Nothing Special   »   [go: up one dir, main page]

JP5133929B2 - Method and apparatus for producing ultra-high purity nitrogen gas - Google Patents

Method and apparatus for producing ultra-high purity nitrogen gas Download PDF

Info

Publication number
JP5133929B2
JP5133929B2 JP2009085623A JP2009085623A JP5133929B2 JP 5133929 B2 JP5133929 B2 JP 5133929B2 JP 2009085623 A JP2009085623 A JP 2009085623A JP 2009085623 A JP2009085623 A JP 2009085623A JP 5133929 B2 JP5133929 B2 JP 5133929B2
Authority
JP
Japan
Prior art keywords
nitrogen gas
carbon dioxide
adsorption
high purity
activated alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009085623A
Other languages
Japanese (ja)
Other versions
JP2010235398A (en
Inventor
貴義 足立
和彦 藤江
章寛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009085623A priority Critical patent/JP5133929B2/en
Publication of JP2010235398A publication Critical patent/JP2010235398A/en
Application granted granted Critical
Publication of JP5133929B2 publication Critical patent/JP5133929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、空気液化分離装置から得られた窒素ガスから超高純度窒素ガスを製造する方法および製造する装置に関する。   The present invention relates to a method and an apparatus for producing ultra high purity nitrogen gas from nitrogen gas obtained from an air liquefaction separation apparatus.

ヘリウム、アルゴン、クリプトン、キセノンあるいは窒素等の不活性ガスが、エレクトロニクス産業において広く使用されている。このようなエレクトロニクス分野で使用される不活性ガスは、半導体製造の各プロセスで使用するものと、各プロセス間のパージガス、あるいは希釈用のガスとして使用する一般用途のものがあり、それぞれで必要とされる純度のレベルは大きく異なる。とりわけ、半導体製造プロセスに使用する場合は純度に対する要求が特に厳しく、各不純物濃度がそれぞれ1ppb以下という超高純度が要求される。   Inert gases such as helium, argon, krypton, xenon or nitrogen are widely used in the electronics industry. Inert gases used in the electronics field include those used in each process of semiconductor manufacturing and those for general use that are used as purge gas or dilution gas between processes. The level of purity that can be achieved varies greatly. In particular, when used in a semiconductor manufacturing process, the requirement for purity is particularly strict, and ultrahigh purity is required in which each impurity concentration is 1 ppb or less.

半導体製造プロセスで使用されるガス中の不純物として除去すべきとされるガスは、酸素、二酸化炭素、一酸化炭素、水素、水等である。
これらの不純物ガスを除去し、精製ガスを得るための一つの方法として、高活性なゲッター剤との化学反応を利用したゲッター方式が挙げられる。この方式は各種の不純物ガスを纏めて1ppb以下にまで除去できる点で優れているものの、再生ができないために、寿命になると交換が必要であることからランニングコストが高く、ユースポイントでの精製に用途が限られる。
Gases to be removed as impurities in the gas used in the semiconductor manufacturing process are oxygen, carbon dioxide, carbon monoxide, hydrogen, water, and the like.
One method for removing these impurity gases and obtaining a purified gas is a getter method using a chemical reaction with a highly active getter agent. This method is excellent in that various impurity gases can be removed to 1 ppb or less, but since it cannot be regenerated, it must be replaced when it reaches the end of its life. Applications are limited.

再生可能な精製方法としては、(1)ガス中に含まれる酸素、一酸化炭素および水素をニッケルや銅などの触媒によって補足し、次いで水分、二酸化炭素を合成ゼオライトなどの吸着剤で吸着除去する方法、(2)酸素、一酸化炭素および水素を触媒反応により二酸化炭素に転換し、次にニッケル触媒により余剰の酸素を補足、酸化亜鉛により二酸化炭素を吸着除去し、最後に水分を合成ゼオライトで吸着除去する方法(特開平2-120212)、(3)二酸化炭素吸着能力の高い酸化亜鉛を主成分とする吸着剤で二酸化炭素を初めに吸着除去し、次にニッケルまたは銅を有効成分とする触媒により酸素、一酸化炭素、水素および微量残った二酸化炭素を除去、最後に水分を吸着除去する方法(特開平8-173748)などがある。 Renewable purification methods include (1) supplementing oxygen, carbon monoxide and hydrogen contained in the gas with a catalyst such as nickel or copper, and then adsorbing and removing moisture and carbon dioxide with an adsorbent such as synthetic zeolite. Method (2) Convert oxygen, carbon monoxide and hydrogen into carbon dioxide by catalytic reaction, then supplement the excess oxygen with nickel catalyst, adsorb and remove carbon dioxide with zinc oxide, and finally water with synthetic zeolite Adsorption and removal method (Japanese Patent Laid-Open No. 2-120212), (3) Carbon dioxide is first adsorbed and removed with an adsorbent mainly composed of zinc oxide with high carbon dioxide adsorption ability, and then nickel or copper is used as an active ingredient There is a method of removing oxygen, carbon monoxide, hydrogen and a small amount of remaining carbon dioxide with a catalyst, and finally adsorbing and removing moisture (JP-A-8137748).

ニッケル触媒の二酸化炭素吸着能力を向上させる方法も鋭意検討されており、(4)ニッケル触媒に炭酸ナトリウムなどの炭酸塩を担持する方法(特開2005-319345)や、(5)活性炭にニッケル化合物とともにアルカリ金属化合物を担持する方法(特開2005-324155)などがある。 A method for improving the carbon dioxide adsorption capacity of the nickel catalyst has also been intensively studied. (4) A method in which a carbonate such as sodium carbonate is supported on a nickel catalyst (JP 2005-319345), or (5) a nickel compound on activated carbon. In addition, there is a method of carrying an alkali metal compound (Japanese Patent Laid-Open No. 2005-324155).

一方、空気液化分離装置の前処理においては、空気中の二酸化炭素の除去には一般的にゼオライトが使用されているが、活性アルミナの二酸化炭素吸着量を向上させて、これを使用する方法も提案されている。活性アルミナの二酸化炭素吸着性能向上の方法として、活性アルミナに塩基性溶液を含侵させる方法(特開平11-518)や0.001から7.25%のアルカリ又はアルカリ土類金属の酸化物を含む方法(特開2001-104737)などがある。 On the other hand, in the pretreatment of the air liquefaction separation apparatus, zeolite is generally used for the removal of carbon dioxide in the air, but there is also a method of using this by improving the carbon dioxide adsorption amount of activated alumina. Proposed. As a method for improving the carbon dioxide adsorption performance of activated alumina, a method in which activated alumina is impregnated with a basic solution (Japanese Patent Laid-Open No. 11-518) or a method containing 0.001 to 7.25% of an alkali or alkaline earth metal oxide (special feature) Open 2001-104737).

特開平2−120212号公報JP-A-2-120212 特開平8−173748号公報JP-A-8-173748 特開2005−319345号公報JP 2005-319345 A 特開2005−324155号公報JP 2005-324155 A 特開平11-518号公報Japanese Patent Laid-Open No. 11-518 特開2001−104737号公報JP 2001-104737 A

最近の半導体工場では生産規模の拡大により、空気分離装置で製造される窒素ガスの全量を精製するというニーズが増えており、求められる処理量は拡大する一方である。一方、従来の精製装置は上述の通り、高価な吸着剤を多量に必要とすることから、特に大流量を処理する大型の装置においては全体コストに占める剤価格の割合が相対的に高く、そのためイニシャルコストが高いという課題があり、改善が求められている。   In recent semiconductor factories, due to the expansion of production scale, the need to purify the total amount of nitrogen gas produced by an air separation device is increasing, and the required amount of processing is increasing. On the other hand, since the conventional purification apparatus requires a large amount of expensive adsorbent as described above, the ratio of the agent price occupying the total cost is relatively high particularly in a large apparatus for processing a large flow rate. There is a problem that initial cost is high, and improvement is required.

(1)の方法は、ニッケル触媒の二酸化炭素吸着量はわずかであり、また合成ゼオライトでは二酸化炭素濃度を求められる純度まで除去できないという課題があった。
そのため、(2)および(3)の方法が考案された。しかし、(2)の方法は高価なPtやPd等の酸化触媒が必要であり、また反応促進のために常時加熱する必要があるなどの課題があり、イニシャルコストおよびランニングコストが高いという課題があった。
(3)の方法は、酸化亜鉛では二酸化炭素を求められる純度まで十分に除去できないことから、酸化亜鉛の後段にニッケル触媒を配置して二酸化炭素を除去する必要があった。ニッケル触媒の二酸化炭素吸着量はわずかであることから、高価なニッケル触媒を大量に必要とすることになり、イニシャルコストが高いという課題は残ったままであった。
(4)および(5)の方法では、いずれもアルカリ金属化合物の形で単体上に担持されているために、担持されたアルカリ金属化合物の剥離などによる汚染の懸念が捨てきれない。半導体工場では特にこれらのアルカリ金属を嫌うことから、担持とは異なる方法が求められていた。
The method (1) has a problem that the amount of carbon dioxide adsorbed by the nickel catalyst is small, and synthetic zeolite cannot remove carbon dioxide concentration to the required purity.
Therefore, methods (2) and (3) were devised. However, the method (2) requires expensive oxidation catalysts such as Pt and Pd, and there is a problem that it is necessary to always heat to promote the reaction, and there is a problem that initial cost and running cost are high. there were.
In the method (3), since carbon dioxide cannot be sufficiently removed to the required purity with zinc oxide, it was necessary to dispose carbon dioxide by disposing a nickel catalyst after the zinc oxide. Since the amount of carbon dioxide adsorbed by the nickel catalyst is small, a large amount of expensive nickel catalyst is required, and the problem of high initial cost remains.
In the methods (4) and (5), since both are supported on a single substance in the form of an alkali metal compound, there is no concern about contamination due to peeling of the supported alkali metal compound. Since semiconductor factories dislike these alkali metals in particular, a method different from loading was required.

上記課題を解決するため、
請求項1にかかる発明は、空気液化分離方法で得られた窒素ガスから超高純度窒素ガスを製造する方法であって、前記窒素ガスをニッケル触媒により常温で酸素、一酸化炭素、水素を吸着除去した後、ナトリウム結合活性アルミナを用いて常温で二酸化炭素を吸着除去する超高純度窒素ガスの製造方法である。
To solve the above problem,
The invention according to claim 1 is a method for producing ultra-high purity nitrogen gas from nitrogen gas obtained by an air liquefaction separation method, and adsorbs oxygen, carbon monoxide, and hydrogen at room temperature with a nickel catalyst. This is a method for producing ultra-high purity nitrogen gas in which carbon dioxide is adsorbed and removed at room temperature using sodium-bonded activated alumina after removal.

請求項2にかかる発明は、ニッケル触媒と、その後段にナトリウム結合活性アルミナを充填した吸着筒とを備えている超高純度窒素ガス製造装置である。   The invention according to claim 2 is an ultra-high purity nitrogen gas production apparatus comprising a nickel catalyst and an adsorption cylinder filled with sodium-bonded activated alumina in the subsequent stage.

本願発明の方法及び装置によれば、高価なニッケル触媒の使用量を大幅に削減することができ、特にイニシャルコストを低減して空気液化分離方法によって得られた窒素から超高純度窒素ガスを製造することができる。 According to the method and apparatus of the present invention, the amount of expensive nickel catalyst used can be greatly reduced, and in particular, the initial cost is reduced and ultra-high purity nitrogen gas is produced from nitrogen obtained by the air liquefaction separation method. can do.

ナトリウム結合活性アルミナ4種類の0.1ppmにおける破過吸着量を測定した結果を示す図である。It is a figure which shows the result of having measured the breakthrough adsorption amount in 0.1 ppm of four types of sodium bond activated alumina.

一般的に二酸化炭素吸着量が多いと言われている吸着剤としては合成ゼオライトが挙げられる。一方、水分除去などに使われる活性アルミナは、二酸化炭素を若干吸着するものの、その吸着量は他の吸着剤と比較して特段多くないため、一般的には二酸化炭素の吸着剤として注目されることはなかった。 Synthetic zeolite is an example of an adsorbent that is generally said to have a large amount of carbon dioxide adsorption. On the other hand, activated alumina used for moisture removal, etc., adsorbs carbon dioxide slightly, but its adsorption amount is not particularly large compared to other adsorbents, so it is generally noted as an adsorbent for carbon dioxide. It never happened.

空気液化分離装置で製造される窒素ガスは、含まれる不純物成分のうち、二酸化炭素濃度が100ppb程度と比較的少ない。例えば空気液化分離装置の前処理装置で使用される場合に求められるような高濃度(分圧にして数百Pa)での吸着量よりも、低濃度(分圧にして0.1Pa以下)における吸着量が重要となる。これまで、このような極低濃度において二酸化酸素を有効に吸着する物質は知られていなかった。 Nitrogen gas produced by the air liquefaction separation apparatus has a relatively low carbon dioxide concentration of about 100 ppb among the contained impurity components. For example, at a low concentration (partial pressure of 0.1 Pa or less) than the amount of adsorption at a high concentration (partial pressure of several hundred Pa) as required when used in a pretreatment device of an air liquefaction separation device. The amount of adsorption is important. Until now, no substance has been known that effectively adsorbs oxygen dioxide at such extremely low concentrations.

発明者らは鋭意検討を行った結果、表面にナトリウムを結合させた活性アルミナが、常温において極低濃度の二酸化炭素を特異的に吸着することを見出した。 As a result of intensive studies, the inventors have found that activated alumina having sodium bound to its surface specifically adsorbs extremely low concentrations of carbon dioxide at room temperature.

本発明では、空気液化分離法によって製造された窒素ガスを、常温においてニッケル触媒に通し、予め、酸素、一酸化炭素、水素を吸着除去する。このとき、窒素ガス中に含まれる酸素は一酸化炭素と反応し、一部は二酸化炭素となって下流側に流出する。そのため、下流側にナトリウム結合活性アルミナを設置することが望ましい。常温においてナトリウム結合活性アルミナで二酸化炭素を吸着除去することで、超高純度窒素ガスを製造するものである。   In the present invention, nitrogen gas produced by an air liquefaction separation method is passed through a nickel catalyst at room temperature, and oxygen, carbon monoxide, and hydrogen are previously adsorbed and removed. At this time, oxygen contained in the nitrogen gas reacts with carbon monoxide, and a part thereof becomes carbon dioxide and flows out downstream. Therefore, it is desirable to install sodium-bound activated alumina on the downstream side. Ultra high purity nitrogen gas is produced by adsorbing and removing carbon dioxide with sodium-bonded activated alumina at room temperature.

ナトリウム結合活性アルミナは、約200℃の再生ガス(製品高純度窒素ガスの一部を使っても良い)により再生することで、繰り返し使用することができる。
このような方法により、超高純度窒素ガスを製造するための装置は、ニッケル触媒とナトリウム結合活性アルミナとを充填した吸着筒とからなり、この吸着筒には、ナトリウム結合活性アルミナを再生するための再生ガスを加温するための加熱器を有している。
Sodium-bound activated alumina can be used repeatedly by regenerating with a regeneration gas of about 200 ° C. (a part of the product high purity nitrogen gas may be used).
An apparatus for producing ultra-high purity nitrogen gas by such a method comprises an adsorption cylinder filled with a nickel catalyst and sodium-bound activated alumina, and this adsorption cylinder is for regenerating sodium-bound activated alumina. It has a heater for heating the regeneration gas.

このような超高純度窒素ガスの製造方法および製造装置によって、空気液化分離装置で製造した窒素ガス中の各不純物物濃度を1ppb以下にすることが可能となり、半導体製造プロセスに使用可能な超高純度窒素ガスを得ることができる。 With such an ultra-high purity nitrogen gas production method and production equipment, it is possible to reduce the concentration of each impurity in the nitrogen gas produced by the air liquefaction separation apparatus to 1 ppb or less, which can be used for semiconductor production processes. Purity nitrogen gas can be obtained.

(実施例1)
ナトリウム結合活性アルミナ4種類(ナトリウムの含有量が1.5%、6.0%、8.0%、10.2%)の25℃における二酸化炭素の吸着量を定容法により測定した。濃度1ppmに相当する圧力1Paにおける二酸化炭素の吸着量を表1に示す。
次に、ナトリウム結合活性アルミナを100mm充填した内径28.4mmの吸着筒に、不純物として二酸化炭素を0.1ppm添加した精製窒素ガスを2.4Nm3/h流通させ、破過までの時間を測定した。
破過までの時間は、API-MSを用いて出口ガスを分析することで求めた。
ナトリウム含有量が異なる4種類のナトリウム結合活性アルミナについて、それぞれ破過吸着量を求めた。結果を表1および図1に示す。
Example 1
The amount of carbon dioxide adsorbed at 25 ° C. was measured by the constant volume method for four types of sodium-binding activated alumina (sodium content was 1.5%, 6.0%, 8.0%, 10.2%). Table 1 shows the amount of carbon dioxide adsorbed at a pressure of 1 Pa corresponding to a concentration of 1 ppm.
Next, purified nitrogen gas added with 0.1 ppm of carbon dioxide as an impurity was passed through an adsorption cylinder filled with 100 mm of sodium-binding activated alumina and having an inner diameter of 28.4 mm, and the time until breakthrough was measured.
The time until breakthrough was determined by analyzing the outlet gas using API-MS.
The breakthrough adsorption amount was determined for each of the four types of sodium-bound activated alumina having different sodium contents. The results are shown in Table 1 and FIG.

Figure 0005133929
Figure 0005133929

(比較例1)
合成ゼオライトの中から、Caイオンを含み、一般に二酸化炭素の吸着量が高いと言われているCa-A型ゼオライト、Ca-X型ゼオライト、市販の活性アルミナ2種およびニッケル触媒を選び、実施例1と同様に、25℃における二酸化炭素吸着量を定容法により測定した。濃度1ppmに相当する圧力1Paにおける二酸化炭素の吸着量を表1に示す。
また実施例1と同様に、Ca-A型ゼオライト、Ca-X型ゼオライト、市販の活性アルミナ2種およびニッケル触媒を用いて破過吸着量を求めた。結果を表1に示す。
(Comparative Example 1)
Examples of synthetic zeolites were selected from Ca-A zeolite, Ca-X zeolite, two types of commercially available activated alumina, and nickel catalyst, which contain Ca ions and are generally said to have high carbon dioxide adsorption. As in 1, the carbon dioxide adsorption at 25 ° C. was measured by the constant volume method. Table 1 shows the amount of carbon dioxide adsorbed at a pressure of 1 Pa corresponding to a concentration of 1 ppm.
Similarly to Example 1, the amount of breakthrough adsorption was determined using Ca-A type zeolite, Ca-X type zeolite, two types of commercially available activated alumina, and a nickel catalyst. The results are shown in Table 1.

表1から、1Paにおける二酸化炭素の吸着量は、活性アルミナが比較的高いにもかかわらず、動的性能を示す破過吸着量は極端に低下していることが分かる。ゼオライトも同様の傾向が見られ、いずれも低濃度の二酸化炭素の吸着には適していないことが分かる。この原因として、吸着剤内部でのガスの拡散が律速になっていること、すなわち、結晶構造(細孔構造)が影響していると推測される。 From Table 1, it can be seen that the adsorption amount of carbon dioxide at 1 Pa is extremely low for the breakthrough adsorption amount showing the dynamic performance, although the activated alumina is relatively high. A similar tendency is observed for zeolite, and it is understood that none of them is suitable for adsorption of low concentration carbon dioxide. The cause of this is presumed that the diffusion of gas inside the adsorbent is rate-limiting, that is, the crystal structure (pore structure) has an effect.

一方、これまで低濃度の二酸化炭素吸着に使用していたニッケル触媒は、1Paにおける吸着量は劣るものの、0.1ppmにおける破過吸着量の低下が少なく、実用に供することができるレベルにある。表1を見ると、ナトリウム結合活性アルミナの1Paにおける二酸化炭素吸着量は、活性アルミナと比較して増加しているが、更に破過吸着量が大幅に増大しており、動的な吸着特性が改善されていることが分かる。 On the other hand, the nickel catalyst that has been used for adsorption of carbon dioxide at a low concentration so far is inferior in the adsorption amount at 1 Pa, but has a small decrease in breakthrough adsorption amount at 0.1 ppm, and is at a level that can be put to practical use. As shown in Table 1, the amount of carbon dioxide adsorbed at 1 Pa of sodium-bound activated alumina is increased compared to activated alumina, but the amount of breakthrough adsorption is greatly increased, and the dynamic adsorption characteristics are increased. It turns out that it is improving.

表1では、ナトリウム含有量が増大するに従って二酸化炭素吸着量は増加傾向にあることがわかるが、図1を見ると、動的特性に関してはナトリウム含有量には最適な値があり、その量が多すぎると効果が低下することが分かる。 In Table 1, it can be seen that the amount of carbon dioxide adsorption tends to increase as the sodium content increases. However, as shown in FIG. 1, there is an optimum value for the sodium content in terms of dynamic characteristics, and the amount is It turns out that an effect will fall when too much.

(実施例2)
内径28.4mmの吸着筒の入口側にニッケル触媒を200mm充填し、その後段にナトリウム結合活性アルミナを150mm充填した。この吸着筒に、不純物として一酸化炭素1.0ppm、水素1.0ppm、二酸化炭素0.5ppmを添加した窒素ガスを2.4Nm3/hで流通し、吸着筒出口のガスを分析した。分析はAPI-MSとGC-FIDを用いた。最初に破過したのは二酸化炭素で破過時間は約48時間であった。
(Example 2)
The inlet side of the adsorption cylinder having an inner diameter of 28.4 mm was filled with 200 mm of nickel catalyst, and the subsequent stage was filled with 150 mm of sodium-bound activated alumina. Nitrogen gas added with carbon monoxide 1.0 ppm, hydrogen 1.0 ppm, and carbon dioxide 0.5 ppm as impurities was circulated through this adsorption cylinder at 2.4 Nm3 / h, and the gas at the adsorption cylinder outlet was analyzed. Analysis used API-MS and GC-FID. The first breakthrough was carbon dioxide, and the breakthrough time was about 48 hours.

(比較例2)
内径28.4mmの吸着筒にニッケル触媒を350mm充填した。この吸着筒に、不純物として一酸化炭素1.0ppm、水素1.0ppm、二酸化炭素0.5ppmを添加した精製窒素ガスを2.4Nm3/h流通し、出口の精製ガスの分析を行った。分析はGC-FID(島津製作所製)を用いて測定した。最初に破過したのは二酸化炭素で、破過時間は約21時間であった。
(Comparative Example 2)
An adsorption cylinder having an inner diameter of 28.4 mm was filled with 350 mm of nickel catalyst. Purified nitrogen gas added with carbon monoxide 1.0 ppm, hydrogen 1.0 ppm, and carbon dioxide 0.5 ppm as impurities was passed through this adsorption cylinder at 2.4 Nm3 / h, and the purified gas at the outlet was analyzed. Analysis was performed using GC-FID (manufactured by Shimadzu Corporation). The first breakthrough was carbon dioxide, and the breakthrough time was approximately 21 hours.

Claims (2)

空気液化分離方法で得られた窒素ガスから超高純度窒素ガスを製造する方法であって、前記窒素ガスをニッケル触媒により常温で酸素、一酸化炭素、水素を吸着除去した後、ナトリウム結合活性アルミナを用いて常温で二酸化炭素を吸着除去する超高純度窒素ガスの製造方法。     A method for producing ultra-high purity nitrogen gas from nitrogen gas obtained by an air liquefaction separation method, wherein the nitrogen gas is adsorbed and removed at room temperature with a nickel catalyst, and then sodium-bonded activated alumina A method for producing ultra-high purity nitrogen gas that uses carbon to adsorb and remove carbon dioxide at room temperature. ニッケル触媒と、その後段にナトリウム結合活性アルミナを充填した吸着筒とを備えている超高純度窒素ガス製造装置。
An ultra-high purity nitrogen gas production apparatus comprising a nickel catalyst and an adsorption cylinder filled with sodium-bonded activated alumina in the subsequent stage.
JP2009085623A 2009-03-31 2009-03-31 Method and apparatus for producing ultra-high purity nitrogen gas Active JP5133929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085623A JP5133929B2 (en) 2009-03-31 2009-03-31 Method and apparatus for producing ultra-high purity nitrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085623A JP5133929B2 (en) 2009-03-31 2009-03-31 Method and apparatus for producing ultra-high purity nitrogen gas

Publications (2)

Publication Number Publication Date
JP2010235398A JP2010235398A (en) 2010-10-21
JP5133929B2 true JP5133929B2 (en) 2013-01-30

Family

ID=43090105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085623A Active JP5133929B2 (en) 2009-03-31 2009-03-31 Method and apparatus for producing ultra-high purity nitrogen gas

Country Status (1)

Country Link
JP (1) JP5133929B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194005A (en) * 2012-03-21 2013-09-30 Taiyo Nippon Sanso Corp Method and apparatus for purifying dissolved acetylene
JP2013194004A (en) * 2012-03-21 2013-09-30 Taiyo Nippon Sanso Corp Method for purifying dissolved acetylene

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147086A (en) * 1984-01-11 1985-08-02 大同酸素株式会社 Method and device for manufacturing high-purity nitrogen gas
JPH038345Y2 (en) * 1985-10-24 1991-02-28
JP2651605B2 (en) * 1988-09-09 1997-09-10 日本パイオニクス株式会社 How to remove carbon dioxide
JP2640513B2 (en) * 1988-10-31 1997-08-13 日本パイオニクス株式会社 Inert gas purification equipment
JP3208673B2 (en) * 1991-07-09 2001-09-17 日本酸素株式会社 Gas purification method and apparatus
JP3292995B2 (en) * 1992-05-11 2002-06-17 住友精化株式会社 Gas purification method and apparatus
FR2771944B1 (en) * 1997-12-08 2000-01-14 Air Liquide AIR PURIFICATION PROCESS BY ADSORPTION ON CALCINATED ALUMINUM OF CO2 AND H2O IMPURITIES
JP2001302564A (en) * 2000-04-27 2001-10-31 Mitsui Chemicals Inc Method of purifying olefin and treating agent used for the same
US6511640B1 (en) * 2000-06-29 2003-01-28 The Boc Group, Inc. Purification of gases
JP5232686B2 (en) * 2009-02-24 2013-07-10 大陽日酸株式会社 Gas purification method and purification apparatus

Also Published As

Publication number Publication date
JP2010235398A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP4153483B2 (en) Method for purifying hydride gas
JP5566815B2 (en) Gas purification method and gas purification apparatus
JP2008137847A (en) Xenon retrieval system and retrieval device
JP2010533063A5 (en)
JPH10323527A (en) Gas purity device and method
JP5133688B2 (en) Cu-ZSM5 zeolite shaped adsorbent, its activation method, temperature fluctuation type adsorption device, and gas purification method
JP2010195616A (en) Purification method and purification device of gas
JP5222327B2 (en) Gas separation method and apparatus
JP5133929B2 (en) Method and apparatus for producing ultra-high purity nitrogen gas
JP2008212845A (en) Carbon monoxide adsorbent, gas purification method, and gas purifier
JP5684898B2 (en) Gas purification method
JP4521373B2 (en) Method for producing high purity nitrogen gas
JP2004161503A (en) Gas purification method
JP5039631B2 (en) Method for producing noble metal supported catalyst
WO2022075351A1 (en) Method for removing oxygen molecule and method for purifying carbon monoxide
JP2012152749A (en) Method for producing supported ruthenium catalyst
JP2009090207A (en) Adsorbent material
JP2023061365A (en) Gas refining method, and gas refining device
JP2902317B2 (en) Room temperature purification method and apparatus for inert gas
JP2006000733A (en) Gas treatment method and gas treatment apparatus
JPH04265217A (en) Method for purifying gas consisting of mainly carbon monoxide
JP2006021935A (en) Method for producing high purity treatment gas
JP2005111434A (en) Purifying material for removing moisture in nitric oxide gas and nitric oxide gas purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5133929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250