Nothing Special   »   [go: up one dir, main page]

JP5249717B2 - Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon - Google Patents

Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon Download PDF

Info

Publication number
JP5249717B2
JP5249717B2 JP2008280264A JP2008280264A JP5249717B2 JP 5249717 B2 JP5249717 B2 JP 5249717B2 JP 2008280264 A JP2008280264 A JP 2008280264A JP 2008280264 A JP2008280264 A JP 2008280264A JP 5249717 B2 JP5249717 B2 JP 5249717B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
catalyst
hydrogen chloride
titanium oxide
ruthenium compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008280264A
Other languages
Japanese (ja)
Other versions
JP2010105859A (en
Inventor
カルロス クナップ
航平 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008280264A priority Critical patent/JP5249717B2/en
Publication of JP2010105859A publication Critical patent/JP2010105859A/en
Application granted granted Critical
Publication of JP5249717B2 publication Critical patent/JP5249717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種と、塩化水素と、酸素とを供給して、触媒の存在下に塩化水素を酸化して塩素を製造する方法、並びに一酸化炭素および/または不飽和炭化水素を酸化する方法に関する。   The present invention relates to a method for producing chlorine by oxidizing at least one selected from carbon monoxide and unsaturated hydrocarbon, hydrogen chloride, and oxygen to oxidize hydrogen chloride in the presence of a catalyst. The present invention relates to a method for oxidizing carbon oxide and / or unsaturated hydrocarbon.

一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種と、塩化水素と、酸素とを供給して、触媒の存在下に塩化水素を酸化して塩素を製造する方法や、一酸化炭素および/または不飽和炭化水素を酸化する方法がある。これらの酸化方法に使用される触媒として、特許文献1には、700℃の焼成温度で焼成された酸化チタン担体にルテニウム化合物を担持して得られるものが記載されている。   A method of producing chlorine by oxidizing at least one selected from carbon monoxide and unsaturated hydrocarbon, hydrogen chloride, and oxygen to oxidize hydrogen chloride in the presence of a catalyst; and carbon monoxide and / or Alternatively, there is a method of oxidizing unsaturated hydrocarbons. As a catalyst used in these oxidation methods, Patent Document 1 describes a catalyst obtained by supporting a ruthenium compound on a titanium oxide support calcined at a calcining temperature of 700 ° C.

しかしながら、特許文献1に記載されているような従来の触媒は、塩化水素を酸素で酸化する際の反応条件下で一酸化炭素および/または不飽和炭化水素に接触すると、劣化しやすく、酸化活性が低下することがあった。
特開2002−226205号公報
However, the conventional catalyst as described in Patent Document 1 is easily deteriorated when it comes into contact with carbon monoxide and / or an unsaturated hydrocarbon under the reaction conditions when hydrogen chloride is oxidized with oxygen. May decrease.
JP 2002-226205 A

本発明の課題は、一酸化炭素および/または不飽和炭化水素が塩化水素と共存する反応系においても、長期間にわたって安定的に塩化水素を酸化して塩素を製造することができると共に、一酸化炭素および/または不飽和炭化水素を酸化することができる方法を提供することである。   The problem of the present invention is that, even in a reaction system in which carbon monoxide and / or unsaturated hydrocarbons coexist with hydrogen chloride, chlorine can be produced by stably oxidizing hydrogen chloride over a long period of time. It is to provide a method capable of oxidizing carbon and / or unsaturated hydrocarbons.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、200〜500℃という比較的低温の焼成温度で焼成された酸化チタン担体にルテニウム化合物を担持して得られる触媒を前記酸化反応に用いる場合には、一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種が塩化水素と共存する反応系においても、触媒の酸化活性が低下するのを抑制することができるという新たな知見を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a catalyst obtained by supporting a ruthenium compound on a titanium oxide support calcined at a relatively low calcining temperature of 200 to 500 ° C. A new finding that when used in the reaction, it is possible to suppress a reduction in the oxidation activity of the catalyst even in a reaction system in which at least one selected from carbon monoxide and unsaturated hydrocarbon coexists with hydrogen chloride. As a result, the present invention has been completed.

すなわち、本発明の塩素の製造方法は、以下の構成からなる。
(1)一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種と、塩化水素と、酸素とを供給して、酸化チタン担体にルテニウム化合物が担持されてなる触媒の存在下に塩化水素を酸化して塩素を製造する方法であって、前記触媒が、200〜500℃の焼成温度で焼成された酸化チタン担体にルテニウム化合物を担持して得られるものであることを特徴とする塩素の製造方法。
(2)前記ルテニウム化合物が、酸化ルテニウムを含む前記(1)記載の塩素の製造方法。
(3)一酸化炭素および/または不飽和炭化水素の供給量が、塩化水素に対して5モル%以下である前記(1)または(2)記載の塩素の製造方法。
That is, the chlorine production method of the present invention has the following configuration.
(1) Supplying at least one selected from carbon monoxide and unsaturated hydrocarbons, hydrogen chloride, and oxygen to oxidize hydrogen chloride in the presence of a catalyst in which a ruthenium compound is supported on a titanium oxide carrier And the catalyst is obtained by supporting a ruthenium compound on a titanium oxide support calcined at a calcining temperature of 200 to 500 ° C. .
(2) The method for producing chlorine according to (1), wherein the ruthenium compound contains ruthenium oxide.
(3) The method for producing chlorine according to the above (1) or (2), wherein the supply amount of carbon monoxide and / or unsaturated hydrocarbon is 5 mol% or less with respect to hydrogen chloride.

本発明の一酸化炭素および/または不飽和炭化水素の酸化方法は、以下の構成からなる。
(4)一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種と、塩化水素と、酸素とを供給して、酸化チタン担体にルテニウム化合物が担持されてなる触媒の存在下に一酸化炭素および/または不飽和炭化水素を酸化する方法であって、前記触媒が、200〜500℃の焼成温度で焼成された酸化チタン担体にルテニウム化合物を担持して得られるものであることを特徴とする一酸化炭素および/または不飽和炭化水素の酸化方法。
(5)前記ルテニウム化合物が、酸化ルテニウムを含む前記(4)記載の酸化方法。
(6)一酸化炭素および/または不飽和炭化水素の供給量が、塩化水素に対して5モル%以下である前記(4)または(5)記載の酸化方法。
The oxidation method of carbon monoxide and / or unsaturated hydrocarbon of the present invention has the following constitution.
(4) Supplying at least one selected from carbon monoxide and unsaturated hydrocarbon, hydrogen chloride, and oxygen, and in the presence of a catalyst in which a ruthenium compound is supported on a titanium oxide carrier, A method for oxidizing unsaturated hydrocarbons, characterized in that the catalyst is obtained by supporting a ruthenium compound on a titanium oxide support calcined at a calcining temperature of 200 to 500 ° C. A method for oxidizing carbon oxide and / or unsaturated hydrocarbon.
(5) The oxidation method according to (4), wherein the ruthenium compound contains ruthenium oxide.
(6) The oxidation method according to (4) or (5), wherein the supply amount of carbon monoxide and / or unsaturated hydrocarbon is 5 mol% or less with respect to hydrogen chloride.

本発明によれば、一酸化炭素および/または不飽和炭化水素が塩化水素と共存する反応系においても、長期間にわたって安定的に塩化水素を酸化して塩素を製造することができ、また一酸化炭素および/または不飽和炭化水素を酸化することができるという効果がある。   According to the present invention, even in a reaction system in which carbon monoxide and / or unsaturated hydrocarbon coexists with hydrogen chloride, chlorine can be produced by stably oxidizing hydrogen chloride over a long period of time. The effect is that carbon and / or unsaturated hydrocarbons can be oxidized.

本発明にかかる塩素の製造、並びに一酸化炭素および/または不飽和炭化水素の酸化は、触媒の存在下で行う。前記触媒は、酸化チタン担体にルテニウム化合物が担持されてなる。該触媒は、成形工程、焼成工程および担持工程の順に各工程を経て調製するのが好ましい。   The production of chlorine and the oxidation of carbon monoxide and / or unsaturated hydrocarbon according to the present invention are carried out in the presence of a catalyst. The catalyst is formed by supporting a ruthenium compound on a titanium oxide support. The catalyst is preferably prepared through each step in the order of a molding step, a firing step, and a supporting step.

<成形工程>
触媒を固定床反応器で使用する場合には、通常、成形される。本発明における成形工程とは、酸化チタンを含む担体、すなわち酸化チタン担体を成形する工程を意味する。
<Molding process>
When the catalyst is used in a fixed bed reactor, it is usually shaped. The forming step in the present invention means a step of forming a carrier containing titanium oxide, that is, a titanium oxide carrier.

酸化チタン担体を成形する方法としては、例えば押出成形法、打錠成形法、噴霧成形法等が挙げられる。得られる成形体の形状としては、例えば球状、円柱状、リング状、無定形の粒状等が挙げられる。また、成形後には、適当な大きさに粉砕分級してもよい。その際、得られる触媒の直径が10mm以下となるように粉砕分級するのが好ましい。触媒直径とは、球状の場合は球の直径、円柱状の場合は断面の円の直径、その他の形状の場合は任意の断面の最長径を意味する。   Examples of the method for forming the titanium oxide carrier include an extrusion molding method, a tableting molding method, and a spray molding method. Examples of the shape of the obtained molded body include a spherical shape, a cylindrical shape, a ring shape, and an amorphous granular shape. In addition, after molding, pulverization and classification to an appropriate size may be performed. At that time, it is preferable to perform pulverization and classification so that the diameter of the obtained catalyst is 10 mm or less. The catalyst diameter means the diameter of a sphere in the case of a sphere, the diameter of a circle of a cross section in the case of a cylinder, and the longest diameter of an arbitrary cross section in the case of other shapes.

酸化チタン担体は酸化チタンを含むことを要するが、必要に応じて、例えばアルミナ、シリカ、酸化ジルコニウム、酸化ニオブ等の酸化物や、活性炭等の1種以上と酸化チタンとからなる複合酸化物や、例示したこれらの混合物等を含有してもよい。特に、ルチル型の結晶構造を有する酸化チタンからなる担体が好ましく用いられる。酸化チタンは、ナトリウムの含有量、カルシウムの含有量が少ないものが好ましく用いられる。   The titanium oxide carrier needs to contain titanium oxide, but if necessary, for example, oxides such as alumina, silica, zirconium oxide, niobium oxide, composite oxides composed of one or more types of activated carbon and titanium oxide, These exemplified mixtures may be contained. In particular, a carrier made of titanium oxide having a rutile crystal structure is preferably used. As the titanium oxide, those having a small content of sodium and a small content of calcium are preferably used.

<焼成工程>
成形工程で得られた前記成形体を焼成工程で焼成して、酸化チタン担体を調製する。成形工程、焼成工程の順に酸化チタン担体を調製すると、該担体の強度を向上させることができる。
<Baking process>
The molded body obtained in the molding step is fired in the firing step to prepare a titanium oxide carrier. If the titanium oxide support is prepared in the order of the forming step and the firing step, the strength of the support can be improved.

ここで、成形体を焼成する焼成温度としては200〜500℃、好ましくは350〜450℃である。本発明では、成形体を通常の焼成温度(700℃程度)よりも敢えて低温(200〜500℃)の焼成温度で焼成して、酸化チタン担体を得る。このように比較的低温の焼成温度で焼成された酸化チタン担体にルテニウム化合物を担持して得られる触媒は、一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種が塩化水素と共存する反応系においても、酸化活性の低下を抑制することができる。この理由としては、以下の理由が推察される。   Here, the firing temperature for firing the molded body is 200 to 500 ° C, preferably 350 to 450 ° C. In the present invention, the compact is fired at a firing temperature lower than the normal firing temperature (about 700 ° C.) (200 to 500 ° C.) to obtain a titanium oxide carrier. Thus, a catalyst obtained by supporting a ruthenium compound on a titanium oxide support calcined at a relatively low calcining temperature is a reaction system in which at least one selected from carbon monoxide and unsaturated hydrocarbon coexists with hydrogen chloride. In this case, it is possible to suppress a decrease in oxidation activity. The reason for this is presumed as follows.

すなわち、酸化チタン担体の表面には、通常、複数の水酸基が存在する。この水酸基とルテニウム化合物との相互作用により、一酸化炭素や不飽和炭化水素に対する耐性が向上すると考えられる。本発明における200〜500℃という比較的低温の焼成温度で焼成された酸化チタン担体の表面には、通常の焼成温度で焼成された酸化チタン担体の表面よりも、多くの水酸基が存在する。つまり、200〜500℃の焼成温度で焼成された酸化チタン担体の表面には、水酸基が十分に存在しており、この水酸基とルテニウム化合物との相互作用により、前記酸化活性の低下が抑制されると推察される。   That is, a plurality of hydroxyl groups usually exist on the surface of the titanium oxide carrier. The interaction between the hydroxyl group and the ruthenium compound is considered to improve the resistance to carbon monoxide and unsaturated hydrocarbons. The surface of the titanium oxide carrier baked at a relatively low calcination temperature of 200 to 500 ° C. in the present invention has more hydroxyl groups than the surface of the titanium oxide carrier baked at a normal calcination temperature. That is, the surface of the titanium oxide support baked at a calcination temperature of 200 to 500 ° C. has a sufficient hydroxyl group, and the reduction of the oxidation activity is suppressed by the interaction between the hydroxyl group and the ruthenium compound. It is guessed.

一方、前記焼成温度が高すぎると、触媒の活性が低下する。また、焼成温度が低すぎると、担体の強度が低下する。   On the other hand, if the calcination temperature is too high, the activity of the catalyst decreases. On the other hand, if the firing temperature is too low, the strength of the carrier decreases.

焼成工程は、例えば不活性ガス、酸化性ガス、還元性ガス等のガス雰囲気下で行う。前記不活性ガスとしては、例えば窒素、ヘリウム等が挙げられ、前記酸化性ガスとしては、例えば空気、酸素、窒素と酸素との混合ガス等が挙げられ、前記還元性ガスとしては、例えば水素、水素と窒素との混合ガス等が挙げられ、これらは1種または2種以上を混合して用いてもよい。また、焼成時間としては、通常、1〜5時間程度、焼成温度までの昇温速度としては、100〜300℃/時間程度が適当である。   The firing step is performed in a gas atmosphere such as an inert gas, an oxidizing gas, or a reducing gas. Examples of the inert gas include nitrogen and helium. Examples of the oxidizing gas include air, oxygen, and a mixed gas of nitrogen and oxygen. Examples of the reducing gas include hydrogen, Examples thereof include a mixed gas of hydrogen and nitrogen, and these may be used alone or in combination. The firing time is usually about 1 to 5 hours, and the heating rate up to the firing temperature is about 100 to 300 ° C./hour.

<担持工程>
焼成工程で得られた前記酸化チタン担体にルテニウム化合物を担持して、本発明にかかる触媒を得る。前記ルテニウム化合物としては、例えばハロゲン化物、酸化物、オキソ酸やその塩、ハロゲノ酸やその塩、オキシハロゲン化物、オキシハロゲノ酸やその塩等が挙げられ、必要に応じて、その水和物を使用してもよいし、また、それらの2種以上を使用してもよい。
<Supporting process>
A ruthenium compound is supported on the titanium oxide support obtained in the calcining step to obtain the catalyst according to the present invention. Examples of the ruthenium compound include halides, oxides, oxo acids and salts thereof, halogeno acids and salts thereof, oxyhalides, oxyhalogeno acids and salts thereof, etc. They may be used, or two or more of them may be used.

特に、塩化物である塩化ルテニウムや、酸化物である酸化ルテニウムが好ましく用いられる。通常、塩化ルテニウムとしては、ルテニウムの酸化数が+3である三塩化ルテニウム(RuCl3)が用いられ、酸化ルテニウムとしては、ルテニウムの酸化数が+4である二酸化ルテニウム(RuO2)が用いられる。 In particular, ruthenium chloride as a chloride and ruthenium oxide as an oxide are preferably used. Usually, ruthenium trichloride (RuCl 3 ) having an oxidation number of ruthenium of +3 is used as ruthenium chloride, and ruthenium dioxide (RuO 2 ) having an oxidation number of ruthenium of +4 is used as ruthenium oxide.

また、前記ルテニウム化合物は、実質的にルテニウム化合物のみからなるものであってもよいし、ルテニウム化合物と他の化合物とからなる複合体、例えば酸化ルテニウムと他の酸化物とからなる複合酸化物であってもよい。特に、酸化ルテニウムを含むルテニウム化合物が好ましく用いられる。   The ruthenium compound may be substantially composed of only a ruthenium compound, or a complex composed of a ruthenium compound and another compound, for example, a complex oxide composed of ruthenium oxide and another oxide. There may be. In particular, a ruthenium compound containing ruthenium oxide is preferably used.

触媒におけるルテニウム化合物の担持率は、担体およびルテニウム化合物の合計質量に対するルテニウム化合物の質量比で表して、通常、0.1〜20質量%、好ましくは0.5〜15質量%、より好ましくは1〜15質量%である。   The loading ratio of the ruthenium compound in the catalyst is usually expressed as a mass ratio of the ruthenium compound to the total mass of the carrier and the ruthenium compound, and is usually 0.1 to 20% by mass, preferably 0.5 to 15% by mass, more preferably 1 ˜15 mass%.

ルテニウム化合物を酸化チタン担体に担持する方法としては、例えば酸化チタン担体にルテニウム化合物の溶液を含浸させる方法や、酸化チタン担体をルテニウム化合物の溶液に浸漬して、ルテニウム化合物を担体に吸着させる方法等が挙げられる。また、例えば特開2002−79093号公報に記載されているように、塩化ルテニウム等のルテニウム化合物を酸化チタン担体に担持した後、必要によりヒドラジン等で還元処理し、次いで酸素含有ガスの雰囲気下で焼成することにより、好適に調製することができる。   Examples of a method for supporting a ruthenium compound on a titanium oxide carrier include a method of impregnating a titanium oxide carrier with a ruthenium compound solution, a method of immersing a titanium oxide carrier in a ruthenium compound solution, and adsorbing the ruthenium compound onto the carrier. Is mentioned. Further, as described in, for example, JP-A-2002-79093, after a ruthenium compound such as ruthenium chloride is supported on a titanium oxide carrier, it is reduced with hydrazine or the like, if necessary, and then in an oxygen-containing gas atmosphere. It can prepare suitably by baking.

本発明では、このような触媒の存在下に、一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種と、塩化水素と、酸素とを供給する。そして、このような一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種が塩化水素と共存する反応系において、塩化水素を酸化して塩素を製造すると共に、一酸化炭素および/または不飽和炭化水素を酸化する。   In the present invention, in the presence of such a catalyst, at least one selected from carbon monoxide and unsaturated hydrocarbons, hydrogen chloride, and oxygen are supplied. In a reaction system in which at least one selected from carbon monoxide and unsaturated hydrocarbons coexists with hydrogen chloride, hydrogen chloride is oxidized to produce chlorine, and carbon monoxide and / or unsaturated carbonization is produced. Oxidizes hydrogen.

前記不飽和炭化水素としては、例えばエチレン、アセチレン、プロピレン、ブテン、ブタジエン等の炭素数2〜6の脂肪族炭化水素、シクロブテン、シクロペンテン、シクロペンタジエン、シクロヘキセン、シクロヘキサジエン等の炭素数4〜6の脂環式炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼン、ナフタレン等の炭素数6〜10の芳香族炭化水素等が挙げられるが、本発明は例示したこれらに限定されるものではない。   Examples of the unsaturated hydrocarbon include aliphatic hydrocarbons having 2 to 6 carbon atoms such as ethylene, acetylene, propylene, butene, and butadiene, and those having 4 to 6 carbon atoms such as cyclobutene, cyclopentene, cyclopentadiene, cyclohexene, and cyclohexadiene. Although C6-C10 aromatic hydrocarbons, such as alicyclic hydrocarbon, benzene, toluene, xylene, ethylbenzene, naphthalene, etc. are mentioned, this invention is not limited to these illustrated.

ここで、塩化水素を酸素で酸化して塩素を製造する場合において、原料の塩化水素や酸素、またはこれらと併せて供給し得る不活性ガス中に、その調製法や発生源等に起因して、不純物として一酸化炭素や不飽和炭化水素が含まれると、これら不純物が触媒を被毒して、その塩化水素に対する酸化活性を低下させることがある。従来では、かかる不純物を除去してから、塩化水素の酸化反応に供するか、これら不純物を二酸化炭素に酸化して無害化しつつ、塩化水素を塩素に酸化することが行われていた。   Here, in the case of producing chlorine by oxidizing hydrogen chloride with oxygen, in the raw material hydrogen chloride and oxygen, or in an inert gas that can be supplied together with these, due to its preparation method, generation source, etc. If carbon monoxide and unsaturated hydrocarbons are contained as impurities, these impurities may poison the catalyst and reduce its oxidation activity against hydrogen chloride. Conventionally, such impurities have been removed and then subjected to an oxidation reaction of hydrogen chloride, or hydrogen chloride is oxidized to chlorine while oxidizing these impurities to carbon dioxide to make them harmless.

しかし、前者の場合には、不純物の除去にコストがかかり、後者の場合でも、触媒活性の持続性が十分とはいえなかった。本発明によれば、一酸化炭素および/または不飽和炭化水素が塩化水素と共存する反応系においても、前記した理由から、長期間にわたり安定して一酸化炭素および/または不飽和炭化水素を酸化しつつ、塩素を製造することができる。   However, in the former case, it takes a cost to remove impurities, and even in the latter case, the sustainability of the catalyst activity is not sufficient. According to the present invention, even in a reaction system in which carbon monoxide and / or unsaturated hydrocarbons coexist with hydrogen chloride, carbon monoxide and / or unsaturated hydrocarbons are oxidized stably over a long period of time for the reasons described above. However, chlorine can be produced.

したがって、本発明によれば、原料の塩化水素として、例えば水素と塩素の反応により生成するガスや、塩酸の加熱により発生するガスの他、塩素化合物の脱塩化水素反応、熱分解反応または燃焼反応、ホスゲンによる有機化合物のカルボニル化反応、塩素による有機化合物の塩素化反応により発生する各種副生ガス、さらには焼却炉から発生する燃焼排ガス等、不純物として一酸化炭素や不飽和炭化水素を含み得るガスを用いることができる。また、これらの各反応系で回収され得る酸素や不活性ガスも用いることができる。なお、一酸化炭素および/または不飽和炭化水素の供給量は、塩化水素に対して5モル%以下が適当である。   Therefore, according to the present invention, as a raw material hydrogen chloride, for example, a gas generated by the reaction of hydrogen and chlorine, a gas generated by heating hydrochloric acid, a dehydrochlorination reaction, a pyrolysis reaction or a combustion reaction of a chlorine compound Carbon monoxide and unsaturated hydrocarbons may be included as impurities such as carbonylation reaction of organic compounds with phosgene, various by-product gases generated by chlorination reaction of organic compounds with chlorine, and combustion exhaust gas generated from incinerators Gas can be used. Further, oxygen and inert gas that can be recovered in each of these reaction systems can also be used. The supply amount of carbon monoxide and / or unsaturated hydrocarbon is suitably 5 mol% or less with respect to hydrogen chloride.

酸素源としては、通常、空気や純酸素を使用することができる。純酸素は、空気の圧力スイング法や深冷分離法等により調製することができる。酸素の使用量は、塩化水素に対し、通常、0.1モル倍以上、好ましくは0.2モル倍以上である。   Usually, air or pure oxygen can be used as the oxygen source. Pure oxygen can be prepared by an air pressure swing method, a cryogenic separation method, or the like. The amount of oxygen used is usually 0.1 mol times or more, preferably 0.2 mol times or more, relative to hydrogen chloride.

反応温度は、通常、100〜500℃、好ましくは200〜400℃、より好ましくは250〜350℃であるのがよい。反応温度が低すぎると、触媒の安定した活性を維持し難く、一方、反応温度が高すぎると、触媒成分が揮散し易くなる。反応圧力は、通常、0.1〜5MPa程度である。   The reaction temperature is usually 100 to 500 ° C, preferably 200 to 400 ° C, more preferably 250 to 350 ° C. If the reaction temperature is too low, it will be difficult to maintain the stable activity of the catalyst, while if the reaction temperature is too high, the catalyst components will be easily volatilized. The reaction pressure is usually about 0.1 to 5 MPa.

反応の方式としては、例えば固定床方式、移動床方式等が挙げられ、通常は、固定床気相流通方式や移動床気相流通方式等の気相反応が好ましく採用される。固定床気相流通方式は、反応生成ガスと触媒との分離が容易であり、また原料ガスと触媒との接触を十分に行うことができるので、高転化率を達成し易いという利点がある。一方、移動床気相流通方式は、反応器内の触媒交換を行い易いので、運転を停止せずに反応器内の触媒を交換できるという利点がある。   Examples of the reaction method include a fixed bed method, a moving bed method, and the like. Usually, a gas phase reaction such as a fixed bed gas phase circulation method and a moving bed gas phase circulation method is preferably employed. The fixed bed gas phase circulation method has an advantage that it is easy to achieve a high conversion rate because the reaction product gas and the catalyst can be easily separated and the raw material gas and the catalyst can be sufficiently brought into contact with each other. On the other hand, the moving bed gas phase circulation method has an advantage that the catalyst in the reactor can be replaced without stopping the operation because the catalyst in the reactor is easily exchanged.

反応を固定床気相流通方式で行う場合には、反応器に供給される一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種と、塩化水素と、酸素とを含むガス全体の供給速度は、触媒充填層の体積に対するガスの体積供給速度(0℃、1気圧換算)、すなわちGHSV(Gas Hourly Space Velocity)で表して、通常、10〜50000h-1である。また、触媒充填層の断面積(ガス供給方向に垂直な断面の面積)に対するガスの体積供給速度(0℃、1気圧換算)、すなわち所謂空塔基準のガス線速度で表して、通常、0.1〜20m/秒である。 When the reaction is carried out in a fixed bed gas phase flow system, the supply rate of the whole gas including at least one selected from carbon monoxide and unsaturated hydrocarbons, hydrogen chloride, and oxygen supplied to the reactor is The volume supply rate of the gas with respect to the volume of the catalyst packed bed (0 ° C., converted to 1 atm), that is, expressed as GHSV (Gas Hourly Space Velocity), is usually 10 to 50000 h −1 . The gas volume supply rate (converted to 0 at 1 ° C. and 1 atm.) With respect to the cross-sectional area of the catalyst packed bed (the cross-sectional area perpendicular to the gas supply direction), that is, the so-called superficial gas linear velocity is usually 0. .1 to 20 m / sec.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、以下の実施例中、ガスの供給速度である(ml/分)は、特記ない限り、0℃、1気圧の換算値である。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited only to a following example. In the following examples, the gas supply rate (ml / min) is a converted value of 0 ° C. and 1 atm unless otherwise specified.

<触媒の製造>
まず、酸化チタン〔堺化学(株)製の「STR−60R」、100%ルチル型〕50質量部と、α−アルミナ〔住友化学(株)製の「AES−12」〕100質量部と、チタニアゾル〔堺化学(株)製の「CSB」、チタニア含有量38質量%〕19.2質量部と、メチルセルロース〔信越化学(株)製の「メトローズ65SH−4000」〕3質量部とを混合し、次いで純水を加えて混練した。
<Manufacture of catalyst>
First, 50 parts by mass of titanium oxide [“STR-60R” manufactured by Sakai Chemical Co., Ltd., 100% rutile type] and 100 parts by mass of α-alumina [“AES-12” manufactured by Sumitomo Chemical Co., Ltd.] 19.2 parts by mass of titania sol [“CSB” manufactured by Sakai Chemical Co., Ltd., titania content 38% by mass] and 3 parts by mass of methyl cellulose [“Metroze 65SH-4000” manufactured by Shin-Etsu Chemical Co., Ltd.] Then, pure water was added and kneaded.

この混合物を直径3.0mmφの円柱状に押出し、乾燥した後、長さ4〜6mm程度に破砕した。得られた成形体を空気中で、室温から400℃まで2時間で昇温し、同温度で3時間焼成して白色の酸化チタン担体を得た。   This mixture was extruded into a cylindrical shape having a diameter of 3.0 mmφ, dried, and then crushed to a length of about 4 to 6 mm. The obtained molded body was heated in air from room temperature to 400 ° C. over 2 hours and fired at the same temperature for 3 hours to obtain a white titanium oxide carrier.

次いで、以下の要領にて、酸化ルテニウムを含むルテニウム化合物が担持された触媒を調製した。すなわち、上記で得られた酸化チタン担体23.8gに、塩化ルテニウム〔NEケムキャット(株)製の「RuCl3・nH2O」、Ru含有量40.0質量%〕0.922gを4.29gの純水に溶解して調製した水溶液を含浸させ、放置し、250℃で空気流通下2時間焼成し、青灰色の触媒を得た。酸化ルテニウム含有量の計算値は、式:RuO2/(RuO2+TiO2)×100=2.0質量%であった。 Next, a catalyst carrying a ruthenium compound containing ruthenium oxide was prepared in the following manner. That is, 4.29 g of ruthenium chloride [“RuCl 3 · nH 2 O” manufactured by NE Chemcat Co., Ltd., Ru content 40.0 mass%] 0.922 g was added to 23.8 g of the titanium oxide support obtained above. An aqueous solution prepared by dissolving in pure water was impregnated, allowed to stand, and calcined at 250 ° C. for 2 hours under air flow to obtain a blue-gray catalyst. The calculated value of the ruthenium oxide content was the formula: RuO 2 / (RuO 2 + TiO 2 ) × 100 = 2.0% by mass.

<評価>
得られた触媒を用いて酸化反応(高SV(Space Velocity)条件下での加速寿命試験)を行った。すなわち、触媒0.5gを、内径13mmの石英製反応管に充填し、ここに一酸化炭素ガスを4.5ml/分、塩化水素ガスを150ml/分(0.40モル/時間)、酸素ガスを75ml/分、および窒素ガスを40.5ml/分の速度で常圧下に供給しながら、反応管を290℃に加熱して、反応圧力0.1MPaで50時間酸化反応を行った。一酸化炭素ガスの供給量は、塩化水素ガスに対して3モル%である。
<Evaluation>
An oxidation reaction (accelerated life test under high SV (Space Velocity) conditions) was performed using the obtained catalyst. That is, 0.5 g of catalyst is packed in a quartz reaction tube having an inner diameter of 13 mm, where carbon monoxide gas is 4.5 ml / min, hydrogen chloride gas is 150 ml / min (0.40 mol / hour), oxygen gas Was supplied at a rate of 75 ml / min and nitrogen gas at a rate of 40.5 ml / min under normal pressure, the reaction tube was heated to 290 ° C., and an oxidation reaction was carried out at a reaction pressure of 0.1 MPa for 50 hours. The supply amount of carbon monoxide gas is 3 mol% with respect to hydrogen chloride gas.

反応開始から1.5時間、19時間、および44時間経過した各時点において、塩化水素の転化率と一酸化炭素の転化率とを求めた。各転化率の測定方法を以下に示すと共に、その結果を触媒層温度と併せて表1に示す。なお、表1中、「担体焼成温度」とは、前記酸化チタン担体の調製において、成形体を焼成する際の温度を意味する。   At each time point 1.5 hours, 19 hours, and 44 hours after the start of the reaction, the conversion rate of hydrogen chloride and the conversion rate of carbon monoxide were determined. The measurement methods for the respective conversion rates are shown below, and the results are shown in Table 1 together with the catalyst layer temperature. In Table 1, “carrier firing temperature” means the temperature at which the molded body is fired in the preparation of the titanium oxide carrier.

(塩化水素の転化率)
反応管出口のガスを30質量%ヨウ化カリウム水溶液に流通させることによりサンプリングを20分間行い、ヨウ素滴定法により塩素の生成量を測定し、塩素の生成速度(モル/時間)を求めた。この塩素の生成速度と、前記塩化水素ガスの供給速度とを下記式(I)に当てはめて、塩化水素の転化率を算出した。

Figure 0005249717
(Hydrogen chloride conversion)
Sampling was performed for 20 minutes by flowing the gas at the outlet of the reaction tube through a 30% by mass potassium iodide aqueous solution, the amount of chlorine produced was measured by the iodometric titration method, and the chlorine production rate (mol / hour) was determined. The conversion rate of hydrogen chloride was calculated by applying the chlorine generation rate and the hydrogen chloride gas supply rate to the following formula (I).
Figure 0005249717

(一酸化炭素の転化率)
上記サンプリング開始から12分〜19分の間、ヨウ化カリウム水溶液に吸収されなかった残ガスをガスバックに捕集し、ガスクロマトグラフィーで分析して、一酸化炭素の残存量(モル)と二酸化炭素の生成量(モル)とを求め、これらを下記式(II)に当てはめて、一酸化炭素の転化率を算出した。

Figure 0005249717
(Conversion rate of carbon monoxide)
Residual gas that was not absorbed in the potassium iodide aqueous solution for 12 to 19 minutes from the start of the sampling was collected in a gas bag, analyzed by gas chromatography, and the residual amount (mole) of carbon monoxide and dioxide dioxide. The amount of carbon produced (mol) was determined and applied to the following formula (II) to calculate the conversion of carbon monoxide.
Figure 0005249717

[比較例]
<触媒の製造>
まず、成形体の焼成温度を、400℃に代えて800℃にした以外は、前記実施例と同様にして、白色の酸化チタン担体を得た。次いで、前記実施例と同様にして、酸化ルテニウムを含むルテニウム化合物が担持された青灰色の触媒を得た。酸化ルテニウム含有量の計算値は、式:RuO2/(RuO2+TiO2)×100=2.0質量%であった。
[Comparative example]
<Manufacture of catalyst>
First, a white titanium oxide carrier was obtained in the same manner as in the above example except that the firing temperature of the compact was changed to 800 ° C. instead of 400 ° C. Next, a blue-gray catalyst on which a ruthenium compound containing ruthenium oxide was supported was obtained in the same manner as in the above Example. The calculated value of the ruthenium oxide content was the formula: RuO 2 / (RuO 2 + TiO 2 ) × 100 = 2.0% by mass.

<評価>
得られた触媒を用いて、前記実施例と同様にして酸化反応を行った。そして、反応開始から1.5時間、20時間、および44時間経過した各時点において、前記実施例と同様にして、塩化水素の転化率と一酸化炭素の転化率とを求めた。その結果を触媒層温度と併せて表1に示す。
<Evaluation>
Using the obtained catalyst, an oxidation reaction was carried out in the same manner as in the above Example. Then, at each time point after 1.5 hours, 20 hours, and 44 hours from the start of the reaction, the conversion rate of hydrogen chloride and the conversion rate of carbon monoxide were determined in the same manner as in the above example. The results are shown in Table 1 together with the catalyst layer temperature.

Figure 0005249717
Figure 0005249717

表1から明らかなように、200〜500℃の焼成温度で焼成された酸化チタン担体にルテニウム化合物を担持して得られた触媒を用いた実施例は、500℃より高い焼成温度で焼成された酸化チタン担体にルテニウム化合物を担持して得られた触媒を用いた比較例に対し、塩化水素および一酸化炭素の各転化率が、時間の経過に伴って低下するのを抑制できているのがわかる。   As is clear from Table 1, the examples using the catalyst obtained by supporting the ruthenium compound on the titanium oxide support calcined at a calcining temperature of 200 to 500 ° C. were calcined at a calcining temperature higher than 500 ° C. Compared to a comparative example using a catalyst obtained by supporting a ruthenium compound on a titanium oxide carrier, each conversion rate of hydrogen chloride and carbon monoxide can be suppressed from decreasing over time. Recognize.

Claims (2)

一酸化炭素および不飽和炭化水素から選ばれる少なくとも1種と、塩化水素と、酸素とを供給して、酸化チタン担体にルテニウム化合物が担持されてなる触媒の存在下に一酸化炭素および/または不飽和炭化水素を酸化する方法であって、
前記触媒が、200〜500℃の焼成温度で1〜5時間焼成された酸化チタン担体に、該担体およびルテニウム化合物の合計質量に対して0.1〜20質量%のルテニウム化合物を担持して得られるものであり、かつ一酸化炭素および/または不飽和炭化水素の供給量が、塩化水素に対して5モル%以下であることを特徴とする一酸化炭素および/または不飽和炭化水素の酸化方法。
At least one selected from carbon monoxide and unsaturated hydrocarbon, hydrogen chloride, and oxygen are supplied, and in the presence of a catalyst in which a ruthenium compound is supported on a titanium oxide support, carbon monoxide and / or unsaturated carbon is present. A method for oxidizing saturated hydrocarbons, comprising:
The catalyst is obtained by supporting 0.1 to 20% by mass of a ruthenium compound with respect to the total mass of the carrier and the ruthenium compound on a titanium oxide support calcined at a calcining temperature of 200 to 500 ° C. for 1 to 5 hours. are those der is, and the supply amount of carbon monoxide and / or unsaturated hydrocarbons, carbon monoxide and / or unsaturated hydrocarbons to 5 mol% or less der wherein Rukoto against hydrogen chloride Oxidation method.
前記ルテニウム化合物が、酸化ルテニウムを含む請求項記載の酸化方法。 The ruthenium compound, oxidizing method of claim 1 comprising ruthenium oxide.
JP2008280264A 2008-10-30 2008-10-30 Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon Expired - Fee Related JP5249717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280264A JP5249717B2 (en) 2008-10-30 2008-10-30 Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280264A JP5249717B2 (en) 2008-10-30 2008-10-30 Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon

Publications (2)

Publication Number Publication Date
JP2010105859A JP2010105859A (en) 2010-05-13
JP5249717B2 true JP5249717B2 (en) 2013-07-31

Family

ID=42295686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280264A Expired - Fee Related JP5249717B2 (en) 2008-10-30 2008-10-30 Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon

Country Status (1)

Country Link
JP (1) JP5249717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7538561B1 (en) 2023-04-06 2024-08-22 上海貝晋国際貿易有限公司 Foldable Storage Cabinet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870596B2 (en) * 1998-02-16 2007-01-17 住友化学株式会社 Chlorine production method
JP3799852B2 (en) * 1998-04-07 2006-07-19 住友化学株式会社 Supported ruthenium oxide catalyst and method for producing chlorine
JP3775179B2 (en) * 1999-08-05 2006-05-17 住友化学株式会社 Method for producing supported ruthenium oxide catalyst and method for producing chlorine
JP2002226205A (en) * 2001-01-29 2002-08-14 Sumitomo Chem Co Ltd Oxidation method for carbon monoxide
JP4081597B2 (en) * 2001-12-04 2008-04-30 住友化学株式会社 Catalytic oxidation method
JP4400042B2 (en) * 2002-12-05 2010-01-20 住友化学株式会社 Supported ruthenium oxide catalyst and method for producing chlorine
JP2005289800A (en) * 2004-03-22 2005-10-20 Sumitomo Chemical Co Ltd Method of producing chlorine
WO2006135074A1 (en) * 2005-06-13 2006-12-21 Sumitomo Chemical Company, Limited Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7538561B1 (en) 2023-04-06 2024-08-22 上海貝晋国際貿易有限公司 Foldable Storage Cabinet

Also Published As

Publication number Publication date
JP2010105859A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5577319B2 (en) Process for regenerating a ruthenium-containing or ruthenium compound-containing catalyst poisoned with sulfur in the form of a sulfur compound
JP6595022B2 (en) Catalyst and method for producing chlorine by gas phase oxidation
JP5642703B2 (en) Method for regenerating a ruthenium oxide-containing catalyst for hydrogen chloride oxidation
JP6615670B2 (en) Catalyst and method for chlorine production by gas phase oxidation
KR20110107350A (en) Catalyst comprising ruthenium and nickel for the oxidation of hydrogen chloride
RU2008150585A (en) METHOD FOR PRODUCING CHLORINE BY GAS PHASE OXIDATION
JP4438771B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP2009022917A (en) Activation method for chlorine production catalyst and method for producing chlorine
JP2020520797A (en) Method for regenerating poisoned catalysts containing ruthenium or ruthenium compounds
JP2006500216A (en) Catalysts for the catalytic oxidation of hydrogen chloride
WO2006135074A1 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
JP5572641B2 (en) Catalyst for oxidation of hydrogen chloride containing ruthenium and silver and / or calcium
JP5249717B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP5249716B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP4487975B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
KR20120036956A (en) Method for hydrogen chloride oxidation at a catalyst having low surface roughness
EP3900827A1 (en) Hydrogen chloride oxidation reaction catalyst for preparing chlorine, and preparation method therefor
JP4839661B2 (en) Chlorine production method
JP5041848B2 (en) Method for treating halogenated aliphatic hydrocarbon-containing gas
JP2019503853A (en) Catalyst and method for chlorine production by gas phase oxidation
JP5365540B2 (en) Method for oxidizing organic compounds
JP2012200700A (en) Method for producing bromine
JP2004276012A (en) Production method for catalyst for producing chlorine
JP4432876B2 (en) Catalyst for chlorine production and method for producing chlorine
JP2012223768A (en) Catalyst and method for decomposing ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees