Nothing Special   »   [go: up one dir, main page]

JP4438771B2 - Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon - Google Patents

Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon Download PDF

Info

Publication number
JP4438771B2
JP4438771B2 JP2006162054A JP2006162054A JP4438771B2 JP 4438771 B2 JP4438771 B2 JP 4438771B2 JP 2006162054 A JP2006162054 A JP 2006162054A JP 2006162054 A JP2006162054 A JP 2006162054A JP 4438771 B2 JP4438771 B2 JP 4438771B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen chloride
catalyst
carbon monoxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006162054A
Other languages
Japanese (ja)
Other versions
JP2007021484A (en
Inventor
カルロス クナップ
康彦 森
雅之 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006162054A priority Critical patent/JP4438771B2/en
Publication of JP2007021484A publication Critical patent/JP2007021484A/en
Application granted granted Critical
Publication of JP4438771B2 publication Critical patent/JP4438771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Description

本発明は、酸化用触媒を製造する方法に関するものである。また、本発明は、この方法により製造された触媒を用いて、塩化水素を酸素で酸化して塩素を製造する方法にも関係している。さらに、本発明は、上記方法により製造された触媒を用いて、一酸化炭素及び/又は不飽和炭化水素を酸素で酸化する方法にも関係している。   The present invention relates to a method for producing an oxidation catalyst. The present invention also relates to a method for producing chlorine by oxidizing hydrogen chloride with oxygen using the catalyst produced by this method. Furthermore, the present invention also relates to a method for oxidizing carbon monoxide and / or unsaturated hydrocarbons with oxygen using the catalyst produced by the above method.

塩化水素を酸素で酸化して塩素を製造するための触媒には、活性の点からルテニウムを用いるのが有効であり、例えば、特開平9−67103号公報(特許文献1)や特開平10−194705号公報(特許文献2)には、金属ルテニウムやルテニウム化合物、これらが担体に担持されてなる担持金属ルテニウムや担持ルテニウム化合物を、上記触媒に用いることが開示されている。また、これらルテニウム触媒は、一酸化炭素や不飽和炭化水素を酸素で酸化するための触媒としても有用であり、例えば、上記塩素の製造の際、原料の塩化水素含有ガス中に不純物として一酸化炭素や不飽和炭化水素が含まれる場合、これら不純物を酸素で二酸化炭素に酸化して無害化するための触媒としても機能しうる。   As a catalyst for producing chlorine by oxidizing hydrogen chloride with oxygen, it is effective to use ruthenium from the viewpoint of activity. For example, JP-A-9-67103 (Patent Document 1) and JP-A-10-10 Japanese Laid-Open Patent Publication No. 194705 (Patent Document 2) discloses that a metal ruthenium or a ruthenium compound, a supported metal ruthenium or a supported ruthenium compound in which these are supported on a carrier are used for the catalyst. These ruthenium catalysts are also useful as catalysts for oxidizing carbon monoxide and unsaturated hydrocarbons with oxygen. For example, during the production of chlorine, the ruthenium catalysts are oxidized as impurities in the raw material hydrogen chloride-containing gas. When carbon or unsaturated hydrocarbon is contained, it can also function as a catalyst for oxidizing these impurities to carbon dioxide with oxygen to make them harmless.

例えば、特開2001−246231号公報(特許文献3)には、金属ルテニウム及び/又はルテニウム化合物を含有する触媒を用いて、塩化水素含有ガス中の一酸化炭素を酸化すると共に、該ガス中の塩化水素を酸素で酸化することが開示されている。また、特開2002−226205号公報(特許文献4)には、ルテニウムの複合酸化物を含有する触媒を用いて、塩化水素含有ガス中の一酸化炭素を酸化すると共に、該ガス中の塩化水素を酸素で酸化することが開示されている。   For example, Japanese Patent Laid-Open No. 2001-246231 (Patent Document 3) uses a catalyst containing metal ruthenium and / or a ruthenium compound to oxidize carbon monoxide in a hydrogen chloride-containing gas, It is disclosed to oxidize hydrogen chloride with oxygen. Japanese Patent Laid-Open No. 2002-226205 (Patent Document 4) discloses that a catalyst containing a ruthenium complex oxide is used to oxidize carbon monoxide in a hydrogen chloride-containing gas and hydrogen chloride in the gas. Is oxidized with oxygen.

特開平9−67103号公報JP-A-9-67103 特開平10−194705号公報JP-A-10-194705 特開2001−246231号公報JP 2001-246231 A 特開2002−226205号公報JP 2002-226205 A

特許文献1〜4に開示のルテニウム触媒は、酸化活性が低下し易いという問題があった。そこで、本発明者は、酸化活性の持続性に優れるルテニウム触媒を開発すべく鋭意研究を行った結果、酸化ルテニウムを特定のガスで接触処理することにより、目的に適う触媒を製造できることを見出し、本発明を完成するに至った。   The ruthenium catalysts disclosed in Patent Documents 1 to 4 have a problem that the oxidation activity tends to decrease. Therefore, as a result of earnest research to develop a ruthenium catalyst having excellent sustainability of oxidation activity, the present inventor has found that a catalyst suitable for the purpose can be produced by contact treatment of ruthenium oxide with a specific gas, The present invention has been completed.

すなわち、本発明は、酸化ルテニウムを、塩化水素及び/又は塩素を含有し、酸素を実質的に含有しないガスと接触させることにより、酸化用触媒を製造する方法を提供するものである。   That is, the present invention provides a method for producing an oxidation catalyst by bringing ruthenium oxide into contact with a gas containing hydrogen chloride and / or chlorine and substantially no oxygen.

また、本発明によれば、上記方法により製造された触媒の存在下に、塩化水素を酸素で酸化することにより、塩素を製造する方法も提供される。さらに、本発明によれば、上記方法により製造された触媒の存在下に、一酸化炭素及び/又は不飽和炭化水素を酸素で酸化する方法も提供される。   The present invention also provides a method for producing chlorine by oxidizing hydrogen chloride with oxygen in the presence of the catalyst produced by the above method. Furthermore, the present invention also provides a method for oxidizing carbon monoxide and / or unsaturated hydrocarbons with oxygen in the presence of the catalyst produced by the above method.

本発明によれば、酸化活性の持続性に優れる触媒を製造することができ、こうして得られる触媒を用いることにより、塩化水素や一酸化炭素、不飽和炭化水素の酸素酸化を長期間にわたり安定して行うことができる。   According to the present invention, it is possible to produce a catalyst having excellent oxidation activity sustainability, and by using the catalyst thus obtained, oxygen oxidation of hydrogen chloride, carbon monoxide, and unsaturated hydrocarbon can be stabilized over a long period of time. Can be done.

本発明の酸化用触媒の製造方法において、原料として用いられる酸化ルテニウムは、実質的に酸化ルテニウムのみからなるものであってもよいし、酸化ルテニウムが担体に担持されてなる担持酸化ルテニウムであってもよいし、酸化ルテニウムと他の酸化物とからなる複合酸化物や混合酸化物であってもよい。中でも、担持酸化ルテニウムが好ましく用いられる。   In the method for producing an oxidation catalyst of the present invention, the ruthenium oxide used as a raw material may be substantially composed of only ruthenium oxide, or is supported ruthenium oxide in which ruthenium oxide is supported on a carrier. Alternatively, it may be a complex oxide or mixed oxide composed of ruthenium oxide and another oxide. Among these, supported ruthenium oxide is preferably used.

担持酸化ルテニウムを用いる場合、酸化ルテニウムを担持するための担体としては、例えば、アルミナ、シリカ、酸化チタン、酸化ジルコニウム、酸化ニオブの如き酸化物や、活性炭などが挙げられ、必要に応じてそれらの2種以上、例えば上記酸化物の2種以上からなる複合酸化物や混合酸化物などを用いてもよい。中でも、ルチル型の結晶構造を有する酸化チタンからなる担体が好ましく用いられる。   When using the supported ruthenium oxide, examples of the carrier for supporting the ruthenium oxide include oxides such as alumina, silica, titanium oxide, zirconium oxide, niobium oxide, activated carbon, and the like. A composite oxide or mixed oxide composed of two or more, for example, two or more of the above oxides may be used. Among these, a carrier made of titanium oxide having a rutile crystal structure is preferably used.

担持酸化ルテニウムは、例えば特開2002−79093号公報に記載される如く、塩化ルテニウムなどのルテニウム化合物を担体に担持した後、必要によりヒドラジンなどで還元処理し、次いで酸素含有ガスの雰囲気下に焼成することにより、好適に調製することができる。また、その際、ルテニウム化合物を担体に担持する方法としては、例えば、担体にルテニウム化合物の溶液を含浸させる方法や、担体をルテニウム化合物の溶液に浸漬して、ルテニウム化合物を担体に吸着させる方法などが挙げられる。   For example, as described in JP-A-2002-79093, the supported ruthenium oxide is supported on a carrier with a ruthenium compound such as ruthenium chloride, and then reduced with hydrazine if necessary, and then calcined in an atmosphere containing an oxygen-containing gas. By doing so, it can be suitably prepared. At that time, examples of the method of supporting the ruthenium compound on the carrier include a method of impregnating the carrier with the ruthenium compound solution, a method of immersing the carrier in the ruthenium compound solution, and adsorbing the ruthenium compound to the carrier. Is mentioned.

担持酸化ルテニウムにおける酸化ルテニウムの担持率は、担体及び酸化ルテニウムの合計重量に対する酸化ルテニウムの重量比で表して、通常0.1〜20重量%、好ましくは0.5〜15重量%、さらに好ましくは1〜15重量%である。なお、通常、酸化ルテニウムにおけるルテニウムの酸化数は+4であり、酸化ルテニウムとしては二酸化ルテニウム(RuO2)であるが、他の酸化数のルテニウムないし他の形態の酸化ルテニウムが含まれていてもよい。 The loading of ruthenium oxide in the supported ruthenium oxide is expressed as a weight ratio of ruthenium oxide to the total weight of the carrier and ruthenium oxide, and is usually 0.1 to 20% by weight, preferably 0.5 to 15% by weight, more preferably 1 to 15% by weight. Normally, the ruthenium oxide in ruthenium oxide has an oxidation number of +4, and the ruthenium oxide is ruthenium dioxide (RuO 2 ). However, ruthenium oxide having other oxidation numbers or other forms of ruthenium oxide may be included. .

本発明では、上記の如き酸化ルテニウムを、所定のガス、すなわち、塩化水素及び/又は塩素を含有し、酸素を実質的に含有しないガスで接触処理することにより、酸化用触媒を製造する。かかる方法により、酸化活性が低下し難い、すなわち酸化活性の持続性に優れる酸化用触媒を製造することができる。   In the present invention, an oxidation catalyst is produced by contact-treating ruthenium oxide as described above with a predetermined gas, that is, a gas containing hydrogen chloride and / or chlorine and substantially not containing oxygen. By such a method, it is possible to produce an oxidation catalyst in which the oxidation activity is difficult to decrease, that is, the oxidation activity has excellent durability.

上記ガスが塩化水素を含有する場合、その濃度は通常1〜100体積%、好ましくは50〜100体積%である。また、上記ガスが塩素を含有する場合、その濃度は通常0.01〜100体積%、好ましくは0.02〜5体積%である。上記ガスとしては、塩化水素を含有するものが特に好ましく用いられる。また、上記ガスは、酸素を実質的に含有しないガスであり、例えば、酸素を全く含有しないか、酸素を含有しても、その含有量が塩化水素及び塩素の合計量の1体積%以下のガスである。なお、上記ガスに含まれうる塩化水素及び塩素以外の成分としては、例えば、窒素やヘリウムなどの不活性ガスが挙げられる。   When the said gas contains hydrogen chloride, the density | concentration is 1-100 volume% normally, Preferably it is 50-100 volume%. Moreover, when the said gas contains chlorine, the density | concentration is 0.01-100 volume% normally, Preferably it is 0.02-5 volume%. As the gas, a gas containing hydrogen chloride is particularly preferably used. In addition, the gas is a gas that does not substantially contain oxygen. For example, the gas does not contain oxygen at all, or even if oxygen is contained, the content is 1% by volume or less of the total amount of hydrogen chloride and chlorine. Gas. Examples of components other than hydrogen chloride and chlorine that can be included in the gas include inert gases such as nitrogen and helium.

接触処理の温度は、高い方が効果的で、あまり低いと長時間を要すことから、通常200℃以上、好ましくは400℃以上、さらに好ましくは500℃以上であるが、高過ぎると、ルテニウムが揮散し易くなるため、通常1000℃以下、好ましくは700℃以下、さらに好ましくは650℃以下である。また、接触処理の時間は、高温の場合は短めにし、低温の場合は長めにするのがよく、通常1分〜100時間、好ましくは5分〜24時間、さらに好ましくは15分〜4時間である。   The higher the temperature of the contact treatment is, the more effective it is. If it is too low, it takes a long time. Therefore, it is usually 200 ° C. or higher, preferably 400 ° C. or higher, more preferably 500 ° C. or higher. Is usually 1000 ° C. or less, preferably 700 ° C. or less, and more preferably 650 ° C. or less. The contact treatment time should be shorter at high temperatures and longer at low temperatures, usually 1 minute to 100 hours, preferably 5 minutes to 24 hours, more preferably 15 minutes to 4 hours. is there.

接触処理は、例えば、静置回分方式で行ってもよいし、固定床気相流通方式で行ってもよいし、流動床気相流通方式で行ってもよい。固定床気相流通方式で行う場合、上記ガスの供給速度は、酸化ルテニウム充填層の体積に対するガスの体積供給速度(0℃、1気圧換算)、すなわちGHSVで表して、通常0.01〜50000h-1、好ましくは1〜10000h-1、さらに好ましくは10〜1000h-1である。 The contact treatment may be performed, for example, by a stationary batch method, a fixed bed vapor phase circulation method, or a fluidized bed vapor phase circulation method. In the case of the fixed bed gas phase circulation method, the gas supply rate is usually 0.01 to 50000 h, expressed in terms of the volume supply rate of the ruthenium oxide packed bed (0 ° C., 1 atm), that is, GHSV. −1 , preferably 1 to 10000 h −1 , more preferably 10 to 1000 h −1 .

酸化用触媒の形状としては、例えば、球状、円柱状、リング状、無定形の粒状などが挙げられる。また、その成型法としては、例えば、押出成型、打錠成型、噴霧成型などが挙げられ、成型後、適当な大きさに粉砕分級してもよい。その際、触媒直径は10mm以下とするのがよく、ここで、触媒直径とは、球状の場合は球の直径、円柱状の場合は断面の円の直径、その他の形状の場合は任意の断面の最長径を意味する。なお、成型は、上記の接触処理後に行ってもよいし、接触処理前に行っておいてもよい。酸化ルテニウムとして担持酸化ルテニウムを用いる場合は、担体を成型しておき、そこにルテニウム化合物を担持させる形態を採用することもできる。また、酸化用触媒は、必要に応じて、不活性物質で希釈して使用してもよい。   Examples of the shape of the oxidation catalyst include a spherical shape, a cylindrical shape, a ring shape, and an amorphous particle shape. Moreover, as the molding method, for example, extrusion molding, tableting molding, spray molding and the like can be mentioned, and after molding, pulverization and classification to an appropriate size may be performed. At that time, the catalyst diameter should be 10 mm or less, where the catalyst diameter is the diameter of a sphere in the case of a sphere, the diameter of a circle of a cross section in the case of a cylinder, and any cross section in the case of other shapes. Means the longest diameter. Note that the molding may be performed after the above contact treatment or may be performed before the contact treatment. When using supported ruthenium oxide as ruthenium oxide, it is possible to adopt a form in which a carrier is molded and a ruthenium compound is supported thereon. Further, the oxidation catalyst may be diluted with an inert substance as necessary.

こうして得られる酸化用触媒は、通常、水素熱重量測定において、重量減が終了する時点の温度が高いという特徴を有している。すなわち、この酸化用触媒を、後述の実施例に示す如く、水素ガスの気流下に徐々に昇温していくと、その重量減が終了する時点の温度、すなわち水素による還元が終了する時点の温度が、具体的には180℃以上という高い値となる。そして、この温度が高いほど、酸化活性の持続性が高くなる傾向にある。   The oxidation catalyst thus obtained is usually characterized by a high temperature at the end of weight loss in hydrogen thermogravimetry. That is, as shown in the examples to be described later, when the temperature of this oxidation catalyst is gradually raised in a hydrogen gas stream, the temperature at the time when the weight loss ends, that is, at the time when the reduction by hydrogen ends. Specifically, the temperature is as high as 180 ° C. or higher. And it exists in the tendency for the sustainability of oxidation activity to become high, so that this temperature is high.

以上説明した本発明による酸化用触媒は、各種基質を酸素で酸化するための触媒として有用である。中でも、本発明による酸化用触媒は、塩化水素を基質とし、これを酸素で酸化するための触媒として好適に用いることができ、これにより、長期間にわたり安定して塩素を製造することができる。   The oxidation catalyst according to the present invention described above is useful as a catalyst for oxidizing various substrates with oxygen. Among them, the oxidation catalyst according to the present invention can be suitably used as a catalyst for oxidizing hydrogen chloride as a substrate and oxidizing it with oxygen, whereby chlorine can be produced stably over a long period of time.

また、本発明による酸化用触媒は、一酸化炭素や不飽和炭化水素を基質とし、これを酸素で酸化するための触媒としても効果的であり、ここで、不飽和炭化水素の例としては、エチレン、アセチレン、プロピレン、ブテン、ブタジエンの如き脂肪族炭化水素、シクロペンテン、シクロペンタジエン、シクロヘキセン、シクロヘキサジエンの如き脂環式炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼンの如き芳香族炭化水素を挙げることができる。   Further, the oxidation catalyst according to the present invention is effective as a catalyst for oxidizing carbon monoxide or unsaturated hydrocarbon as a substrate and oxidizing it with oxygen. Here, as examples of unsaturated hydrocarbons, Mention may be made of aliphatic hydrocarbons such as ethylene, acetylene, propylene, butene and butadiene, alicyclic hydrocarbons such as cyclopentene, cyclopentadiene, cyclohexene and cyclohexadiene, and aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene. it can.

また、塩化水素を酸素で酸化して塩素を製造する場合において、原料の塩化水素含有ガス中に、その調製法や発生源などに起因して、不純物として一酸化炭素や不飽和炭化水素が含まれると、これら不純物が触媒を被毒して、その塩化水素酸化活性を低下させることがある。そこで従来技術においては、かかる不純物を除去してから、塩化水素の酸化反応に供するか、これら不純物を二酸化炭素に酸化して無害化しつつ、塩化水素を塩素に酸化することが行われていた。しかし後者の場合でも、触媒活性の持続性が十分とはいえなかった。本発明による酸化用触媒は、このように、原料ガスとして一酸化炭素及び/又は不飽和炭化水素と塩化水素とを含有するガスを用いて、一酸化炭素及び/又は不飽和炭化水素を酸素で酸化すると共に、塩化水素を酸素で酸化するための触媒としても好適に用いることができ、これにより、長期間にわたり安定して、一酸化炭素及び/又は不飽和炭化水素を酸化しつつ、塩素を製造することができる。   In addition, when chlorine is produced by oxidizing hydrogen chloride with oxygen, carbon monoxide and unsaturated hydrocarbons are contained as impurities in the raw material hydrogen chloride-containing gas due to its preparation method and source. These impurities can poison the catalyst and reduce its hydrogen chloride oxidation activity. Therefore, in the prior art, such impurities are removed and then subjected to an oxidation reaction of hydrogen chloride, or hydrogen chloride is oxidized to chlorine while oxidizing these impurities to carbon dioxide to make them harmless. However, even in the latter case, the sustainability of the catalyst activity was not sufficient. As described above, the oxidation catalyst according to the present invention uses carbon monoxide and / or a gas containing unsaturated hydrocarbon and hydrogen chloride as a raw material gas, and converts carbon monoxide and / or unsaturated hydrocarbon with oxygen. In addition to oxidation, it can also be suitably used as a catalyst for oxidizing hydrogen chloride with oxygen, whereby it can stably oxidize carbon monoxide and / or unsaturated hydrocarbons over a long period of time while oxidizing chlorine. Can be manufactured.

よって、本発明による酸化用触媒を用いて塩化水素を酸素で酸化して塩素を製造する場合、原料の塩化水素含有ガスとしては、例えば、水素と塩素の反応により生成するガスや、塩酸の加熱により発生するガスの他、塩素化合物の脱塩化水素反応、熱分解反応又は燃焼反応、ホスゲンによる有機化合物のカルボニル化反応、塩素による有機化合物の塩素化反応により発生する各種副生ガス、さらには焼却炉から発生する燃焼排ガスなど、不純物として一酸化炭素や不飽和炭化水素を含みうるガスも用いることができる。なお、塩化水素に対する一酸化炭素及び/又は不飽和炭化水素の含有割合は、5モル%以下程度であるのがよい。   Therefore, when producing chlorine by oxidizing hydrogen chloride with oxygen using the oxidation catalyst according to the present invention, the raw material hydrogen chloride-containing gas includes, for example, a gas produced by the reaction of hydrogen and chlorine, or heating of hydrochloric acid. In addition to gas generated by chlorination, dehydrochlorination reaction, pyrolysis reaction or combustion reaction of chlorine compounds, carbonylation reaction of organic compounds with phosgene, various by-product gases generated by chlorination reaction of organic compounds with chlorine, and incineration Gases that can contain carbon monoxide or unsaturated hydrocarbons as impurities, such as combustion exhaust gas generated from a furnace, can also be used. The content ratio of carbon monoxide and / or unsaturated hydrocarbon to hydrogen chloride is preferably about 5 mol% or less.

酸素源としては、通常、空気や純酸素が使用される。純酸素は、空気の圧力スイング法や深冷分離法などにより、調製することができる。酸素の使用量は、基質に対し、通常0.1モル倍以上、好ましくは0.2モル倍以上である。   Usually, air or pure oxygen is used as the oxygen source. Pure oxygen can be prepared by an air pressure swing method, a cryogenic separation method, or the like. The amount of oxygen used is usually 0.1 mol times or more, preferably 0.2 mol times or more, relative to the substrate.

反応温度は、通常100〜500℃、好ましくは200〜500℃、さらに好ましくは250〜400℃である。反応温度が低すぎると、触媒の安定した活性を維持し難く、一方、反応温度が高すぎると、触媒成分が揮酸し易くなる。また、反応圧力は、通常0.1〜5MPa程度である。   The reaction temperature is usually 100 to 500 ° C, preferably 200 to 500 ° C, more preferably 250 to 400 ° C. If the reaction temperature is too low, it is difficult to maintain the stable activity of the catalyst. On the other hand, if the reaction temperature is too high, the catalyst component tends to volatilize. The reaction pressure is usually about 0.1 to 5 MPa.

反応の方式は、固定床方式であってもよいし、流動床方式であってもよく、通常は固定床気相流通方式や流動床気相流通方式の如き気相反応が好ましく採用される。固定床気相流通方式は反応生成ガスと触媒との分離が容易であり、また、原料ガスと触媒との接触を十分に行うことができるので、高転化率を達成し易いという利点がある。一方、流動床気相流通方式は、反応器内の除熱を行い易いので、反応器内の温度分布幅を小さくできるという利点がある。   The reaction method may be a fixed bed method or a fluidized bed method, and usually a gas phase reaction such as a fixed bed gas phase circulation method or a fluid bed gas phase circulation method is preferably employed. The fixed bed gas phase circulation method has an advantage that it is easy to achieve a high conversion rate because the reaction product gas and the catalyst can be easily separated and the raw material gas and the catalyst can be sufficiently brought into contact with each other. On the other hand, the fluidized bed gas phase circulation method has an advantage that the temperature distribution width in the reactor can be reduced because heat removal in the reactor is easy to be performed.

反応を固定床気相流通方式で行う場合、反応器に供給される基質及び酸素を含むガス全体の供給速度は、触媒充填層の体積に対するガスの体積供給速度(0℃、1気圧換算)、すなわちGHSVで表して、通常10〜50000h-1であり、また、触媒充填層の断面積(ガス供給方向に垂直な断面の面積)に対するガスの体積供給速度(0℃、1気圧換算)、すなわち所謂空塔基準のガス線速度で表して、通常0.1〜20m/sである。 When the reaction is carried out in a fixed bed gas-phase flow system, the supply rate of the gas containing the substrate and oxygen supplied to the reactor is the volume supply rate of the gas relative to the volume of the catalyst packed bed (0 ° C., converted to 1 atm) That is, it is usually 10 to 50000 h −1 in terms of GHSV, and the gas volume supply rate (0 ° C., 1 atm conversion) with respect to the cross-sectional area of the catalyst packed bed (cross-sectional area perpendicular to the gas supply direction), that is, It is usually 0.1 to 20 m / s in terms of the so-called superficial gas linear velocity.

以下に本発明の実施例を示すが、本発明はこれらによって限定されるものではない。例中、ガスの供給速度(ml/min)は、特記ない限り0℃、1気圧の換算値である。   Examples of the present invention will be shown below, but the present invention is not limited thereto. In the examples, the gas supply rate (ml / min) is a converted value of 0 ° C. and 1 atm unless otherwise specified.

参考例1(担持酸化ルテニウムの調製)
酸化チタン50重量部〔堺化学(株)製のSTR−60R、100%ルチル型〕とα−アルミナ100重量部〔住友化学(株)製のAES−12〕とチタニアゾル19.2重量部〔堺化学(株)製のCSB、チタニア含有量38重量%〕およびメチルセルロース3重量部〔信越化学(株)製のメトローズ65SH−4000〕を混合し、次いで純水を加えて混練した。この混合物を直径3.0mmφの円柱状に押出し、乾燥した後、長さ4〜6mm程度に破砕した。得られた成型体を空気中、800℃で3時間焼成し、酸化チタンとα−アルミナの混合物からなる担体を得た。この担体に、塩化ルテニウムの水溶液を含浸し、乾燥した後、空気中、250℃で2時間焼成することにより、酸化ルテニウムが2重量%の担持率で上記担体に担持されてなる青灰色の担持酸化ルテニウムを得た。
Reference Example 1 (Preparation of supported ruthenium oxide)
50 parts by weight of titanium oxide (STR-60R, 100% rutile type manufactured by Sakai Chemical Co., Ltd.), 100 parts by weight of α-alumina (AES-12, manufactured by Sumitomo Chemical Co., Ltd.), and 19.2 parts by weight of titania sol [堺CSB manufactured by Kagaku Co., Ltd., titania content 38% by weight] and 3 parts by weight of methylcellulose [Metroze 65SH-4000 manufactured by Shin-Etsu Chemical Co., Ltd.] were mixed, and then pure water was added and kneaded. This mixture was extruded into a cylindrical shape having a diameter of 3.0 mmφ, dried, and then crushed to a length of about 4 to 6 mm. The obtained molded body was fired in air at 800 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and α-alumina. This support is impregnated with an aqueous solution of ruthenium chloride, dried, and then calcined in air at 250 ° C. for 2 hours, whereby ruthenium oxide is supported on the support at a loading ratio of 2% by weight. Ruthenium oxide was obtained.

実施例1
参考例1で得られた担持酸化ルテニウム60.0gを、内径21mmの石英製反応管に充填し、ここに、窒素ガスを300ml/minの速度で供給しながら、室温から605℃まで0.5時間かけて昇温した後、塩化水素ガスを300ml/minの速度で供給しながら、605℃で0.5時間処理し、触媒59.6gを得た。
Example 1
60.0 g of the supported ruthenium oxide obtained in Reference Example 1 was filled in a quartz reaction tube having an inner diameter of 21 mm, and nitrogen gas was supplied at a rate of 300 ml / min to 0.5 to 605 ° C. from room temperature. After raising the temperature over time, the mixture was treated at 605 ° C. for 0.5 hour while supplying hydrogen chloride gas at a rate of 300 ml / min to obtain 59.6 g of a catalyst.

得られた触媒の水素熱重量測定を行った。すなわち、触媒0.02025gを白金皿に仕込み、水素ガスを200ml/minの速度で常圧下に供給しながら、室温から300℃まで5.0℃/minの速度で昇温することにより、水素熱重量測定を行った。触媒の重量減が終了した時点の温度(還元終了温度)を表1に示した。なお、水素熱重量測定後の触媒の重量は0.02002gであった。   The obtained catalyst was subjected to hydrogen thermogravimetry. That is, by charging 0.02025 g of catalyst in a platinum dish and supplying hydrogen gas at a rate of 200 ml / min under normal pressure, the temperature is increased from room temperature to 300 ° C. at a rate of 5.0 ° C./min. Weighing was performed. Table 1 shows the temperature (reduction end temperature) at the end of weight reduction of the catalyst. In addition, the weight of the catalyst after hydrogen thermogravimetry was 0.02002 g.

次に、得られた触媒を用いて酸化反応(高SV条件下での加速寿命試験)を行った。すなわち、触媒0.5gを、内径13mmの石英製反応管に充填し、ここに、一酸化炭素ガスを4.5ml/min、塩化水素ガスを150ml/min(0.40mol/h)、酸素ガスを75ml/min、及び窒素ガスを40.5ml/minの速度で常圧下に供給しながら、反応管を290℃に加熱して、50時間酸化反応を行った。反応開始から1.5時間経過した時点及び44時間経過した時点で、以下の方法により塩化水素の転化率と一酸化炭素の転化率を求め、触媒層温度と共に、表1に示した。   Next, an oxidation reaction (accelerated life test under high SV conditions) was performed using the obtained catalyst. That is, 0.5 g of catalyst is packed in a quartz reaction tube having an inner diameter of 13 mm, and carbon monoxide gas is 4.5 ml / min, hydrogen chloride gas is 150 ml / min (0.40 mol / h), oxygen gas Was supplied at a rate of 75 ml / min and nitrogen gas at a rate of 40.5 ml / min under normal pressure, and the reaction tube was heated to 290 ° C. to carry out an oxidation reaction for 50 hours. When 1.5 hours passed from the start of the reaction and 44 hours passed, the conversion rate of hydrogen chloride and the conversion rate of carbon monoxide were determined by the following method and are shown in Table 1 together with the catalyst layer temperature.

〔塩化水素の転化率〕
反応管出口のガスを30重量%ヨウ化カリウム水溶液に流通させることによりサンプリングを20分間行い、ヨウ素滴定法により塩素の生成量を測定し、塩素の生成速度(mol/h)を求めた。この塩素の生成速度と上記の塩化水素の供給速度から、下式により塩化水素の転化率を計算した。
[Conversion rate of hydrogen chloride]
Sampling was performed for 20 minutes by circulating the gas at the outlet of the reaction tube through a 30 wt% potassium iodide aqueous solution, and the amount of chlorine produced was measured by the iodometric titration method to determine the chlorine production rate (mol / h). From this chlorine production rate and the above-mentioned hydrogen chloride supply rate, the conversion rate of hydrogen chloride was calculated by the following equation.

塩化水素の転化率(%)=[塩素の生成速度(mol/h)×2÷塩化水素の供給速度(mol/h)]×100。   Hydrogen chloride conversion (%) = [chlorine production rate (mol / h) × 2 ÷ hydrogen chloride feed rate (mol / h)] × 100.

〔一酸化炭素の転化率〕
上記サンプリング開始から12分〜19分の間、ヨウ化カリウム水溶液に吸収されなかった残ガスをガスバックに捕集し、ガスクロマトグラフィーで分析して、一酸化炭素の残存量(mol)と二酸化炭素の生成量(mol)を求め、下式により一酸化炭素の転化率を計算した。
[Conversion rate of carbon monoxide]
Residual gas that was not absorbed in the potassium iodide aqueous solution for 12 to 19 minutes from the start of the sampling was collected in a gas bag, analyzed by gas chromatography, and the residual amount (mol) of carbon monoxide and carbon dioxide were analyzed. The amount of carbon produced (mol) was determined, and the conversion rate of carbon monoxide was calculated by the following equation.

一酸化炭素の転化率(%)=[二酸化炭素の生成量(mol)÷{一酸化炭素の残存量(mol)+二酸化炭素の生成量(mol)}]×100   Carbon monoxide conversion (%) = [carbon dioxide production amount (mol) / {carbon monoxide remaining amount (mol) + carbon dioxide production amount (mol)}] × 100

比較例1
参考例1で得られた担持酸化ルテニウム0.02062gについて、実施例1と同様に水素熱重量測定を行った。触媒の重量減が終了した時点の温度(還元終了温度)を表1に示した。なお、水素熱重量測定後の触媒の重量は0.02044gであった。
Comparative Example 1
About 0.02062 g of the supported ruthenium oxide obtained in Reference Example 1, hydrogen thermogravimetry was performed in the same manner as in Example 1. Table 1 shows the temperature (reduction end temperature) at the end of weight reduction of the catalyst. The weight of the catalyst after the thermogravimetric measurement was 0.02044 g.

次に、参考例1で得られた担持酸化ルテニウムをそのまま触媒として用いて、実施例1と同様に酸化反応を行った。反応開始から1.5時間経過した時点及び44時間経過した時点で、実施例1と同様に塩化水素の転化率と一酸化炭素の転化率を求め、触媒層温度と共に、表1に示した。   Next, using the supported ruthenium oxide obtained in Reference Example 1 as a catalyst, an oxidation reaction was carried out in the same manner as in Example 1. When 1.5 hours passed and 44 hours passed after the start of the reaction, the conversion rate of hydrogen chloride and the conversion rate of carbon monoxide were determined in the same manner as in Example 1, and the results are shown in Table 1 together with the catalyst layer temperature.

Figure 0004438771
Figure 0004438771

比較例1では、反応開始から1.5時間経過した時点から、44時間経過した時点にかけて、一酸化炭素の転化率は、差として11.8ポイント低下し、割合として54%低下しており、塩化水素の転化率は、差として1.1ポイント低下し、割合として37%低下している。これに対し、実施例1では、初期活性はやや低めであるものの、一酸化炭素の転化率は、差としての低下が8.1ポイントに抑制され、割合としての低下が40%に抑制されており、塩化水素の転化率は、差としての低下が0.4ポイントに抑制され、割合としての低下が18%に抑制されている。また、実施例1において、触媒製造の際、塩化水素ガスに代えて、塩素ガスを用いて、担持酸化ルテニウムを接触処理しても、酸化活性の持続性に優れる触媒を製造でき、転化率の低下が抑制される。
In Comparative Example 1, the conversion rate of carbon monoxide decreased by 11.8 points as a difference and decreased by 54% as a ratio from the time when 1.5 hours passed from the start of the reaction to the time when 44 hours passed. The conversion rate of hydrogen chloride decreased by 1.1 points as a difference and decreased by 37% as a ratio. On the other hand, in Example 1, although the initial activity was slightly low, the conversion rate of carbon monoxide was suppressed to 8.1 points as a difference, and the decrease as a ratio was suppressed to 40%. As for the conversion rate of hydrogen chloride, the decrease as a difference is suppressed to 0.4 points, and the decrease as a ratio is suppressed to 18%. Further, in Example 1, a catalyst excellent in sustainability of oxidation activity can be produced even when the supported ruthenium oxide is contact-treated with chlorine gas instead of hydrogen chloride gas in the production of the catalyst. Reduction is suppressed.

Claims (7)

酸化ルテニウムを、塩化水素及び/又は塩素を含有し、酸素の含有量が塩化水素及び塩素の合計量に対して1体積%以下であるガスと接触させることを特徴とする塩化水素、一酸化炭素及び不飽和炭化水素からなる群より選ばれる少なくとも1種を酸化するための酸化用触媒の製造方法。 Hydrogen chloride and carbon monoxide, characterized by contacting ruthenium oxide with a gas containing hydrogen chloride and / or chlorine and having an oxygen content of 1% by volume or less based on the total amount of hydrogen chloride and chlorine And a method for producing an oxidation catalyst for oxidizing at least one selected from the group consisting of unsaturated hydrocarbons . 前記ガスが、塩化水素を含有するガスである請求項1に記載の方法。   The method according to claim 1, wherein the gas is a gas containing hydrogen chloride. 酸化ルテニウムと前記ガスとの接触が、500℃以上で行われる請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the contact between ruthenium oxide and the gas is performed at 500 ° C or higher. 酸化ルテニウムとして、酸化ルテニウムが担体に担持されてなる担持酸化ルテニウムを使用する請求項1〜3のいずれかに記載の方法。   The method according to any one of claims 1 to 3, wherein a supported ruthenium oxide in which ruthenium oxide is supported on a carrier is used as the ruthenium oxide. 請求項1〜4のいずれかに記載の方法により製造された触媒の存在下に、塩化水素を酸素で酸化することを特徴とする塩素の製造方法。   A method for producing chlorine, comprising oxidizing hydrogen chloride with oxygen in the presence of the catalyst produced by the method according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の方法により製造された触媒の存在下に、一酸化炭素及び/又は不飽和炭化水素を酸素で酸化することを特徴とする一酸化炭素及び/又は不飽和炭化水素の酸化方法。   Carbon monoxide and / or unsaturated, characterized by oxidizing carbon monoxide and / or unsaturated hydrocarbons with oxygen in the presence of the catalyst produced by the process according to any one of claims 1 to 4. Hydrocarbon oxidation method. 請求項1〜4のいずれかに記載の方法により製造された触媒の存在下に、一酸化炭素及び/又は不飽和炭化水素を酸素で酸化すると共に、塩化水素を酸素で酸化することを特徴とする塩素の製造方法。   In the presence of the catalyst produced by the method according to any one of claims 1 to 4, carbon monoxide and / or unsaturated hydrocarbons are oxidized with oxygen, and hydrogen chloride is oxidized with oxygen. To produce chlorine.
JP2006162054A 2005-06-13 2006-06-12 Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon Expired - Fee Related JP4438771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162054A JP4438771B2 (en) 2005-06-13 2006-06-12 Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005172021 2005-06-13
JP2006162054A JP4438771B2 (en) 2005-06-13 2006-06-12 Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon

Publications (2)

Publication Number Publication Date
JP2007021484A JP2007021484A (en) 2007-02-01
JP4438771B2 true JP4438771B2 (en) 2010-03-24

Family

ID=37782923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162054A Expired - Fee Related JP4438771B2 (en) 2005-06-13 2006-06-12 Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon

Country Status (1)

Country Link
JP (1) JP4438771B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020096A1 (en) * 2007-04-26 2008-10-30 Bayer Materialscience Ag Process for the oxidation of carbon monoxide in a gas stream containing HCl
JP5169047B2 (en) * 2007-07-23 2013-03-27 住友化学株式会社 Chlorine production method
JP5249716B2 (en) * 2008-10-30 2013-07-31 住友化学株式会社 Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP5169763B2 (en) * 2008-11-18 2013-03-27 住友化学株式会社 Chlorine production method
JP5365540B2 (en) * 2010-02-12 2013-12-11 住友化学株式会社 Method for oxidizing organic compounds
JP2024503888A (en) * 2021-01-20 2024-01-29 ハンワ ソリューションズ コーポレイション High-yield production method of chlorine by hydrogen chloride oxidation reaction

Also Published As

Publication number Publication date
JP2007021484A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US8889578B2 (en) Processes for regenerating sulfur-poisoned, ruthenium and/or ruthenium compound-containing catalysts
JP5642703B2 (en) Method for regenerating a ruthenium oxide-containing catalyst for hydrogen chloride oxidation
JP4438771B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP5169047B2 (en) Chlorine production method
WO2006135074A1 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
KR20200010239A (en) Process for regenerating poisoned catalyst containing ruthenium or ruthenium compound
JP4081597B2 (en) Catalytic oxidation method
JP2006500216A (en) Catalysts for the catalytic oxidation of hydrogen chloride
JP4487975B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP2005289800A (en) Method of producing chlorine
JP5249716B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
EP3900827A1 (en) Hydrogen chloride oxidation reaction catalyst for preparing chlorine, and preparation method therefor
JP5249717B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP5041848B2 (en) Method for treating halogenated aliphatic hydrocarbon-containing gas
JP4461555B2 (en) Carbon monoxide oxidation method
JP5368883B2 (en) Method for activating catalyst for chlorine production and method for producing chlorine
JP5365540B2 (en) Method for oxidizing organic compounds
WO2010137504A1 (en) Method for activating catalyst for chlorine production and method for producing chlorine
JP5169763B2 (en) Chlorine production method
JP2012091977A (en) Method for producing chlorine
JP2010150120A (en) Method for producing chlorine

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees