Nothing Special   »   [go: up one dir, main page]

JP2004161503A - Gas purification method - Google Patents

Gas purification method Download PDF

Info

Publication number
JP2004161503A
JP2004161503A JP2002325739A JP2002325739A JP2004161503A JP 2004161503 A JP2004161503 A JP 2004161503A JP 2002325739 A JP2002325739 A JP 2002325739A JP 2002325739 A JP2002325739 A JP 2002325739A JP 2004161503 A JP2004161503 A JP 2004161503A
Authority
JP
Japan
Prior art keywords
gas
ammonia
oxygen
hydrogen
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325739A
Other languages
Japanese (ja)
Other versions
JP4174298B2 (en
Inventor
Kunio Matsuda
州央 松田
Yoshio Ishihara
良夫 石原
Takayuki Sato
貴之 佐藤
Masaya Yamawaki
正也 山脇
Akihiro Nakamura
章寛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2002325739A priority Critical patent/JP4174298B2/en
Publication of JP2004161503A publication Critical patent/JP2004161503A/en
Application granted granted Critical
Publication of JP4174298B2 publication Critical patent/JP4174298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas purification method capable of efficiently removing trace impurities contained in a waste gas from various processes using krypton or xenon and suitable for a pretreatment of a rare gas separation and recovery apparatus for continuously separating/recovering/recycleing a rare gas by being installed direct near a semiconductor manufacturing apparatus. <P>SOLUTION: In the removal of the trace impurities such as hydrogen, ammonia, steam or nitrogen oxides from a gaseous mixture consisting essentially of the rare gas and nitrogen, a reducing material removing process capable of converting hydrogen and ammonia to a gaseous mixture containing steam and nitrogen oxides by an oxidation reaction under the presence of oxygen or the nitrogen oxides, a denitration process capable of converting the nitrogen oxides and oxygen contained in the gaseous mixture after the reducing material removing process is finished to nitrogen and steam by a denitration catalytic reaction under the presence of oxygen and ammonia and a drying process capable of removing ammonia and steam in the gaseous mixture after the denitration process is finished are successively performed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガス精製方法に関し、詳しくは、希ガスであるクリプトンやキセノンをガス混合物中から分離回収する際の操作で障害となる水素、アンモニア、水蒸気、窒素酸化物のような反応性を有する微量不純物をあらかじめ除去しておくために用いるガス精製方法であって、特に、半導体製品を製造する工程、例えばプラズマ処理装置から排出される排ガス中の希ガスを分離回収するための装置の前処理として前記微量不純物を除去するのに最適な方法に関する。
【0002】
【従来の技術】
例えば、半導体集積回路、液晶パネル、太陽電池パネル、磁気ディスク等の半導体製品を製造する半導体製造装置からは、希ガス、特に、クリプトンやキセノンと窒素とを主成分とし、これに、微量不純物として、水素、アンモニア、水蒸気、窒素酸化物等の反応性を有する物質を含むガス混合物が排ガスとして排出される。したがって、高価な希ガスを回収して再利用するためには、希ガスの損失を招くことなく、これらの微量不純物を排ガスから除去しなければならない。
【0003】
前述のような微量不純物をガス中から除去するため、従来から様々な技術が提案されてきているが、これらの技術は、全てが窒素酸化物、水素、酸素等のそれぞれ1種の成分にのみ対応して処理するものであり、半導体製造のための各種の工程から排出されるガスのように、ガス流量が極めて少なく、かつ、不純物として含まれるガス種が多種にわたる混合ガスから希ガスを回収するための技術とはいえない。すなわち、半導体製造装置の排ガスから希ガスを回収するため、該排ガス中に含まれる微量不純物を一貫した形態で分離/除去/精製する技術は未だ確立されていないのが実情である。
【0004】
また、半導体製造装置のKrFエキシマレーザー発振器から取り出した不純ネオンガスに、フッ素、クリプトン、窒素、酸素、一酸化炭素、二酸化炭素及び水が含まれている場合に、フッ素を除去する第1のステップと、酸化金属触媒により酸素を除去してから吸着により二酸化炭素及び水分を除去する第2ステップと、低温吸着によりクリプトンを除去する第3ステップと、更なる低温吸着により窒素及び一酸化炭素を除去する第4ステップとを順次行うことによってネオンを精製する方法が提案されている(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2001−232134号公報(第1頁、第1図)
【0006】
【発明が解決しようとする課題】
しかし、上述の方法は、低温吸着を多用しているため、低温を得るために大型の設備が必要で、手間及びコストがかかるプロセスであって、工業ガスメーカーが社内で実施するのには適したプロセスであるとはいえても、半導体工場内で、しかも半導体製造装置の直近で、装置から排出された排ガス中の希ガスを次々に分離・回収して再利用していくためのプロセスとしては活用が困難である。
【0007】
このように、従来の各種技術では、半導体製造装置の直近で使用することができ、種々の半導体製造工程から排出されるガスに含まれる不純物成分の2種以上を効率よく除去することができる適当な方法がないという問題があった。特に、排ガス中に含まれる不純物成分の種類によって各種の除去手段が研究されているが、これらを複数含むガス混合物から複数の不純物を効率的に除去し、しかも希ガスの損失を抑えて、高率で再利用できるプロセスは確立されていない。また、吸着工程を多段使用すると、設備的なコストの増加、希ガスの損失が若干上昇するという問題が残っていた。
【0008】
そこで本発明は、希ガス及び窒素を主成分とするガス混合物中に含まれる水素、アンモニア、水蒸気、窒素酸化物のような微量不純物を低コストかつ高効率で除去することができ、特に、半導体製造装置において、高価なクリプトンやキセノンを使用する酸化、窒化、酸窒化の各種プロセスの排ガスにも適応でき、しかも、半導体製造装置の直近に設置して排ガス中の希ガスを連続的に分離・回収して再利用することが可能な小型のシステムを実現できるガス精製方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明のガス精製方法は、第1の構成として、希ガス及び窒素を主成分とし、微量不純物として、水素、アンモニア、水蒸気、窒素酸化物の少なくともいずれか一種を含有するガス混合物から前記微量不純物を除去するガス精製方法において、水素及びアンモニアを酸素及び窒素酸化物の少なくともいずれか一方の存在下における酸化反応により水蒸気を含有するガス混合物に転化可能な還元性物質除去工程と、該還元性物質除去工程を終了したガス混合物中に含まれる窒素酸化物及び酸素をアンモニアの存在下で脱硝触媒反応により窒素と水蒸気とに転化可能な脱硝工程と、該脱硝工程を終了したガス混合物中のアンモニア及び水蒸気を除去可能な乾燥工程とを含むことを特徴としている。
【0010】
さらに、本発明のガス精製方法は、第2の構成として、希ガス及び窒素を主成分とし、微量不純物として、水素、アンモニア、水蒸気、窒素酸化物の少なくともいずれか一種を含有するガス混合物から前記微量不純物を除去するガス精製方法において、水素及びアンモニアを酸素及び窒素酸化物の少なくともいずれか一方の存在下における酸化反応により水蒸気を含有するガス混合物に転化可能な還元性物質除去工程と、該還元性物質除去工程を終了したガス混合物中に含まれる窒素酸化物及び酸素を水素の存在下で脱硝触媒反応により窒素と水蒸気とに転化可能な脱硝工程と、該脱硝工程を終了したガス混合物中の水素を酸素の存在下で水素酸化反応により水蒸気に転化可能な水素酸化工程と、該水素酸化工程を終了したガス混合物中の水蒸気を除去可能な乾燥工程とを含むことを特徴としている。
【0011】
【発明の実施の形態】
図1は、本発明のガス精製方法における前記第1の構成を適用したガス精製装置の一形態例を示す系統図である。このガス精製装置は、プラズマ酸化工程、プラズマ窒化工程、プラズマ酸窒化工程から排出される希ガス含有排ガス、例えば、クリプトン及び窒素を主成分とし、微量不純物として窒素酸化物、水素、酸素、アンモニア、水蒸気等を含むと想定されるガス混合物からクリプトンを分離回収する際の前段階的精製処理を行い、前記微量不純物の内、少なくとも、最終的な希ガス分離回収装置での分離回収操作で障害となる窒素酸化物、水素、アンモニア及び水蒸気を除去するものであって、酸素添加手段11、還元性物質除去手段12、アンモニア添加手段13、脱硝手段14及び乾燥手段15を備えており、該乾燥手段15の後段に希ガス分離回収装置16が設けられている。
【0012】
なお、前記窒素酸化物は、二酸化窒素、一酸化窒素、一酸化二窒素及びこれのイオン、ラジカル等を含むものとし、他に例示したアンモニア、水素、酸素、水蒸気等も、これらのイオンやラジカル等を含むものとする。また、希ガス含有排ガスは、半導体製造装置のリアクタから排出されるガスだけではなく、後段のポンプ類から巻き込むガスも含まれている。
【0013】
半導体製造装置から取り出されて希ガス回収用の原料となるガス混合物(以下、原料ガスという)の組成は、例えば、クリプトンやキセノンが使用される半導体製造工程のうち、プラズマ酸化工程、プラズマ窒化工程、プラズマ酸窒化工程からの排ガスの場合、プラズマ酸化工程の排出ガスには、主に希ガスであるクリプトンやキセノン、パージ用窒素(バックパージポンプの窒素巻き込みを含む)の他に、微量の酸素、水蒸気、ときには水素が含まれる。プラズマ窒化工程の排出ガスには、希ガスと窒素の他に、アンモニア、水素及び水蒸気が微量成分として含まれる。プラズマ酸窒化工程の排出ガスには、前記プラズマ酸化工程やプラズマ窒化工程での排出ガス成分に加えて窒素酸化物が含まれる。半導体装置の規模にもよるが、リアクタ1台当たりからの不純物成分の排出濃度は、各窒素酸化物1体積%以下、水素2体積%以下、酸素2体積%以下、アンモニア1体積%以下、水蒸気5体積%以下を含んだ状態が想定できる。
【0014】
この第1形態例に示すガス精製装置は、これらの各半導体製造工程に対応可能な構成を有するものである。例えば、酸化、窒化、酸窒化の各工程を一つの半導体製造装置で行い、その排出ガスを処理する場合や、酸化、窒化、酸窒化の各工程は別の半導体製造装置で行うが、排出ガスはまとめて排出される場合に対応可能であり、酸化、窒化、酸窒化の各工程のいずれか一つの工程しか行わない場合でも、この構成のガス精製装置を設置することができる。
【0015】
原料ガスG1は、原料ガス導入経路21からバッファ兼水蒸気除去容器22及び加熱器23を通って還元性物質除去手段12に導入され、還元性物質除去工程が行われる。原料ガス導入経路21には、原料ガス分析計24及び原料ガス流量計25が設けられており、原料ガスの成分分析及び不純物量の測定が行われる。また、原料ガスの導入量は、流量調節弁26によって調節される。
【0016】
酸素添加手段11は、還元性物質除去手段12での酸化反応によって原料ガス中のアンモニアや水素等の還元性物質を、窒素酸化物、窒素、水蒸気に転化するのに不足する酸素を原料ガスG1に添加するものであって、原料ガス分析計24及び原料ガス流量計25で測定した還元性物質量に応じて酸素G2の添加量が制御される。すなわち、酸素添加手段11からの酸素G2の添加量は、還元性物質除去手段12に向かう原料ガス中の酸素量が還元性物質を転化するのに十分な量となるように設定され、酸素添加経路27に設けられた酸素用流量計28によって計測され、酸素用流量調節弁29により調節される。
【0017】
原料ガスG1は、前記加熱器23であらかじめ設定された反応温度に加熱されて還元性物質除去手段12に導入される。この還元性物質除去手段12は、反応筒(触媒反応筒)30内に酸化触媒31を充填したものであって、例えば、水素やアンモニアは、酸素の存在下で下記に示す触媒反応を生じる。これにより、水素やアンモニアは、窒素酸化物、窒素、水蒸気に転化される。なお、触媒反応は、主として、水素と酸素、アンモニアと酸素の反応であるが、それぞれの反応生成物からの2次反応も同時に生じる。
【0018】
2H+O→2H
4NH+3O→2N+6H
2NH+2O→NO+3H
4NH+5O→4NO+6H
12NH+21O→12NO+18H
なお、還元性物質除去手段12で使用する酸化触媒31には、一般的に市販されているものを使用することができる。さらに、反応温度は、触媒の種類や使用量、反応するガスの濃度や流量等の操作条件に応じて好適な温度に設定すればよく、通常は150℃以上、好ましくは300℃程度である。また、加熱器23に代えて触媒反応筒30に加熱手段を設けるようにしてもよい。さらに、この還元性物質除去手段12では、酸素に代えて窒素酸化物を使用してもアンモニアのような還元製物質を除去することができる。
【0019】
還元性物質除去手段12で還元性物質が除去されたガス(還元性物質除去ガス)は、触媒反応筒30から還元性物質除去ガス経路32を通って脱硝手段14に送られる。還元性物質除去ガス経路32には、還元性物質除去ガスの成分分析を行う還元性物質除去ガス分析計33及び流量を計測する還元性物質除去ガス流量計34が設けられており、ここで測定された還元性物質除去ガス中の酸素及び窒素酸化物の量に基づいて、アンモニア添加手段13から所定量のアンモニアG3が還元性物質除去ガスに添加される。アンモニアの添加量は、還元性物質除去ガス中の酸素や窒素酸化物等の酸化性物質を還元するのに十分な量となるように決定され、アンモニア添加経路35に設けたアンモニア流量計36及びアンモニア流量調節弁37により調節される。
【0020】
脱硝手段14は、反応筒(脱硝反応筒)38内に脱硝触媒39を充填したものであって、アンモニア添加後の還元性物質除去ガスは、脱硝触媒39による反応により脱硝工程が行われ、酸素及び窒素酸化物がアンモニアと反応して水蒸気及び窒素に転化する。この脱硝工程における窒素酸化物とアンモニアとの反応(脱硝反応)及び酸素とアンモニアとの反応は以下の通りである。なお、脱硝手段14で使用する脱硝触媒39には、一般に知られている脱硝触媒を適当に選定して使用することができる。
【0021】
3NO+2NH→4N+3H
6NO+4NH→5N+6H
6NO+8NH→7N+12H
3O+4NH→2N+6H
【0022】
脱硝手段14で酸素及び窒素酸化物を除去した脱硝ガスは、脱硝ガス経路41を通り、冷却器42で反応熱及び一部の水蒸気が結露して生じた水分及びこの水分に溶けた一部のアンモニアが取り除かれ、脱硝ガス分析計43でガス組成を測定された後、前記乾燥手段15に導入されて乾燥工程が行われ、脱硝ガス中の水蒸気及びアンモニアが吸着剤によって吸着除去される。
【0023】
ここでの水蒸気は、半導体製造装置から排出されたもの、前記還元性物質除去手段12での酸化反応により生成したもの、及び、前記脱硝手段14での脱硝反応によって生成したものが含まれる。アンモニアは、アンモニア添加手段13から添加されたアンモニアが窒素酸化物や酸素と反応した余剰分である。
【0024】
乾燥手段15は、乾燥剤(吸着剤)51をそれぞれ充填した一対の乾燥筒(吸着筒)52a,52bを有する2筒切換式となっている。したがって、一方の吸着筒が水蒸気やアンモニアを吸着除去する吸着工程を行っている間、他方の吸着筒では、吸着した水蒸気やアンモニアを吸着剤から脱着させる再生工程が行われる。吸着剤51には、例えば、活性炭、シリカゲル、各種ゼオライト等を選定することができる。このような吸着剤の中で、カリウムイオン交換A型ゼオライトは、水蒸気やアンモニアを十分に吸着する能力を有しながら、希ガスをほとんど吸着しないという性質を有しているので、これを吸着剤として採用することにより、希ガスの回収をより効率よく行うことができ、回収率として、吸着筒再生時の損失を考慮しても99%以上は見込める。
【0025】
この乾燥手段15において、一方の吸着筒52aが吸着工程を行っている場合は、該吸着筒52aに対応する吸着入口弁53a及び吸着出口弁54aが開、再生入口弁55a及び再生出口弁56aが閉となり、脱硝ガス経路41からの脱硝ガスが吸着入口弁53aを通って吸着筒52aに導入され、吸着剤51により水蒸気やアンモニアが吸着除去されて乾燥ガスとなり、吸着出口弁54aを通って乾燥ガス経路57に導出される。
【0026】
他方の吸着筒52bでは、吸着入口弁53b及び吸着出口弁54bが閉、再生入口弁55b及び再生出口弁56bが開となり、吸着剤再生ガス経路58からの再生ガスW1が再生入口弁55bを通って吸着筒52b内に導入され、吸着剤を再生した後の排ガスW2は、再生出口弁56bから再生ガス排出経路59を通って排出される。両吸着筒は、各弁の開閉状態があらかじめ設定されたタイミングで切換開閉されることによって吸着工程と再生工程とに切換えられ、水蒸気及びアンモニアの吸着除去を連続的に行う。また、吸着筒内部の吸着剤の出口側に水分やアンモニアの検出器を設けて吸着剤における水分やアンモニアの吸着帯進行を検知し、この信号によって工程切換時間を決めることにより、吸着剤を完全に利用して工程切換回数を低減することができ、弁等の稼動部の長寿命化が図れるとともに、吸着筒の工程切換時に生ずる希ガスのロスを低減することができる。
【0027】
このようにして排ガス中の微量不純物である窒素酸化物、水素、酸素、水蒸気、アンモニアを除去された乾燥ガスは、そのガス組成が希ガス及び窒素を主とした状態のガス混合物となり、乾燥ガス経路57に設けられた乾燥ガス分析計61で不純物量の確認が行われた後、前記希ガス分離回収装置16に導入される。希ガス分離回収装置16は、前記乾燥ガス経路57から導入される乾燥ガスに対して希ガスと希ガス以外のガスとを分離する処理を行い、通常は、希ガスを99.99%以上の純度に精製して回収するものが用いられている。希ガスの分離処理は、従来から行われている各種操作により行うことができ、例えば、液化窒素等の冷媒を利用した深冷分離法、希ガスと希ガス以外のガスとの吸着性能の差を利用した吸着分離法、膜透過性の差を利用した膜分離法等を採用でき、必要に応じてこれらを組み合わせることもできる。この希ガス分離回収装置16で分離した希ガスP1は、希ガス回収経路62から製品として回収される。
【0028】
ここで、前記乾燥手段15における吸脱着操作は、水蒸気やアンモニア等の吸脱着をより効果的に行うため、相対的に低い温度で吸着工程を行い、相対的に高い温度で脱着(再生)工程を行う温度変動吸着分離法により行うことが好ましい。例えば、吸着工程を常温(15〜35℃)で行い、再生工程を200〜300℃で行うように設定する。
【0029】
すなわち、再生工程前段における脱着操作では、吸着剤再生ガス経路58に設けられている加熱切換弁63を再生ガス加熱器64側に切換え、該加熱器64により再生ガスW1を300℃程度に加熱して再生工程中の吸着筒に導入する。吸着筒の再生操作終了後は、加熱切換弁63を加熱器バイパス側に切換えて再生ガスをそのままの温度、通常は常温で再生工程中の吸着筒に導入し、吸着剤を冷却することにより、次の吸着工程に備えることができる。なお、加熱器64に代えて吸着筒52a、52bのそれぞれに加熱手段を設けてもよい。この場合は、加熱切換弁63も省略できる。
【0030】
また、原料ガス中にアンモニアと窒素酸化物とが共存する場合、特にアンモニアと二酸化窒素とが含まれていると、経路中で反応して硝酸アンモニウムが生成析出することがある。したがって、半導体製造工程からの排ガス中にアンモニアと窒素酸化物とが共存する場合や、排ガス(原料ガス)中にアンモニアがほとんど無い場合でも、水蒸気の濃度が高くて室温で結露した水分が配管を閉塞するおそれがある場合には、原料ガス導入経路21から加熱器23の部分までに配管加熱手段65を設け、配管や弁等を150℃以上、好ましくは硝酸アンモニウムの熱分解温度である210℃以上に加温することにより、配管や弁が硝酸アンモニウムや水分によって閉塞されることを防止できる。
【0031】
前記還元性物質除去工程において、原料ガスG1に添加する酸素G2の添加量制御は、原料ガス中のアンモニアや水素の濃度(分析計24)及び原料ガス量(流量計25)に基づいて酸化反応に必要な酸素の量を求め、前記流量調節弁29により調節することもできるが、還元性物質除去工程後の還元性物質除去ガス中の残留酸素濃度(分析計33)が一定量となるように、前記流量調節弁29を制御することもできる。また、操作条件によっては、流量計28により一定流量の酸素を添加するように制御することもできる。
【0032】
この酸素G2の添加量は、アンモニアや水素の量と化学反応式とによって酸素の理論必要量を算出することができるが、完全にアンモニアや水素を除去するためには、理論量よりも過剰の酸素を添加するように制御する必要がある。ただし、余剰の酸素は、後段の設備で除去することになるため、添加量は必要最小限に抑えることが好ましい。また、半導体製造装置において使用されるガス組成と流量、反応条件によって対応する排気ガス組成を推定し、推定したアンモニアや水素の量に基づいて酸素の添加量を制御することも可能である。この場合は、推定誤差が発生するため、比較的過剰に酸素を添加する必要があるものの、分析の必要が無くて簡便であるという利点を有している。
【0033】
この酸素G2の添加量制御と同様に、脱硝工程において添加するアンモニアG3の添加量の制御は、還元性物質除去ガス中の酸素及び窒素酸化物の濃度(分析計33)及びガス量(流量計34)により、窒素酸化物や酸素の還元に必要なアンモニア量を求め、これに基づいて流量調節弁37を調節するだけでもよいが、脱硝工程後の脱硝ガス中の残留アンモニア濃度(分析計43)が一定になるように制御するようにしてもよい。また、操作条件によっては、流量調整弁37によって一定流量のアンモニアを添加するように制御することもできる。さらに、前記還元性物質除去手段で生成又は残留する酸素や窒素酸化物の量を推定し、推定した量に基づいてアンモニアG3の添加量を制御することも可能である。
【0034】
図2は、本発明のガス精製方法における前記第2の構成を適用したガス精製装置の一形態例を示す系統図である。このガス精製装置は、前述のようなプラズマ酸化工程、プラズマ窒化工程、プラズマ酸窒化工程から排出される希ガス含有排ガス、例えば、クリプトン及び窒素を主成分とし、微量不純物として窒素酸化物、水素、酸素、アンモニア、水蒸気等を含むと想定されるガス混合物からクリプトンを分離回収する際の前段階的精製処理を行い、前記微量不純物の内、少なくとも、最終的な希ガス分離回収装置での分離回収操作で障害となる窒素酸化物、水素、アンモニア及び水蒸気を除去するものであって、第1酸素添加手段111、還元性物質除去手段112、水素添加手段113、脱硝手段114、第2酸素添加手段115、水素酸化手段116及び乾燥手段117を備えており、該乾燥手段117の後段に希ガス分離回収装置118が設けられている。
【0035】
なお、前記窒素酸化物は、前記第1形態例と同様に、二酸化窒素、一酸化窒素、一酸化二窒素及びこれのイオン、ラジカル等を含むものとし、他に例示したアンモニア、水素、酸素、水蒸気等も、これらのイオンやラジカル等を含むものとする。また、希ガス含有排ガスは、半導体製造装置のリアクタから排出されるガスだけではなく、後段のポンプ類から巻き込むガスも含まれている。
【0036】
半導体製造装置から取り出されて希ガス回収用の原料となるガス混合物(原料ガスG1)の組成も前記第1形態例と同様であり、例えば、クリプトンやキセノンが使用される半導体製造工程のうち、プラズマ酸化工程、プラズマ窒化工程、プラズマ酸窒化工程からの排ガスの場合、プラズマ酸化工程の排出ガスには、主に希ガスであるクリプトンやキセノン、パージ用窒素(バックパージポンプの窒素巻き込みを含む)の他に、微量の酸素、水蒸気、ときには水素が含まれる。プラズマ窒化工程の排出ガスには、希ガスと窒素の他に、アンモニア、水素及び水蒸気が微量成分として含まれる。プラズマ酸窒化工程の排出ガスには、前記プラズマ酸化工程やプラズマ窒化工程での排出ガス成分に加えて窒素酸化物が含まれる。半導体装置の規模にもよるが、リアクタ1台当たりからの不純物成分の排出濃度は、各窒素酸化物1体積%以下、水素2体積%以下、酸素2体積%以下、アンモニア1体積%以下、水蒸気5体積%以下を含んだ状態が想定できる。
【0037】
この第2形態例に示すガス精製装置も、これらの各半導体製造工程に対応可能な構成を有している。例えば、酸化、窒化、酸窒化の各工程を一つの半導体製造装置で行い、その排出ガスを処理する場合や、酸化、窒化、酸窒化の各工程は別の半導体製造装置で行うが、排出ガスはまとめて排出される場合に対応可能であり、酸化、窒化、酸窒化の各工程のいずれか一つの工程しか行わない場合でも、この構成のガス精製装置を設置することができる。
【0038】
原料ガスG11は、原料ガス導入経路121からバッファ兼水蒸気除去容器122及び加熱器123を通って還元性物質除去手段112に導入され、還元性物質除去工程が行われる。原料ガス導入経路121には、原料ガス分析計124及び原料ガス流量計125が設けられており、原料ガスの成分分析及び不純物量の測定が行われる。また、原料ガスの導入量は、流量調節弁126によって調節される。
【0039】
第1酸素添加手段111は、還元性物質除去手段112での酸化反応によって原料ガス中のアンモニアや水素等の還元性物質を、窒素酸化物、窒素、水蒸気に転化するのに不足する酸素を原料ガスG11に添加するものであって、原料ガス分析計124及び原料ガス流量計125で測定した還元性物質量に応じて酸素G12の添加量が制御される。すなわち、第1酸素添加手段111からの酸素G12の添加量は、還元性物質除去手段112に向かう原料ガス中の酸素量が還元性物質を転化するのに十分な量となるように設定され、酸素添加経路127に設けられた酸素用流量計128によって計測され、酸素用流量調節弁129により調節される。
【0040】
原料ガスG11は、前記加熱器123であらかじめ設定された反応温度に加熱されて還元性物質除去手段112に導入される。この還元性物質除去手段112は、触媒反応筒130内に酸化触媒131を充填したものであって、例えば、水素やアンモニアは、酸素の存在下で下記に示す触媒反応によって窒素酸化物、窒素、水蒸気に転化される。
【0041】
2H+O→2H
4NH+3O→2N+6H
2NH+2O→NO+3H
4NH+5O→4NO+6H
12NH+21O→12NO+18H
【0042】
なお、還元性物質除去手段112で使用する酸化触媒131には、一般的に市販されているものを使用することができる。さらに、反応温度は、触媒の種類や使用量、反応するガスの濃度や流量等の操作条件に応じて好適な温度に設定すればよく、通常は150℃以上、好ましくは300℃程度である。また、加熱器123に代えて触媒反応筒130に加熱手段を設けるようにしてもよい。
【0043】
還元性物質除去手段112で還元性物質が除去されたガス(還元性物質除去ガス)は、触媒反応筒130から還元性物質除去ガス経路132を通って脱硝手段114に送られる。還元性物質除去ガス経路132には、還元性物質除去ガスの成分分析を行う還元性物質除去ガス分析計133が設けられており、ここで測定された還元性物質除去ガス中の酸素及び窒素酸化物の量に基づいて、水素添加手段113から所定量の水素G13が還元性物質除去ガスに添加される。この水素の添加量は、還元性物質除去ガス中の酸素や窒素酸化物等の酸化性物質を還元するのに十分な量となるように決定され、水素添加経路135に設けた水素流量計136及び水素流量調節弁137により調節される。
【0044】
脱硝手段114は、反応筒(脱硝反応筒)138内に脱硝触媒139を充填したものであって、水素添加後の還元性物質除去ガスは、脱硝触媒139による反応により脱硝工程が行われ、酸素及び窒素酸化物が水素と反応して水蒸気及び窒素に転化する。この脱硝工程における窒素酸化物と水素との反応(脱硝反応)及び酸素と水素との反応は以下の通りである。なお、脱硝手段114で使用する脱硝触媒139には、一般に知られている脱硝触媒を適当に選定して使用することができる。
【0045】
2NO+2H→N+2H
2NO+4H→N+4H
O+H→N+H
+2H→2H
【0046】
なお、このような脱硝反応において、還元性物質として水素を用いるときには安全面に配慮する必要があり、添加する水素ガス濃度を爆発限界以下に抑えたり、半導体製造装置からの排ガス組成を水素ガス濃度に寄らず、爆発しない組成に抑える工夫も必要となる。また、脱硝反応筒138の両側に焼結金属を準備し、爆発に対する対策を講じることが望ましい。このことは、その他の触媒反応に関しても同様である。
【0047】
脱硝手段114で酸素及び窒素酸化物を除去した脱硝ガスは、脱硝ガス経路141を通り、水素酸化手段116に送られて水素を除去するための水素酸化工程が行われる。脱硝ガス経路141には、脱硝ガスの成分分析を行う脱硝ガス分析計142及び流量を計測する脱硝ガス流量計143が設けられており、ここで測定された脱硝ガス中の水素量に基づいて、第2酸素添加手段115から所定量の酸素G14が脱硝ガスに添加される。この酸素G14の添加量は、脱硝ガス中の水素を還元するのに十分な量となるように決定され、第2酸素添加経路115に設けた酸素流量計144及び酸素流量調節弁145により調節される。
【0048】
水素酸化手段116は、反応筒(水素反応筒)146内に水素酸化触媒147を充填したものであって、酸素添加後の脱硝ガスは、水素酸化触媒147による反応により水素除去工程が行われ、水素と酸素とが反応して水蒸気が発生する。なお、水素酸化手段116で使用する水素酸化触媒147には、一般に知られている水素酸化触媒を適当に選定して使用することができる。
【0049】
水素酸化手段116で水素を除去した脱水素ガスは、脱水素ガス経路148を通り、冷却器149で反応熱及び一部の水蒸気が結露して生じた水分が取り除かれ、脱水素ガス分析計150でガス組成を測定された後、前記乾燥手段117に導入されて乾燥工程が行われ、脱水素ガス中の水蒸気が吸着剤によって吸着除去される。ここでの水蒸気は、半導体製造装置から排出されたもの、前記還元性物質除去手段112や水素酸化手段116での酸化反応により生成したもの、及び、前記脱硝手段114での脱硝反応によって生成したものが含まれる。
【0050】
乾燥手段117は、吸着剤(乾燥剤)151をそれぞれ充填した一対の吸着筒(乾燥筒)152a,152bを有する2筒切換式となっている。したがって、一方の乾燥筒が水蒸気を吸着除去する乾燥工程を行っている間、他方の乾燥筒では、吸着した水蒸気を乾燥剤から脱着させる再生工程が行われる。乾燥剤151には、例えば、活性炭、シリカゲル、各種ゼオライト等を選定することができるが、水蒸気を十分に吸着する能力を有しながら、希ガスをほとんど吸着しないカリウムイオン交換A型ゼオライトを乾燥剤として採用することにより、希ガスの回収をより効率よく行うことができ、回収率として、乾燥筒再生時の損失を考慮しても99%以上は見込める。
【0051】
この乾燥手段117において、一方の乾燥筒152aが乾燥工程を行っている場合は、該乾燥筒152aに対応する乾燥入口弁153a及び乾燥出口弁154aが開、再生入口弁155a及び再生出口弁156aが閉となり、脱水素ガス経路148からの脱水素ガスが乾燥入口弁153aを通って乾燥筒152aに導入され、乾燥剤151により水蒸気が吸着除去されて乾燥ガスとなり、乾燥出口弁154aを通って乾燥ガス経路157に導出される。
【0052】
他方の乾燥筒152bでは、乾燥入口弁153b及び乾燥出口弁154bが閉、再生入口弁155b及び再生出口弁156bが開となり、乾燥剤再生ガス経路158からの再生ガスW11が再生入口弁155bを通って乾燥筒152b内に導入され、乾燥剤を再生した後の排ガスW12は、再生出口弁156bから再生ガス排出経路159を通って排出される。両乾燥筒は、各弁の開閉状態があらかじめ設定されたタイミングで切換開閉されることによって乾燥工程と再生工程とに切換えられ、水蒸気の吸着除去を連続的に行う。また、乾燥筒内部の乾燥剤の出口側に水分の検出器を設けて乾燥剤における水分の吸着帯進行を検知し、この信号によって工程切換時間を決めることにより、乾燥剤を完全に利用して工程切換回数を低減することができ、弁等の稼動部の長寿命化が図れるとともに、乾燥筒の工程切換時に生ずる希ガスのロスを低減することができる。
【0053】
このようにして排ガス中の微量不純物である窒素酸化物、水素、酸素、水蒸気、アンモニアを除去された乾燥ガスは、そのガス組成が希ガス及び窒素を主とした状態のガス混合物となり、乾燥ガス経路157に設けられた乾燥ガス分析計161で不純物量の確認が行われた後、前記希ガス分離回収装置118に導入され、前記同様にして希ガス以外のガスとを分離する処理が行われ、純度99.99%以上に精製分離した希ガスP11が、希ガス回収経路162から製品として回収される。
【0054】
なお、乾燥手段117における吸脱着操作は、前記第1形態例における前記乾燥手段15と同様にして行うことができ、乾燥剤の再生工程は、吸着剤再生ガス経路158に設けられている加熱切換弁163を再生工程の進行に伴って再生ガス加熱器164側及び加熱器バイパス側に切換えることにより行うことができる。この場合も、乾燥筒を加熱する手段を用いることにより、加熱切換弁163や再生ガス加熱器164を省略できる。
【0055】
また、前記第1形態例で説明したように、原料ガス中にアンモニアと窒素酸化物とが共存する場合や、水蒸気濃度が高い場合は、原料ガス導入経路121から加熱器123の部分までに配管加熱手段165を設けておくことが好ましい。さらに、原料ガスG11に添加する酸素G12、水素G13及び酸素G14の添加量制御は、これらと反応する成分量に基づいて添加量を求めるようにしてもよく、各工程後のこれらの残留量が一定量となるようにしてもよく、一定量を添加するようにしてもよい。
【0056】
【実施例】
還元性物質除去工程
酸化触媒としてエヌ・イーケムキャット(株)製Pd触媒DASH220D(パラジウム0.5%/アルミナ)15gをステンレス製の反応筒(内径17.5mm)に充填した。反応筒外部にヒーターを設置して反応筒が300℃を維持するように温度制御を行った。処理対象となるガス混合物(導入ガス)には、クリプトンと窒素との等量混合物をベースガスとし、除去対象となるアンモニア及び水素の濃度を変えたガスを用意した。
【0057】
そして、この導入ガスに酸素を添加し、大気圧で反応筒に導入した。反応筒出口ガス中の一酸化窒素及び二酸化窒素の濃度を化学発光式NOx計で、一酸化二窒素の濃度をGC−MSで、水素及び酸素の濃度をGC−TCDで、アンモニアの濃度を検知管法で、それぞれ測定した。その結果、酸素過剰下では、出口ガス中のアンモニア及び水素が測定限界以下であったのに対し、反応で生じた水蒸気、窒素酸化物、酸素が存在することがわかった。
【0058】
脱硝工程
脱硝触媒としてエヌ・イーケムキャット(株)製Pd触媒DASH220D(パラジウム0.5%/アルミナ)15gをステンレス製の反応筒(内径17.5mm)に充填した。反応筒外部にヒーターを設置して反応筒が300℃を維持するように温度制御を行った。処理対象となるガス混合物(導入ガス)には、クリプトンと窒素との等量混合物をベースガスとし、除去対象となる窒素酸化物及び酸素の濃度を変えたガスを用意した。
【0059】
そして、この導入ガスにアンモニアを添加して大気圧で反応筒に導入した。また、硝酸塩の析出を防ぐため、導入ガスの配管を配管加熱手段によって210℃以上に保温した。反応筒出口ガス中の一酸化窒素及び二酸化窒素の濃度を化学発光式NOx計で、一酸化二窒素の濃度をGC−MSで、酸素濃度をGC−TCDでそれぞれ測定した。その結果、還元性物質であるアンモニアの添加量を窒素酸化物に対して適当量過剰に設定することにより、窒素酸化物を確実に除去できることがわかった。また、アンモニアに代えて水素を添加した場合でも、同様にして窒素酸化物及び酸素を除去できることを確認した。
【0060】
水素酸化工程
水素酸化触媒として日産ガードラー触媒(株)製Pd触媒G74D(パラジウム0.5%/アルミナ)30gをステンレス製の反応筒(内径17.5mm)に充填した。この反応筒に、クリプトンと窒素との等量混合物に水素1体積%を含むガスに対して0.6体積%の酸素ガスを添加し、大気圧、2L/minで導入して反応筒出口ガス中の水素及び酸素の濃度をGC−TCDでそれぞれ測定した。その結果、反応筒の出口において、水素は0.1体積ppm以下、酸素は0.1体積%となった。このとき、水素酸化筒の初期温度は80℃としたが、反応熱によって出口ガス温度は約170℃まで上昇した。
【0061】
乾燥工程
吸着剤として東ソー(株)製ゼオラムA−3(カリウムイオン交換A型ゼオライト(カリウムA型ゼオライト))60gを内径17.5mmのステンレス製吸着筒に充填した。この吸着筒に、クリプトンと窒素との等量混合物をベースガスとしてアンモニア0.5体積%及び水蒸気0.5体積%を添加したガス混合物を2L/min、25℃で導入し、吸着筒出口ガス中のアンモニア及び水分量を測定した。その結果、吸着開始から3時間以上にわたり、出口ガス中の濃度として、アンモニア1体積ppm以下、露点−80℃以下(水1体積ppm以下)を維持できた。さらに、一対の吸着筒における工程切換時間を3時間に設定し、再生温度300℃、再生ガス(窒素)0.25L/minとし、吸着/再生の繰り返し試験を行ったが、吸着能力が初期の吸着能力と変化のないことを確認した。
【0062】
また、カリウムA型ゼオライトの他に、ナトリウムA型ゼオライト(東ソー(株)製ゼオラムA−4)と、ナトリウムX型ゼオライト(東ソー(株)製ゼオラムF−9HA)とを用いてクリプトンの平衡吸着量を測定した。その結果、カリウムA型ゼオライトは、クリプトンをほとんど吸着しないのに対し、ナトリウムA型ゼオライト及びナトリウムX型ゼオライトは、両者共にクリプトンを0.09mol/kg(at50kPa、25℃)の割合で吸着することが判明した。
【0063】
吸着剤に吸着したクリプトンは、再生工程で再生ガスに同伴されて排出されることになるため、クリプトンを吸着しないカリウムA型ゼオライトを使用することにより、クリプトンの回収率を高めることが可能となる。なお、第2形態例における乾燥工程においても、カリウムA型ゼオライトを使用することにより、クリプトンの損失を抑えながら水分の吸着除去を確実に行えることを確認した。
【0064】
【発明の効果】
以上説明したように、本発明によれば、希ガス、特に高価なクリプトンやキセノンと窒素とを主成分とするガス混合物中に含まれている水素、アンモニア、水蒸気、窒素酸化物のような微量不純物を効率よく分離除去することができる。特に、半導体の処理工程、例えば、酸化工程、窒化工程、酸窒化工程の各種工程に対しても、雰囲気ガスとして使用された後のクリプトン、キセノン等の希ガスを含む排ガス(ガス混合物)から微量不純物成分を確実に分離除去することができ、希ガス精製装置全体の設備コスト、運転コストを削減することができる。
【図面の簡単な説明】
【図1】本発明を適用したガス精製装置の第1形態例を示す系統図である。
【図2】本発明を適用したガス精製装置の第2形態例を示す系統図である。
【符号の説明】
11…酸素添加手段、12…還元性物質除去手段、13…アンモニア添加手段、14…脱硝手段、15…乾燥手段、16…希ガス分離回収装置、21…原料ガス導入経路、22…バッファ兼水分除去容器、23…加熱器、24…原料ガス分析計、25…原料ガス流量計、26…流量調節弁、27…酸素添加経路、28…酸素用流量計、29…酸素用流量調節弁、30…触媒反応筒、31…酸化触媒、32…還元性物質除去ガス経路、33…還元性物質除去ガス分析計、34…還元性物質除去ガス流量計、35…アンモニア添加経路、36…アンモニア流量計、37…アンモニア流量調節弁、38…脱硝反応筒、39…脱硝触媒、41…脱硝ガス経路、42…冷却器、43…脱硝ガス分析計、51…吸着剤、52a,52b…吸着筒、57…乾燥ガス経路、58…吸着剤再生ガス経路、59…再生ガス排出経路、61…乾燥ガス分析計、62…希ガス回収経路、63…加熱切換弁、64…再生ガス加熱器、65…配管加熱手段、111…第1酸素添加手段、112…還元性物質除去手段、113…水素添加手段、114…脱硝手段、115…第2酸素添加手段、116…水素酸化手段、117…乾燥手段、118…希ガス分離回収装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas purification method, and in particular, has a reactivity such as hydrogen, ammonia, water vapor, or nitrogen oxide that hinders the operation when separating and recovering krypton and xenon, which are rare gases, from a gas mixture. A gas purification method used to remove trace impurities in advance, particularly in a process of manufacturing a semiconductor product, for example, a pretreatment of an apparatus for separating and recovering a rare gas in an exhaust gas discharged from a plasma processing apparatus. The present invention relates to an optimal method for removing the trace impurities.
[0002]
[Prior art]
For example, from a semiconductor manufacturing apparatus for manufacturing semiconductor products such as semiconductor integrated circuits, liquid crystal panels, solar cell panels, and magnetic disks, rare gases, especially krypton, xenon, and nitrogen are used as main components, and as trace impurities, , A gas mixture containing reactive substances such as hydrogen, ammonia, water vapor, and nitrogen oxides is discharged as exhaust gas. Therefore, in order to recover and reuse an expensive rare gas, these trace impurities must be removed from the exhaust gas without causing a loss of the rare gas.
[0003]
Various techniques have been proposed in the past to remove trace impurities as described above from the gas. However, all of these techniques involve only one type of component such as nitrogen oxides, hydrogen, and oxygen. Rare gas is recovered from a mixed gas that has a very low gas flow rate and contains many types of gases as impurities, such as gases discharged from various processes for semiconductor manufacturing. It is not a technology to do it. That is, in order to recover a rare gas from an exhaust gas of a semiconductor manufacturing apparatus, a technology for separating / removing / purifying trace impurities contained in the exhaust gas in a consistent form has not yet been established.
[0004]
A first step of removing fluorine when the impurity neon gas extracted from the KrF excimer laser oscillator of the semiconductor manufacturing apparatus contains fluorine, krypton, nitrogen, oxygen, carbon monoxide, carbon dioxide and water. A second step of removing carbon dioxide and moisture by adsorption after removing oxygen with a metal oxide catalyst, a third step of removing krypton by low-temperature adsorption, and removing nitrogen and carbon monoxide by further low-temperature adsorption A method of purifying neon by sequentially performing the fourth step has been proposed (for example, see Patent Document 1).
[0005]
[Patent Document 1]
JP 2001-232134 A (Page 1, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, the above-mentioned method uses large amounts of low-temperature adsorption, requires large-scale equipment to obtain low temperatures, is a laborious and costly process, and is suitable for industrial gas manufacturers to carry out in-house. Despite this process, it is a process that separates and recovers rare gases in the exhaust gas discharged from the equipment at the semiconductor factory and in the immediate vicinity of the semiconductor manufacturing equipment, and reuses them. Is difficult to use.
[0007]
As described above, the conventional various techniques can be used in the immediate vicinity of a semiconductor manufacturing apparatus, and can appropriately remove two or more types of impurity components contained in gas discharged from various semiconductor manufacturing processes. There was a problem that there was no way. In particular, various removal means have been studied depending on the types of impurity components contained in the exhaust gas. However, a plurality of impurities can be efficiently removed from a gas mixture containing a plurality of them, and the loss of a rare gas can be suppressed. A process that can be reused at a rate has not been established. In addition, when the adsorption step is used in multiple stages, there remains a problem that the cost of equipment increases and the loss of rare gas slightly increases.
[0008]
Therefore, the present invention can remove trace impurities such as hydrogen, ammonia, water vapor, and nitrogen oxides contained in a gas mixture containing a rare gas and nitrogen as main components at low cost and with high efficiency, and in particular, semiconductors. In manufacturing equipment, it can be applied to exhaust gas from various processes of oxidation, nitridation and oxynitridation using expensive krypton and xenon.In addition, it can be installed immediately adjacent to semiconductor manufacturing equipment to continuously separate rare gases from exhaust gas. It is an object of the present invention to provide a gas purification method capable of realizing a small system that can be collected and reused.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the gas purification method of the present invention comprises, as a first configuration, a rare gas and nitrogen as main components, and at least one of hydrogen, ammonia, water vapor, and nitrogen oxide as trace impurities. A gas purification method for removing said trace impurities from a gas mixture, comprising removing a reducing substance capable of converting hydrogen and ammonia into a gas mixture containing water vapor by an oxidation reaction in the presence of at least one of oxygen and nitrogen oxides. A denitration step capable of converting nitrogen oxides and oxygen contained in the gas mixture after the reducing substance removal step to nitrogen and water vapor by a denitration catalyst reaction in the presence of ammonia, and terminating the denitration step Drying step capable of removing ammonia and water vapor in the gas mixture.
[0010]
Further, the gas purification method of the present invention is characterized in that, as a second configuration, the gas mixture containing a rare gas and nitrogen as main components, and at least one of hydrogen, ammonia, water vapor, and nitrogen oxides as trace impurities, is used. In a gas purification method for removing trace impurities, a reducing substance removing step capable of converting hydrogen and ammonia into a gas mixture containing water vapor by an oxidation reaction in the presence of at least one of oxygen and nitrogen oxide; A denitration step capable of converting nitrogen oxides and oxygen contained in the gas mixture after the neutral substance removal step to nitrogen and water vapor by a denitration catalytic reaction in the presence of hydrogen, and a gas mixture after the denitration step. A hydrogen oxidation step capable of converting hydrogen to water vapor by a hydrogen oxidation reaction in the presence of oxygen, and water in the gas mixture after the hydrogen oxidation step. It is characterized in that it comprises a removable drying gas.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a system diagram showing one embodiment of a gas purification apparatus to which the first configuration is applied in the gas purification method of the present invention. This gas purification device is composed of a rare gas-containing exhaust gas discharged from the plasma oxidation step, the plasma nitridation step, and the plasma oxynitridation step, for example, krypton and nitrogen as main components, and nitrogen oxides, hydrogen, oxygen, ammonia, as trace impurities. Perform a pre-stage purification process when separating and recovering krypton from a gas mixture supposed to contain water vapor and the like, and at least among the trace impurities, obstacles in the separation and recovery operation in the final rare gas separation and recovery device For removing nitrogen oxides, hydrogen, ammonia and water vapor, and comprises an oxygen adding means 11, a reducing substance removing means 12, an ammonia adding means 13, a denitration means 14 and a drying means 15. A rare gas separation and recovery device 16 is provided at a stage subsequent to 15.
[0012]
The nitrogen oxides include nitrogen dioxide, nitric oxide, nitrous oxide and their ions, radicals, and the like. Ammonia, hydrogen, oxygen, water vapor, and the like exemplified also include these ions and radicals. Shall be included. Further, the rare gas-containing exhaust gas includes not only the gas discharged from the reactor of the semiconductor manufacturing apparatus, but also the gas entrained from pumps at the subsequent stage.
[0013]
The composition of a gas mixture (hereinafter, referred to as source gas) taken out of a semiconductor manufacturing apparatus and serving as a raw material for rare gas recovery is, for example, a plasma oxidation step, a plasma nitridation step, or a plasma manufacturing step in a semiconductor manufacturing process using krypton or xenon. In the case of the exhaust gas from the plasma oxynitriding process, the exhaust gas of the plasma oxidizing process mainly includes krypton and xenon, which are rare gases, nitrogen for purging (including nitrogen entrainment of a back purge pump), and a small amount of oxygen. , Water vapor, and sometimes hydrogen. The exhaust gas of the plasma nitriding process contains ammonia, hydrogen, and water vapor as trace components in addition to the rare gas and nitrogen. The exhaust gas in the plasma oxynitriding step contains nitrogen oxides in addition to the exhaust gas components in the plasma oxidizing step and the plasma nitriding step. Depending on the scale of the semiconductor device, the emission concentration of the impurity component from each reactor is 1 vol% or less for each nitrogen oxide, 2 vol% or less for hydrogen, 2 vol% or less for oxygen, 1 vol% or less for ammonia, A state containing 5% by volume or less can be assumed.
[0014]
The gas purifying apparatus shown in the first embodiment has a configuration that can cope with each of these semiconductor manufacturing steps. For example, when each step of oxidation, nitridation, and oxynitridation is performed by one semiconductor manufacturing apparatus and the exhaust gas is processed, or each step of oxidation, nitridation, and oxynitridation is performed by another semiconductor manufacturing apparatus, Can be dealt with collectively and exhausted, and even when only one of the steps of oxidation, nitridation, and oxynitridation is performed, the gas purification apparatus having this configuration can be installed.
[0015]
The source gas G1 is introduced from the source gas introduction path 21 through the buffer / steam removal container 22 and the heater 23 to the reducing substance removing means 12, and the reducing substance removing step is performed. The source gas introduction path 21 is provided with a source gas analyzer 24 and a source gas flow meter 25, and performs component analysis of the source gas and measurement of the amount of impurities. The amount of the source gas introduced is adjusted by the flow control valve 26.
[0016]
The oxygen adding means 11 removes oxygen, which is insufficient to convert a reducing substance such as ammonia or hydrogen in the raw material gas into nitrogen oxides, nitrogen, or water vapor by the oxidation reaction in the reducing substance removing means 12, into the raw material gas G1. The amount of oxygen G2 added is controlled according to the amount of reducing substance measured by the raw material gas analyzer 24 and the raw material gas flow meter 25. That is, the amount of oxygen G2 added from the oxygen adding means 11 is set so that the amount of oxygen in the raw material gas directed to the reducing substance removing means 12 is sufficient to convert the reducing substance. It is measured by an oxygen flow meter 28 provided in the passage 27 and adjusted by an oxygen flow control valve 29.
[0017]
The raw material gas G1 is heated to a reaction temperature set in advance by the heater 23 and introduced into the reducing substance removing means 12. The reducing substance removing means 12 is one in which a reaction tube (catalytic reaction tube) 30 is filled with an oxidation catalyst 31. For example, hydrogen or ammonia causes the following catalytic reaction in the presence of oxygen. Thereby, hydrogen and ammonia are converted into nitrogen oxides, nitrogen, and water vapor. Note that the catalytic reaction is mainly a reaction between hydrogen and oxygen and between ammonia and oxygen, but a secondary reaction from each reaction product also occurs at the same time.
[0018]
2H 2 + O 2 → 2H 2 O
4NH 3 + 3O 2 → 2N 2 + 6H 2 O
2NH 3 + 2O 2 → N 2 O + 3H 2 O
4NH 3 + 5O 2 → 4NO + 6H 2 O
12NH 3 + 21O 2 → 12NO 2 + 18H 2 O
In addition, as the oxidation catalyst 31 used in the reducing substance removing means 12, a commercially available catalyst can be used. Further, the reaction temperature may be set to a suitable temperature according to operating conditions such as the type and amount of catalyst used, the concentration and flow rate of the reacting gas, and is usually 150 ° C. or higher, preferably about 300 ° C. Further, a heating means may be provided in the catalyst reaction tube 30 instead of the heater 23. Further, the reducing substance removing means 12 can remove a reducing substance such as ammonia by using nitrogen oxide instead of oxygen.
[0019]
The gas from which the reducing substance has been removed by the reducing substance removing means 12 (reducing substance removing gas) is sent from the catalytic reaction tube 30 to the denitration means 14 through the reducing substance removing gas path 32. The reducing substance removing gas path 32 is provided with a reducing substance removing gas analyzer 33 for analyzing the components of the reducing substance removing gas and a reducing substance removing gas flow meter 34 for measuring the flow rate. A predetermined amount of ammonia G3 is added to the reducing substance removing gas from the ammonia adding means 13 based on the amounts of oxygen and nitrogen oxides in the reduced substance removing gas thus obtained. The amount of added ammonia is determined to be an amount sufficient to reduce oxidizing substances such as oxygen and nitrogen oxides in the reducing substance-removing gas. It is adjusted by the ammonia flow control valve 37.
[0020]
The denitration means 14 is a reactor in which a denitration catalyst 39 is filled in a reaction tube (denitration reaction tube) 38. The reducing substance removal gas after the addition of ammonia is subjected to a denitration step by a reaction with the denitration catalyst 39, And nitrogen oxides react with ammonia to convert to steam and nitrogen. The reaction between nitrogen oxide and ammonia (denitration reaction) and the reaction between oxygen and ammonia in this denitration step are as follows. As the denitration catalyst 39 used in the denitration means 14, a generally known denitration catalyst can be appropriately selected and used.
[0021]
3N 2 O + 2NH 3 → 4N 2 + 3H 2 O
6NO + 4NH 3 → 5N 2 + 6H 2 O
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O
3O 2 + 4NH 3 → 2N 2 + 6H 2 O
[0022]
The denitration gas from which oxygen and nitrogen oxides have been removed by the denitration means 14 passes through a denitration gas path 41, and in a cooler 42, the heat generated by condensation of the reaction heat and some of the water vapor and a part of the water dissolved in this moisture After the ammonia is removed and the gas composition is measured by the denitration gas analyzer 43, it is introduced into the drying means 15 to perform a drying step, and the water vapor and ammonia in the denitration gas are adsorbed and removed by the adsorbent.
[0023]
The water vapor here includes those discharged from the semiconductor manufacturing apparatus, those generated by the oxidation reaction in the reducing substance removing means 12, and those generated by the denitration reaction in the denitration means 14. Ammonia is the surplus amount of ammonia added from the ammonia adding means 13 reacting with nitrogen oxides and oxygen.
[0024]
The drying means 15 is of a two-cylinder switching type having a pair of drying cylinders (adsorption cylinders) 52a and 52b each filled with a desiccant (adsorbent) 51. Therefore, while one adsorption column is performing the adsorption step of adsorbing and removing water vapor and ammonia, the other adsorption column is performing a regeneration step of desorbing the adsorbed water vapor and ammonia from the adsorbent. As the adsorbent 51, for example, activated carbon, silica gel, various zeolites, or the like can be selected. Among such adsorbents, potassium ion-exchanged A-type zeolite has the property of hardly adsorbing rare gases while having the ability to adsorb water vapor and ammonia sufficiently. As a result, rare gas can be more efficiently recovered, and a recovery rate of 99% or more can be expected even if the loss during regeneration of the adsorption column is considered.
[0025]
In this drying means 15, when one adsorption cylinder 52a is performing the adsorption step, the adsorption inlet valve 53a and the adsorption outlet valve 54a corresponding to the adsorption cylinder 52a are opened, and the regeneration inlet valve 55a and the regeneration outlet valve 56a are Closed, the denitration gas from the denitration gas path 41 is introduced into the adsorption cylinder 52a through the adsorption inlet valve 53a, and the adsorbent 51 adsorbs and removes water vapor and ammonia to become a dry gas, which is dried through the adsorption outlet valve 54a. It is led to the gas path 57.
[0026]
In the other adsorption column 52b, the adsorption inlet valve 53b and the adsorption outlet valve 54b are closed, the regeneration inlet valve 55b and the regeneration outlet valve 56b are opened, and the regeneration gas W1 from the adsorbent regeneration gas passage 58 passes through the regeneration inlet valve 55b. The exhaust gas W2 that has been introduced into the adsorption cylinder 52b and has regenerated the adsorbent is discharged from the regeneration outlet valve 56b through the regeneration gas discharge path 59. The two adsorption cylinders are switched between an adsorption step and a regeneration step by switching between open and closed states of each valve at a preset timing, and continuously perform adsorption and removal of water vapor and ammonia. In addition, a detector for moisture and ammonia is provided at the outlet side of the adsorbent inside the adsorption column to detect the progress of the adsorption band of moisture and ammonia in the adsorbent, and this signal determines the process switching time, thereby completely adsorbing the adsorbent. Thus, the number of times of process switching can be reduced, the operating life of valves and the like can be extended, and the loss of rare gas generated when the process of the adsorption cylinder is switched can be reduced.
[0027]
The dry gas from which nitrogen oxides, hydrogen, oxygen, water vapor, and ammonia, which are trace impurities in the exhaust gas, have been removed in this manner becomes a gas mixture whose gas composition is mainly composed of a rare gas and nitrogen. After the amount of impurities is confirmed by the dry gas analyzer 61 provided in the path 57, the impurities are introduced into the rare gas separation and recovery device 16. The rare gas separation / recovery device 16 performs a process of separating the rare gas and the gas other than the rare gas from the dry gas introduced from the dry gas path 57, and usually converts the rare gas to 99.99% or more. What is recovered after purifying to a purity is used. The rare gas separation process can be performed by various operations conventionally performed, for example, a cryogenic separation method using a refrigerant such as liquefied nitrogen, a difference in adsorption performance between a rare gas and a gas other than the rare gas. And a membrane separation method using a difference in membrane permeability, and these can be combined as necessary. The rare gas P1 separated by the rare gas separation and recovery device 16 is recovered as a product from the rare gas recovery path 62.
[0028]
Here, in the adsorption / desorption operation in the drying means 15, the adsorption step is performed at a relatively low temperature and the desorption (regeneration) step is performed at a relatively high temperature in order to more effectively perform adsorption and desorption of water vapor, ammonia, and the like. Is preferably carried out by a temperature fluctuation adsorption separation method. For example, it is set so that the adsorption step is performed at normal temperature (15 to 35 ° C.) and the regeneration step is performed at 200 to 300 ° C.
[0029]
That is, in the desorption operation in the former stage of the regeneration step, the heating switching valve 63 provided in the adsorbent regeneration gas path 58 is switched to the regeneration gas heater 64 side, and the regeneration gas W1 is heated to about 300 ° C. by the heater 64. Into the adsorption column during the regeneration process. After completion of the regeneration operation of the adsorption cylinder, the heating switching valve 63 is switched to the heater bypass side to introduce the regeneration gas at the same temperature, usually at normal temperature, into the adsorption cylinder in the regeneration step, and to cool the adsorbent, It can be prepared for the next adsorption step. In addition, heating means may be provided in each of the adsorption tubes 52a and 52b instead of the heater 64. In this case, the heating switching valve 63 can also be omitted.
[0030]
Further, when ammonia and nitrogen oxides coexist in the raw material gas, particularly when ammonia and nitrogen dioxide are contained, ammonium nitrate may be formed and precipitated by reacting in the route. Therefore, even when ammonia and nitrogen oxides coexist in the exhaust gas from the semiconductor manufacturing process, or when there is almost no ammonia in the exhaust gas (raw material gas), moisture condensed at room temperature due to the high water vapor concentration causes the pipe If there is a risk of clogging, a pipe heating means 65 is provided from the source gas introduction path 21 to the heater 23, and pipes and valves are set at 150 ° C. or higher, preferably 210 ° C. or higher, which is the thermal decomposition temperature of ammonium nitrate. By heating, the pipes and valves can be prevented from being blocked by ammonium nitrate or moisture.
[0031]
In the reducing substance removing step, the addition amount of oxygen G2 added to the raw material gas G1 is controlled based on the concentration of ammonia and hydrogen in the raw material gas (analyzer 24) and the amount of the raw material gas (flow meter 25). Can be adjusted by the flow rate control valve 29. However, the residual oxygen concentration (analyzer 33) in the reducing substance removing gas after the reducing substance removing step becomes a constant amount. Alternatively, the flow control valve 29 can be controlled. Further, depending on the operating conditions, the flow meter 28 can be controlled to add a constant flow rate of oxygen.
[0032]
The amount of oxygen G2 added can be calculated from the theoretical amount of oxygen based on the amounts of ammonia and hydrogen and the chemical reaction formula. However, in order to completely remove ammonia and hydrogen, the amount of oxygen G2 is more than the theoretical amount. It is necessary to control to add oxygen. However, since the surplus oxygen is to be removed in the subsequent equipment, it is preferable to keep the amount of addition to a necessary minimum. It is also possible to estimate the corresponding exhaust gas composition based on the gas composition and flow rate used in the semiconductor manufacturing apparatus and the reaction conditions, and to control the amount of added oxygen based on the estimated amounts of ammonia and hydrogen. In this case, although an estimation error occurs, it is necessary to add oxygen in a relatively excessive amount, but there is an advantage that analysis is not required and the method is simple.
[0033]
Similarly to the control of the addition amount of oxygen G2, the control of the addition amount of ammonia G3 added in the denitration step is performed by controlling the concentration of oxygen and nitrogen oxide (analyzer 33) and the amount of gas (flow meter) 34), the amount of ammonia necessary for the reduction of nitrogen oxides and oxygen may be obtained, and the flow rate control valve 37 may be adjusted based on this. However, the residual ammonia concentration in the denitration gas after the denitration step (the analyzer 43 ) May be controlled to be constant. Further, depending on the operating conditions, the flow rate adjusting valve 37 can be controlled to add a constant flow rate of ammonia. Further, it is also possible to estimate the amount of oxygen or nitrogen oxide generated or remaining by the reducing substance removing means, and to control the amount of ammonia G3 added based on the estimated amount.
[0034]
FIG. 2 is a system diagram showing one embodiment of a gas purification apparatus to which the second configuration is applied in the gas purification method of the present invention. This gas purification device is a rare gas-containing exhaust gas discharged from the above-described plasma oxidation step, plasma nitridation step, plasma oxynitridation step, for example, krypton and nitrogen, and nitrogen oxides, hydrogen, Performs a pre-stage purification process when krypton is separated and recovered from a gas mixture assumed to contain oxygen, ammonia, water vapor, etc., and at least, among the trace impurities, separation and recovery in a final rare gas separation and recovery device It removes nitrogen oxides, hydrogen, ammonia, and water vapor that are obstacles to the operation. The first oxygen addition means 111, the reducing substance removing means 112, the hydrogen addition means 113, the denitration means 114, the second oxygen addition means 115, a hydrogen oxidizing means 116 and a drying means 117, and a rare gas separation and recovery device 118 is provided at a stage subsequent to the drying means 117. To have.
[0035]
The nitrogen oxides include nitrogen dioxide, nitrogen monoxide, dinitrogen monoxide and their ions, radicals, and the like, similarly to the first embodiment, and include ammonia, hydrogen, oxygen, water vapor, and the like. Etc. also include these ions and radicals. Further, the rare gas-containing exhaust gas includes not only the gas discharged from the reactor of the semiconductor manufacturing apparatus, but also the gas entrained from pumps at the subsequent stage.
[0036]
The composition of the gas mixture (source gas G1) which is taken out of the semiconductor manufacturing apparatus and becomes a raw material for rare gas recovery is also the same as in the first embodiment. For example, in a semiconductor manufacturing process using krypton or xenon, In the case of exhaust gas from the plasma oxidation step, the plasma nitridation step, and the plasma oxynitridation step, the exhaust gas of the plasma oxidation step is mainly krypton or xenon, which is a rare gas, and nitrogen for purging (including entrainment of nitrogen in a back purge pump). In addition, it contains trace amounts of oxygen, water vapor, and sometimes hydrogen. The exhaust gas of the plasma nitriding process contains ammonia, hydrogen, and water vapor as trace components in addition to the rare gas and nitrogen. The exhaust gas in the plasma oxynitriding step contains nitrogen oxides in addition to the exhaust gas components in the plasma oxidizing step and the plasma nitriding step. Depending on the scale of the semiconductor device, the emission concentration of the impurity component from each reactor is 1 vol% or less for each nitrogen oxide, 2 vol% or less for hydrogen, 2 vol% or less for oxygen, 1 vol% or less for ammonia, A state containing 5% by volume or less can be assumed.
[0037]
The gas purifying apparatus shown in the second embodiment also has a configuration capable of coping with each of these semiconductor manufacturing steps. For example, when each step of oxidation, nitridation, and oxynitridation is performed by one semiconductor manufacturing apparatus and the exhaust gas is processed, or each step of oxidation, nitridation, and oxynitridation is performed by another semiconductor manufacturing apparatus, Can be dealt with collectively and exhausted, and even when only one of the steps of oxidation, nitridation, and oxynitridation is performed, the gas purification apparatus having this configuration can be installed.
[0038]
The source gas G11 is introduced from the source gas introduction path 121 through the buffer / steam removal container 122 and the heater 123 to the reducing substance removing means 112, and the reducing substance removing step is performed. The source gas introduction path 121 is provided with a source gas analyzer 124 and a source gas flow meter 125, and performs component analysis of the source gas and measurement of the amount of impurities. The amount of the source gas introduced is adjusted by the flow control valve 126.
[0039]
The first oxygen adding means 111 converts oxygen, which is insufficient to convert a reducing substance such as ammonia or hydrogen in the raw material gas into nitrogen oxides, nitrogen, and water vapor by the oxidation reaction in the reducing substance removing means 112, as a raw material. The amount of oxygen G12 to be added to the gas G11 is controlled according to the amount of reducing substance measured by the raw material gas analyzer 124 and the raw material gas flow meter 125. That is, the amount of oxygen G12 added from the first oxygen adding means 111 is set so that the amount of oxygen in the raw material gas directed to the reducing substance removing means 112 is sufficient to convert the reducing substance, It is measured by an oxygen flow meter 128 provided in the oxygen addition path 127 and adjusted by an oxygen flow control valve 129.
[0040]
The raw material gas G11 is heated to a reaction temperature set in advance by the heater 123 and introduced into the reducing substance removing means 112. The reducing substance removing means 112 is a catalyst reaction tube 130 filled with an oxidation catalyst 131. For example, hydrogen or ammonia is converted into nitrogen oxide, nitrogen, Converted to steam.
[0041]
2H 2 + O 2 → 2H 2 O
4NH 3 + 3O 2 → 2N 2 + 6H 2 O
2NH 3 + 2O 2 → N 2 O + 3H 2 O
4NH 3 + 5O 2 → 4NO + 6H 2 O
12NH 3 + 21O 2 → 12NO 2 + 18H 2 O
[0042]
In addition, as the oxidation catalyst 131 used in the reducing substance removing means 112, a commercially available catalyst can be used. Further, the reaction temperature may be set to a suitable temperature according to operating conditions such as the type and amount of catalyst used, the concentration and flow rate of the reacting gas, and is usually 150 ° C. or higher, preferably about 300 ° C. Further, a heating unit may be provided in the catalyst reaction tube 130 instead of the heater 123.
[0043]
The gas from which the reducing substance has been removed by the reducing substance removing means 112 (reducing substance removing gas) is sent from the catalytic reaction column 130 to the denitration means 114 through the reducing substance removing gas path 132. The reducing substance removing gas path 132 is provided with a reducing substance removing gas analyzer 133 for analyzing the components of the reducing substance removing gas, and the oxygen and nitrogen oxidation in the reducing substance removing gas measured here is measured. A predetermined amount of hydrogen G13 is added to the reducing substance removing gas from the hydrogenation means 113 based on the amount of the substance. The amount of hydrogen added is determined so as to be sufficient to reduce oxidizing substances such as oxygen and nitrogen oxides in the reducing substance removing gas, and a hydrogen flow meter 136 provided in the hydrogenation path 135 is provided. And a hydrogen flow control valve 137.
[0044]
The denitration means 114 is a reaction tube (denitration reaction tube) 138 filled with a denitration catalyst 139, and the reducing substance removal gas after hydrogenation is subjected to a denitration step by a reaction with the denitration catalyst 139, And nitrogen oxides react with hydrogen to convert to steam and nitrogen. The reaction between nitrogen oxide and hydrogen in this denitration step (denitration reaction) and the reaction between oxygen and hydrogen are as follows. As the denitration catalyst 139 used in the denitration means 114, a generally known denitration catalyst can be appropriately selected and used.
[0045]
2NO + 2H 2 → N 2 + 2H 2 O
2NO + 4H 2 → N 2 + 4H 2 O
N 2 O + H 2 → N 2 + H 2 O
O 2 + 2H 2 → 2H 2 O
[0046]
In such a denitration reaction, when hydrogen is used as a reducing substance, it is necessary to consider safety aspects. For example, the concentration of hydrogen gas to be added should be kept below the explosion limit, or the composition of exhaust gas from semiconductor manufacturing equipment should be adjusted to the concentration of hydrogen gas. It is also necessary to devise a composition that does not explode and keep the composition from exploding. It is also desirable to prepare sintered metal on both sides of the denitration reaction tube 138 and take measures against explosion. This is the same for other catalytic reactions.
[0047]
The denitration gas from which oxygen and nitrogen oxides have been removed by the denitration means 114 passes through a denitration gas path 141 and is sent to a hydrogen oxidizing means 116, where a hydrogen oxidation step for removing hydrogen is performed. The denitration gas path 141 is provided with a denitration gas analyzer 142 for analyzing the components of the denitration gas and a denitration gas flow meter 143 for measuring the flow rate. Based on the hydrogen amount in the denitration gas measured here, A predetermined amount of oxygen G14 is added to the denitration gas from the second oxygen adding means 115. The addition amount of the oxygen G14 is determined to be an amount sufficient to reduce the hydrogen in the denitration gas, and is adjusted by the oxygen flow meter 144 and the oxygen flow control valve 145 provided in the second oxygen addition path 115. You.
[0048]
The hydrogen oxidizing means 116 is a device in which a reaction tube (hydrogen reaction tube) 146 is filled with a hydrogen oxidizing catalyst 147, and the denitration gas after oxygen addition is subjected to a hydrogen removing step by a reaction with the hydrogen oxidizing catalyst 147. Hydrogen and oxygen react to generate water vapor. As the hydrogen oxidation catalyst 147 used in the hydrogen oxidation means 116, a generally known hydrogen oxidation catalyst can be appropriately selected and used.
[0049]
The dehydrogenated gas from which hydrogen has been removed by the hydrogen oxidizing means 116 passes through a dehydrogenation gas path 148, and the heat generated by the reaction heat and partial condensation of water vapor is removed by a cooler 149. After the gas composition is measured in step (a), the gas is introduced into the drying means 117 to perform a drying step, and the water vapor in the dehydrogenated gas is adsorbed and removed by the adsorbent. The water vapor here is discharged from the semiconductor manufacturing apparatus, generated by the oxidation reaction in the reducing substance removing means 112 and the hydrogen oxidizing means 116, and generated by the denitration reaction in the denitrating means 114. Is included.
[0050]
The drying means 117 is of a two-cylinder switching type having a pair of adsorption cylinders (drying cylinders) 152a and 152b each filled with an adsorbent (drying agent) 151. Therefore, while one of the drying cylinders is performing the drying step of adsorbing and removing water vapor, the other drying cylinder is performing a regeneration step of desorbing the adsorbed water vapor from the desiccant. As the desiccant 151, for example, activated carbon, silica gel, various zeolites and the like can be selected. However, a potassium ion-exchanged A-type zeolite which has sufficient ability to adsorb water vapor and hardly adsorbs rare gas is desiccant. By adopting as, the rare gas can be recovered more efficiently, and a recovery rate of 99% or more can be expected even if the loss during regeneration of the drying cylinder is considered.
[0051]
In this drying means 117, when one of the drying cylinders 152a is performing a drying process, the drying inlet valve 153a and the drying outlet valve 154a corresponding to the drying cylinder 152a are opened, and the regeneration inlet valve 155a and the regeneration outlet valve 156a are It is closed, and the dehydrogenated gas from the dehydrogenated gas path 148 is introduced into the drying cylinder 152a through the drying inlet valve 153a, and the vapor is adsorbed and removed by the desiccant 151 to become the drying gas, which is dried through the drying outlet valve 154a. It is led to a gas path 157.
[0052]
In the other drying cylinder 152b, the drying inlet valve 153b and the drying outlet valve 154b are closed, the regeneration inlet valve 155b and the regeneration outlet valve 156b are opened, and the regeneration gas W11 from the desiccant regeneration gas path 158 passes through the regeneration inlet valve 155b. The exhaust gas W12 that has been introduced into the drying cylinder 152b to regenerate the desiccant is discharged from the regeneration outlet valve 156b through the regeneration gas discharge path 159. The two drying cylinders are switched between a drying step and a regeneration step by switching between open and closed states of each valve at a preset timing, and continuously perform adsorption removal of water vapor. In addition, a moisture detector is provided at the outlet side of the desiccant inside the drying cylinder to detect the progress of the adsorption band of moisture in the desiccant, and the signal is used to determine the process switching time, so that the desiccant is completely utilized. The number of times of the process switching can be reduced, the service life of the operating part such as a valve can be extended, and the loss of rare gas generated when the process of the drying cylinder is switched can be reduced.
[0053]
The dry gas from which nitrogen oxides, hydrogen, oxygen, water vapor, and ammonia, which are trace impurities in the exhaust gas, have been removed in this manner becomes a gas mixture whose gas composition is mainly composed of a rare gas and nitrogen. After the amount of impurities is confirmed by the dry gas analyzer 161 provided in the path 157, the impurities are introduced into the rare gas separation and recovery device 118, and a process for separating gases other than the rare gas is performed in the same manner as described above. The rare gas P11 purified and separated to a purity of 99.99% or more is recovered as a product from the rare gas recovery path 162.
[0054]
Note that the adsorption / desorption operation in the drying unit 117 can be performed in the same manner as the drying unit 15 in the first embodiment, and the desiccant regeneration step is performed by the heating switching provided in the adsorbent regeneration gas path 158. This can be performed by switching the valve 163 between the regeneration gas heater 164 side and the heater bypass side as the regeneration step proceeds. Also in this case, by using the means for heating the drying cylinder, the heating switching valve 163 and the regeneration gas heater 164 can be omitted.
[0055]
Further, as described in the first embodiment, when ammonia and nitrogen oxide coexist in the raw material gas or when the water vapor concentration is high, a pipe is provided from the raw material gas introduction path 121 to the heater 123. It is preferable to provide a heating means 165. Further, the addition amounts of the oxygen G12, the hydrogen G13, and the oxygen G14 added to the raw material gas G11 may be controlled based on the amounts of the components that react with the oxygen G12, the hydrogen G13, and the oxygen G14. A fixed amount may be used, or a fixed amount may be added.
[0056]
【Example】
Reducing substance removal process
A stainless steel reaction tube (17.5 mm inner diameter) was charged with 15 g of Pash catalyst DASH220D (0.5% palladium / alumina) manufactured by NE Chemcat Corporation as an oxidation catalyst. A heater was installed outside the reaction tube to control the temperature so that the reaction tube maintained 300 ° C. As a gas mixture to be treated (introduced gas), a gas having the same concentration of krypton and nitrogen as a base gas and a different concentration of ammonia and hydrogen to be removed was prepared.
[0057]
Then, oxygen was added to the introduced gas and introduced into the reaction tube at atmospheric pressure. The concentration of nitric oxide and nitrogen dioxide in the reaction tube outlet gas is detected by a chemiluminescence NOx meter, the concentration of nitrous oxide is detected by GC-MS, the concentration of hydrogen and oxygen is detected by GC-TCD, and the concentration of ammonia is detected. Each was measured by the tube method. As a result, it was found that under an excess of oxygen, ammonia and hydrogen in the outlet gas were below the measurement limit, whereas water vapor, nitrogen oxides and oxygen generated by the reaction were present.
[0058]
Denitration process
A stainless steel reaction tube (17.5 mm inner diameter) was charged with 15 g of Pash catalyst DASH220D (0.5% palladium / alumina) manufactured by NEC Chemcat Corporation as a denitration catalyst. A heater was installed outside the reaction tube to control the temperature so that the reaction tube maintained 300 ° C. As a gas mixture to be treated (introduced gas), a gas in which the concentrations of nitrogen oxides and oxygen to be removed were changed using an equivalent mixture of krypton and nitrogen as a base gas was prepared.
[0059]
Then, ammonia was added to the introduced gas and introduced into the reaction tube at atmospheric pressure. Further, in order to prevent nitrate precipitation, the piping of the introduced gas was kept at 210 ° C. or higher by piping heating means. The concentrations of nitric oxide and nitrogen dioxide in the outlet gas of the reaction tube were measured by a chemiluminescence NOx meter, the concentration of nitrous oxide was measured by GC-MS, and the oxygen concentration was measured by GC-TCD. As a result, it was found that the nitrogen oxide can be surely removed by setting the amount of addition of ammonia as a reducing substance to an appropriate amount in excess of the nitrogen oxide. It was also confirmed that nitrogen oxide and oxygen could be removed in the same manner even when hydrogen was added instead of ammonia.
[0060]
Hydrogen oxidation process
As a hydrogen oxidation catalyst, 30 g of Pd catalyst G74D (0.5% palladium / alumina) manufactured by Nissan Gardler Catalysts Co., Ltd. was charged into a stainless steel reaction tube (17.5 mm inner diameter). To this reaction tube, 0.6% by volume of oxygen gas with respect to a gas containing 1% by volume of hydrogen in an equivalent mixture of krypton and nitrogen was added, and introduced at atmospheric pressure at 2 L / min. The concentrations of hydrogen and oxygen in the sample were measured by GC-TCD. As a result, at the outlet of the reaction tube, the content of hydrogen was 0.1 ppm by volume or less, and the content of oxygen was 0.1% by volume. At this time, the initial temperature of the hydrogen oxidation column was 80 ° C., but the heat of reaction raised the outlet gas temperature to about 170 ° C.
[0061]
Drying process
60 g of zeolam A-3 (potassium ion-exchanged A-type zeolite (potassium A-type zeolite)) manufactured by Tosoh Corporation was filled as an adsorbent into a stainless steel adsorption cylinder having an inner diameter of 17.5 mm. A gas mixture obtained by adding 0.5% by volume of ammonia and 0.5% by volume of water vapor to a mixture of krypton and nitrogen as a base gas at a rate of 2 L / min at 25 ° C. was introduced into this adsorption column. The contents of ammonia and water were measured. As a result, over 3 hours or more from the start of the adsorption, the concentration in the outlet gas could be maintained at 1 ppm by volume of ammonia and at a dew point of -80 ° C or lower (1 ppm by volume of water). Furthermore, the process switching time in the pair of adsorption cylinders was set to 3 hours, the regeneration temperature was set to 300 ° C., the regeneration gas (nitrogen) was set to 0.25 L / min, and a repeated adsorption / regeneration test was performed. It was confirmed that there was no change in the adsorption capacity.
[0062]
Also, in addition to potassium A-type zeolite, equilibrium adsorption of krypton using sodium A-type zeolite (Zeolam A-4 manufactured by Tosoh Corporation) and sodium X-type zeolite (Zeolam F-9HA manufactured by Tosoh Corporation) The amount was measured. As a result, potassium A-type zeolite hardly adsorbs krypton, whereas sodium A-type zeolite and sodium X-type zeolite both adsorb krypton at a rate of 0.09 mol / kg (at 50 kPa, 25 ° C.). There was found.
[0063]
Since the krypton adsorbed by the adsorbent is discharged together with the regeneration gas in the regeneration step, it is possible to increase the krypton recovery rate by using a potassium A-type zeolite that does not adsorb krypton. . In the drying step in the second embodiment, it was confirmed that the use of the potassium A-type zeolite enables reliable adsorption and removal of water while suppressing the loss of krypton.
[0064]
【The invention's effect】
As described above, according to the present invention, noble gas, particularly expensive krypton or hydrogen contained in a gas mixture containing xenon and nitrogen as main components, ammonia, water vapor, trace amounts of nitrogen oxides, etc. Impurities can be efficiently separated and removed. In particular, even in various semiconductor processing steps, such as an oxidation step, a nitridation step, and an oxynitridation step, trace amounts of exhaust gas (gas mixture) containing a rare gas such as krypton or xenon after being used as an atmosphere gas. Impurity components can be reliably separated and removed, and the equipment cost and operation cost of the entire rare gas purification device can be reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of a gas purification apparatus to which the present invention is applied.
FIG. 2 is a system diagram showing a second embodiment of a gas purification apparatus to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Oxygen adding means, 12 ... Reducing substance removing means, 13 ... Ammonia adding means, 14 ... Denitration means, 15 ... Drying means, 16 ... Rare gas separation and recovery device, 21 ... Source gas introduction path, 22 ... Buffer and moisture Removal container, 23: heater, 24: source gas analyzer, 25: source gas flow meter, 26: flow control valve, 27: oxygen addition path, 28: oxygen flow meter, 29: oxygen flow control valve, 30 ... Catalyst reaction tube, 31 ... Oxidation catalyst, 32 ... Reducing substance removing gas path, 33 ... Reducing substance removing gas analyzer, 34 ... Reducing substance removing gas flow meter, 35 ... Ammonia addition path, 36 ... Ammonia flow meter 37, ammonia flow control valve, 38, denitration reaction tube, 39, denitration catalyst, 41, denitration gas path, 42, cooler, 43, denitration gas analyzer, 51, adsorbent, 52a, 52b, adsorption tube, 57 ... dry Gas path, 58: adsorbent regeneration gas path, 59: regeneration gas discharge path, 61: dry gas analyzer, 62: rare gas recovery path, 63: heating switching valve, 64: regeneration gas heater, 65: pipe heating means Reference numerals 111, first oxygen adding means, 112, reducing substance removing means, 113, hydrogen adding means, 114, denitration means, 115, second oxygen adding means, 116, hydrogen oxidizing means, 117, drying means, 118, rare Gas separation and recovery equipment

Claims (2)

希ガス及び窒素を主成分とし、微量不純物として、水素、アンモニア、水蒸気、窒素酸化物の少なくともいずれか一種を含有するガス混合物から前記微量不純物を除去するガス精製方法において、水素及びアンモニアを酸素及び窒素酸化物の少なくともいずれか一方の存在下における酸化反応により水蒸気及び窒素酸化物を含有するガス混合物に転化可能な還元性物質除去工程と、該還元性物質除去工程を終了したガス混合物中に含まれる窒素酸化物及び酸素をアンモニアの存在下で脱硝触媒反応により窒素と水蒸気とに転化可能な脱硝工程と、該脱硝工程を終了したガス混合物中のアンモニア及び水蒸気を除去可能な乾燥工程とを含むことを特徴とするガス精製方法。In a gas purification method for removing the trace impurities from a gas mixture containing at least one of hydrogen, ammonia, water vapor, and nitrogen oxides as a trace impurity, mainly containing a rare gas and nitrogen, hydrogen and ammonia are converted to oxygen and A reducing substance removing step capable of being converted into a gas mixture containing water vapor and nitrogen oxide by an oxidation reaction in the presence of at least one of the nitrogen oxides, and a reducing substance removal step comprising: A denitration step capable of converting nitrogen oxides and oxygen to be converted into nitrogen and steam by a denitration catalytic reaction in the presence of ammonia, and a drying step capable of removing ammonia and steam in the gas mixture after the denitration step. A gas purification method comprising: 希ガス及び窒素を主成分とし、微量不純物として、水素、アンモニア、水蒸気、窒素酸化物の少なくともいずれか一種を含有するガス混合物から前記微量不純物を除去するガス精製方法において、水素及びアンモニアを酸素及び窒素酸化物の少なくともいずれか一方の存在下における酸化反応により水蒸気及び窒素酸化物を含有するガス混合物に転化可能な還元性物質除去工程と、該還元性物質除去工程を終了したガス混合物中に含まれる窒素酸化物及び酸素を水素の存在下で脱硝触媒反応により窒素と水蒸気とに転化可能な脱硝工程と、該脱硝工程を終了したガス混合物中の水素を酸素の存在下で水素酸化反応により水蒸気に転化可能な水素酸化工程と、該水素酸化工程を終了したガス混合物中の水蒸気を除去可能な乾燥工程とを含むことを特徴とするガス精製方法。In a gas purification method for removing the trace impurities from a gas mixture containing at least one of hydrogen, ammonia, water vapor, and nitrogen oxides as a trace impurity, mainly containing a rare gas and nitrogen, hydrogen and ammonia are converted to oxygen and A reducing substance removing step capable of being converted into a gas mixture containing water vapor and nitrogen oxide by an oxidation reaction in the presence of at least one of the nitrogen oxides, and a reducing substance removal step comprising: A denitration step capable of converting nitrogen oxides and oxygen to nitrogen and water vapor by a denitration catalytic reaction in the presence of hydrogen, and converting the hydrogen in the gas mixture after the denitration step into a water vapor by a hydrogen oxidation reaction in the presence of oxygen. A hydrogen oxidation step that can be converted to water and a drying step that can remove water vapor in the gas mixture after the hydrogen oxidation step. Gas purification method characterized.
JP2002325739A 2002-11-08 2002-11-08 Gas purification method and apparatus Expired - Fee Related JP4174298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325739A JP4174298B2 (en) 2002-11-08 2002-11-08 Gas purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325739A JP4174298B2 (en) 2002-11-08 2002-11-08 Gas purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2004161503A true JP2004161503A (en) 2004-06-10
JP4174298B2 JP4174298B2 (en) 2008-10-29

Family

ID=32804873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325739A Expired - Fee Related JP4174298B2 (en) 2002-11-08 2002-11-08 Gas purification method and apparatus

Country Status (1)

Country Link
JP (1) JP4174298B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349332A (en) * 2004-06-11 2005-12-22 Taiyo Nippon Sanso Corp Method for separating gas and its apparatus
JP2010076972A (en) * 2008-09-25 2010-04-08 Taiyo Nippon Sanso Corp Method for treating impure rare gas
JP2010241686A (en) * 2010-07-23 2010-10-28 Taiyo Nippon Sanso Corp Method and apparatus for separating gas
WO2011030514A1 (en) 2009-09-09 2011-03-17 パナソニック株式会社 Method for recovering xenon
WO2011030513A1 (en) 2009-09-09 2011-03-17 パナソニック株式会社 Adsorbent material and xenon adsorption device using same
KR20180126370A (en) 2017-05-17 2018-11-27 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Excimer laser oscillation device having gas recycle function
CN118681360A (en) * 2024-08-23 2024-09-24 杭氧集团股份有限公司 Device for removing hydrogen, nitrogen and nitrogen from crude neon helium and using method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349332A (en) * 2004-06-11 2005-12-22 Taiyo Nippon Sanso Corp Method for separating gas and its apparatus
JP4580694B2 (en) * 2004-06-11 2010-11-17 大陽日酸株式会社 Gas separation method and apparatus
JP2010076972A (en) * 2008-09-25 2010-04-08 Taiyo Nippon Sanso Corp Method for treating impure rare gas
WO2011030514A1 (en) 2009-09-09 2011-03-17 パナソニック株式会社 Method for recovering xenon
WO2011030513A1 (en) 2009-09-09 2011-03-17 パナソニック株式会社 Adsorbent material and xenon adsorption device using same
US8679229B2 (en) 2009-09-09 2014-03-25 Panasonic Corporation Method for recovering xenon
US8679239B2 (en) 2009-09-09 2014-03-25 Panasonic Corporation Adsorbent material and xenon adsorption device using same
JP2010241686A (en) * 2010-07-23 2010-10-28 Taiyo Nippon Sanso Corp Method and apparatus for separating gas
KR20180126370A (en) 2017-05-17 2018-11-27 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Excimer laser oscillation device having gas recycle function
CN118681360A (en) * 2024-08-23 2024-09-24 杭氧集团股份有限公司 Device for removing hydrogen, nitrogen and nitrogen from crude neon helium and using method

Also Published As

Publication number Publication date
JP4174298B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
US8597584B2 (en) Gas purifying process and device
JP5202836B2 (en) Xenon recovery system and recovery device
US6048509A (en) Gas purifying process and gas purifying apparatus
US10682603B2 (en) Carbon dioxide recovery method and recovery device
JP5392745B2 (en) Xenon concentration method, xenon concentration device, and air liquefaction separation device
JP2003311148A (en) Adsorbent, and method and apparatus for purifying gas
AU2017395075B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5222327B2 (en) Gas separation method and apparatus
JP4174298B2 (en) Gas purification method and apparatus
JP3869831B2 (en) Gas separation method and apparatus
JPH08173748A (en) Method and apparatus for purifying inactive gas
JP4580694B2 (en) Gas separation method and apparatus
JP6549969B2 (en) Air purification apparatus and air purification method
JP4322171B2 (en) Gas processing method and apparatus
JP2005021891A (en) Method and apparatus for gas refining
JP5684898B2 (en) Gas purification method
JP2008136935A (en) Selective treatment method of trifluoromethane, treatment unit and sample treatment system using it
JP4256216B2 (en) Gas processing apparatus and gas processing method
JP2902317B2 (en) Room temperature purification method and apparatus for inert gas
JPH0693968B2 (en) Pressure swing adsorption device for carbon dioxide recovery from source gas containing nitrogen oxides
JPH1076128A (en) Purification of gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Effective date: 20080227

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Effective date: 20080501

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110822

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110822

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110822

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130822

LAPS Cancellation because of no payment of annual fees