Nothing Special   »   [go: up one dir, main page]

JP5154011B2 - Flexible flat cable - Google Patents

Flexible flat cable Download PDF

Info

Publication number
JP5154011B2
JP5154011B2 JP2005330067A JP2005330067A JP5154011B2 JP 5154011 B2 JP5154011 B2 JP 5154011B2 JP 2005330067 A JP2005330067 A JP 2005330067A JP 2005330067 A JP2005330067 A JP 2005330067A JP 5154011 B2 JP5154011 B2 JP 5154011B2
Authority
JP
Japan
Prior art keywords
plating layer
thickness
contact resistance
connector
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005330067A
Other languages
Japanese (ja)
Other versions
JP2007141505A (en
Inventor
雅照 市川
邦浩 直江
彰治 味村
和寛 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005330067A priority Critical patent/JP5154011B2/en
Publication of JP2007141505A publication Critical patent/JP2007141505A/en
Application granted granted Critical
Publication of JP5154011B2 publication Critical patent/JP5154011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Conductors (AREA)

Description

本発明は、耐食性や挿抜耐久性に優れたフレキシブルフラットケーブルに関するものである。 The present invention relates to a superior flexible flat cable to the corrosion resistance and insertion durability.

電子機器等に用いられる部品や配線基板等には、銅や銅合金が配線として多く使用されている。そして、これ等を他の配線基板等と電気的に接続する場合、半田付や超音波接合などの金属結合によって接合する他にコネクタ接続も多く行われている。そしてコネクタ接続する場合には、配線とコネクタの接触抵抗を低くして導通不良をなくすために銅配線端子に表面処理が通常行われている。例えば、金、錫−パラジウム合金等による電解めっき処理である。しかしながら、金めっきはコスト的に高くなる問題があり、また鉛を含む合金によるめっき処理では、鉛が溶出して環境を汚染する問題が指摘されており、鉛フリー化も望まれている。このために、純錫めっきや鉛を含まない錫合金系のめっきが検討されている。しかし純錫めっきや鉛を含まない錫合金めっきの場合には、銅配線端子部をコネクタと嵌合して使用すると、コネクタのピンによって押付けられた箇所の周辺のめっき皮膜から、ウイスカーと称する髭状の結晶が急速に発生してくることが確認されている。このようなウイスカーの発生は、配線どうしの短絡につながる問題がある。また前記の現象は、純錫めっきや鉛を含まない錫系合金めっきに於いて顕著であることも判ってきた。このため、銅配線端子の表面処理として純錫に変えて金/ニッケル(以下Au/Ni)も考えられているが、Auめっき層が薄いとピンホール等が生じてNiめっき層を腐食させることがある。このことは接触抵抗を増加させて好ましくない。しかしながらAuめっきは高価なために、厚くすると製品コストを高くすることになり好ましくない。   Copper and copper alloys are often used as wiring for components and wiring boards used in electronic devices and the like. When these are electrically connected to other wiring boards or the like, many connectors are connected in addition to bonding by metal bonding such as soldering or ultrasonic bonding. When the connector is connected, the copper wiring terminal is usually subjected to a surface treatment in order to reduce the contact resistance between the wiring and the connector to eliminate the conduction failure. For example, electrolytic plating treatment with gold, tin-palladium alloy or the like. However, gold plating has a problem of high cost, and in the plating treatment with an alloy containing lead, it has been pointed out that lead is eluted and pollutes the environment, and lead-free is also desired. For this reason, pure tin plating and tin alloy-based plating not containing lead have been studied. However, in the case of pure tin plating or tin alloy plating that does not contain lead, when the copper wiring terminal part is fitted to the connector, it is called a whisker because of the plating film around the portion pressed by the connector pin. It has been confirmed that crystal-like crystals are rapidly generated. The generation of such whiskers has a problem that leads to a short circuit between the wirings. It has also been found that the above phenomenon is remarkable in pure tin plating and tin-based alloy plating not containing lead. For this reason, gold / nickel (hereinafter referred to as Au / Ni) is also considered as a surface treatment for copper wiring terminals, but gold / nickel (hereinafter referred to as Au / Ni) is also considered. There is. This is undesirable because it increases the contact resistance. However, since Au plating is expensive, it is not preferable to increase the thickness because it increases the product cost.

一方、ワイヤボンディングの接合性を向上させる目的で、銅の表面に無電解ニッケルめっき皮膜、置換パラジウムめっき皮膜または無電解パラジウムめっき皮膜、置換金めっき皮膜、無電解金めっき皮膜を、この順に形成するのが良いことが特許文献1に見られる。しかしながら、この技術は接触抵抗を確保する点からは良いが、コネクタ嵌合を行うために挿抜を複数回繰り返すと、耐摩耗性が十分でないために接触不良を生じる問題があった。
特開平9−8438号公報
On the other hand, in order to improve the bondability of wire bonding, an electroless nickel plating film, a substituted palladium plating film, an electroless palladium plating film, a displacement gold plating film, and an electroless gold plating film are formed in this order on the copper surface. It can be seen in Patent Document 1 that this is good. However, this technique is good from the viewpoint of securing contact resistance, but if insertion and removal are repeated a plurality of times to perform connector fitting, there is a problem in that contact resistance is caused due to insufficient wear resistance.
Japanese Patent Laid-Open No. 9-8438

よって本発明が解決しようとする課題は、耐食性に優れると共にコネクタとの挿抜特性が良好であり、さらに挿抜後にクラックの発生がないフレキシブルフラットケーブルの端子部を提供すること。さらには前述の効果に加えて、大気中に暴露しても接触抵抗が著しく増加することがないフレキシブルフラットケーブルを提供することにある。 Therefore, the problem to be solved by the present invention is to provide a terminal portion of a flexible flat cable that is excellent in corrosion resistance, has good insertion / extraction characteristics with a connector, and does not generate cracks after insertion / extraction. Further to provide in addition to the above effects, the flexible flat cable is not the contact resistance even if exposed to the air is increased considerably.

前記解決しようとする課題は、請求項1に記載されるように、銅又は銅合金導体上に、厚さ0.3〜1.5μmのニッケルめっき層が形成され、次に、ニッケル或いはコバルトを0.1〜1質量%含有する厚さ0.03〜0.2μmのパラジウム基合金めっき層が形成された平角導体を用いることを特徴とする、コネクタ挿抜型フレキシブルフラットケーブルとすることによって、解決される。 The problem to be solved is, as described in claim 1, wherein a nickel plating layer having a thickness of 0.3 to 1.5 μm is formed on a copper or copper alloy conductor , and then nickel or cobalt is formed. the is characterized by using a palladium based alloy plating layer having a thickness of 0.03 to 0.2 [mu] m were made form flat conductor containing 0.1 to 1 wt%, and the connector insertion type flexible flat cable Is solved.

また請求項2に記載されるように、前記パラジウム基合金めっき層上に、厚さ0.005〜0.20μmの金めっき層が形成された請求項1に記載のコネクタ挿抜型フレキシブルフラットケーブルとすることによって、解決される。 Also as described in claim 2, wherein the palladium based on the alloy plating layer, according to claim 1, a gold plating layer having a thickness of 0.005~0.20μm is formed connector insertion type flexible flat cable by the, it is solved.

以上のような本発明によれば、銅又は銅合金導体上に、厚さ0.3〜1.5μmのニッケルめっき層が形成され、次に、ニッケル或いはコバルトを0.1〜1質量%含有する厚さ0.03〜0.2μmのパラジウム基合金めっき層が形成された平角導体を用いることを特徴とする、コネクタ挿抜型フレキシブルフラットケーブル(以下「FFC」という)であるため、耐食性が優れ腐食環境での接触抵抗の著しい増加がなく、また、その上に特定厚さのパラジウム基合金めっき層が形成されたことによってコネクタとの挿抜特性が良好となり、多数回の挿抜を繰り返しても接触抵抗の著しい増加を防止できる。さらに、挿抜後にもクラックの発生もない。 According to the present invention as described above, a nickel plating layer having a thickness of 0.3 to 1.5 μm is formed on a copper or copper alloy conductor , and then 0.1 to 1% by mass of nickel or cobalt. which comprises using a palladium-based alloy plating layer having a thickness of 0.03 to 0.2 [mu] m were made form flat conductor containing, for a connector insertion type flexible flat cable (hereinafter referred to as "FFC"), Excellent corrosion resistance, no significant increase in contact resistance in a corrosive environment, and the formation of a palladium- based alloy plating layer with a specific thickness on it improves the insertion / extraction characteristics of the connector. However, a significant increase in contact resistance can be prevented. Furthermore, no cracks occur after insertion / extraction.

また、前記パラジウム基合金めっき層上に、厚さ0.005〜0.20μmの金めっき層(以下「Auめっき層」という)が形成されたFFCとしたので、前述した特性に加えて、大気中に暴露後の接触抵抗の著しい増加をなくすことができる。 Further, the palladium-based alloy plating layer, since the gold plating layer having a thickness of 0.005~0.20Myuemu (hereinafter referred to as "Au plating layer") is formed FF C, in addition to the above-described characteristics, A significant increase in contact resistance after exposure to the atmosphere can be eliminated.

さらに、前記Pd基合金めっき層として、ニッケル(以下「Ni」という)或いはコバルト(以下「Co」という)を0.1〜質量%含有するパラジウム基合金(以下「Pd基合金」という)を用いたFFC端子部としたことによって、より耐食性が優れると共にコネクタとの挿抜特性がより良好となる。また、挿抜後のクラックの発生がないFFC端子部を確実に得ることができる。さらに、Auめっき層を有するFFC端子部は、大気中に暴露後の接触抵抗の著しい増加をなくすことができる。 Further, as the Pd-based alloy plating layer, a palladium-based alloy (hereinafter referred to as “Pd-based alloy”) containing 0.1 to 1 % by mass of nickel (hereinafter referred to as “Ni”) or cobalt (hereinafter referred to as “Co”). By using the used FFC terminal portion, the corrosion resistance is further improved, and the insertion / extraction characteristics with the connector are further improved. Moreover, the FFC terminal part which does not generate | occur | produce the crack after insertion / extraction can be obtained reliably. Furthermore, the FFC terminal portion having the Au plating layer can eliminate a significant increase in contact resistance after exposure to the atmosphere.

以下に本発明を詳細に説明する。請求項1に記載する発明は、銅又は銅合金導体上に、厚さ0.3〜1.5μmのNiめっき層が形成され、次に、Ni或いはCoを0.1〜1質量%含有する厚さ0.03〜0.2μmのPd基合金めっき層が形成された平角導体を用いることを特徴とする、コネクタ挿抜型FFCである。このような発明に至ったのは、耐食性に優れかつコネクタとの挿抜特性を向上させるために、従来ワイヤボンディングの接合性を向上させる目的で行われる技術をFFCの平角導体を露出させた端子部に応用し、この技術に於けるコネクタとの挿抜を多数回繰り返すと、耐摩耗性が十分でないために接触不良を生じる問題点について検討した結果得られたものである。 The present invention is described in detail below. According to the first aspect of the present invention , a Ni plating layer having a thickness of 0.3 to 1.5 μm is formed on a copper or copper alloy conductor , and then 0.1 to 1% by mass of Ni or Co is contained. which comprises using a thickness from 0.03 to 0.2 rectangular conductor that Pd-based alloy plating layer is made forms of μm to a connector insertion type FF C. In order to improve the insertion / extraction characteristics with the connector, the terminal part that exposed the flat conductor of the FFC in order to improve the insertion / extraction characteristics with the connector has been achieved. This is obtained as a result of examining the problem of contact failure due to insufficient wear resistance when the connector is repeatedly inserted and removed many times in this technology.

すなわち、前述の問題点を解決すべく種々検討を行なった結果、銅又は銅合金導体上に、厚さ0.3〜1.5μmのNiめっき層が形成され、次に、Ni或いはCoを0.1〜1質量%含有する厚さ0.03〜0.2μmのPd基合金めっき層が形成された平角導体を用いることを特徴とする、コネクタ挿抜型FFCとしたので、耐摩耗性が向上し多数回のコネクタとの挿抜を繰り返しても接触抵抗の著しい増加を防止できると共に、挿抜後にクラックの発生がないことを見いだしたものである。前記Niめっき層の厚さを0.3μm以上とすることによって、Cuが下地から拡散しめっき層表面に達してPd基合金めっき層やAuめっき層の耐食性を損なうことを防止できる。またその厚さを1.5μm以下とすることによって、コネクタと嵌合した時に負荷される可能性のある曲げによっても、クラックを生じないことを確認したためである。さらに、前記Pd基合金めっき層の厚さを0.03μm以上としたのは、コネクタの挿抜による耐磨耗性を保持できる厚さであり、またその厚さを0.2μm以下としたのは、これを超えるとコスト的に問題が生じるためである。以上のような構成のFFCとすることによって、耐食性に優れ腐食環境での接触抵抗の著しい増加の問題がなくなり、またコネクタとの挿抜特性が良好となり、多数回の挿抜を繰り返しても接触抵抗の著しい増加を防止でき、さらには多数回の挿抜後にもクラックの発生がない。 That is, as a result of various studies to solve the above-mentioned problems, a Ni plating layer having a thickness of 0.3 to 1.5 μm is formed on the copper or copper alloy conductor , and then Ni or Co is formed. Since it is a connector insertion / extraction type FFC using a rectangular conductor in which a Pd-based alloy plating layer having a thickness of 0.03 to 0.2 μm and containing 0.1 to 1% by mass is formed , wear resistance It has been found that the contact resistance can be prevented from significantly increasing even when the connector is repeatedly inserted and removed many times, and that no cracks are generated after the insertion and removal. By setting the thickness of the Ni plating layer to 0.3 μm or more, it is possible to prevent Cu from diffusing from the base and reaching the surface of the plating layer to impair the corrosion resistance of the Pd-based alloy plating layer or the Au plating layer. In addition, it was confirmed that, by setting the thickness to 1.5 μm or less, cracks are not generated even by bending that may be applied when mated with the connector. Further, the thickness of the Pd-based alloy plating layer is set to 0.03 μm or more so that the wear resistance by inserting and removing the connector can be maintained, and the thickness is set to 0.2 μm or less. This is because if this is exceeded, a problem arises in cost. By the FF C having the above configuration eliminates the problem of significant increase in contact resistance with excellent corrosion environment corrosion resistance, also insertion property of the connector is improved, contact resistance even after repeated insertion and removal of a number of times Can be prevented, and further, no cracks are generated even after many insertions and removals.

また請求項2に記載するように、Pd基合金めっき層上に、厚さ0.005〜0.20μmのAuめっき層が形成されると、前述した効果に加えて、大気中に暴露後の接触抵抗の著しい増加がないFFCとすることができる。すなわち、コネクタと嵌合されるFFC端子部の銅或いは銅合金配線上に、厚さ0.3〜1.5μmのNiめっき層、厚さ0.03〜0.2μmのPd基合金めき層を設けた上に、厚さ0.005〜0.20μmのAuめっき層を設けることによって、180日間の大気暴露試験を行なっても接触抵抗の増加率を極めて小さな値とすることができる。これはPd基合金めっき層の表面には有機物が吸着し易い性質があり、この有機物の吸着は接触抵抗に影響するものであるが、Auめっき層を形成することによりこの問題をなくすことができる。また、Auめっき層は、従来のようにNiめっき層上に設けるものではないので、比較的薄くしてもピンホールによる腐食問題が発生することもない。なおその厚さは、0.005μm未満では大気暴露試験による効果が十分に得られず、また0.20μm以上のAuめっき層を形成すると、製品コストが上昇するので好ましくない。 Also as described in claim 2, the Pd-based alloy plating layer, the Au plating layer having a thickness of 0.005~0.20μm is formed, in addition to the effects described above, after exposure to the atmosphere can be a significant increase in contact resistance is not FF C. That is, on the copper or copper alloy wiring FFC terminal portion to be fitted with the connector, Ni plating layer having a thickness of 0.3 to 1.5 [mu] m,-out thickness 0.03 to 0.2 [mu] m Me of Pd-based alloy By providing an Au plating layer having a thickness of 0.005 to 0.20 μm after providing the layer, the rate of increase in contact resistance can be made extremely small even if an atmospheric exposure test for 180 days is performed. This is because the organic substance is likely to be adsorbed on the surface of the Pd-based alloy plating layer, and this adsorption of the organic substance affects the contact resistance, but this problem can be eliminated by forming the Au plating layer. . Further, since the Au plating layer is not provided on the Ni plating layer as in the prior art, the corrosion problem due to pinholes does not occur even if the Au plating layer is relatively thin. If the thickness is less than 0.005 μm, the effect of the atmospheric exposure test cannot be sufficiently obtained, and if an Au plating layer having a thickness of 0.20 μm or more is formed, the product cost increases.

そして前記Pd基合金めっき層を、Ni或いはCoを0.1〜1質量%含有するPd基合金を用いたFFC端子部とすることによって、耐食性が優れ腐食環境での接触抵抗の著しい増加がなく、またコネクタとの挿抜特性が良好となり、多数回の挿抜を繰り返しても接触抵抗の著しい増加を防止できる。さらに、多数回の挿抜後にもクラックの発生がないFFC端子部を確実に得ることができる。すなわち、Pd基合金めっき層を形成するPd基合金として、Ni或いはCoを0.1〜1質量%含有させることによって、合金化による耐磨耗性の向上を計るためである。なお、Ni或いはCoの含有量が0.1質量%未満ではその効果が十分ではない。
And by making the said Pd base alloy plating layer into the FFC terminal part using the Pd base alloy containing 0.1 to 1 mass% of Ni or Co, there is no remarkable increase in contact resistance in a corrosive environment with excellent corrosion resistance. In addition, the insertion / extraction characteristics with the connector are improved, and a significant increase in contact resistance can be prevented even if the insertion / extraction is repeated many times. Furthermore, it is possible to reliably obtain an FFC terminal portion that does not generate cracks even after many insertions and removals. That is, as the Pd-based alloy for forming the Pd-based alloy plating layer, 0.1 to 1% by mass of Ni or Co is included to improve the wear resistance by alloying. The content of Ni or Co is its effect is less than 0.1 wt% not name enough.

FFC端部について簡単に説明すると、FFC用の平角導体は、通常Φ0.5〜1mm程度の丸銅線にNiめっきを施した後に、Φ0.1〜0.2mm程度に伸線加工を行ない、これをさらに圧延加工によって平角導体とするものである。そしてこの平角導体を通常10〜50本程度並列に配置し、プラスチックの絶縁テープでラミネート加工を行うことによってFFCとし、この端末部の絶縁テープを除去することによって、NiめっきされたCu導体を露出してFFC端部として使用される。 Briefly described FFC pin portion, flat conductor for FFC, after plated with Ni in a round copper wire usually about Fai0.5~1Mm, subjected to wire drawing to about Φ0.1~0.2mm These are further converted into flat conductors by rolling. Then, about 10 to 50 of these rectangular conductors are usually arranged in parallel and laminated with a plastic insulating tape to form an FFC. By removing this terminal insulating tape, the Ni-plated Cu conductor is exposed. used as FFC pin portion by.

表1に記載した実施例並びに比較例によって、本発明の効果を確認した。すなわち、Niめっきを施し圧延加工したCu線を幅0.3mm、厚さ0.05mmの平角状に加工して平角導体とした。これを20本並列に配置し、ポリエステルの絶縁テープでラミネート加工を行ないFFCを作製し、この端末部の絶縁テープを除去しNiめっきされたCu導体を露出してFFC端部とした。このFFC端部に、表1に記載したPd基合金のめっき層を各種厚さに形成して試料とした。ついでこの試料を、Au/Niめっき(Auめっき厚さが0.3μm、Niめっき厚さが3μm)したノンZIFタイプのコネクタに嵌合し、硫化水素10ppm、湿度85%の雰囲気中に48時間放置して、腐食ガス試験を行なった。ついで、テスターによって接触抵抗を測定しその増加率を計算した。腐食ガス試験前の接触抵抗値に対して、20%未満の増加率のものを合格として〇印で、20%以上の増加率のものを不合格として×印で記載した。また、コネクタの挿抜特性を調べるために、前記FFC端部と前記コネクタの挿抜を30回繰り返した後の接触抵抗をテスターによって測定し、挿抜前の接触抵抗値に対する増加率を計算した。挿抜前の接触抵抗値に対して20%未満の増加率のものを合格として〇印で、20%以上の増加率のものを不合格として×印で記載した。さらに、コネクタとの挿抜を30回繰り返した後、めっき層のクラックの発生状態を顕微鏡によって観察しクラックの発生が全く見られない場合を合格として〇印で、クラックの発生が見られる場合を不合格として、×印で記載した。結果を表1に示した。 The effects of the present invention were confirmed by the examples and comparative examples described in Table 1. That is, a Cu wire rolled with Ni plating was processed into a rectangular shape having a width of 0.3 mm and a thickness of 0.05 mm to obtain a rectangular conductor. This was placed in parallel twenty, to prepare a FFC subjected to lamination with polyester insulating tape, and an FFC pin portion to expose the Cu conductor insulation tape was removed was Ni plated of the terminal portion. This FFC pin portion, and a sample to form a plating layer of Pd-based alloy described in various thicknesses in Table 1. Next, this sample was fitted into a non-ZIF type connector plated with Au / Ni (Au plating thickness: 0.3 μm, Ni plating thickness: 3 μm), and in an atmosphere of 10 ppm hydrogen sulfide and 85% humidity for 48 hours. The corrosive gas test was conducted by leaving it alone. Next, the contact resistance was measured by a tester and the rate of increase was calculated. With respect to the contact resistance value before the corrosive gas test, those with an increase rate of less than 20% are indicated as ◯, and those with an increase rate of 20% or more are indicated as x with a failure. Further, in order to examine the insertion characteristics of the connector, the measured and FFC pin portion by the tester, the contact resistance after repeating 30 times the insertion and removal of the connector, was calculated increasing rate with respect to the contact resistance value before insertion. Those with an increase rate of less than 20% with respect to the contact resistance value before insertion / removal are indicated as ◯, and those with an increase rate of 20% or more are indicated as x with a failure. Furthermore, after repeating the insertion and removal with the connector 30 times, the occurrence of cracks in the plating layer is observed with a microscope and no cracks are observed. As a pass, it was indicated by a cross. The results are shown in Table 1.

Figure 0005154011
Figure 0005154011

表1の実施例1〜6及び参考例に示されるように、少なくともコネクタと嵌合されるFFC端子部の銅或いは銅合金配線上に、厚さ0.3〜1.5μmのNiめっき層、厚さ0.03〜0.2μmのPd基合金めっき層が順次形成されたFFC端子部とした本発明は、ガス腐食環境後も接触抵抗値の増加率が20%以下であり、また30回の挿抜回数を繰り返してもその接触抵抗値の増加が20%以下であり、さらにめっき層にはクラックの発生が見られないFFC端子部であった。また、Pd基合金めっき層は、Ni或いはCoを0.1〜1質量%含有したPd基合金を用いるのが好ましいことも判る。
As shown in Examples 1 to 6 and Reference Example of Table 1, at least an Ni plating layer having a thickness of 0.3 to 1.5 μm on the copper or copper alloy wiring of the FFC terminal portion fitted to the connector, According to the present invention, which is an FFC terminal portion in which a Pd-based alloy plating layer having a thickness of 0.03 to 0.2 μm is sequentially formed, the increase rate of the contact resistance value is 20% or less even after the gas corrosion environment, and 30 times Even when the number of insertions / removals was repeated, the increase in the contact resistance value was 20% or less, and the plating layer was an FFC terminal portion in which no crack was observed. It can also be seen that the Pd-based alloy plating layer is preferably a Pd-based alloy containing 0.1 to 1% by mass of Ni or Co.

これに対して、比較例1〜7に示すように本発明の範囲を外れた場合は、ガス腐食環境下に置いた後の接触抵抗値、コネクタとの30回の挿抜後の接触抵抗値、或いは前記挿抜後にクラックの発生等、いずれかの項目に問題があった。すなわち、比較例1のようにNiめっき層の厚さが薄い場合は、ガス腐食後の接触抵抗値が20%以上増加し、また比較例2のようにNiめっき層が厚すぎる場合は、コネクタとの30回の挿抜後にクラックが生じていた。さらに、比較例3に示すようにPd合金めっき層の厚さが薄くなると、ガス腐食環境後の接触抵抗値が高くなる。さらに比較例およびのように、Pd基合金めっき層のNiまたはCoの含有量が0.1質量%未満であると、30回の挿抜回数後の接触抵抗値が高くなり問題がある

On the other hand, as shown in Comparative Examples 1 to 7, when outside the scope of the present invention, the contact resistance value after being placed in a gas corrosive environment, the contact resistance value after 30 insertions and removals with the connector, Or there was a problem in any item, such as generation of cracks after the insertion and removal. That is, when the Ni plating layer is thin as in Comparative Example 1, the contact resistance value after gas corrosion increases by 20% or more, and when the Ni plating layer is too thick as in Comparative Example 2, the connector Cracks occurred after 30 insertions and removals. Further, if the thickness of the Pd alloy plating layer becomes thinner as shown in Comparative Example 3, that a higher contact resistance value after gas corrosion environment. Further, as in Comparative Examples 4 and 5 , when the Ni or Co content in the Pd-based alloy plating layer is less than 0.1% by mass, the contact resistance value after 30 insertions / extractions increases, and there is a problem .

つぎに、前記Pd基合金めっき層上にAuめっき層を形成した場合について、その効果を示す。すなわち、Pd基合金のめっき層上に、表2に記載した各種厚さのAuめっき層を形成したものを試料とした。ついでこの試料を、Au/Niめっき(Auめっき厚さが0.3μm、Niめっき厚さが3μm)したノンZIFタイプのコネクタと嵌合し、硫化水素10ppm、湿度85%の雰囲気中に48時間放置して、腐食ガス試験を行なった。ついで、テスターによって接触抵抗を測定しその増加率を計算した。腐食ガス試験前の接触抵抗値に対して、20%未満の増加率のものを合格として〇印で、20%以上の増加率のものを不合格として×印で記載した。また、コネクタの挿抜特性を調べるために、前記FFC端部と前記コネクタの挿抜を30回繰り返した後の接触抵抗をテスターによって測定し、挿抜前の接触抵抗値に対する増加率を計算した。挿抜前の接触抵抗値に対して20%未満の増加率のものを合格として〇印で、20%以上の増加率のものを不合格として×印で記載した。さらに、コネクタとの挿抜を30回繰り返した後のめっき層のクラックの発生状態を顕微鏡によって観察し、クラックの発生が全く見られない場合を合格として〇印で、クラックの発生が見られる場合を不合格として、×印で記載した。また、前記FFC端部について180日間の大気暴露試験を行ない、ついで、テスターによって接触抵抗を測定しその増加率を計算した。大気暴露試験前の接触抵抗値に対して、20%未満の増加率のものを合格として〇印で、20%以上の増加率のものを不合格として×印で記載した。結果を表2に記載した。 Next, the effect is shown about the case where Au plating layer is formed on the Pd base alloy plating layer. That is, a sample in which an Au plating layer having various thicknesses described in Table 2 was formed on a Pd-based alloy plating layer was used as a sample. Then, this sample was fitted with a non-ZIF type connector plated with Au / Ni (Au plating thickness: 0.3 μm, Ni plating thickness: 3 μm), and in an atmosphere of 10 ppm hydrogen sulfide and 85% humidity for 48 hours. The corrosive gas test was conducted by leaving it alone. Next, the contact resistance was measured by a tester and the rate of increase was calculated. With respect to the contact resistance value before the corrosive gas test, those with an increase rate of less than 20% are indicated as ◯, and those with an increase rate of 20% or more are indicated as x with a failure. Further, in order to examine the insertion characteristics of the connector, the measured and FFC pin portion by the tester, the contact resistance after repeating 30 times the insertion and removal of the connector, was calculated increasing rate with respect to the contact resistance value before insertion. Those with an increase rate of less than 20% with respect to the contact resistance value before insertion / removal are indicated as ◯, and those with an increase rate of 20% or more are indicated as x with a failure. Furthermore, when the occurrence of cracks in the plating layer after repeated insertion and removal with the connector 30 times is observed with a microscope, if no cracks are observed, it is indicated with a mark ◯, and the occurrence of cracks is observed. As a failure, it was indicated by a cross. As for the FFC pin portion performs atmospheric exposure test of 180 days, then measuring the contact resistance by a tester was calculated the rate of increase. With respect to the contact resistance value before the atmospheric exposure test, those with an increase rate of less than 20% are indicated as ◯, and those with an increase rate of 20% or more are indicated as x with a failure. The results are shown in Table 2.

Figure 0005154011
Figure 0005154011

表2の実施例7,8に示されるように、少なくともコネクタと嵌合されるFFC端子部の銅或いは銅合金配線上に、厚さ0.3〜1.5μmのNiめっき層、厚さ0.03〜0.2μmのPd基合金めっき層上に、厚さ0.005〜0.20μmのAuめっき層を形成したFFC端子部とすることによって、ガス腐食環境下に置いた後もその接触抵抗値が、増加率として20%以下であり、前記コネクタとの30回の挿抜を繰り返しても、その接触抵抗値の増加が20%以下であり、また前記挿抜後にはめっき層にクラックの発生がないFFC端子部であった。さらに、180日間大気暴露試験後の接触抵抗値の増加率も20%以下であった。なお、この構成のFFC端子部もPd基合金めっき層は、Ni或いはCoを0.1〜1質量%含有したPd基合金を用いるのが好ましい。 As shown in Examples 7 and 8 in Table 2, at least an Ni plating layer having a thickness of 0.3 to 1.5 μm and a thickness of 0 on the copper or copper alloy wiring of the FFC terminal portion fitted to the connector Even after being placed in a gas-corrosive environment by forming an FFC terminal part in which an Au plating layer having a thickness of 0.005 to 0.20 μm is formed on a Pd-based alloy plating layer having a thickness of 0.03 to 0.2 μm The contact resistance value is 20% or less as an increase rate, and even if the insertion and removal of 30 times with the connector is repeated, the increase in the contact resistance value is 20% or less, and after the insertion and removal, there is a crack in the plating layer. It was the FFC terminal portion where there was no occurrence. Furthermore, the increase rate of the contact resistance value after the atmospheric exposure test for 180 days was 20% or less. In addition, it is preferable to use a Pd-based alloy containing 0.1 to 1% by mass of Ni or Co as the Pd-based alloy plating layer in the FFC terminal portion having this configuration.

これに対して、実施例9のようにPd基合金めっき層上にAuめっき層を設けない場合は、180日間の大気暴露試験によって接触抵抗値が20%以上増加した。また実施例10のようにAuめっき層の厚さが薄いと、やはり180日間の大気暴露試験によって、接触抵抗値が20%以上増加した。
On the other hand, when no Au plating layer was provided on the Pd-based alloy plating layer as in Example 9, the contact resistance value increased by 20% or more by the atmospheric exposure test for 180 days. Further, when the thickness of the Au plating layer was thin as in Example 10 , the contact resistance value increased by 20% or more in the atmospheric exposure test for 180 days.

本発明のように、銅或いは銅合金配線上にNiめっき層を施し、この上にPd基合金めっき層を設けたFFC端子部は、コネクタと嵌合して長期間使用しても耐食性に優れ、またコネクタとの挿抜特性に優れているので、種々の電子機器類に対して有用なものである。さらに、Pd合金めっき層上にAuめっき層を設けたFFC端子部は、大気暴露に対しても問題がないのでより優れたFFC端子部として、種々の電子機器類に使用することが可能である。   As in the present invention, the FFC terminal portion in which the Ni plating layer is applied on the copper or copper alloy wiring and the Pd-based alloy plating layer is provided thereon is excellent in corrosion resistance even when fitted to the connector and used for a long time. Moreover, since it is excellent in the insertion / extraction characteristics with the connector, it is useful for various electronic devices. Furthermore, since the FFC terminal portion in which the Au plating layer is provided on the Pd alloy plating layer has no problem with atmospheric exposure, it can be used for various electronic devices as a more excellent FFC terminal portion. .

Claims (2)

又は銅合金導体上に、厚さ0.3〜1.5μmのニッケルめっき層が形成され、次に、ニッケル或いはコバルトを0.1〜1質量%含有する厚さ0.03〜0.2μmのパラジウム基合金めっき層が形成された平角導体を用いることを特徴とする、コネクタ挿抜型フレキシブルフラットケーブル。 A nickel plating layer having a thickness of 0.3 to 1.5 μm is formed on the copper or copper alloy conductor , and then a thickness of 0.03 to 0.1% containing 0.1 to 1% by mass of nickel or cobalt . characterized by using a rectangular conductor which palladium based alloy plating layer of 2 [mu] m were made form the connector insertion type flexible flat cable. 前記パラジウム基合金めっき層上に、厚さ0.005〜0.20μmの金めっき層が形成されたことを特徴とする請求項1に記載のコネクタ挿抜型フレキシブルフラットケーブル。 The palladium based alloy plating layer, the connector insertion type flexible flat cable according to claim 1, characterized in that the gold plating layer having a thickness of 0.005~0.20μm was formed.
JP2005330067A 2005-11-15 2005-11-15 Flexible flat cable Expired - Fee Related JP5154011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330067A JP5154011B2 (en) 2005-11-15 2005-11-15 Flexible flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330067A JP5154011B2 (en) 2005-11-15 2005-11-15 Flexible flat cable

Publications (2)

Publication Number Publication Date
JP2007141505A JP2007141505A (en) 2007-06-07
JP5154011B2 true JP5154011B2 (en) 2013-02-27

Family

ID=38204145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330067A Expired - Fee Related JP5154011B2 (en) 2005-11-15 2005-11-15 Flexible flat cable

Country Status (1)

Country Link
JP (1) JP5154011B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230643B1 (en) 2010-12-27 2013-02-06 주식회사 제이미크론 Method for manufacturing Cu wire plated Pd

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244106B2 (en) * 1985-06-17 1990-10-02 Yazaki Corp DENKYOSETSUTEN
JPH08293214A (en) * 1995-04-25 1996-11-05 Sumitomo Electric Ind Ltd Flat cable and partial gold plating method for conductor
JP2003213488A (en) * 2002-01-22 2003-07-30 Dowa Mining Co Ltd Electric contact member

Also Published As

Publication number Publication date
JP2007141505A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
TWI362046B (en) Flat cable
KR101156989B1 (en) Flexible printed wiring board terminal part or flexible flat cable terminal part
JP4904953B2 (en) WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY
JP2008021501A (en) Electrical part for wiring, manufacturing method thereof, and terminal connecting part
US20120107639A1 (en) Electrical component and method for manufacturing electrical components
JP5215305B2 (en) Electronic component manufacturing method and electronic component manufactured by the method
JP2009231065A (en) Tin-system plated rectangular conductor and flexible flat cable
JP2012140705A (en) Substrate structure, and method of manufacturing the same
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
JP2006127939A (en) Electric conductor and its manufacturing method
JP2008210584A (en) Flexible flat cable terminal
JP5154011B2 (en) Flexible flat cable
JP6503159B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP6553333B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP2012007228A (en) Electronic part
JP2015093999A (en) Terminal metal fitting
JP5964478B2 (en) connector
CN101534603B (en) Conductor for flexible substrate, method for manufacturing same, and flexible substrate
JP4427044B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP2006108057A (en) Connector joint terminal
JPH0681189A (en) Production of plated copper sheet or plated copper alloy sheet for producing electric connector
JP2010007111A (en) Copper or copper alloy rectangular conductive body and flexible flat cable
JPS59180908A (en) Silver-coated conductor and method of producing same
JP6025259B2 (en) Plating
JP4856745B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees