (punched part), the part 6 (vertical wall part), and the part 7 (flat part). could not. That is, the part 5 and the part 6 have a very large bending radius due to the processing, and have a shape determined that the bending processing is not applied, and thus cannot be plotted on the map of FIG. Moreover, since the bending process itself was not added, the site | part 7 was not able to be plotted on the above-mentioned map of FIG. Further, the portion 3 of the C steel-shape C (press-formed product 103) is erroneously evaluated as “O” without cracking although cracking actually occurs. Therefore, it can be seen that when the “bending radius” is used as an index of delayed fracture resistance, the delayed fracture resistance cannot be evaluated for some of the portions 1 to 7 of the press-formed products 101, 102, 103.

(実施例1)
図8は、本発明に係る評価方法において、「CI≦0.1となる面積率」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップである。図8(a)、(b)、(c)において、X軸はCI≦0.1となる面積率、Y軸は残留応力、Z軸は水素量(拡散性水素量)である。ここで、図8(a)、(b)、(c)を参照すると、いずれのマップにおいても、○及び×の測定点の合計が7つであることが分かる。従って、「CI≦0.1となる面積率」を耐遅れ破壊性の指標に用いることで、全ての部位の耐遅れ破壊性を評価できることが分かる。また、表3の「評価結果」の欄の「実施例1」の列を参照すると、いずれの評価結果においても、表3の「測定結果」と同様であることが分かる。従って、「CI≦0.1となる面積率」を耐遅れ破壊性の指標に用いた評価方法が、正確であることが分かる。
Example 1
FIG. 8 is a delayed fracture resistance evaluation map created based on an evaluation result using “area ratio satisfying CI ≦ 0.1” as an index of delayed fracture resistance in the evaluation method according to the present invention. 8 (a), (b), and (c), the X-axis is the area ratio satisfying CI ≦ 0.1, the Y-axis is the residual stress, and the Z-axis is the hydrogen amount (diffusible hydrogen amount). Here, with reference to FIGS. 8A, 8B, and 8C, it can be seen that the total of the measurement points of ◯ and X is 7 in any map. Therefore, it can be seen that by using “area ratio satisfying CI ≦ 0.1” as an index of delayed fracture resistance, the delayed fracture resistance of all parts can be evaluated. Further, referring to the column of “Example 1” in the column of “Evaluation result” in Table 3, it can be seen that any of the evaluation results is the same as the “Measurement result” in Table 3. Therefore, it can be seen that the evaluation method using “area ratio satisfying CI ≦ 0.1” as an index of delayed fracture resistance is accurate.

(実施例2)
図9は、本発明に係る評価方法において、「IQ」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップである。図9(a)、(b)、(c)において、X軸はIQ、Y軸は残留応力、Z軸は水素量(拡散性水素量)である。ここで、図9(a)、(b)、(c)を参照すると、いずれのマップにおいても、○及び×の測定点の合計が7つであることが分かる。従って、「IQ」を耐遅れ破壊性の指標に用いることで、全ての部位の耐遅れ破壊性を評価できることが分かる。また、表3の「評価結果」の欄の「実施例2」の列を参照すると、いずれの評価結果においても、表3の「測定結果」と同様であることが分かる。従って、「IQ」を耐遅れ破壊性の指標に用いた評価方法が、正確であることが分かる。
(Example 2)
FIG. 9 is a delayed fracture resistance evaluation map created based on an evaluation result using “IQ” as an index of delayed fracture resistance in the evaluation method according to the present invention. 9A, 9B, and 9C, the X-axis is IQ, the Y-axis is residual stress, and the Z-axis is the amount of hydrogen (diffusible hydrogen amount). Here, referring to FIGS. 9A, 9 </ b> B, and 9 </ b> C, it can be seen that the total of the measurement points of ◯ and X is 7 in any map. Therefore, it can be seen that the delayed fracture resistance of all the parts can be evaluated by using “IQ” as an index of delayed fracture resistance. Further, referring to the column of “Example 2” in the column of “Evaluation result” in Table 3, it can be seen that any of the evaluation results is the same as the “Measurement result” in Table 3. Therefore, it can be seen that the evaluation method using “IQ” as an index of delayed fracture resistance is accurate.

(実施例3)
図10は、本発明に係る評価方法において、「KAM」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップである。図10(a)、(b)、(c)において、X軸はKAM、Y軸は残留応力、Z軸は水素量(拡散性水素量)である。ここで、図10(a)、(b)、(c)を参照すると、いずれのマップにおいても、○及び×の測定点の合計が7つであることが分かる。従って、「KAM」を耐遅れ破壊性の指標に用いることで、全ての部位の耐遅れ破壊性を評価できることが分かる。また、表3の「評価結果」の欄の「実施例3」の列を参照すると、いずれの評価結果においても、表3の「測定結果」と同様であることが分かる。従って、「KAM」を耐遅れ破壊性の指標に用いた評価方法が、正確であることが分かる。
(Example 3)
FIG. 10 is a delayed fracture resistance evaluation map created based on an evaluation result using “KAM” as an index of delayed fracture resistance in the evaluation method according to the present invention. 10A, 10B, and 10C, the X axis is KAM, the Y axis is the residual stress, and the Z axis is the amount of hydrogen (diffusible hydrogen amount). Here, referring to FIGS. 10A, 10 </ b> B, and 10 </ b> C, it can be seen that the total of the measurement points of ◯ and X is 7 in any map. Therefore, it can be seen that the delayed fracture resistance of all the parts can be evaluated by using “KAM” as an index of delayed fracture resistance. Further, referring to the column of “Example 3” in the column of “Evaluation result” in Table 3, it can be seen that any of the evaluation results is the same as the “Measurement result” in Table 3. Therefore, it can be seen that the evaluation method using “KAM” as an index of delayed fracture resistance is accurate.

(実施例4)
図11は、本発明に係る評価方法において、「XRD歪み(X線回折による結晶粒の歪み)」を耐遅れ破壊性の指標に用いた評価結果に基づいて作成した耐遅れ破壊性評価マップである。図11(a)、(b)、(c)において、X軸はXRD歪み、Y軸は残留応力、Z軸は水素量(拡散性水素量)である。ここで、図11(a)、(b)、(c)を参照すると、いずれのマップにおいても、○及び×の測定点の合計が7つであることが分かる。従って、「XRD歪み」を耐遅れ破壊性の指標に用いることで、全ての部位の耐遅れ破壊性を評価できることが分かる。また、表3の「評価結果」の欄の「実施例4」の列を参照すると、いずれの評価結果においても、表3の「測定結果」と同様であることが分かる。従って、「XRD歪み」を耐遅れ破壊性の指標に用いた評価方法が、正確であることが分かる。
Example 4
FIG. 11 is a delayed fracture resistance evaluation map created based on an evaluation result using “XRD strain (crystal grain strain due to X-ray diffraction)” as an index of delayed fracture resistance in the evaluation method according to the present invention. is there. In FIGS. 11A, 11B, and 11C, the X-axis is XRD strain, the Y-axis is residual stress, and the Z-axis is the amount of hydrogen (diffusible hydrogen amount). Here, referring to FIGS. 11A, 11 </ b> B, and 11 </ b> C, it can be seen that the total of the measurement points of ○ and X is 7 in any map. Therefore, it can be understood that the delayed fracture resistance of all the parts can be evaluated by using “XRD strain” as an index of delayed fracture resistance. Further, referring to the column of “Example 4” in the column of “Evaluation result” in Table 3, it can be seen that any of the evaluation results is the same as the “Measurement result” in Table 3. Therefore, it can be seen that the evaluation method using “XRD strain” as an index of delayed fracture resistance is accurate.

このように、本発明に係る鋼板成形品の耐遅れ破壊性の評価方法によれば、従来の耐遅れ破壊性の評価指標である「曲げ半径」の代わりに「結晶粒の歪み」評価指標とすることにより、「結晶粒の歪み−残留応力−水素量」の関係において、鋼板成形品の耐遅れ破壊性をより正確に評価することができる。すなわち、鋼板成形品の結晶粒の歪みを測定することで、加工に伴う結晶粒の歪み、転位、欠陥の増加、結晶粒・組織形態の崩壊等を加味したより緻密な耐遅れ破壊性の評価を行なうことができる。   Thus, according to the method for evaluating delayed fracture resistance of a steel sheet molded article according to the present invention, instead of the “bending radius” that is a conventional evaluation index of delayed fracture resistance, a “crystal grain distortion” evaluation index and By doing so, the delayed fracture resistance of the steel sheet molded product can be more accurately evaluated in the relationship of “crystal grain strain−residual stress−hydrogen content”. In other words, by measuring the distortion of crystal grains in steel sheet molded products, a more precise evaluation of delayed fracture resistance considering the distortion of grains, dislocations, increase of defects, collapse of crystal grains / structure morphology, etc. Can be performed.

1 部位
2 部位
3 部位
4 部位
5 部位
6 部位
7 部位
8 遅れ破壊発生境界領域
9 遅れ破壊推定境界領域
10 鋼板表層部
20 球形状頭頂部
30 打ち抜き加工孔近傍
40 頭頂部
100 試験片
101 プレス成形品(A鋼−形状イ)
102 プレス成形品(B鋼−形状ロ)
103 プレス成形品(C鋼−形状ハ)
A 歪み
B ボイド
C セル壁
a 測定値
b 測定値
c 測定値
d 測定値
e 測定値
f 測定値
S1 試験片水素導入工程
S2 試験片水素量測定工程
S3 試験片結晶粒歪み測定工程
S4 遅れ破壊条件導出工程
S5 成形品結晶粒歪み測定工程
S6 遅れ破壊水素量推定工程
1 part 2 part 3 part 4 part 5 part 6 part 7 part 8 Delayed fracture occurrence boundary area 9 Delayed fracture estimated boundary area 10 Steel plate surface layer part 20 Spherical head part 30 Near punched hole 40 Head part 100 Test piece 101 Press-formed product (Steel A-Shape A)
102 Press-formed products (Steel B-Shape B)
103 Press-formed product (C steel-shape C)
A Strain B Void C Cell wall a Measured value b Measured value c Measured value d Measured value e Measured value f Measured value S1 Specimen hydrogen introduction process S2 Specimen hydrogen content measurement process S3 Specimen crystal grain strain measurement process S4 Delayed fracture condition Derivation process S5 Molded crystal grain strain measurement process S6 Delayed fracture hydrogen quantity estimation process

Claims (10)

鋼板成形品の耐遅れ破壊性の評価方法であって、
遅れ破壊が発生する際の鋼材に含有される水素量と、前記遅れ破壊が発生する際の鋼材の組織内における結晶粒の歪みと、を対応付けた関係を用いて、前記鋼板成形品の評価部位の組織内における結晶粒の歪みに対応した水素量を求めることで、前記評価部位に前記遅れ破壊を発生させる水素量を推定する遅れ破壊水素量推定工程を行なうことを特徴とする鋼板成形品の耐遅れ破壊性の評価方法。
A method for evaluating delayed fracture resistance of steel sheet molded products,
Evaluation of the steel sheet molded product using a relationship in which the amount of hydrogen contained in the steel material when delayed fracture occurs and the distortion of crystal grains in the structure of the steel material when delayed fracture occurs are associated with each other A steel sheet molded article characterized by performing a delayed fracture hydrogen amount estimation step for estimating the amount of hydrogen that causes the delayed fracture in the evaluation site by obtaining a hydrogen amount corresponding to the distortion of crystal grains in the structure of the site. Evaluation method of delayed fracture resistance.
鋼板成形品の耐遅れ破壊性の評価方法であって、
遅れ破壊が発生する際の鋼材に含有される水素量と、前記遅れ破壊が発生する際の鋼材の組織内における結晶粒の歪みと、を対応付けた関係を用いて、前記鋼板成形品の評価部位に含有される水素量に対応した結晶粒の歪みを求めることで、前記評価部位に前記遅れ破壊を発生させる結晶粒の歪みを推定する遅れ破壊結晶粒歪み推定工程を行なうことを特徴とする鋼板成形品の耐遅れ破壊性の評価方法。
A method for evaluating delayed fracture resistance of steel sheet molded products,
Evaluation of the steel sheet molded product using a relationship in which the amount of hydrogen contained in the steel material when delayed fracture occurs and the distortion of crystal grains in the structure of the steel material when delayed fracture occurs are associated with each other Performing a delayed fracture crystal strain estimation step of estimating a strain of a crystal grain that causes the delayed fracture in the evaluation site by obtaining a strain of the crystal grain corresponding to the amount of hydrogen contained in the site. Evaluation method of delayed fracture resistance of steel sheet molded products.
前記遅れ破壊水素量推定工程において、
前記遅れ破壊が発生する際の鋼材に含有される水素量と、前記遅れ破壊が発生する際の鋼材の組織内における結晶粒の歪みと、前記遅れ破壊が発生する際の鋼材の残留応力と、を対応付けた関係を用いて、前記鋼板成形品の評価部位の組織内における結晶粒の歪み及び当該評価部位の残留応力に対応した水素量を求めることを特徴とする請求項1に記載の鋼板成形品の耐遅れ破壊性の評価方法。
In the delayed fracture hydrogen amount estimation step,
The amount of hydrogen contained in the steel material when the delayed fracture occurs, the distortion of crystal grains in the structure of the steel material when the delayed fracture occurs, and the residual stress of the steel material when the delayed fracture occurs, 2. The steel sheet according to claim 1, wherein the amount of hydrogen corresponding to the distortion of the crystal grains in the structure of the evaluation part of the steel sheet molded article and the residual stress of the evaluation part is obtained using the relationship in which Evaluation method of delayed fracture resistance of molded products.
前記遅れ破壊結晶粒歪み推定工程において、
前記遅れ破壊が発生する際の鋼材に含有される水素量と、前記遅れ破壊が発生する際の鋼材の組織内における結晶粒の歪みと、前記遅れ破壊が発生する際の鋼材の残留応力と、を対応付けた関係を用いて、前記鋼板成形品の評価部位に含有される水素量及び当該評価部位の残留応力に対応した結晶粒の歪みを求めることを特徴とする請求項2に記載の鋼板成形品の耐遅れ破壊性の評価方法。
In the delayed fracture crystal grain strain estimation step,
The amount of hydrogen contained in the steel material when the delayed fracture occurs, the distortion of crystal grains in the structure of the steel material when the delayed fracture occurs, and the residual stress of the steel material when the delayed fracture occurs, 3. The steel sheet according to claim 2, wherein the amount of hydrogen contained in the evaluation part of the steel sheet molded product and the distortion of the crystal grains corresponding to the residual stress of the evaluation part are obtained using the relationship in which Evaluation method of delayed fracture resistance of molded products.
前記遅れ破壊水素量推定工程または前記遅れ破壊結晶粒歪み推定工程の前に、
成形加工を施した試験片を作成し、当該試験片に遅れ破壊が発生するまで、その内部に水素を導入する試験片水素導入工程と、
前記遅れ破壊が発生する際における前記試験片の水素量及び結晶粒の歪みを測定する試験片測定工程と、
前記試験片測定工程で測定した前記試験片の水素量及び結晶粒の歪みを対応付けて、前記関係を導出する遅れ破壊条件導出工程と、
を行なうことを特徴とする請求項1または請求項2に記載の鋼板成形品の耐遅れ破壊性の評価方法。
Before the delayed fracture hydrogen amount estimation step or the delayed fracture crystal grain strain estimation step,
A test piece hydrogen introduction step of creating a test piece subjected to molding and introducing hydrogen into the test piece until delayed fracture occurs in the test piece,
A test piece measurement step for measuring the hydrogen amount and crystal grain distortion of the test piece when the delayed fracture occurs,
Associating the amount of hydrogen of the test piece measured in the test piece measurement step and the distortion of the crystal grains, the delayed fracture condition derivation step for deriving the relationship,
The method for evaluating delayed fracture resistance of a steel sheet molded article according to claim 1 or 2, wherein:
前記遅れ破壊水素量推定工程または前記遅れ破壊結晶粒歪み推定工程の前に、
成形加工を施した試験片を作成し、当該試験片に残留応力を付与するとともに、当該試験片に遅れ破壊が発生するまで、その内部に水素を導入する試験片水素導入工程と、
前記遅れ破壊が発生する際における前記試験片の水素量及び結晶粒の歪みを測定する試験片測定工程と、
前記試験片測定工程で測定した前記試験片の水素量及び結晶粒の歪み並びに前記試験片に付与された残留応力を対応付けて、前記関係を導出する遅れ破壊条件導出工程と
を行なうことを特徴とする請求項3または請求項4に記載の鋼板成形品の耐遅れ破壊性の評価方法。
Before the delayed fracture hydrogen amount estimation step or the delayed fracture crystal grain strain estimation step,
A test piece hydrogen introduction step of creating a test piece subjected to molding processing, applying residual stress to the test piece, and introducing hydrogen into the test piece until delayed fracture occurs,
A test piece measurement step for measuring the hydrogen amount and crystal grain distortion of the test piece when the delayed fracture occurs,
A delayed fracture condition deriving step of deriving the relationship by associating the hydrogen amount of the test piece measured in the test piece measuring step, the distortion of crystal grains, and the residual stress applied to the test piece. The method for evaluating delayed fracture resistance of a steel sheet molded article according to claim 3 or 5.
前記結晶粒の歪みは、EBSPにおける方位決定のCI(Confidence Index)が0.1以下となる面積率によって表されたものであることを特徴とする請求項1から請求項6のいずれか一項に記載の鋼板成形品の耐遅れ破壊性の評価方法。   The distortion of the crystal grains is represented by an area ratio at which a CI (Confidence Index) for determining an orientation in EBSP is 0.1 or less. The evaluation method of the delayed fracture resistance of the steel plate molded article described in 1. 前記結晶粒の歪みは、EBSPにおける方位決定のIQ(Image Quality)によって表されたものであることを特徴とする請求項1から請求項6のいずれか一項に記載の鋼板成形品の耐遅れ破壊性の評価方法。   The delay of the steel sheet molded article according to any one of claims 1 to 6, wherein the distortion of the crystal grains is expressed by IQ (Image Quality) of orientation determination in EBSP. Destructive evaluation method. 前記結晶粒の歪みは、EBSPにおける方位決定のKAM(Kernel Average Misorientation)によって表されたものであることを特徴とする請求項1から請求項6のいずれか一項に記載の鋼板成形品の耐遅れ破壊性の評価方法。   The distortion of the crystal grain is represented by KAM (Kernel Average Misorientation) of orientation determination in EBSP, and the steel plate molded product according to any one of claims 1 to 6, wherein Evaluation method of delayed fracture property. 前記結晶粒の歪みは、XRD(X-ray diffraction)によって測定される歪みによって表されたものであることを特徴とする請求項1から請求項6のいずれか一項に記載の鋼板成形品の耐遅れ破壊性の評価方法。   The distortion of the crystal grain is represented by the distortion measured by XRD (X-ray diffraction), The steel sheet molded article according to any one of claims 1 to 6 characterized by things. Evaluation method of delayed fracture resistance.
JP2009183122A 2009-08-06 2009-08-06 Evaluation method of delayed fracture resistance of steel sheet molded products Expired - Fee Related JP5291568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183122A JP5291568B2 (en) 2009-08-06 2009-08-06 Evaluation method of delayed fracture resistance of steel sheet molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183122A JP5291568B2 (en) 2009-08-06 2009-08-06 Evaluation method of delayed fracture resistance of steel sheet molded products

Publications (2)

Publication Number Publication Date
JP2011033600A JP2011033600A (en) 2011-02-17
JP5291568B2 true JP5291568B2 (en) 2013-09-18

Family

ID=43762797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183122A Expired - Fee Related JP5291568B2 (en) 2009-08-06 2009-08-06 Evaluation method of delayed fracture resistance of steel sheet molded products

Country Status (1)

Country Link
JP (1) JP5291568B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5728115B1 (en) 2013-09-27 2015-06-03 株式会社神戸製鋼所 High strength steel sheet excellent in ductility and low temperature toughness, and method for producing the same
CN103712876A (en) * 2013-12-20 2014-04-09 南京工业大学 Method for rapidly evaluating natural corrosion resistance of common structural wood for wood building based on wood chemical component parameters
JP2015135302A (en) * 2014-01-20 2015-07-27 日本電信電話株式会社 Hydrogen occlusion method
WO2015151486A1 (en) * 2014-04-02 2015-10-08 Jfeスチール株式会社 Iron powder for dust core, and sorting method for iron powder for dust core
JP2016125996A (en) * 2015-01-06 2016-07-11 東プレ株式会社 Delayed fracture test method
JP6610607B2 (en) * 2017-04-25 2019-11-27 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high strength steel sheets
JP6614197B2 (en) * 2017-04-25 2019-12-04 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high strength steel sheets
JP6835023B2 (en) * 2018-03-26 2021-02-24 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high-strength steel sheets
CN109632618B (en) * 2018-12-28 2020-01-07 清华大学深圳研究生院 Method for testing corrosion resistance of neutron absorption material
CN115112445A (en) * 2021-03-22 2022-09-27 宝山钢铁股份有限公司 Method for testing cracking delay performance of ultrahigh-strength steel product
WO2023181539A1 (en) 2022-03-24 2023-09-28 Jfeスチール株式会社 Method, device, and program for predicting delayed fracture in press-formed article, and method for manufacturing press-formed article
JP7384262B2 (en) * 2022-03-24 2023-11-21 Jfeスチール株式会社 Delayed fracture prediction method, device and program for press-formed products, and method for manufacturing press-formed products
WO2024135188A1 (en) * 2022-12-20 2024-06-27 日本製鉄株式会社 Hydrogen embrittlement evaluation method and evaluation device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330207B2 (en) * 1993-10-05 2002-09-30 株式会社神戸製鋼所 Ultra-high strength cold rolled steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JPH07146225A (en) * 1993-11-24 1995-06-06 Nippon Steel Corp Delayed fracture characteristic evaluating method for high tensile strength steel plate
JP2004003922A (en) * 2002-04-01 2004-01-08 Mitsubishi Heavy Ind Ltd Method for measuring remaining lifetime of material, and apparatus for measuring remaining lifetime using the same
JP2004309197A (en) * 2003-04-03 2004-11-04 Sumitomo Metal Ind Ltd Method for evaluating resistance to delayed fracture
JP4317384B2 (en) * 2003-04-28 2009-08-19 新日本製鐵株式会社 High-strength galvanized steel sheet with excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its manufacturing method
JP3892842B2 (en) * 2003-10-28 2007-03-14 新日本製鐵株式会社 Apparatus and method for evaluating hydrogen embrittlement of thin steel sheet
JP2005146321A (en) * 2003-11-13 2005-06-09 Nippon Steel Corp Steel having fine structure, and its production method
JP4697844B2 (en) * 2004-02-02 2011-06-08 新日本製鐵株式会社 Manufacturing method of steel material having fine structure
JP4621133B2 (en) * 2004-12-22 2011-01-26 株式会社神戸製鋼所 High carbon steel wire rod excellent in drawability and production method thereof
JP4646134B2 (en) * 2006-01-26 2011-03-09 株式会社神戸製鋼所 Evaluation method of delayed fracture resistance of high strength steel sheet
JP5339765B2 (en) * 2007-04-17 2013-11-13 株式会社中山製鋼所 High strength hot rolled steel sheet and method for producing the same
JP5121360B2 (en) * 2007-09-10 2013-01-16 株式会社神戸製鋼所 Spring steel wire rod excellent in decarburization resistance and wire drawing workability, and method for producing the same
JP2009092652A (en) * 2007-09-18 2009-04-30 Toshiba Corp Remaining life evaluation method and deformation amount evaluation method for metallic material
JP4617375B2 (en) * 2007-12-03 2011-01-26 新日鉄マテリアルズ株式会社 Bonding wires for semiconductor devices
WO2009072525A1 (en) * 2007-12-03 2009-06-11 Nippon Steel Materials Co., Ltd. Bonding wire for semiconductor devices
JP4885117B2 (en) * 2007-12-03 2012-02-29 新日鉄マテリアルズ株式会社 Bonding wires for semiconductor devices
JP4195722B1 (en) * 2008-05-15 2008-12-10 株式会社ヒロテック Method of manufacturing impact beam

Also Published As

Publication number Publication date
JP2011033600A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5291568B2 (en) Evaluation method of delayed fracture resistance of steel sheet molded products
Burns et al. Effect of corrosion severity on fatigue evolution in Al–Zn–Mg–Cu
Zhang et al. Porosity quantification for ductility prediction in high pressure die casting AM60 alloy using 3D X-ray tomography
Wisner et al. The use of nondestructive evaluation methods in fatigue: A review
Tran et al. Crystal plasticity finite element analysis of size effect on the formability of ultra-thin ferritic stainless steel sheet for fuel cell bipolar plate
Sharma et al. Multi-strain path deformation behavior of AA6016-T4: Experiments and crystal plasticity modeling
Fujii et al. Nucleation of stress corrosion cracking in aluminum alloy 6061 in sodium chloride solution: Mechanical and microstructural aspects
Wu et al. Study on corrosion models of structural steel exposed in urban industrial atmospheric and laboratory simulated environments based on the 3D profile
Prithivirajan et al. Recent progress in equal channel angular pressing of magnesium alloys starting from Segal’s idea to advancements till date–A review
Budzakoska et al. Predicting the J integral fracture toughness of Al 6061 using the small punch test
Sargeant et al. Effect of pre-strain on springback behavior after bending in AA 6016-T4: Experiments and crystal plasticity modeling
Adams Investigating microstructural effects on short crack growth and fatigue life behavior of WE43 Magnesium
Stoudt et al. Characterizing the hemming performance of automotive aluminum alloys with high-resolution topographic imaging
Esteves Determination of damage initiation mechanisms in aerospace alloys due to stress corrosion cracking via in-situ microscale characterization techniques
Pandey et al. Mechanical and micro-structural characterization of hot rolled brass foil
Sahoo et al. Deformation twinning in zircaloy 2
Vadavadagi et al. Forming limit curves in low-carbon steels: improved prediction by incorporating microstructural evolution
Kasen et al. Strength degradation in AA5083 armor plate after exposure to elevated temperatures
Zaffaroni et al. Microstructure‐dependent corrosion of herringbone‐grooved embossed Al–1.1 wt% Mn strips for heat exchanger tubes
Gutierrez et al. Formability Characterization of 3rd Generation Advanced High-Strength Steel and Application to Forming a B-Pillar
Wei Study of sensitization in AA5083 aluminium alloy
Slota et al. Influence of friction condition on failure location of AA5754 aluminium sheet in Nakajima test
Yuryev et al. Investigation of properties of industrial sheet Semi-finished products of Alloy 1580
Mondou et al. Comparative study of techniques and methods used to characterize intergranular corrosion in aa2024 aluminum alloy
Stannard Corrosion and corrosion-fatigue behavior of 7075 aluminum alloys studied by in situ X-ray tomography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees